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SPECIALIZATION OF NONSYMMETRIC MACDONALD
POLYNOMIALS AT ¢t =00 AND DEMAZURE SUBMODULES
OF LEVEL-ZERO EXTREMAL WEIGHT MODULES

SATOSHI NAITO, FUMIHIKO NOMOTO, AND DAISUKE SAGAKI

ABSTRACT. In this paper, we give a representation-theoretic interpretation
of the specialization E,, (g, o0) of the nonsymmetric Macdonald polynomial
Ey.a(g,t) at t = oo in terms of the Demazure submodule V,, (\) of the
level-zero extremal weight module V() over a quantum affine algebra of an
arbitrary untwisted type. Here, A\ is a dominant integral weight, and wo de-
notes the longest element in the finite Weyl group W. Also, for each z € W,
we obtain a combinatorial formula for the specialization E, (g, 00) at t = co
of the nonsymmetric Macdonald polynomial E,(q,t) and also a combinator-
ical formula for the graded character gch V; (\) of the Demazure submodule
Vi (A) of V(A). Both of these formulas are described in terms of quantum
Lakshmibai-Seshadri paths of shape .

1. INTRODUCTION

Symmetric Macdonald polynomials with two parameters ¢ and ¢ were intro-
duced by Macdonald [MI] as a family of orthogonal symmetric polynomials, which
includes as special or limiting cases almost all the classical families of orthogonal
symmetric polynomials. This family of polynomials is characterized in terms of
the double affine Hecke algebra (DAHA) introduced by Cherednik ([Chl], [Ch2]).
In fact, there exists another family of orthogonal polynomials, called nonsymmet-
ric Macdonald polynomials, which are simultaneous eigenfunctions of Y-operators
acting on the polynomial representation of the DAHA; by “symmetrizing” nonsym-
metric Macdonald polynomials, we obtain symmetric Macdonald polynomials (see
).

Based on the characterization above of nonsymmetric Macdonald polynomials,
Ram-Yip |RY] obtained a combinatorial formula expressing symmetric or nonsym-
metric Macdonald polynomials associated to an arbitrary untwisted affine root sys-
tem. This formula is described in terms of alcove walks, which are certain strictly
combinatorial objects. In addition, Orr-Shimozono [OS] refined the Ram-Yip for-
mula above and generalized it to an arbitrary affine root system (including the
twisted case). Also, they specialized their formula at t = 0, ¢ = oo, ¢ = 0, and
q = 0.

As for representation-theoretic interpretations of the specialization of symmet-
ric or nonsymmetric Macdonald polynomials at ¢ = 0, we know the following.
Ton [I] proved that for a dominant integral weight A and an element x of a finite
Weyl group W, the specialization FE,(g,0) of the nonsymmetric Macdonald poly-
nomial E,x(q,t) at t = 0 is equal to the graded character of a certain Demazure
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submodule of an integrable, irreducible highest weight module over an affine Lie al-
gebra of untwisted simply-laced type or twisted non-simply-laced type. Afterward,
Lenart-Naito-Sagaki-Schilling-Shimozono [LNSSS2] proved that for a dominant in-
tegral weight A, the set QLS()) of all quantum Lakshmibai-Seshadri (QLS) paths of
shape A provides a realization of the crystal basis of a special quantum Weyl module
over a quantum affine algebra U!(gag) (without degree operator) of an arbitrary
untwisted type, and also proved that its graded character equals the specialization
Euw.2(q,0) at t = 0, where w, denotes the longest element of W. Here a QLS
path is obtained from an affine level-zero Lakshmibai-Seshadri (LS) path through
the projection R ®z P,y — R ®gz P, which factors the null root ¢ of an affine Lie
algebra g.g, and is described in terms of (the parabolic version of) the quantum
Bruhat graph, introduced by Brenti-Fomin-Postnikov [BFP]. The set of QLS paths
is endowed with an affine crystal structure in a way similar to the one for the set of
ordinary LS paths introduced by Littelmann |L]. Moreover, Lenart-Naito-Sagaki-
Schilling-Shimozono [LNSSS3|] obtained a formula for the specialization F,(q,0),
x € W, at t =0 in an arbitrary untwisted affine type, which is described in terms
of QLS paths of shape A, and proved that the specialization F,)(q,0) is just the
graded character of a certain Demazure-type submodule of the special quantum
Weyl module. The crucial ingredient in the proof of this result is a graded charac-
ter formula obtained in [NS3] for the Demazure submodule V.~ (\) of the level-zero
extremal weight module V' ()\) of extremal weight A over a quantum affine algebra
U, (gagr), where e is the identity element of W. More precisely, in [NS3], Naito
and Sagaki proved that the graded character gch V7 (A) of V7 (A\) C V() is equal
to (TTie, [T2, (1 — q’T))f1 Eyoa(q1,0), where X = 3", m;w; is a dominant in-
tegral weight, with w;, ¢ € I, the fundamental weights. The graded character
gch V.7 () is obtained from the ordinary character of V.~ (\) by replacing €’ by g,
with ¢ the null root of the affine Lie algebra g.g.

The purpose of this paper is to give a representation-theoretic interpretation of
the specialization FE,_x(¢g,00) of the nonsymmetric Macdonald polynomial
Ey,x(q,t) at t = oo in terms of the Demazure submodule V. (\) of V()); here
we remark that V.- (X\) C V7 (A). More precisely, we prove the following theorem.

Theorem A (= Theorem[B.T.2). Let A = .., m;w; be a dominant integral weight.
Then, the graded character gch V- (X) of the Demazure submodule V.~ (X) of V(X)
is equal to

m; -1
(H [Ta- q’”)) B, (q,00).

i€l r=1

In order to prove Theorem [Al we first rewrite the Orr-Shimozono formula for
the specialization E,)(g,00) for z € W (originally described in terms of quantum
alcove walks) in terms of QLS paths by use of an explicit bijection sending quantum
alcove walks to QLS paths that preserves weights and degrees; in some ways, this
bijection generalizes a similar one in [LNSSS2]. In particular, for x = w,, the
Orr-Shimozono formula rewritten in terms of QLS paths states that

(*) Ewo)\(q7 OO) — Z GWt(w)qugwoA(¢),
HEQLS(N)
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where QLS(X) is the set of all QLS paths of shape A, and for ¢ € QLS()), deg,,_»(¥)
is a certain nonpositive integer, which is explicitly described in terms of the quantum
Bruhat graph; see §3.2 for details.

Next, using the explicit realization, obtained in [INS], of the crystal basis B(\)
of V() by semi-infinite LS paths of shape A, we compute the graded character
gch V.~ (A) of the Demazure submodule V,~(X) for € W and prove the following
theorem.

Theorem B (= Theorem B.T.T)). Let A =, ; m;w; be a dominant integral weight
and x an element of the finite Weyl group W. Then, the graded character gch V7 (\)
of V- (A) is equal to

m; -1
(H H(1 - qr)> Z V(W) gdegan (V)

i€l r=1 YEQLS(N)

The proof of Theorem [Bl is based on the fact that by factoring the null root §
of gagr, we obtain a surjective strict morphism of crystals from the set of all semi-
infinite LS paths of shape A onto QLS()). By combining the special case z = w,
of Theorem [B] with equation (&) above, we obtain Theorem [Al

Finally, for x € W, we define a certain (finite-dimensional) quotient module
Vo (N)/ X, (A) of V.7 () and prove that its graded character gch (V7 (A)/ X, (X))
is equal to ZwEQLS()\) eVt (W) gdegan (V) Hence it follows that under the specializa-

tion e = ¢ = 1, all the modules V" (\)/X(\), + € W, have the same char-
acter; in particular, they have the same dimension. Also, in the case z = w,,
we have geh (V. (A)/X 5. (X)) = Eu,r(g,00). Note that in the case z = e, the
quotient module V (A )/X (A) is just the one in [NS3| §7.2], and hence we have
gch (V- (N)/ X7 (A )) Euw.2(q71,0) (see [LNSSS3, §3] and [NS3, §6.4]). Based on
these results together with [Katl Theorem 5.1] for the classical limit, we can think of
the quotient modules V7 (\)/ X, (\), z € W, as a quantum analog of “generalized
Weyl modules” introduced in [EM].

This paper is organized as follows. In Section 2, we fix our notation and recall
some basic facts about the (parabolic) quantum Bruhat graph. Also, we briefly
review the Orr-Shimozono formula for the specialization E, (g, 00) at ¢t = oo for
x € W. In Section 3, we prove equation (@) above or, more generally, Theorem
B27 This theorem gives the description of the specialization E, (g, 00) at t = 0o
for z € W in terms of QLS paths of shape A. In Section 4, we compute the
graded character gch V7 ()) for an arbitrary # € W and prove Theorem [Bl By
combining the special case * = w, of Theorem [B] with equation (&), we obtain
Theorem [Al Finally, for z € W, we define a certain (finite-dimensional) quotient
module V7 (A)/ X (\) of V7 (A\) and compute its graded character. In the special
case & = wo, we obtain the equality gch (V. (A)/ X5 (X)) = Ewoa(g,0).

2. (PARABOLIC) QUANTUM BRUHAT GRAPH AND ORR-SHIMOZONO FORMULA

2.1. (Parabolic) quantum Bruhat graph. Let g be a finite-dimensional simple
Lie algebra over C, I the vertex set for the Dynkin diagram of g, {«;}icr (resp.,
{a }ier) the set of all simple roots (resp., coroots) of g, h = @,; Ca; a Cartan
subalgebra of g, h* = P,.; Ca; the dual space of b, and by = @, ; Ra; the real
form of h*. The canonical pairing between h and h* is denoted by (-,-) : h*xf — C.
Let Q@ = > ,c; Zay C by denote the root lattice of g, Q¥ = >, ; Zoy C bg the
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coroot lattice of g, and P = >, ; Zw; C by the weight lattice of g, where the
w;, & € I, are the fundamental weights for g, i.e., <wi,a}/> = 0y for i, € I. We
set Pt := 3%, Z>ow; and call an element A of P™ a dominant weight. Let us
denote by A the set of all roots and by AT (resp., A™) the set of all positive (resp.,
negative) roots. Also, let W := (s; | ¢ € I} be the Weyl group of g, where s;, i € I,
are the simple reflections acting on h* and on bh:

siv=v— (v, )y, vEDBD*,
sih = h — {a;, hye), h €B.

7
We denote the identity element and the longest element of W by e and w,, respec-
tively. If o € A is written as a = wa; for w € W and i € I, then we define o to
be way’; note that s, = sov = ws;w™t. For u € W, the length of u is denoted by

7

{(u), which equals #(AT Nu~tA7).

Definition 2.1.1 ([BFP] Definition 6.1]). The quantum Bruhat graph, denoted by
QBG, is the directed graph with vertex set W whose directed edges are labeled by

positive roots as follows. For u,v € W, and 3 € A, an arrow u g v is an edge of
QBG if the following hold:

(1) v=usg, and

(2) either (2a): £(v) = £(u) + 1 or (2b): £(v) = £L(u) — 2(p,BY) + 1,
where p := £ 3 oA+ @ An edge satisfying (2a) (resp., (2b)) is called a Bruhat
(resp., quantum) edge.

Remark 2.1.2. The quantum Bruhat graph defined above is a “right-handed” ver-
sion, while the one defined in [BEP] is a “left-handed” version. We remark that
the results of [BFP] used in this paper (such as Proposition ZT4]) are unaffected
by this difference (cf. [Pol).

For an edge u i v of QBG, we set

. B .
wt(u — v) = { 0  if uw — v is a Bruhat edge,

BY ifu Bivisa quantum edge.

Also, for u,v € W, we take a shortest directed pathu = 7o 2 21 2 -+ 25 2, = v

in QBG and set
wt(u = v) == wt(zg = z1) + - + wt(z,_1 = 2,) € QY.

We know from [Pol Lemma 1 (2),(3)] that this definition does not depend on the
choice of a shortest directed path from u to v in QBG. For a dominant weight
A € Pt we set wty(u = v) := (\, wt(u = v)) and call it the A\-weight of a directed
path from u to v in QBG.

Lemma 2.1.3. Ifxiy is a Bruhat (resp., quantum) edge of QBG, then yw, LN

Tws 18 also a Bruhat (resp., quantum) edge of QBG.

Proof. This follows easily from equalities £(y) — ¢(z) = ¢(zw,) — ¢(yw,) and
(P, —woBY) = (p. BY). 0

1 _

Let w € W. We take (and fix) reduced expressions w = s;, ---s;, and wow™' =

8i_, '+ Si,- Note that

P

Wo :sifq“'siosil"'sip
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is also a reduced expression for the longest element w,. Now we set

(2.1) Br = Si, iy, Qiyy —q <k < p;
we have {8_,,...,00,--.,0p} = AT. Then we define a total order < on AT by
(2‘2) ﬁfq = 57q+1 == ﬁp'

Note that this total order is a weak reflection order in the sense of Definition B.1.2]
below.

Proposition 2.1.4 ([BEP, Theorem 6.4]). Let u and v be elements in W.

(1) There exists a unique directed path from u to v in QBG for which the edge
labels are strictly increasing (resp., strictly decreasing) in the total order <
above.

(2) The unique label-increasing (resp., label-decreasing) path

71 Y2 v
U=U) —> U] —> + —> Up =V

from u to v in QBG is a shortest directed path from u to v. Moreover,
it is lexicographically minimal (resp., lexicographically mazimal) among all
shortest directed paths from u to v; namely, for an arbitrary shortest directed
path

o TR Yy r_
U—UOHU1—>"'—>UT—U
from u to v in QBG, there exists 1 < j < r such that v; < ’y;- (resp.,
Yj =), and i =y, for L <k <j—1

For a subset S C I, we set Wg := (s; | i € S); notice that S may be the empty
set . We denote the longest element of Ws by w,(S). Also, we set Ag := Qs NA,
where Qs := . g Za;, and then A}' = AgNAT, Ag := AgNA~. Let w*e
denote the set of all minimal-length coset representatives for the cosets in W/Ws.
For w € W, we denote the minimal-length coset representative of the coset wWg
by |w], and for a subset U C W, we set |U] := {|w] | w € U} € W¥.

Definition 2.1.5 ([LNSSSI] §4.3]). The parabolic quantum Bruhat graph, denoted
by QBG?, is the directed graph with vertex set W whose directed edges are labeled
by positive roots in A*\ A as follows. For u,v € W¥ and g € AT\ A, an arrow
w25 v is an edge of QBGS if the following hold:

(1) v=|usg], and

(2) either (2a): £(v) = £(u) + 1 or (2b): £(v) = £(u) — 2{p — ps, BY) + 1,
where pg = %ZaeAg a. An edge satisfying (2a) (resp., (2b)) is called a Bruhat
(resp., quantum) edge.

For an edge u LN QBG?, we set

. B .
Wts(u )= 0 if u ? v is a Bruhat edge,
BY if u = v is a quantum edge.
Also, for u,v € W, we take a shortest directed path p : u =z 25 z7 -2 - 25

z, = v in QBG? (such a path always exists by [LNSSS1] Lemma 6.12]) and set

wt® (p) == wt® (2o = 21) + -+ wt¥ (2,1 = 2,) € QY.
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We know from [LNSSSIl Proposition 8.1] that if q is another shortest directed path
from u to v in QBGY, then wt®(p) — wt®(q) € Q¥ := Yies Loy
Now, we take and fix an arbitrary dominant weight A € P+ and set
S=8:={iel]|(\a)=0}

By the remark just above, for u,v € W¥, the value (\, wt*(p)) does not de-
pend on the choice of a shortest directed path p from u to v in QBG?; this value
is called the A-weight of a directed path from u to v in QBG®. Moreover, we
know from [LNSSS2, Lemma 7.2] that the value (\, wt®(p)) is equal to the value
wta(z = y) = (A, wt(z = y)) for all x € uWg and y € vWs.

Definition 2.1.6 ([LNSSS2| §3.2]). Let A € P be a dominant weight and o €
QnNJ0,1], and set S = Sx. We denote by QBG,, (resp., QBGZ, ) the subgraph

of QBG (resp., QBGS) with the same vertex set but having only the edges u LN
with o(\, 8Y) € Z.

Lemma 2.1.7 ([LNSSS2| Lemma 6.2]). Let o € QN [0, 1]; notice that o may be 1.

Ifu By v is an edge of QBG,, then there exists a directed path from |u| to |v] in
QBG3,.
Also, for u,v € W, let £(u = v) denote the length of a shortest directed path in

QBG from u to v. For w € W, as in [BEP|, we define the w-tilted Bruhat order
<w on W as follows: for u,v € W,

unggzegf(wév)zﬁ(wéu)—ké(uév).

We remark that the w-tilted Bruhat order on W is a partial order with the unique
minimal element w.

Lemma 2.1.8 ([LNSSS1, Theorem 7.1], [LNSSS2, Lemma 6.6]). Let u,v € W*
and w € Wg.
(1) There exists a unique minimal element in the coset vWyg in the uw-tilted
Bruhat order <,.,,. We denote it by min(vWg, <y,).
(2) There exists a unique directed path from uw to some x € vWs in QBG
whose edge labels are increasing in the total order < on AY, defined in
22), and lie in AT\ AL. This path ends with min(vWs, <yu).
(3) Let 0 € QN [0,1], and let X € P be a dominant weight. If there exists a
directed path from u to v in QBGEM then the directed path in part (2) is in

QBG,,.
2.2. Orr-Shimozono formula. In this subsection, we review a formula [OS], Prop-
osition 5.4] for the specialization of nonsymmetric Macdonald polynomials at ¢ = cc.
Let g denote the finite-dimensional simple Lie algebra whose root datum is dual
to that of g; the set of simple roots is {«) };ier C b, and the set of simple coroots
is {a;}ics C b*. We denote the set of all roots of § by A = {a" | € A} and the
set of all positive (resp., negative) roots of g by At (resp., E‘) Also, for a subset

S C I, we set
@S :ZZZQZ-V, Es :Zﬁﬂés, E;zgsﬂﬁ-i_, &gzgsﬂz_.

i€s
We consider the untwisted affinization of the root datum of g. Let us denote by
Eaﬁr the set of all real roots and by E:ﬁ (resp., A;H) the set of all positive (resp.,
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negative) real roots. Then we have A,g = {a¥ +ad | a € A,a € Z}, with § the null
root. We set o = 5 — ¢V, where ¢ € A denotes the highest short root, and set
L := TU{0}. Then, {a} }ic1,, is the set of all simple roots. Also, for 8 € h® Cg,
we define deg(f) € C and 3 € b by

(2.3) B = B + deg(3)s.

We denote the Weyl group of g by ﬁ//; we identify W and W through the identi-
fication of the simple reflections of the same index for each i € I. For v € bh*,
let ¢(v) denote the translation in b*: t(v)y = v+ v for v € h*. The corre-
sponding affine Weyl group and the extended affine Weyl group are defined by

W, aff := t(Q) X W and Wext =t(P ) x W, respectively. Also, we define sq : h* — b*
by v v— ((1,0") —1)¢. Then, Wag = (s; | i € Lg); note that sy = (¢ )S,. The
extended affine Weyl group Wext acts on h @ C§ as linear transformations and on
b* as affine transformations: for v € W, t(v) € t(P),

vtW)(B+18) =vB+ (r— (v, B))8, Beb,reC,
vt(v)y = vv + vy, ~v € b*.
An element u € Wext can be written as
(2.4) u = t(wt(u))dir(u),
where wt(u) € P and dir(u) € W, according to the decomposition Wexe = t(P)xW.
For w € Wext, we denote the length of w by ¢(w), which equals # (Z:ff N wilﬁgﬁ).

Also, we set Q :={w € W | £(w) = 0}.
For u € P, we denote the shortest element in the coset t(u)W by m, € Wey.
In the followmg, we fix p € P and take a reduced expression m, = usy, ---s¢, €

Wext =Qx Wag, where u € Q and f,...,0; € Lg.
For each J = {j1 < jo < jg < --- < j,«} c {1,...,L}, we define an alcove

path p9S = (mu = 298,205, ..., 208; ]1 S ﬂos) as follows: we set 85 :=
Sey 80,0, € A:ff for 1 <k < L, and set

205 = my,

ZIOS = musﬂj(_)ls,

ZQOS = musﬂqssﬁgs,

Z?S = musﬂj(_)ls .“Sﬂﬁs'

Also, following [OS], §3.3], we set B(e;m,,) := {p?s | Jc{1,...,L} } and end(p9%)
:= 295 € Weyy. Then we define QB(e; my,) to be the following subset of B(e;m,,):
7(ﬁ2i1)

dir(20%) dir(205) is an edge of QBG,

0§z‘§r—1}.

(2.5) {p?s € B(e;my,)
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—\ V
Remark 2.2.1 (M (24.7)]). I j € {1,..., L}, then — (ﬂfs) e AT

For p9% € @B(e;m#), we define qwt*(p$S) as follows. Let J* C J denote the
~(8%5)"
set of all indices j; € J for which dir(z2%) & dir(299) is a quantum edge.
Then we set
) = 3 A%
jeJt
For 1 € P, we denote by E,(q,t) the nonsymmetric Macdonald polynomial

and by E,(q,00) the specialization lim;_,o E,(q,t) at t = co. This specialization
is studied in [CO] in untwisted simply-laced types and twisted non-simply-laced

types.
We know the following formula for the specialization E,(g,00) at t = oo.

Proposition 2.2.2 ([OS| Proposition 5.4]). Let € P. Then,

E,(g,00) = Z g~ dee(awt” (#3°)) gwt(end(p7®))
p?SEﬁ?)(e;mH)

3. ORR-SHIMOZONO FORMULA IN TERMS OF QLS PATHS
3.1. Weak reflection orders. Let A € PT be a dominant weight, 4 € W\, and
set S =8y ={i €l (\a)) =0} We denote by v(u) € W¥ the minimal-
length coset representative for the coset {w € W | wA = p} in W/Wg. We have
Lv(p)w) = L(v(p)) + £(w) for all w € Wg. In particular, we have £(v(u)w,(S)) =
Lv(p))+H(wo(S)). When = A_ := wo A, it is clear that we, € {w € W |wA = A_}.
Since w, is the longest element of W, we have

(3.1) wo = v(A_)we(S)

and L(v(A_)wo(S)) = L(v(A2)) + €(wo(S)); note that v(A_) = wowo(S) = |wo].
The following lemma follows from [M| Chap. 2].

Lemma 3.1.1.
(1) dir(my) = v(p)o(A-)"! and £(dir(m,)) + L(v(p)) = L(v(A-)); hence

(3.2) my, = tp)o(p)o(A_) !
(2) v(pw(A=) " w, = v(p)ws(S)
(3) (VA )o() ™) myy = mo_, and €(o(A-)o(u) 1) + £my) = £(my_ ).
(4) €O Yo(p) ™) + Ev() = Lv(r-)

In this subsection, we give a particular reduced expression for my_ (=¢(A-) by
B2)) and then study some of its properties.
First of all, we recall the notion of a weak reflection order on A™.

Definition 3.1.2. A total order < on A7 is called a weak reflection order on AT
if it satisfies the following condition: if a, 8,7 € AT with 4V = oV + 8V, then
a<vy=<porf<v<a.

The following result is well-known (see [Pal, Theorem on p. 662] for example).
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Proposition 3.1.3. For a total order < on A™, the following are equivalent:
(1) the order < is a weak reflection order;

(2) there exists a (unique) reduced expression wo = S;, - -+ Siy for we such that
Sin " Sigaa Qi < Siy 0 Siy 0 for 1 <k <j<N.

Next, we recall from [Pal pp. 661-662] the notion and some properties of a weak
reflection order on a finite subset of Af;. We remark that arguments in [Pal also
work in the general setting of Kac-Moody algebras.

Definition 3.1.4. Let T be a finite subset of E:H and <’ a total order on T. We
say that the order <’ is a weak reflection order on T if it satisfies the following
conditions:
(1) if 61,0, € T satisfy 0, <" 65 and 6, + 0, € AL, then 6; + 6, € T and
01 <" 01+ 05 <’ Oa;
(2) if 91, 0, € Aj;ff satisfy 01+65 € T, then 6, € T and 6 + 65 </ 01, or 0, eT
and 61 + 0y <’ 05.

We remark that there does not necessarily exist a weak reflection order on an
arbitrary finite subset of A;‘H.

Proposition 3.1.5. Let T be a finite subset of Aiﬁ and <’ a weak reflection order
onT. We write T as {y1 <" 72 <" -+ <" v}. Then there exists w € Wog such

that ﬁiﬁ N w‘lﬁgﬁ = T. Moreover, there exists a (unique) reduced expression
w = 8¢, 8¢, for w such that S@p---85j+1045v7, =7; for1 <j<p.

The converse of Proposition B.1.5] also holds.

Proposition 3.1.6. Let w € Waﬁ7 and let w = sg, -+ 8¢, be a reduced expression.

We set a v; := s¢, - S¢, 042/]. for 1 < j < p, and define a total order <' on

4 j+1

ﬁiﬁg N w—1£;ﬁ as follows: for 1 < j,lig D, Vi j’ Yk (}:egj < k. Then, the total
order <’ is a weak reflection order on A:ﬁ- Nw A .

Remark 3.1.7. Let
v(/\_) = Sil e Sz’M,

wO(S) = Sipp1 " Sin

Wo = Si] P SiMSik1+1 e SiN
be reduced expressions for v(A_), wo(5), and we = v(A_)w.(S), respectively, where
S =8y={iel]| (\a) =0} Recall that wo(S) is the longest element of
Ws. We set B; := siy---8i;,,0i;, 1 < j < N. By Proposition B.1.3] we have
AJF\Ag = {[31 < Py <. %ﬂM} and A; = {5M+1 < BM_;_Q < e <ﬁN}, where
< is the weak reflection order on AT determined by the reduced expression above

for we. In particular, we have
(33) 01 < 05 for 0, € AT \ A; and 65 € A;

Conversely, if a weak reflection order on A™ satisfies ([3.3]), then the reduced expres-
sion wo = Sy, - - - Sy, fOr w, corresponding to this weak reflection order is given by
concatenating a reduced expression for v(A_) with a reduced expression for w,(S).
Moreover, if we alter a reduced expression for w,(S) with a reduced expression for
v(A_) unchanged, then the restriction to A*\ A% of the weak reflection order on
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AT does not change. Thus, the restriction to AT \A; of the weak reflection order
on AT satisfying ([3.3) depends only on a reduced expression for v(A_).

First let us take a reduced expression v(A_) = s;, - -+ $;,, and a weak reflection
order < on AT such that the restriction to AT\ A¥ of this weak reflection order
< is determined by the reduced expression v(A_) = s;, - - - 8;,, as in Remark B.1.7
Also, we define an injective map ® by

P : A:ﬁ» N m;_lﬁa_ﬁ — Q>0 x (A+ \ A;)a
<)‘—7B> _Eeg(ﬁ) , wOBV) .
(A=, B)

Note that (A_, B) > 0, (A\_, B) — deg(B3) > 0, and wOBV € AT\ A} since we know
from [M], (2.4.7) (i)] that

B =B+deg(B)s — (

(3.4) Afgnmi'Az={a"+ad |acA™,0<a< (A ,a")}.

We now consider the lexicographic order < on Q¢ x (AT \ AY) induced by the
usual total order on Q> and the restriction to AT\ A of the weak reflection order
< on AT; that is, for (a,a), (b, 8) € Qs x (AT \ AL),

(a,) < (b,B) if and only if a < b, or a =b and « < .

Then we denote by <’ the total order on E;}fﬂm: E;H induced by the lexicographic
order on Qso x (A" \ Af) through the map ®, and write E:ﬁ N m;}ﬁ;ff as
{fn <" <"k

Proposition 3.1.8. Keep the notation and setting above. Then, there exists a
unique reduced expression my_ = usg, -+ 8¢, for mx_, u € Q, {l1,..., 01} C Ly,
such that ﬁjos (: Se, -~-84j+1a}/j) =, for1<j<L.

Proof. We will show that the total order <’ is a weak reflection order on E:ff N
my A
We check condition (1) in Definition B4l Assume that 6,62 € &:H nm; ! Z;ff
satisfy 07 <’ 0 and 01 + 605 € Aiﬁ. Then it is clear that 6; + 65 € ﬁiﬂ N m;_l ﬁ;ff.
Consider the case that the first component of ®(6;) is less than that of ®(6-) (i.e.,
A—01)—deg(®s) <A—’£>7i°g(92)). In this case, the first component of ®(6; + 62)

<)‘*’01> <)‘*792>
is equal to <)‘”01:\92>97i2g(>01+92), which lies between the first components of ®(6;)
—»V1 2

and ®(6;). Hence we have ®(61) < ®(01 + 02) < D(6s).
Consider the case that the first component of ®(6;) is equal to that of ®(62). In
this case, we have woav < onv, where < is the restriction to AT \ AJSF of the

weak reflection order on AT. Note that the first component of ®(6; + 65) is equal
to A=:01+02) —deg(61+62)
(A—,01+02)

®(03). Moreover, since 01 405 € E;"ﬂﬂm;} E;H, we have w, (01 + 92)V e At \A:g
It follows frovm the de@nition of the weak reflection order < on At that woav =<
Wo (91 —|—02) < wofly . Hence we have ®(0;) < ®(0; + ) < ®(6,). Thus, the
total order <’ satisfies condition (1).

, which is equal to both of the first components of ®(#;) and
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We check condition (2) in Definition B.T.41 If 91, 0, € A \m/\ Aaﬂ and 0, +65 €
EJrﬁ, then it is clear that 6, + 65 € A+ \mA .- Hence we may assume that
0, € A Hﬂm)\lA g and 0y € Aaﬁ\m)\ o indeed, if 61,62 € A HﬁmAlAaH, then
the assertion is obvious by condition (1). Since A:H nmy? Aaff ={aV+al|ae
A7,0 <a < (A,a")}, we have 0 < deg(@l) < (A_,0;) and 0 < deg(f; + 62) <
(A, 01 + 63). Also, since 6, € A w\my! A > we find that (A_,02) < 0 < deg(f2),
deg(62) > (A_,02) >0, or (A\_,0;) = deg(f) = 0. If 0 > deg(fs), then we have
0y € A4, a contradiction.

In the case that (A_,03) < 0 < deg(fy), the first component of ®(6; + 6,), which
(A_,01+02)—deg(01+62)

is , satisfies the inequalities

(A_,0:162)
(A=, 01 + 62) — deg (61 + 02) < (A_,01 + 0o) — deg(6)
01 + 0) = (A_.01 1 03)
_ o deg(6y) c1- deg(@_l)
(A, 01 + 02) (A=, 01)
(A, 61) — deg(6y)
(A0

Therefore, we deduce that the first component of ®(6; + 62) is less than that of
®(61), and hence ®(0; + 63) < D(61).

In the case that deg(f2) > (\_,f2) > 0, the first component of ®(6; +6,) satisfies
the inequalities

(A, 01 +0p) —deg(6h +02) ((A=, 1) — deg(61)) + (A=, 02) — deg(62))
(A=, 01 + 03) (A=, 01+ 62)
((A_,01) — deg(61) ) (A_,01) — deg(6y)
DLOTh) L)

Therefore, we deduce that the first component of ®(6; + 5) is less than that of
®(61), and hence that (61 + 62) < ®(61).

In the case that (A_,0,) = deg(f,) = 0, the first component of ®(6; +6,) is equal
to that of ®(6;). Moreover, since (A_, ) = (A, wof2) = 0, we have woby € Af.
Therefore, by ([3.3), we see that w, (61 + 62)Y < wobs . Tt follows from the definition
of the weak reflection order on AT that wo6‘_1v < wo(01 + 62)V < wo@\/, and hence
that @(91 + 92) < @(91)

Thus, we conclude that <’ satisfies condition (2), and the total order <’ is a
weak reflection order on A+ nm; - 1A_

Now, by Proposition 315 there exists w € Waff such that E:H N m;} E;H =
E:ﬁﬂwﬂﬁ;ﬂ, and there exists a reduced expression w = sy, - "t {l1,... 4L} C
J+10‘zj for 1 < 5 < L. Since A ﬂmfAdbff =
E:ﬁ N w’lﬁgﬂ, it follows from [M| (2.2.6)] that there exists v € € such that
uw = my_. Thus, we obtain a reduced expression my_ = usy, ---s¢, for my_,
with v; = s¢, ""%HO‘Zj = ﬁ]QS for 1 < j < L. This completes the proof of the
proposition. ([l

Ig for w such that v; = sp, -+ s¢
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By Remark 3.7 the restriction to A* \ A& of a weak reflection order on AT
satisfying (B3) corresponds bijectively to a reduced expression v(A_) = 8;, - - - 8;,,
for v(A_). Hence, by Proposition B8 we can take a reduced expression my_ =
usy, -+ - Sg, for my_ corresponding to each reduced expression v(A_) = s, + -+ S;,,
for v(A_). Conversely, as seen in Lemma[B.T.T0] from the reduced expression my_ =
usy, - - Sp, for my_, we obtain a reduced expression for v(A_), which is identical
to the original reduced expression v(A_) = s;, - -+ s;,, (see Lemma below).

In the remainder of this subsection, we fix reduced expressions v(A_) = 8;, - - - 8i,,
and wo(S) = 8,,,, - Siy, and use the weak reflection order < on A™ (which
satisfies (33])) determined by these reduced expressions for v(A_) and w,(S). Also,
we use the total order <’ on g;'ﬁ N m)il K;H defined just before Proposition B.1.8]
and take a reduced expression my_ = usy, ---s¢, for my_ given by Proposition

BIR
Recall that ﬂ,?s =5Sp, - szkﬂag for 1 <k < L. We set a, := deg( 8) € Zo.

Since Ejﬁ N m;}ﬁ;ff = {BY5,... ,BES}, we see by (B.4) that 0 < ax < (A_, ,?S>.
Also, for 1 < j < L, we set B¢ 1= usy, - s¢,_, Xk and by, := deg(BF) € Zso. Then
Wehave{ﬁk|1<k:<L}—A+ﬂm>\A ={aV+al|aecAt0<a<
—(A=, )} (see ML (2.4.7) (id))).
Remark 3.1.9. For 1 < k < L, we have

—t(\_) By 08 — —(use, -+ 80, ) (86, - ~szk+1a2/k) = —USg, *** Se,_, Sy, az/k

e ~
= —usy, ---Sgkfl(—oz}k) = usy, ---s@Ha} =fy = B,I; + bi0.

From this, together with —t(A_) OS = —?— (ar, — (A_, B9 895))4, we obtain B
/8 and <)‘—7/8 >_a/k7:bk-

Lemma 3.1.10. Keep the notation and setting above. Since usy, = s;; u for some
i), € Lg, 1 < k < M, we can rewrite the reduced expression usy, ---s¢, for my_
as Siy +++ Siy USeyr .y St Then, sy -+ sy is a reduced expression for v(A-), and
USgy ., t - Sey, 18 a reduced expression for my. Moreover, iy, = 1), for 1 <k < M.

Proof. First we show that {85 | 1 <k < M} = —w, (Z* \Zg) Since {A9° | 1 <
j<L}={a"+ab|acA™,0<a< (A ,aY)}, wesee that the minimum value of

oSy _
the first components of ®( ,?S), ie., % for 1 < k < L, is equal to 0. Since
_ B¢

P(BY%) < d(BYS) < -+ < B(BYY), where < denotes the lexicographic order on
Q>0 % (A+ \ A¥), there exists a positive integer M’ such that the first component
of ®(8Y%) is  equal to 0 for 1 < k < M’ and greater than 0 for M’ +1 < k < L.
Since Bf = ﬂk + by and (A, ,?S> — ar = by by Remark B.1.9] we deduce that
the first component of ®(82°) is equal to 0 if and only if B,I; = 5_,% € At. In
this case, we have (A, —w.() = (A_, —BF) Remark .13 o ﬁ S) > 0, and hence
BE € —wo(A+ \ AY). Therefore, we obtain {8F | 1 < k < L} N —w,(AT\ Af) =
{Bk |1 <k <M} C —wo(A+\A+). Also, because {BF | 1 < k < L} =
Afsnmy Ay ={aY+ad |aeAT,0<a < —(A_,a")} D —wo(AT\ Af), we
deduce that {8 | 1 < k < M'} = —w,(AT\ A‘SL) Since #(A*\ K‘SL) =M, it
follows that M = M’, and hence {8F | 1 <k < M} = —w, (AT \ A¥).
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We show that #j, € I for 1 < k < M. We set ¢ := Sif v Sit laiv, forl1 <k < M.
- k
Since uey/ = ), , we have
k N

L _ Vo v o_ vV _ v
B = use, -+ Se, O = Sip S uQy, = S Sy Qg = %

Hence it follows that {¢Y | 1 <k < M} = {8L | 1 <k < M} = —w (AT \ A}).
If there exists k € {1,..., M} such that i), = 0, then, by choosing the minimum of
such &’s, we obtain (Y = s ~~~si;71az\.2c ¢ AT, contrary to the equality {¢) | 1 <

k< M} =—wo(A+\ Af). Therefore, we have i}, € I for 1 < k < M.

. Next, we show tha‘g Sy - Sy isa .reduced expression for v(A_) and USerr oS0y

is a reduced expression for my. Since sy, --- ¢, is a reduced expression, so is
: -/ -/ —

sy + -~ 8y . Therefore, there exist ¢/ 4,... iy € I such that we = s; - “Sif, Sil,

-8y 18 a reduced expression for w,. Because s/ - Sir ay =
k

- St BN
M+1 M k+1

—woﬁ}g, 1 <k < M, by using the reduced expression above for w,, we obtain

AN+ L L Y Y
A *{_woﬂlv“w_wogMasi}V"'Si;/,+20‘i;\4+1’-~-a0‘i;\,}~

Here, {8F | 1 <k < M} = —wo (AT \ A) implies {sir, -~-si}4+2aivx{ ,...,aiv,N} =
+1

3;5 From this by descending induction on M + 1 < k < N, we deduce that
ihigrs -0y €5 and Sif,,, """ Si isan element of Wyg; note that the length of this

element is equal to N — M, which is the cardinality of E;C Therefore, iy, TS
is the longest element wo(S) of Ws, and hence sy -+~ si1 = = wows(S) = v(A-),
which is a reduced expression for v(A_). Moreover, because my_ = v(A_)my
with £(my_) = L(v(A_)) + £(my) by Lemma BTI(3) for the case p = A, my =
v(A_)"tma_ =usg,,,, - se, is a reduced expression for my.

Finally, we show that i, = ¢} for 1 <k < M. Since M = M’ as shown above,

(A= BP5) —ax  (=o5) 208\
P( I?S)_< kﬁ ’wc)(kOS) = O,U)o(kOS)
(A, B7°)
for 1 < k < M by the definition of @, and

— N\ V ——\ Vv
oS\ _ L) _ _
Wo ( k ) = —Wo (ﬂk) = —Wolk = —Sif =~ Sify,  Sif, Sy Sin Sy Oy

Qi

= S;7 -
N k

TS Sy T S
by Remark B.1.9 Thus, for 1 <k < j < M, we have s/ e Sin, Siny e Sin,, Qi <
Sify TS Sin, T Sit L (it where the order < is the fixed weak reflection order on
AT defined just before Proposition B.I.8l Here we recall from Remark [3.1.7] that
Br = Sin +* Sip 1 iy, 1 <k < N. Because

{Br |1 <k <M}y = {sis, ay | 1<k<My=A%\Ag,

S Si, Sin, S
it follows from the definition of the weak reflection order < on A™ together with
B3) that
(1< < Bar} = {Siﬁv"'si’mlsiéw s < < sy, "'Si’MHO‘i?u}
= AT\ AL
Therefore, noting that i = s - oy, for 1 <k < N, we obtain

Qi for1 <k <M.

© Sy

(3.5) Sin t Sipga Qg = Sify 0 Sy Sigy T Si
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By substituting the equalities s, -+~ siy = wo(S) = iy, -+ sy, into B.F), we
have sy, -+ Siy Qi = Sir - “Si Qi for 1 < k < M. In particular, when k = M,
we have a;,, = ay; , which implies that iy = iy 1f iy =i for k+1 < j < M, then
it follows from s;,, - - 84, i, = Sifg Sy Oy that oy, = Qi and hence ix= 17}
Thus, by descending induction on k, we deduce that i, = ¢} for 1 <k < M. ]

Remark 3.1.11 (JLNSSS2| §6.1]). For 1 < k < L, we set

<A—a?> — Qg bk
k= — = —
<>‘*, kOS> <_>‘*aﬂ]];>
the second equality follows from Remark B0} here d is just the first component
of ®(BP5) € @z x (AT \ Af). For 1 < k,j < L, ®(8%) < ®(899) if and only if
k < j, and hence we have

(3.6) 0<d <---<dp S

—\V —\V
Lemma 3.1.12. If1 <k < j <L and d = d;, then w, (Bkos) = Wo (@_OS) :

.V
Proof. By the definitions, we obtain ®(305) = (dk’wo (BI?S) > and (b(ﬂjos)
.V 508)”
(g (37%) ). since di = d; and 2(52%) < 2(59%). we have w, (75) " <
.V
oS
Wo (Bj ) : .

3.2. Orr-Shimozono formula in terms of QLS paths. Let A € P be a dom-
inant weight, and set S =Sy ={i eI | (\ ) =0}

Definition 3.2.1 (JLNSSS2, Definition 3.1]). A pair ¢ = (wi,ws,...,ws;
00,01,...,0) of a sequence wi,...,w, of elements in W* such that wy # wii1
for 1 < k < s—1 and an increasing sequence 0 = o9 < --- < g5 = 1 of rational
numbers is called a quantum Lakshmibai-Seshadri (QLS) path of shape A if

(C) for every 1 < i < s — 1, there exists a directed path from w;y; to w; in
QBGS .-

Let QLS()A) denote the set of all QLS paths of shape A.

Remark 3.2.2. We know from [LNSSS4, Definition 3.2.2 and Theorem 4.1.1] that
condition (C) can be replaced by

(C) for every 1 < i < s — 1, there exists a directed path from w;;1 to w; in
QBG?M that is also a shortest directed path from w; 1 to w; in QBG?.

For ¢ = (wy,wa, ..., ws;00,01,...,0s) € QLS(A), we set

s—1
wt(¥) := > (0ip1 — 03 )wip1 A,
i=0
and we define a map & : QLS(\) — W¥ by x(¢) := w,. Also, for u € WA, we
define the degree of 1 at u by

deg,, (¢) == — Zaiwt,\(le = w;);

=1
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here we set wsy1 := v(p). Note that by Remark B22 o;wty(wir1 = w;) € Z>g
for 1 <i<s—1. Also, o5 = 1 for i = s by the definition of a QLS path. Hence it
follows that deg,,(¢) € Z<o.

Now, we define a subset EQB(w) of W for each w € W. Let w = s;, ---s;, be a
reduced expression for w. For each J = {j1 < joa < jz < --- < j.} C{1,...,p}, we
define

by = (w = ZO"")Z’I”;/le"")/BjT)
as follows: we set By 1= s, -84, (v, ) € At for 1 < k < p, and set

20 =W = S, "'Sip,

Zl::wsﬁjl :sil'.'sijl_lsijl_'_l'.'sip :Silo.osijl ...S'L-p’

2 ::w35j1 SﬁJé =S Sijl—lsij1+1 e Sijz—lsijz-%—l cSi, = S0 sijl ’ 8212 Sips
ZT, ::wS/BJI .. sg]/r = Sll .. S'le .. S'LJT e sip,

where the symbol = indicates a term to be omitted; also, we set end(py) := 2.
Then we define B(w) :={ps | J C{1,...,p}} and

/Bji . .
QB(w) := {ps € B(w) | zi — 2;;1 is an edge of QBG for all 0 <i < r — 1}.

We remark that J may be the empty set §; in this case, end(py) = w.
Remark 3.2.3. We identify elements in QB(w) with directed paths in QBG. More

precisely, for py = (w = z0,...,2r; Bj,,- .. 55,.) € QB(w), we write
Biy Bjr
pr=(w=20,...,2085,...05,) = (w=20 — - == 2z | .

Bj j j . .
Remark 3.2.4. Let w = 29 —= 2, ﬁi) ﬁj—’"> zr = z be a directed path in QBG.

Then we see that
. . . B Bis Bjr
1<ji<jo< - <jr<pe|lw=z——"2z2 — 5z =z]| €QBw).

Also, it follows from Proposition Z1.4[1) that the map end : QB(w) — W is
injective.

By using the map end : B(w) — W defined above, we set EQB(w) :=end(QB(w)).

Proposition 3.2.5. The set EQB(w) is independent of the choice of a reduced
expression for w.

Proof. Let us take two reduced expressions for w:

IL:w=s; s, and K:w=sg, - sp,.
In this proof, let EQB(w); (resp., EQB(w)g ) denote the set EQB(w) associated to
I (resp., K).

It suffices to show that EQB(w); C EQB(w)k. From the two reduced expressions
above for w, we obtain the following two reduced expressions for w,:

(37) Wo = Si_g """ 8igSiy """ Sips

(3.8) Wo = Si_ " SigSky " Sky-
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Using the reduced expression (B.1) (resp., B.8)), we define £, (resp., ym), —¢ <
m < p, as in (ZT]). Then we have

(3.9) {B-gr-sBpy = {v-qr--sm} =AY,

(3.10) {B1,...,Bp} = {’yl,...,'yp}:A"‘ﬁw_lA_.
Let z € EQB(w)1, and

(3.11) pJ—(w—zo—ﬁil—>21£9—>~~5i>z,«—z)EQB(w)I.

Recall from Remark B.Z4 that 1 < j; < --- < j,. < p. It follows from Proposition
2I4(1) that there exists a unique shortest directed path in QBG,

(312) w = yo Tnq n Tng Ynp yr = 2,

with —qg < n; < ngy < --- < n, < p; this is a label-increasing directed path with
respect to the weak reflection order defined by v_, < --- < 7,. To prove that
z € EQB(w)k, it suffices to show that 1 < ny. It follows from (B9) that for
1 <u <r, there exists —¢ < t,, < p such that S, = 7y,,. Therefore, by (BI12),

Bty Bty Bt

is a directed path in QBG. We see from Proposition 2T4)(2) that this path is
greater than or equal to the path (BI1) in the lexicographic order with respect to
the edge labels. In particular, we have t; > j; > 1. Since v,, = 8, € ATNw 1A~
we deduce that ny > 1 by ([BI0). This implies that EQB(w); C EQB(w)xk. O

Let 11 € WA. Recall that v(u) € W¥ is the minimal-length coset representative
for the coset {w € W | wA = u}. We set

QLS"™(A) := {y € QLS(N) | x(¢) € [EQB(v(1)wo(S))]}-

Remark 3.2.6. If w = w,, then we have EQB(w,) = W by Proposition 2T.4(1),
since in this case, we can use all the positive roots as an edge label. If u = A_ = w, A,
then v(p)wo(S) = w, by B1), and hence |EQB(v(p)wo(S))] = W9. Therefore,
we have QLS"°*>°(\) = QLS(\).

With the notation above, we set
gChMQLS“’OO(/\) — Z ewt(w)qdegu(w).
PEQLSH ()
The following is the main result of this section.
Theorem 3.2.7. Let A € P be a dominant weight, and u € WX. Then,
Ey(q,00) = gch, QLS"™ ().

3.3. Proof of Theorem B.2.7l Let A € P* be a dominant weight, u € W,
and set S := Sy = {i € I | (\,«/) = 0}. In this subsection, in order to prove
Theorem B.2.7] we give a bijection

=: QOB(e;my,) — QLS (\)

that preserves weights and degrees.
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We fix reduced expressions

v(/\—)v(,u')71 = Siy Sk
(3.13) V() = Sig iy Sings
(3.14) Wo(S) = Sipyy * Siy

for v(A_)v(u)™t, v(p), and wo(S), respectively; recall that A\ = w,A. Then,
by Lemma BII(4), v(A-) = s;, -+ Si,, is a reduced expression for v(A_). As
in §3.1, we use the weak reflection order < on A" introduced in Remark B.1.7
(which satisfies (83])) determined by the reduced expressions above for v(A_) and
wo(S). Also, we use the total order <’ on ﬁ;}f N m;_lﬁgﬁ defined just before
Proposition and take the reduced expression my_ = usy, - - - s¢, for my_ given
by Proposition B.I.8 recall that usg, = s;,u for 1 < k < M. It follows from Lemma
BII(3) that (v(k)v(A-)"1) ma_ =m, and —L(v(p)v(A-)71) + L(ma_) = £(my,).
Moreover, we see that

(/U(M)/U()‘*)_l) mx_ = (S’iK T sil) USgy =" Sy,

LemmaB. 110
— USéK...Sllsgl...SeL:ule+1...SéL,

and hence m,, = usg, ., --- s¢, is a reduced expression for m,,. In particular, when
i = A (note that v(\) = e), my = usy,,,, ---s¢, is a reduced expression for my.

Also, recall from Remark[3.T.7land the beginning of §3.1 that By =s;, - - - 54, ., @i,
1<k<N,and 85 = s, -~-Sgk+lalyk, 1<k<L.

Remark 3.3.1. Keep the notation above. We have

A;rff mm;,lA;H = {B?Sa .- 'aB(L)S}v

A+ —1A— 0s 0s
Aaffmmp, Aaﬂ':{ﬂK—&-la”-aﬁL }7
A+ —1A— 0s 0s
Al Nmy " Ajg =By B}

In particular, we have E:H N m}lﬁgﬂ C E:H N m;lﬁgﬁc C E:H nmj* E;H.

Lemma 3.3.2 (M}, (2.4.7) (i)]). If we denote by < the characteristic function of
A, e,

[0 ifyeAT,
< ‘_{ 1 ifvye AT,

then
Aiﬁ N m;lﬁgﬂ —{aY+ad |aeA™,0<a<cwpv(A)Ta)+ A w.a)}.

Remark 3.3.3. Let ~vi,72,...,7% € ﬁ;ﬂr N m;lﬁa}, and define a sequence
(yo,yl,...,yr;’yl,”yg,...,%) by yo = m,, and y; = y;—15,, for 1 < i < r. Then,
the sequence (Yo, Y1, .-+, Yr; Y1725 - - - Yr) is an element of @(e; m,,) if and only if
the following conditions hold:
(1) 71 <" 72 <" -+ <’ 7;, where the order <’ is the weak reflection order on
AL n m;lA;H introduced at the beginning of §3.3;

(2) dir(y;—1) SO dir(y;) is an edge of QBG for 1 <14 <r.
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In the following, we define a map = : &3(6; m,) — QLS*>()). Let p9° be an
arbitrary element of @(e; my,) of the form

p?s = (mu = z(?s,z?S,... 208. 0S8 gOS ...,Bjors) e @(e;mu),

yr 9 Mg v Mg
with J = {ji < -+ <.} C{K+1,...,L}. Weset zj = dir(z05), 0 < k < r.
Then, by the definition of &3(@; my),
emm - ’BJﬁ ! - ’BJﬁ ! - @ !
(3.15)  w(uu(r_)~t B, G G Ml G
is a directed path in QBG. We take 0 = ug < w1 < -+ < us_1 < ug = 7 and
0=00p<01 < <0s_1 <1=0,in such a way that (see ([3.0]))

(3.16)
0O=d;, =---=d

s

< dju1+1 = .= dju2 < e & dju571+1 — .. = dJr < 1 = 0g;

=0 =01 =0s-—1

note that d;, > 0 if and only if u; = 0. We set w; = Ty, for 0 <p<s—1and
!

w’ := z,. Then, by taking a subsequence of (B10]), we obtain the following directed
path in QBG foreach 0 <p <s—1:

oS v oS v ¢S v
/ _<BJ“P+1> _<BJ“P+2> _<ﬁj“z’+1>
= B —

_ /
p = Tuy Lup+1 e Lupyr = Wpy1-

w,

Multiplying the vertices in this directed path on the right by w,, we obtain the
following directed path in QBG for each 0 < p < s — 1 (see Lemma [Z.T.3)):
(3.17)

— . — — —
Wp =1 WyWo = Ty, Wo Up g1 Wo = Wyt 1Wo 1= Wp1.

Note that the edge labels of this directed path are increasing in the weak reflection
order < on AT introduced at the beginning of §3.3 (see Lemma B.I.12]), and lie in
AT\ AJSF; this property will be used to give the inverse to =. Because
S S as
(1= ap) (X wo ) = (1 — dj, ) (A, wof5) = ———

ju

—(\_,89%) =aq,, €Z
oy e €

for up +1 < u < upyr, 0 < p < s—1, we find that BI1) is a directed path in
QBG(;_,,)a for 0 < p < s — 1. Therefore, by Lemma 1.7, there exists a directed
path in QBG%_%))\ from |w,] to |wp41], where S = {i € I | (\, o)) = 0}. Also,
we claim that |wp] # |wp41] for 1 < p < s — 1. Suppose, for a contradiction, that
|wp] = |wpy1] for some p. Then, w,Ws = w,11Ws, and hence min(w,11Ws, <y,
) = min(w,Ws,<y,) = wp. Recall that the directed path (B.I7) is a path in
QBG from w, to w,11 whose edge labels are increasing and lie in A™ '\ AJSF. By
Lemma 2T.8[(1), (2), the directed path (3.I7) is a shortest path in QBG from w,
to min(w,1Ws, <w,) = min(w,Ws, <u,) = wy, which implies that the length of
the directed path B.I7) is equal to 0. Therefore, {ju,+1,---,ju,., } = 0, and hence
Up = Up41, Which contradicts the fact that u, < up4q.

Thus we obtain

(3.18) Y= (lws], |ws—1], ..., |wi1];1 —04,...,1 —0g) € QLS(A).
We now define Z(p$%) := ¢.
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Lemma 3.3.4. Keep the notation and setting above, and let si, ., Siy Siy.s
-+ 8;y be a reduced expression for v(p)wo(S) obtained by concatenating BI3) and
BI4). Then, |wi] € [EQB(v(p)ws(S))|. Hence we obtain a map E : @(e;m#) —
QLS (A).

Proof. Since it is clear that v(u) € |[EQB(v(p)wo(S))], we may assume that |wy | #
v(p).
Since z
wo = whwo = (v(p)v(A_)"1) w FemmalL L) v(p)wo(S). If uy = 0, then we obtain
wy = wy = v(p)we(S), contrary to the assumption that |wq| # v(w). Hence it
follows that u; > 1. This implies that j,, < M by the definition of w; in (BI0)
and the proof of Lemma BIT0l Thus, we obtain K +1 < j; < ja < -+ < ju, < M.
Now, consider the directed path BI7) in the case p = 0. This is a (nontrivial)
directed path in QBG from wg = v(u)we(S) to w; whose edge labels are increasing
in the weak reflection order < on A™ introduced at the beginning of §3.3. Because

cesiy oy for 1<k < g (the

first equality follows from the proof of Lemma BII0), it follows from the fact that
K+1<j1 <jo<--<ju <M and Remark B.2.4] (recall that we take a reduced
expression for w, given by concatenating the reduced expressions for v(A_)v(u) =t
and v(p)ws(S)) that wy € EQB(v(p)wo(S)). Hence |wi] € |EQB(v(u)ws(S))].

O

08 = m,, we have wj) = ¢ = dir(2§®) = v(u)v(A-)~1. It follows that

.V
these edge labels are w, (ﬁﬁs) = Bj, = Sin

Proposition 3.3.5. The map = : @(e;mu) — QLS (\) is bijective.

Proof. Let us give the inverse to Z. Take an arbitrary ¢ = (y1,...,¥s;70,-.-,7s) €

QLS (). By convention, we set ys1 = v(u) € W°. We define the elements v,,

1 <p<s+1, by vegpr = v()wo(S) and v, = min(y,Ws, <,,,,) for 1 <p <'s.
Because there exists a directed path in QBGEPA from ypq1 toy, for1 <p <s—1,

we see from Lemma 2.1.8(2), (3) that there exists a unique directed path

—WoTYp,1 —WoVp,tp

(3.19) Up e Upt1
in QBG, ) from vpi1 to v, whose edge labels —woypt,,, - - ., —wo7p,1 are increasing
in the weak reflection order < and lie in AT \AJSr for 1 < p < s—1. We remark that

this is also true for p = s, since 74 = 1. Multiplying the vertices in this directed
path on the right by w,, we obtain by Lemma [2.1.3] the following directed paths:

X Tp,1 Tp,2 Tp.tp .
Vp,0 =: UpWo Up,1 e Upt1Wo = Upt, s 1<p<s.

Concatenating these paths for 1 < p < s, we obtain the following directed path:

Y1,1 Y1,t1 V2,1 Vs—2,t5_o Ys—1,1
(3.20) v1 9 —= -+ —= V1,4, = Va2 Vs—2,ty_ 5 = Vs—1,0 —
Vs—1,ts_q Ys,1 Vs, ts 1

: ? Us—1,t,_1 — VUs,0 > ? Usity = Us41,0 = U(:u‘)v()‘*)

in QBG. Now, for 1 <p <sand1l<m <t, weset d,,, :=1—7, € QNJ0,1),
ap,m = (dpﬂn - 1)<)‘—7’Y;/,m>a and ﬁp,m = apﬂn(s - 'yz\)/,m'

Claim 1. 7,,, € Afy N A

Proof of Claim 1. Since 7, > 0, and since the path ([BI9) is a directed path in
QBGTM whose edge labels are increasing and lie in AT \ AJSF, we obtain ap ., =

—1p(A_, ’yr\,/’m> = Tp(A, —wovz\)/’m> € Z~q.
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We will show that ap.m < s(v(p)v(A-) " (=Ypm)) + (A, wo (—7,)). Here we
note that the inequality (A, wo (—7y,)) = —(A=,%m) = =A%) = dpm
holds, with equality if and only if p = s. Hence it suffices to consider the case
p = s. In the case p = s, the path (3I9) is the unique directed path in QBG
from v(p)ws(S) = vs11 to vs whose edge labels are increasing and lie in A+ \ AZ.
Also, since ¢ € QLS**°(A) and k(¢)) = ys = |vs], we find that there exists v} €
EQB(v(u)wo(S)) such that v, | = ys. By the definition of EQB(v(u)ws(S)), there
exists a unique directed path in QBG from v(u)wo(S) to v} whose edge labels are
increasing; we see from (3.3]) that this directed path is obtained as the concatenation
of the following two directed paths: the one whose edge labels lie in A“‘\AJSF, and the
one whose edge labels lie in AJSF. Therefore, by removing all the edges whose labels
lie in AY from the path above, we obtain a directed path in QBG from v(p)wo(S)
to some v € y;Ws NEQB(v(p)wo(S)) whose edge labels are increasing and lie in
AT\ AL Here, since |v,] = [v/] and vs = min(ys Ws, <y(u)w.(s)), LemmaZT8(2)
shows that vs = v?. Hence we have v, € EQB(v(u)ws(S)). Moreover, by the defini-
tion of EQB(v(p)ws(S)), the edge labels —woys 1, . .., —Wo7s ¢, in the given directed
path in QBG from v(p)w,(S) = vsi1 to vs are elements of AT N (v(p)w,(S)) 1A~

and hence v(p)wo(S) (—woys,m) Lomma. 1) v()v( A=) H(—=7s,m) € A™. There-
fore, in the case p = s, we have ¢(v()v(A-) " (—7s,m)) = 1. Thus we have shown
that asm = (A we (—75m)) < s(()v(A2)"H=vsm)) + (A wo (—7Y,))- Hence
we conclude that ¥, ., € ﬁ:ff ﬂm;lﬁgﬂ by Lemma [B.3.2] This proves Claim 1.

Claim 2.
(1) We have

Vs ts <L Vsl < Vo—1,ts_1 << V1,15

where <’ denotes the weak reflection order on Aiﬁ N m;_l ﬁ;ff introduced
at the beginning of §3.3; hence we can choose J' = {j1,...,j..} C {K +
1,...,L} in such a way that

OS oS\ _ (x =~ =~ =~
( 7 Bj) = (Fostar -5 Voo Vs Lita_ys - > V1) -

(2) Let 1 <k <7/, and take 1 <p < s, 0 <m < t, such that

oS oS =~ =~
(ﬂji << ﬂj,; ) = (Vs,t. < Yp,m) -

NV
()
Then, dir(295) = vy m_1. Moreover, dir(z2%,) — 7 dir(22%) is an

edge of QBG.

Proof of Claim 2. (1) It suffices to show the following:
(i) for 1 <p < sand 1 <m < t,, we have ¥, <" Vp.m—1;
(ii) for 2 < p < s, we have Y1 <" Yp-1,, ;-

<)‘—v*'Y;Y,m>*ap,m <>‘—v*7;\;/,m—1>*ap,m—1

1) Because
(i) G g P

=dp,m and

= dp,m—1, we have

‘I’(%,m) = (dp,ma _U)O'Vp,m)a
(I)(:\yip’mil) = (dp,mfla _wO’Yp,mfl)~
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Therefore, the first component of ® (¥, ., ) is equal to that of ® (7, mm—1) since dp ., =
1 — 7, = dpm—1. Moreover, since —wWeYpm < —WoYpm—1, We have ®(Fp ) <
®(Yp,m—1). This implies that ¥y m <" Yp,m—1 by Proposition

(ii) The proof of (ii) is similar to that of (i). The first components of ®(7,1) and
Q(Yp-1,,_,) are dpy and d, 1, ,, respectively. Since d,; =1 -7, <1 -7, 1 =
dp—1,1, ., we have ®(3,1) < ®(Jp-1,1,_,). This implies that 7,1 <" Fp_1,¢,_,

(2) We proceed by induction on k. Since dir(zQ%) = dir(m,) = v(p)v(A_)~*
and BJQ{S = Ys.t., we have dir(z9%) = dir(zoos)s_@ = v(p)v(A=) sy, = Vet -1

71

Hence the assertion holds in the case k = 1.
Assume that dir(29%)) = vy for 0 S m < t,. Here we remark that v, ,_1 is
the predecessor of vy, ,,, in the directed path ([B20) since 0 < m — 1 < ¢,_1. Hence

we have dir(zP%) = dir(z9%))s e = VpmSypm = Upm—1. Also, since (3.20) is
Ik
(%)
a directed path in QBG, vy, = dir(295,) +——— dir(29%) = v, 1 is an edge
of QBG. This proves Claim 2.

Since J' = {j1,...,j.} C {K +1,...,L}, we can define an element p9° to be
0s ,0s 0S. gOS 08 0s _ 08 oS
(mu—zo vees 2 B, ,,...,[3 , where 25> = my, 2,)° = 2> 1sﬁos
Ik

for 1 < k < 7'. It follows from Remark BBEI and Claim 2 that p9® € &3 (e;my).

Hence we can define a map © : QLS**°(\) — &3 (e;m,,) by ©(¢) := p9S.
It remains to show that the map © is the inverse to the map =, i.e., the following
two claims.

Claim 3. For ¢ = (y1,...,Ys;T0,---,7Ts) € QLS(A), we have =0 O(¢)) = 9.

Claim 4. For p9° = (mu = 295,208, ..., 208, 9S8 .. ,BOS &3 (e;my),

LA U J2 ’

we have © o Z(p9%) = p?S.
Proof of Claim 3. We set O(y) = p93, with J' = {ji,...,j;}. In the following
description of ©(y) = pJ, we employ the notation u,, 0, w, and w, used in the
definition of Z(p9%).

For 1 < k < 7/, if we set ﬂ?s = Yp,m with m > 0, then we have dji =1+

! A

Qs )y desGpn) 1y _eem g Therefore, th
m = + m —+ <)\ 7'Yp m) DM+ erelore, the sequence m
determmed by ©(y) = pFP is

p’

O=dss, = =dey <ds14, , = =de11<-<dyy ==di,

(3.21) 1, 17y D eT—
<1l=1-m1y.

Because the sequence [B2I)) of rational numbers is just the sequence ([BI6]) for

O(y) = p$8, we deduce that Bﬁi = Ys_py1,1 for 1 < p < s, and 0, = 1 —

Ts—p for 0 < p < s. Therefore, we have w;, = dir(z,?ps) = Us_p+1,0 and w, =

Vs—pt1,0Wo = Vs—pt1. Since |wWp| = |[Us—pt1| = Ys—pt+1, We conclude that = o

O) = (Jws],...,lw1];1 —0g,...,1 —00) = (Y1,--+,Ys;T0y---5Ts) = . This
proves Claim 3.
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Proof of Claim 4. We set ¢ := Z(p9%),and write it as 1 = (y1,...,Ys;T0s- -, Ts),
where y, = |wsy1-p] for 1 <p < sand 7, =1—0,_, for 0 < p < s in the notation
of BI]) (and the comment preceding it). Also, in the following description of
Z(p98) = ¢, we employ the notation vy, dp.ms @pm, Ypms Ypm, and J' used in
the definition of ©(1)).

Recall that wo = v(p)wo(S) = vsy1. For 0 <p <s—1,

TWoVs—p,tg_y —WoYs—p,1
rUS—p-’rl e vs_p

is a directed path in QBG whose edge labels are increasing and lie in AT \ Ag
(see 319)). Now we can show by induction on p that w, = vs_p4q for 1 < p <s.
Indeed, if w, = vs_p41, then both of the paths above and the path [BI7) start from
w, and end with some element in wy,11Ws = v,—,Wg (this equality follows from
the definition of v5_,) and have increasing edge labels lying in A™\ AJSF. Therefore,
by Lemma 2T.8|(2), we deduce that the ends of these two paths are identical, and
hence that w,41 = vs—p. Moreover, since these two paths are identical, so are the
edge labels of them:

—_\V v
(wo (523“) S (ﬂjouiﬁ) > B (_wo%_pvtsw == _wo%—!’vl)

v
for 0 < p < s —1. From the above, we have up4; — up, = ts—p and — (BJOSM) =
Up

Vs—pitep—kt1 for 0<p<s—1,1<k<t,p Becauseop=d;, ., =" Jupin

for0<p<s-1,1-0, =75 pfor0<p<s,andl1-7s_p=dsp1 =" =ds—ps,_,

for0<p<s—1, weseethat for 1 <k <t
= BOS + aju +kg

Ju +k Jup+k
_ p0S B0S \¥
= B9, = (dj 0 = DA, B3 )0

= _stp,ts_pkarl + (dsfp,ts_pfkﬂ - 1)<)\*’7;/7p,ts_p7k+1>5

s—p>

y ~
“Vs—pits_p—ktl T asfp,ts—pflwrlfs
- ’stp,ts_pkarL

Therefore, we have

oS ’ 1 p0OS _ (5 ’ =
( Jupt1 v T jup+1) = (’Ys—p,tsfp <= ’Ys—p,l) ;, 0<p<s-—-1L
Concatenating the sequences above for 0 < p < s — 1, we obtain

( gols 508) = (Fote <" < Fan <" Fsmray < - <" F11)

_ oS s .. _t p0Ss
= (@‘5 < 51:,/)-

Hence the set J determlned by Z(p95) = 1 is identical to J. Thus we conclude
that © o Z(p95) = p9¥ = p?S. This proves Claim 4.

This completes the proof of Proposition [3.3.5] |

We recall from (Z3)) and (2.4) that deg(3) is defined by g = B + deg(B)d for
8 € hod Cé, and wt(u) € P and dir(u) are defined by u = t(wt(u))dir(u) for
UEWext:t(P)NW.
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Proposition 3.3.6. The bijection = : @(e;mu) — QLS">°(\) satisfies the fol-
lowing:

(1) wt(end(p$®)) = wt(E(p9%));
(2) deg(qwt*(p$)) = —deg, (E(p9%)).

Proof. We proceed by induction on #.J.

If J = 0, then it is obvious that deg(qwt*(p9%)) = deg,(E(p$%)) = 0 and
wt(end(p9 ))
= wt(E (pJ )) = u, since E(pG%) = (v(p)ws(5); 0, 1).

Let J = {j1 <j2 <--- < j,}, and set K := J\ {4,.}; assume that Z(pP°) is of
the form: Z(pQ°) = (|ws], [ws—1], ..., [w1];1—0s,...,1—00). In the following, we
employ the notation wy, 0 < p < s, used in the definition of the map =. Note that
dir(p23) = wswo and wy = v(p)w (S) by the definition of =. Also, observe that if

djT = djr71 = O0s5—1, then {djl S S d] 1 S djr} = {dj1 S e S djT71}7 and if
djr > djr—l = 0s-1, then {djl <-- < djr—l < dj'r} = {djl < < djr—l < djr}'
From these, we deduce that
(ststWJ, st_lj,..., Lle,l —0’871—0'3_1,...71 —O'Q)
ir
E(p?s) _ lf dj'r‘ = djT71 = 0s5—-1,
(stswoﬁJv stJ, stflJv SRR |_le, 1- Os, 1- djrv
1—0s-1,...,1—09p) ifd;, >dj,_, =o0s_1.

For the induction step, it suffices to show the following claims.

Claim 1.
(1) We have
=(,,08 = 705\ "
WH(EPS)) = WHERR)) + aj, wow. (-5
(2) We have
deg,, (Z(pF%)) = deg,,(E(pR)) — xray,,
where xr = 0 (resp., xr = 1) if WS, Gos < Ws is a Bruhat (resp.,

quantum) edge.

Claim 2.
(1) We have

wt(end(9%) = whlend(%) + a; waw (~B5)
(2) We have

deg(qwt*(p9%)) = deg(qwt*(p2?)) + xraj, -
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Proof of Claim 1. (1) If dj, = d;,_, = 051, then we compute:

s—1
wt(EPF®)) = (05 — 05-1) [wss,, 705 N (0p = 0p1) [wp) A
p=1
= (05— 0s-1) 50S>‘+Z p — Op—1)WpA

= Z(op — Op—1)WpA + (05 — 05_1)11)55%6@)\ — (05 — 05_1)WsA
p:1 Jr

dj,.=0s_1, 0s=1 5
= Z(Up — Upfl)pr + (1 — djr)wsswoﬁA — (]. — djr)ws)\.
1 Jr

If d;, > dj,_, = 041, then we compute:

wt(2(p$®)) = (05 — djT,)stst%TsJA +(dj, —os—1)|ws A+ Z —0p-1)
= ((Ts - djr)wsswo@)\ + (djr Og_— 1 ws)\ + Z —Op-—1 ’LUp>\

= Z(ap — Op1)WpA — (05 — Ts—1)Ws A

+ (0'5 — djT,)st oﬁﬁ)\ =+ (dj'r' — O's_l)ws/\

Z —Op—1 wp)\ + ( djT)wsSwO@/\ — (0'3 - djT)wsA

q
P
Il
—
w

(Up - Upfl)’wp)\ + (1 - djr)wsswoﬁjﬁ)\ - (1 — djr)ws)\.
1 "

p

In both cases above, since
wi(E(pR°)) = Z(Up —op—1)|wp]A = Z(Up — Op—1)WpA,
p=1 p=1
and since

(1— djr)wsswoﬁjﬁA —(1—d;, )ws\

Oos Os v
= —(1 = dj, )ws (A, wo 37 )wo (Bjr )
Remark 1111 aj;, —55 —53)\ v
= ———(\_, B5)wsw, (Bjors)

wp | A
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it follows that

S

WERP) = 30— gp-)wph+ (1= d s, gosh = (1= d, Juwh

p=1

_ (E(pK ) + aj, wsws (_@)V .

(2) From the relation between p$S and p23, and from the definition of @(e; my),

-(5%%)"

we find that wsw,s _pos ——— w,w, is an edge of QBG. Hence, by Lemma

wo (B55) "
RT3l w,s wo B0 # w; is an edge of QBG.

If d;, = djr , = 0s—1, then by the definition of deg, (along with [LNSSS2,
Lemma 7.2]), we see that
(3.22)
5—2
deg,, (E(p7%)) = = }_(1 = op)wtr([wps1] <= [wp))

Here, wg = v(p)wo(S) as mentioned in the proof of Lemma B3] so that |wo| =
—_\V — A\ V

v(p). Since dj, = d;. , = 0s_1, we have w, (ﬁjofl) < we (,Bjors) by Lemma

BIT2l Because the (unique) label-increasing directed path in QBG from ws_1

to w, has the final edge label w, (ﬁj(zi)v, by concatenating this directed path
wo (35F)” . o

from w,_1 to ws with wy ————— w;ys 1o BOS we obtain a label-increasing (hence

shortest) directed path from ws_; to wsswoﬁ passing through w,. Therefore, we

deduce that

(3.23) wty (wss 5 <= ws—1) = Wt (wss 5 W) + wh(ws < ws_1).

oﬁjor woﬁo

It follows from B22) and 323) that
s—1
deg, (E(p3%)) = = D (1 = op)whr(wps1 < wy) — (1 = dj, )wia(wss,, LGOS € Ws).
p=0
If dj, > dj,_, = 051, then by the definition of deg, (along with [LNSSS2,
Lemma 7.2]), we see that

s—1

deg#(E(pgs)) = Z(l — op)Whx(wpr1 <= wp) — (1 — djT)Wt)\(wsSwoﬁjﬁ +— ws),
p=0 "



2764 S. NAITO, F. NOMOTO, AND D. SAGAKI

where wg = v(p)ws(S). Also, by the definition of deg, (along with [LNSSS2]

Lemma 7.2]), we have
s—1

degy(E(p(I)(s)) = - Z(l - Up)WtA(le*l ~ wp),

p=0

where wg = v(p)ws(S).

In both cases above, we deduce that
degu( ( )) degu( (p OS)) -(1- dj,,,)wt,\(wsswoﬁ — ws).

If wgs wo O < w, is a Bruhat edge, then we have Wt>\(wS N — ws) = 0.

If wss,, Gos < Ws is a quantum edge, then we have Wt)\(w 8,05 ws) =
oB;.. oBj..

(A, wOBjOTS>. Note that

—09\ Remark B 117 a;,. =09
e g e = e
— M

Therefore, in both cases, we have deg,, (2(p$)) = deg,, (E(pR°)) — xra;,, and Claim

1(2) is proved.

(1-d,

Proof of Claim 2. Let us prove part (1). Note that end(p9®) = end(p% )Sﬁos and
that

end(pR®) = t(wt(end(pR®)))dir(end(pR”)) = t(wt(end(py®)))wswo;
the second equality follows from the comment at the beginning of the proof of
Proposition B.3.6l Also, we have sgos =5 54508 = <aj7 ( BOS) > S 508" Com-
Jr Ajp i i

bining these, we obtain
end(pg)s) — (t(wt(end(p?(s)))wswo) ( (ajr ( 505) )Sﬁos>

_\V
= t (Wt(end(p(l){S)) + a;j, wswe <—ﬂj?s) ) WsWo 5355,
Ir
and hence
0s (OF) 505)"
wt(end(p;”)) = wt(end(py>)) + a;, wsws (_Bj,,. )
Let us prove part (2). Since dir(end(p%®)) = ww,, we have dir(end(p(J)S)) =

we (603)

WsWo S Fos If wgs wo BOS ——— w;, is a Bruhat edge, then it follows from Lemma

(%)

R T3lthat wswes oS — 2 % w,w, is also a Bruhat edge. Hence we obtain J+ =

wo (BSOS
K*. This implies that deg(qwt*(p9®)) = deg(qwt*(pR®)). If w;s woBOS M
. . -(57)"
w; is a quantum edge, then it follows from Lemma .13l that wsw,s R

—B]QTS
wWsW, is also a quantum edge. Hence we obtain Jt=Ktu{ jr} This implies that
deg(qwt*(p$9)) = deg(qwt*(p2)) + deg( 5) = deg(qwt* (pR3)) + a;,. Therefore,
in both cases, we have deg(qwt (p$9)) = deg(qwt (P99)) + xra;,, and Claim 2(2)
is proved.
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This completes the proof of Proposition |
Proof of Theorem [3.2.7. We know from Proposition that
E,(g,00) = Z ewt(end(p®)) g—deg(awt” (p7%)
P98 eQB(esm,.)
Therefore, it follows from Propositions and that

E,(q,00) = Z Wi (¥) gdeg, (¥)
PEQLSH > (X)
Hence we conclude that E,(q,00) = gch, QLS"*()), as desired. O

4. DEMAZURE SUBMODULES OF LEVEL-ZERO EXTREMAL WEIGHT MODULES

4.1. Untwisted affine root data. Let g, be the untwisted affine Lie algebra
over C associated to the finite-dimensional simple Lie algebra g, and let g =
(@jelaff Ca)) ® CD be its Cartan subalgebra, where {a}/}jela“ C hag is the set
of simple coroots, with I,g = I U {0}, and D € b.g is the degree operator. We
denote by {ozj }jelaff C his the set of simple roots, and by A; € blg, j € L,
the fundamental weights. Note that (a;, D) = 60 and (Aj, D) = 0 for j € L.z,
where (-, -} : b X hagp — C denotes the canonical pairing between hog and hi; :=
Homc (hagr, C). Also, let 6 = 37, ; aja; € big and ¢ = 37, ; ala € bag
denote the null root and the canonical central element of g.g, respectively. Here
we note that hag = h ® Cc @ CD. If we regard an element \ € h* as an element
of bz by (X, ¢) = (A, D) = 0, then we have w; = A; — a)Ag for i € I. We take
a weight lattice Pag for gag as follows: Pug = (EB ZAj) ®ZS C by, and set
Qaft 1= ®jelaff Zaj'

Remark 4.1.1. We should warn the reader that the root datum of the affine Lie
algebra g.g is not necessarily dual to that of the untwisted affine Lie algebra asso-
ciated to g in §2.2, though the root datum of g is dual to that of g. In particular,
for the index 0 € I g, the simple coroot af = ¢— 6V, with § € AT the highest root
of g, does not agree with the simple root 6 — " in §2.2, which is denoted by ay
there.

JE€Lags

The Weyl group Wag of gag is defined to be the subgroup (s; | j € I.g) C
GL(h%4) generated by the simple reflections s; associated to «; for j € ILg, with
length function ¢ : Wog — Z>¢ and identity element e € Wog. For £ € QY =
Dici Zay , let t(E) € Wag denote the translation in hig by € (see [Kacl §6.5]). Then
we know from [Kac, Proposition 6.5] that {¢(¢) | £ € @Y} forms an abelian normal
subgroup of Wag such that £(£)t(¢) = t(£+(), &, ¢ € QV, and Wog = WK {t(f) RS
QV}. We denote by A, g the set of real roots, i.e., A,g := {xaj | x € Wag, j € Iaﬁ-‘},
and by A;‘H C Aag the set of positive real roots. We know from [Kac, Proposition
6.3] that

Aat = {a+nd|aeA nel},
A;H:AJFU{CH—TLMQEA,TLGZN,}.

For 8 € A, we denote by Y € bag the dual root of B and by sz € Wag the
reflection with respect to 5. Note that if 5 € A,g is of the form 5 = a + nd with
a € A and n € Z, then sg = sat(na).
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4.2. Peterson’s coset representatives. Let S be a subset of I. Following [Pe]
(see also LS| §10]), we set:

(4.1) Q% =Y 70,
€S
(4.2) (Ag)ar == {a+nd| o€ Ag,n€Z} C Aug,
(4.3) (As)ig = (As)ar N ANz = AfU{a+nb|a € As,n€ Ly},
(44)  (Ws)aw :=Ws x {t(§) | £ € Q5} = (sp | B € (As)in),
(4.5) (W)agr == {x € Wagr | 28 € A for all B € (Ag)f; 1}

Then we know the following from [Pe] (see also [LS, Lemma 10.6]).

Proposition 4.2.1. For each x € W,g, there exist a unique x € (Ws)aﬂ‘ and a
unique o € (Wg)ag such that x = xyxa.

We define a (surjective) map II° : Wag — (W).g by I%(2) := 21 if © = 2129
with 2y € (W).q and 2o € (Ws)ag-

Lemma 4.2.2 (|Pel; see also [LS, Proposition 10.10]).

(1) I (w) = |w]| for every w € W.
(2) TI%(at(€)) = 115 (2)1I9((€)) for every x € Wag and € € QV.

An element ¢ € QV is said to be S-adjusted if (v, &) € {1, 0} for all y € A
(see [LNSSSI, Lemma 3.8]). Let QY524 denote the set of S-adjusted elements.

Lemma 4.2.3 ([INS| Lemma 2.3.5]).

(1) For each & € QV, there exists a unique ¢s(§) € Q¥ such that & + ¢g(&) €
QY524 In particular, £ € QY524 if and only if p5(€) = 0.

(2) For each & € QV, the element 15 (t(€)) € (W)ag is of the form T1¥((€))
zet(& + ¢5(€)) for a specific element ze € Ws. Also, 1I%(wt(€))
|w]zet(§ + ¢s(E)) for every w € W and £ € QY.

(3) We have

(4.6) (W)agr = {wzet(§) |w e W9, ¢ e Q524

Remark 4.2.4. (1) Let &, ¢ € QY. If £ = ¢ mod QY, ie, £ —( € QY, then
I9(¢(€)) = T9((¢)) since t(¢ — ¢) € (Wg)agr. Hence we see by Lemma A23](2)
that £ + ¢5(§) = ¢ + ¢s(¢) and z¢ = z¢. In particular, zei 4 (¢) = z¢ for every
£eqQ.

(2) Let 2 = wzet(§) € (W)ag, with w € W9 and € € QV-5%; note that
11%(x) = x. Then it follows from Lemma EZ.2(2) that for every ¢ € QV,

(4.7) oI (#(C)) = T1° (2)I1% (£(¢)) = 11 (t()) € (W*)asr-

4.3. Parabolic semi-infinite Bruhat graph. In this subsection, we prove some
technical lemmas, which we use later.

Definition 4.3.1 ([Pe]). Let x € Wag, and write it as x = wit(§) forw € W and £ €
QV. Then we define the semi-infinite length £% (z) of z by £% (z) := £(w) +2{p, &),

where p = (1/2) > cat @
Let us fix a subset S of I.
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Definition 4.3.2. (1) We define the (parabolic) semi-infinite Bruhat graph SiBG*
to be the Af;-labeled, directed graph with vertex set (W).¢ and A;-labeled,

directed edges of the followmg form: z — sgr for x € (W9),q and B € A,
where sgz € (W) and €% (spz) = €% (2) + 1.

(2) The semi-infinite Bruhat order is a partial order < on (W),4 defined as
follows: for z, y € (W*9).g, we write x < y if there exists a directed path from z to
y in SiBG®; also, we write z < y if z < y and .

Let [-] = [-]ng : QV — QY. denote the projection from @QV onto QY, . with
\ S I\S
kernel QY. Also, for £, € QY, we write
(4.8) > if £-CeQVT =) Zso).
el

The next lemma follows from [NS3| Remark 2.3.3].

Lemma 4.3.3. Let u,v € W5, £, ¢ € Q¥ and g € Af;. If uzct(C) N
vzet(€) in SIBG®, then [€] > [¢].

Lemma 4.3.4. Let x € W%, and &, ¢ € QY52 Then, zz¢t(€) = z2:t(¢) if and
only if [¢] = [¢].

Proof. The “only if” part is obvious by Lemma We show the “if” part by
induction on 4(zx). If (x) = 0, i.e., = e, then the assertion z¢t(§) = z:t(¢) follows
from [INS| Lemma 6.2.1] (with @ = 1, and J replaced by S). Assume now that
{(z) > 0, and take i € I such that {(s;z) = £(z) — 1; note that s,z € W* and
—z7ta; € AT\ AL. By the induction hypothesis, we have s;zz¢t(€) = s;zzct(C).
If we take a dominant weight A € P¥ such that Sy = {i € I | (\, ) =0} = S,
then we see that

(sizzet(ON, ) = (sizzct(ON, ) = (siz\, o) > 0.

K]
Therefore, we deduce from [NS3| Lemma 2.3.6 (3)] that zzt(§) = zz:t(¢), as de-
sired. g

Lemma 4.3.5. Let z,y € (W¥).g and 8 € Ay be such that x AN y in SiBG®.
Then, T1°%(zt(£)) N IS (yt(€)) in SiBG® for every € € QY. Therefore, if x,y €
(W)ag satisfy x <y, then 1% (xt(€)) < T (yt(€)).

Proof. We see from ([@7) that I19(xt(€)) = zI1%(¢(¢)) and TI¥(yt(€)) = yII¥(¢(€)).
Since y = sgz by the assumption, we obtain II° (yt(£)) = sgIl®(xt(£)). Hence it
suffices to show that

(4.9) €% (1% (yt(€))) = €7 (% (xt(£))) + 1.

We write z € (W), as @ = wzct((), with w € W9 and ¢ € QY524 (see ([EH)).
Then we see from [INS| Lemma A.2.1 and (A.2.1)] that

0T (I (2t (€))) = Uw) +2(p — ps, C +€)
= l(w) +2(p — ps, ) + 2{p — ps, &)
= (% (I1%(2)) +2(p — ps, €)
=% (2) +2{p — ps, &)
Similarly, we see that (3 (II°(yt(€))) = €% (y) + 2(p — ps, &). Since £% (y) =
0% (z) + 1 by the assumption, we obtain ([#J), as desired. O
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Let z, y € W¥, and take a shortest directed path

o 71 Y2 3 Tp _
P:x =X I X2 Tp =Y

from z to y in QBG®. Recall from §2.1 that the weight wt®(p) of this directed
path is defined to be

wi'(p)= > W e’
1<k<p
Tk .
Tp—1 ——> Tk 1S

a quantum edge

We set

(4.10) oy = Wts(p) + ¢s(wts(p)) c Q\/,S—ad

in the notation of Lemmal.2.3](1). We now claim that &, , does not depend on the
choice of a shortest directed path p from z to y in QBG®. Indeed, let p’ be another
directed path from z to y in QBG®. We know from [LNSSSI] Proposition 8.1] that
wt®(p) = wt¥(p’) mod QY. Therefore, by Remark EE2Z4(1), we obtain wt(p) +
os(wt*(p)) = wtd(p) + s (wtS(p’)). This proves the claim.

Lemma 4.3.6. Let , y € W, Then we have yze, ,t(&0y) = .

Proof. We proceed by induction on the length p of a shortest directed path from x to
yin QBG®. If p = 0, i.e., & = y, then §ey = Eex = 0, and hence z¢, | = t(&,,y) = €.
Thus the assertion of the lemma is obvious. Assume now that p > 0, and let

o it V2 Tp _
P:x =12 T Ty =Y

be a shortest directed path from z to y in QBG®. Then we deduce from [INS|
Proposition A.1.2] that « AN spx in SIBG? (in particular, sgz > x), where

ToY1 if z =z s 21 is a Bruhat edge,
o1 +0 if x=xg s xiisa quantum edge.
Note that
T if 2 =29 -5 7, is a Bruhat edge,
ST = STy = . - .
z1t(yyY) if x =x9 — =z is a quantum edge.

In the case that = zy —— z; is a quantum edge, we have x1t(y) = spx €
(WS)agr, which implies, by ([@6]) and the fact that x; € W, that

(4.11) v € Q5 and Zy =e.

Assume first that © = 2o — z; is a Bruhat edge. Note that p’ : z1 —2>
B/ 2N xp, =y is a shortest directed path from z; to ¥ in QBG?. Since wt® (p) =
wt*(p’) by the definition, we deduce that &, , = &, ,. Also, by the induction hy-
pothesis, we have yz¢, t(£z,,) = z1. Combining these, we obtain yze, ,¢(£:y) =
ngzl,yf(le,y) > x1 = sgr > x, as desired.
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Next, assume that z = zp —— 27 is a quantum edge; we have wt%(p) =
wt®(p’) + 7y, which implies that &, , = &, ., + 7 mod Q4. We compute
yze, , t(ny) = yI°(H(€sy)) by Lemma LZ3(2)
= yHS(t(Ewhy)t(&Ew —&a1y))
= YT (t(Eey )T ((Eay — Eb1y)) Dy Lemma E22(2)
= yzﬁzl,yt(gm,y)ﬂs(t(fz,y - gml,y))-

Since &y = &uy y + 77 mod QY, we see from Remark E2Z4](1) and (£LII) that
9 (t(€py—Eayy)) = t(1Y). Therefore, using the induction hypothesis Yze, ,t(Eey)
= x1 and Lemma 35 we deduce that

yze, , tH(Eny) = (Y26, , 1€ 0))t ) = 1 ((y2e,, , H(Eer ) ) H(N)) = T (21(7))
—_————
E(WS)as
=T11%(spx) = spz = .
This proves the lemma. O
Lemma 4.3.7. Let z, y € W% and ¢ € QY524 If yzct(¢) = x, then [(] > [€xy]-
Proof. We set

_ s; if j#0, _ a; ifj#0,
5j 1= and o =
sp if j =0, -0 ifj=0.
We know from [LNSSSI Lemma 6.12] that there exist a sequence x = xg, 1, ...,
r, = e of elements of W* and a sequence i1, ..., 4, € L,g = I LU {0} such that
o @i Ll Tp 1y .
=y 2y, T e T z, =e in QBGY.

Note that a; ' &, € AT\ A} for all 1 < k < n. We prove the assertion of the
lemma by induction on n.

Assume first that n = 0, i.e., z = e. Because y € W? is greater than or equal to e
in the (ordinary) Bruhat order, there exists a directed path p from e to y in QBG?®
whose edges are all Bruhat edges (see, e.g., [BBl, Theorem 2.5.5]). Since wt®(p) = 0,
we obtain &, = wt°(p) + ¢s(wt(p)) = 0. Also, if yz:t(¢) = z = e = ezt(0),
then it follows from Lemma 3.3 that [¢] > [0] = [£,,], which proves the assertion
in the case n = 0.

Assume next that n > 0; we set ¢ := 43 for simplicity of notation. Then,
x o = aco_l&i € A+\A§, and the assertion of the lemma holds for z; = 5,29 = 5;7
by the induction hypothesis.

Case 1. Assume that y~'a; € (—A1)UAL. We deduce by [LNSSSI, Lemma
7.7(3)] that

(4.12) 5oy = Euy — 0i0z '@ mod QY.

Assume first that i # 0. Let ¢ € QY-S be such that yz:t(¢) = x. Because
r7la; € AT\ AL and yla; € (—AT) U AL, we see from [INS, Lemma 4.1.6 (2)]
that yzct(() = s;z = s;z. Therefore, by the induction hypothesis, we obtain
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Assume next that i = 0. Let ¢ € Q" be such that yz¢t(¢) = x. Because 2~ 'ap =
—2710 (= the finite part - Tag of 27 ag) € AT\ AL and y~'ap = —y 10 (= the

finite part y—lag of y~tag) € (—AT) U AY, we see from [INS, Lemma 4.1.6 (2)]

that

VRHE) = s = st 0) = G o).

=x
Therefore, by Lemma .3.5]
I (yzct(¢ — o 'ag)) = ¥ ((yct(Q))t(—=~"ag))
= 5 (Sowt(x~ tat(—ztay)) = 115 (3x)
= Hs(a:l) =T = S02.
If we write the left-hand side of this inequality as 1% (yz¢t(¢ — 2z~ tay)) = yzglt(c )
for some ¢’ € QY9 (see Lemma F2.3(2)), then we have ¢’ = ¢ — x~ '@y mod

QY. Also, by the induction hypothesis, we have [('] > [£5,2,]. Combining these,
we obtain

(€] = [+ 27 @) > [y + 2 0] O ()

as desired.
Case 2. Assume that y~'a; € AT\ Af. By [LNSSSIl Lemma 7.7 (4)], we have
(4.13) &nmiy) = Cay — Gi0z A + 00y~ '@y mod QY.

Assume first that i # 0; note that 5,y = s;y € W (see, e.g., [LNSSSI], Proposi-
tion 5.10]). Let ¢ € QV be such that yz:t(¢) = z. Because z71a; € AT\ AY and
y~la; € AT\ AY, we see that

5iyzct(C) = siyzct(¢) = s,z = s;@ by [NS3L Lemma 2.3.6 (3)].

Therefore, by the induction hypothesis, we obtain [(] > [(5,25,4] = [zl

Assume next that ¢ = 0. Let ( € QY be such that yz:t({) = x. Because

271y = —2710 (= the finite part 2~ lag of 2 1ap) € AT\ AY and y~tag = —y 10

(= the finite part y~Lag of y~lag) € AT\ AL, we see from [NS3| Lemma 2.3.6 (3)]
that soyzct(¢) = sox. Therefore, by Lemma [.35] we have

T ((soyzct(())t(—a~'ay)) = T1¥((soa)t(—a~'ay))).-
Here we have
1% ((so2)t(—z~'ay)) = 1% ((Soxt(z'ay))t(—az'ay)) = Sox = 1.
Also, using Lemma [.2.3](2), we compute
1 ((soy2ct(O)H(—a1aY)) = TS (soyzct(C — o~ 'a)
= 1 (soyzo I (H(¢ — ™ Hay)) = ¥ (s0y)IT° (¢(¢ — 2 'ay))
= I1° oyt (y '@y )T (¢ — 2 'ay) = I (Soyt(y~"ag (¢ —«~'ay))
= I%(Soyt(¢ +y~'ag —a'ay).

If we write this element as II¥((soyzct())t(—ztay)) = [soy]zc~t(¢") for some
¢" € Q¥ 52 (see LemmaLZ3](2)), we see that ¢ = ( +y~'ay — 2~ tay mod QY.
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In addition, by the induction hypothesis, we have [("] > [£5,4,|5,y)]- Combining
these, we obtain
Q= [ —y7ay + o)

Ciay o, 1oy @D
> [€spalson) — Y 00 T lag] =

gm,y]a

as desired. This completes the proof of the lemma.

|
4.4. Semi-infinite Lakshmibai-Seshadri paths. Let A\ € P™ be a dominant
weight; we set S:= Sy ={iel|()\ a))=0}CI.

Definition 4.4.1. For a rational number 0 < ¢ < 1, define SiBG(A; o) to be the
subgraph of SiBG® with the same vertex set but having only the edges of the form
x 2 y with o(z), BY) € Z; note that SIBG(\; 1) = SiBG®.

Definition 4.4.2. A semi-infinite Lakshmibai-Seshadri (SiLS for short) path of
shape A is, by definition, a pair n = (x1 = -+ = 25; 0 =0p < 01 < -+ < 0y = 1)

of a (strictly) decreasing sequence x; = --- = x, of elements in (W), and an
increasing sequence 0 = oy < 01 < - -+ < g5 = 1 of rational numbers such that there
exists a directed path from z,41 to 2, in SIBG(A; o) forallu=1,2, ..., s — 1.

We denote by B ()\) the set of all SiLS paths of shape \.

Following [INS| §3.1] (see also [NS3| §2.4]), we endow the set B% (\) with a
crystal structure with weights in P,g by the root operators e;, f;, ¢ € Iz, and the
map wt : BZ (\) — P.g defined by

S

wt(n) = Z(O’u — Ou—1)TuX € Pog

u=1

(4.14)
forn= (1, ..., xs; 00, 01, ..., Os) 63%()\).

Let Conn(B?% (\)) denote the set of all connected components of BZ ()), and let

]B%(?()\) € Conn(B% ()\)) denote the connected component of B ()\) containing
ne == (e; 0, 1) € BZ (\).
Also, we define a surjective map cl : (W9),g — W by

d(z) =w if z = wzet(€), with w € W9 and € € Q¥ 524,
and for n = (z1, ..., x5; 00, 01, ..., 05) € BZ ()\), we set
c(n) := (cl(xy), ..., cl(zs); 00, 01, - -+, O5),

where, for each 1 < p < g < s such that cl(z,) = --- = cl(zy), we drop cl(zp), ...,
cl(zg—1) and oy, ..., 04q—1. We know from [NS3| §6.2] that cl(n) € QLS(X). Thus
we obtain a map cl : B (\) — QLS(X).

Remark 4.4.3. Recall that ¢, := (e; 0, 1) € QLS(A\). We see from the definition
that an element in cl™* (1)) is of the form

(415) (Z§1t(§1)7 Z§2t(§2)7 CR) ngflt(é-sflx Z§5t(§8)7 00, O1y «++y Os5—1, Us)

for some s > 1 and &1, &, ..., & € QY» 52,
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The final direction of 77 € B ()) is defined to be

(4.16) k() i=xs € (W)ag ifn= (21, ..., 2s; 00,01, ..., 05).
Then, for z € (W*).q, we set
(4.17) B2, () = {neBT(\)|x(n) =z}

The next lemma follows from [INS| Lemma 7.1.4].

Lemma 4.4.4. Letn € IB%? (N), and let X be a monomial in root operators such
that n = Xn.. Assume that ng € B% (X\) is of the form @IH). Then, k(Xn) =
r(n)K(10)-

Now, we recall from §3.2 the degree function degy : QLS()\) — Z<( for the case
=X We know the following lemma from |[NS3| Lemma 6.2.3].

Lemma 4.4.5. For each ) € QLS(X), there exists a unique 1y € IB%(? (A) such that
cl(ny) = ¢ and k(ny) € W5.
Let 9 € QLS()X). We know from [NS3| (6.2.5)] that wt(ny) is of the form

(4.18) wt(ng) = A —v +KJ§ for some v € Q1 and K € Z<o.
——

=wt ()
Also, we know from [LNSSS2| Corollary 4.8] (see also the comment after [NS3|
(6.2.5)]) that

s—1
(4.19) K== o,wty(wup1 = wy) = deg, (¥)
u=1
for v = (wy, ..., ws; 00, 01, ..., 05) € QLS(A\). Here we should note that in

the definition of deg,(v), ws+1 = v(A) = e, and hence that wty(ws11 = ws) =
wty(e = ws) = 0.

Let us write a dominant weight A € PT as A\ = ZZ—GI m,;w; with m; € Zx>( for
i € I, and define Par()\) (resp., Par()\)) to be the set of I-tuples p = (p(V);c; of
partitions such that p(?) is a partition of length less than or equal to m; (resp.,
strictly less than m;) for each ¢ € I. A partition of length less than 0 is understood
to be the empty partition §); note that Par(\) C Par()\). Also, for p = (p());es €
Par(A), we set [p| := ., |p)|, where for a partition x = (x1 > X2 > -+ > Xm)s
we set |x| = x1+ -+ Xm. Following [INS| (3.2.2)], we endow the set Par()\) with
a crystal structure with weights in Pg; note that wt(p) = —|p|d.

Proposition 4.4.6. Keep the notation above.

(1) Each connected component C € Conn(B= (\)) of BZ (\) contains a unique

element of the form
(4.20) 770 = (26, t(&1), ze,t(&2), - -, 26,1 U&s—1), €5 00, 01, ..., 051, O)
for some s>1 and &y, &, ..., Es_1 € QY2524 (see [INS], Proposition 7.1.2]).

(2) There exists a bijection © : Conn(BZ (X)) — Par(\) such that wt(n®) =
A —10(C)|d (see [INS|, Proposition 7.2.1 and its proof]).

(3) Let C € Conn(B= (X). Then, there exists an isomorphism C = {©(C)} ®
IB%O% (\) of crystals that maps n° to ©(C) @ n.. Consequently, B= (\) is
isomorphic as a crystal to Par(A) @ B2 (A) (see [INS| Proposition 3.2.4 and
its proof]).
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4.5. Extremal weight modules. In this and the next subsection, we mainly fol-
low the notation of [NS3, §4 and §5]; we use the symbol “v” for the quantum
parameter in order to distinguish it from ¢ = e%. Let A € PT be a dominant
weight. We denote by V(\) the extremal weight module of extremal weight A
over a quantum affine algebra U, (g.g). This is the integrable U, (gas)-module gen-
erated by a single element vy with the defining relation that vy is an “extremal
weight vector” of weight A (for details, see [Kasll §8] and [Kas2, §3]). We know
from [KasIl Proposition 8.2.2] that V(\) has a crystal basis (L£(\), B(\)) with
global basis {G(b) | b € B(A)}. Denote by uy the element of B(A) such that
G(uy) = vy € V(A), and by By(\) the connected component of B(A) containing uy.

Let Ul(gat) C Uy(gagt) denote a quantum affine algebra without the degree
operator. We know the following from [Kas2| (see also [NS3| §5.2]):

(i) for each ¢ € I, there exists a U, (gasr)-module automorphism z; : V(w;) —
V(w;) that maps v, to vi := G(ug}i), where ug] € B(w;) is a (unique)
element of weight w; + J;

(ii) the map z; : V(w;) — V(w;) induces a bijection z; : B(w;) — B(w;) that
maps Ug,; to ug], this map commutes with the Kashiwara operators e;, f;,
j € Lg, on B(w;).

Let us write a dominant weight A € P as A = Y icr Miwi, withm; € Zx fori €
I. We fix an arbitrary total ordering on I, and then set V() := Qier V(w;)®mi.
By [BN, eq.(4.8) and Corollary 4.15], there exists a U, (gag)-module embedding
@y : V(A) — V()) that maps vy to Uy := Qe vE2™i. Also, for each i € I and
1 < k < my, we define z;;, to be the U (gag)-module automorphism of V(\) that
acts as z; only on the k-th factor of V(w;)®™i in V() and as the identity map on
the other factors of ‘7()\); these z; 1’s, i € I, 1 < k < m;, commute with each other.

Now, for p = (p);cr € Par()), we set

(4.21) sp(2z71) = Hsp(,ﬂ,)(zi_’ll, e zz_mlh)
iel

Here, for a partition p = (p1 > -+ > ppm—1 > 0) of length less than m € Z>q,
sp(x) = sp(21, ..., Tm) denotes the Schur polynomial in the variables 1, ...,
corresponding to the partition p. We can easily show (see |[NS3, §7.3]) that
sp(z71)(Img ®)) C Img®y for each p = (pV);c; € Par(\). Hence we can de-
fine a UJ(gag)-module homomorphism z, : V(A) — V(X) in such a way that the
following diagram commutes:

V(A —— V()
(4.22) | [set=
V() =2 V().
Note that z,vx = S, vy in the notation of [BN] (and [NS3]). The map 2, : V(A) —

V(M) induces a C-linear map z, : L(A)/vL(A) = L(A)/vL()); this map commutes
with Kashiwara operators. It follows from [BN| p.371] that

(4.23) B(X) = {zpb | p € Par()), b € Bo(\) };
for p € Par()), we set
(4.24) uf 1= zpuy € B(N).

Dy 7
A
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Remark 4.5.1. We see from [BN| Theorem 4.16 (ii)] (see also the argument after
INS3| (7.3.8)]) that z,G(b) = G(2,b) for b € By(A) and p € Par(A).

4.6. Demazure submodules. Let A € P* be a dominant weight. For each x €
Wag, we set

(4.25) Vi (A) == Uy (gagr) Spo ™oy C V(A),

where SZ°™y, denotes the extremal weight vector of weight zA (see, e.g., [NS3|
(3.2.1)]), and U, (gag) is the negative part of U, (gag). Since V7 (A) = VH_S(m)()\) for
x € Wag by [NS3l Lemma 4.1.2], we consider Demazure submodules V7 (\) only

for x € (W%),q in what follows. We know from [Kas3l §2.8] and [NS3 §4.1] that
V7 (\) is “compatible” with the global basis of V' (\); namely, there exists a subset

x

B, (\) C B()\) such that
(4.26) Vo= P cvcm) cviy= P cwGm).
beBz (\) beB(N)

We know the following theorem from [INS, Theorem 3.2.1] and [NS3| Theo-
rem 4.2.1].

Theorem 4.6.1. Let A € P be a dominant weight. There exists an isomorphism
Uy : B(\) = B (\) of crystals such that

(a) Ux(uP) = n® P forall p € Par(\) (in particular, Uy (uy) = 1e);

(b) UA(B; (N) =B2,(A) for all x € (W¥)ag.
4.7. Affine Weyl group action. Let B be a regular crystal for U,(gag) in the
sense of [Kas2, §2.2] (or [Kasll p.389]); in particular, as a crystal for U,(g) C

U, (gar), it decomposes into a disjoint union of ordinary highest weight crystals.
By [Kasll, §7], the Weyl group W,g acts on B by

B {f}“b if n:= (wtb, o)) >0,
Sj . b =

(4.27)
e;"b if n = (wtb, af) <0

for b € Band j € Ig. Here we note that B% ()\) is a regular crystal for U, (gag) for
a dominant weight A € PT.

Remark 4.7.1 ([NS3, Remark 3.5.2]). Recall from Remark that every element
n € el (1) is of the form @IF). Then, for each z € Wag,

(428) z-n= (Hs(xzflt(gl))7 LI Hs(xzfat(gs)) 30001y -+ US))

where S = S\ = {i € I | (\, &) = 0}. In particular, we see by ([L28) and the
uniqueness of 7% that n = (z¢,t(&5)) - 7, with C € Conn(B= ())) the connected
component containing the 7.

Remark 4.7.2. Let p = (p'9);e; € Par()\). Denote by ¢; € Z>, i € I, the number
of columns of length m; in the Young diagram corresponding to the partition p(*,
and set £ := Y, ;¢ € QYT note that ¢; = 0 for all i € S. Also, for i € I, let
0" denote the partition corresponding to the Young diagram obtained from that
of p( by removing all columns of length m; (i.e., the first ¢; columns), and set
0 := (0);er; note that @ € Par(\). Then we deduce from [BN] Lemma 4.14 and
its proof] that

(4.29) 2ptin = 1(6) - (zgun) = H(€) - u®.
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5. GRADED CHARACTER FORMULAS FOR DEMAZURE SUBMODULES
AND THEIR CERTAIN QUOTIENTS

5.1. Graded character formula for Demazure submodules. Fix a dominant
weight A € PT; recall that S =S\ ={i e I|(\ o) =0}.

Because every weight space of the Demazure submodule V,~ () corresponding to
r € W = WN(W?),q is finite-dimensional, we can define the (ordinary) character
ch V.7 (\) of V,7(\) by

chV,~ Z dim V,” (\)a_ge*7?,
BEQats

where V7 (A)a_p denotes the (A — §)-weight space of V7 (A). Here we recall that
an element 8 € Q.x can be written uniquely in the form g = v+ ké for v € @ and
ke Z. If we set ¢ := €, then e}~ # = e*~7¢~%. Now we define the graded character
gch V.~ () of V.7 (X) to be

gch V.~ ( Z dim V7 (A)a—~— wse Yqg7F,
YEQ, kEZ

which is obtained from the ordinary character ch V,(\) by replacing € with q.

Theorem 5.1.1. Keep the notation and setting above. Let A=), m;w; € P,
and x € W9, The graded character gch V7 () of V.- ()\) can be expressed as

mi
(5.1) gch V.7 (\) = (H [T - q—*)—1> 3 et Wgdenn®),
el r=1 WEQLS(N)

By combining the special case z = |w, | € W* of Theorem [E.TT] with the special
case 1 = woA of Theorem B.2.7] we obtain the following theorem. Recall from
Remark BZ6) that QLS“°M*°(\) = QLS(\).

Theorem 5.1.2. Let A\ € P be a dominant weight of the form \ = D ier Miwi,
with m; € Z>o, 1 € I. Then, the graded character gch V- (X) is equal to

(H H(l - qr)1> B, (g, 00).

Remark 5.1.3 ([NS3, Theorem 6.1.1]). We know from |[LNSSS2| Theorem 7.9] that
Py\(q71,0) = Z Vi) gden(¥)
PEQLS(A)

where Py(q~1,0) is the specialization of the symmetric Macdonald polynomial
Py(¢g~%,t) at t = 0. Also, by [LNSSS2, Lemma 7.7], we have E,_x(¢"1,0) =
Py(q71,0). Therefore, it follows from the special case x = e of Theorem [F.1.1] that
the graded character gch V() is equal to

(H ﬁ(l - Q‘T)_1> Euwo (g™, 0).

Note that we have V,;- (A) C V7 ()\) by [NS3| Corollary 5.2.5].
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5.2. Proof of Theorem [5.1.1l We see from Theorem [.6.1] that
chV, (A = Z eVt
neB2 ()

Since

B2, (\) = |_| (7 () NBZ, (X)),
PeEQLS(N)
we deduce that

(5.2) chV. - (\) = Z ( Z eWt(")>.

VEQLSO) N ca-1(ypynB 2, (A)

()

In order to obtain the graded character formula (51]) for V, (A), we will compute the
sum () of the terms e"*() over all € cl™*(¥) NB2, () for each 1 € QLS(A). Let
1 € QLS(A), and take ny € IB%(? (A) as in LemmalZ5]l Let X be a monomial in root

operators such that n, = X, where n. = (e; 0,1). We see by [NS3| Lemma 6.2.2]
that

(53) ol (@) = {X(#(C) - n) | € € Comn(BF (), ¢ € Q"};
for the definition of n®, see ([E20). We claim that

(5.4 crw)maaim_{X(t@).nc)| C € Comn(BF () }

€Y, [ > [un(w)]

We first show the inclusion C. Let 7 € cl™ () N ]B%i(/\), and write it as n =
X(t(¢) - n©) for some C € Conn(BF (A)) and some ¢ € Q (see (5:3)). Also, we
set y = k() = k(ny) € W9. We see by [@Z8) that t(¢) - n is of the form
EI5), with x(t(¢) - n%) = I%(#(¢)) = zct(¢ + ¢5(¢)). Therefore, we deduce from
Lemma B2 that £(X(tC) - 1)) = r(n)(HC) - 1) = yct(C + 65(C)). Since
n=X(t(¢)-n%) € B2, (\) by the assumption, we have yz:t({ + ¢s(¢)) = x. Hence
it follows from Lemma E3.7 that [¢] = [¢ + ¢5(¢)] > [€2.y] = okl Thus, 7 is
contained in the set on the right-hand side of (54)).

For the opposite inclusion D, let C' € Conn(B% ()\)), and let ¢ € QY be such
that [¢] > [£, x(y]. It is obvious by ([53) that X (¢(¢) - n%) € cl™!(¢). Hence it
suffices to show that X (¢(¢) - n%) € IBEE()\). The same argument as above shows
that k(X (t(¢) - 1)) = yzct(¢ + $5(C)), with y := k() € WS. Therefore, we see
that

KX ((C) - n%)) = yzct(C+ ¢s(Q)) = yze, ,t(€sy) by Lemma 34
= x by Lemma [£.3.06]

which implies that X (¢(¢) - n%) € fo (A\). This proves ([GA4)).
Let C' € Conn(]B%%(_)\)), and write ©(C) € Par()\) as O(C) = (p);es, with
pl) = (pgl) > o> p0 ) for each i € I. Also, let ¢ € QY be such that [(] >

mi—l
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and write the difference [¢] — e QVt oas
[gx,ﬁ(w)L [d [fac n(w)] Q

[C fz Ii Z C’L 7 a
iel
note that ¢; = 0 for all i € S. Now, for each i € I, we set ¢; + p(¥) := (¢; + p(i) >

1
2>+ 9%171 > ¢;), which is a partition of length less than or equal to m;, and

then set
(5.5) (ci)ier +O(C) = (ci + pD)ser € Par(N).
Noting that (X, Q¥) = {0}, we compute:
wt(t(¢) - n) = ( )(Wt(nc))
(C )(A = (p'?):e1]6) by Proposition EZ6l(2)
= Q8 = 1(p™)ier 6

— (N, Ean(e))d — <)\ > i >5_( DYerl6

i€l
= A —wty (33 = H(¢))5 - (Z mi@) 0— |(p(i))iel|5
i€l

= wt(ne) — wta(z = £(¥))6 — |(ci + p)ierd.

From this computation, together with (18], we deduce that
WH(X (£(C) - n9)) = wt(Xne) — wta (z = £(1))8 — | (ci + p)ies|0
(5.6) = wt(ny) — whr (z = £(1))6 — [(c; + p')ier |6
= wt(y) + (deg)\(d)) —wty(z = H(zp)))(s —|(ci + pD)icrd.

Because degy (1)) — wty (z = k(1)) = deg,,(¢) by the definitions of deg,, () and
deg, (v)) , we obtain

wt(X (£(C) - 7)) = wt () + (degya(¥) — (s + p©)ser])d.
Summarizing, we find that for each ¥ € QLS()),

Z owt(n) BB Z WX ()1 9)

necl=1 ($)B,2 (A) CeConn(BE (X))
CeQY, [C1>[€x, n(w)]

L e €20 gwt() gdeg (1) S gl

pEPar(X) pEPar(X)

— o) gesan () T H(l — )

iel r=1

Substituting this into (£.2), we finally obtain (5J). This completes the proof of
Theorem B.T.11 O
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5.3. Graded character formula for certain quotients of Demazure sub-
modules. Let A € P be a dominant weight; recall that S = Sy = {i € I |

_o}

For each z € W5 = W N (W9),g, we set

61 X=X @S mim = Y (V0):
pEPar(X) pEPar(\)
p#(D)ier p#(D)icr
for the definition of z, : V() = V(X), see ([E22)).
For ¢ € QLS(X), we take and fix a monomial Xy, in root operators such that
XyMe = Ny, and set

My - 1(€) = Xy (4(§) - me) for £ € QY.

Remark 5.3.1. Note that t(¢) - n. = (II°(¢(€)); 0, 1) (see [@28)). We deduce from
[INS| Lemma 7.1.4] that if ny, = Xyne is of the form ny, = (21, ..., zs; 00, 01, - ..
0s), then

Ny - H(€) = Xy (t(€) - ne) = (1 TI5 (L)), - .., 2T (¢()) 5 00, 01y - -, O).

In particular, the element 7, - ¢(£) does not depend on the choice of X,,. Also, since
T I (HE)N = 2, A — (N, €)6 for all 1 < u < s, we see by (@) that

Wty - 1(€)) = wt(ny) — (A, §)d

5.8
(58) D i) + (degy (1) — (A, )3

)

and that
(5.9) cl(ny - t(€)) = ¢.

Theorem 5.3.2. Keep the notation and setting above. For each x € WS, there
exists a subset B(X (\)) of B(\) such that

(5.10) X;(N= P cmaco).
beB(X, (N))

Moreover, under the isomorphism Wy : B(\) = B= ()\) of crystals in Theorem E6.1],
the subset B(X; (\)) C B()\) is mapped to the following subset of B (\):

From Theorem m we immediately obtain the following corollary; cf. [NS3|
Theorem 6.1.1 combined with Proposition 6.2.4] for the case z = e.

Corollary 5.3.3. For each x € W¥, there holds the equality

(5.12) ach(V; (/X ()= > englesat),
YEQLS(N)

By combining the special case = |w, | € W* of Corollary 5.3.3] with the special
case i1 = woA of Theorem B.2.7 we obtain the equality

geh(Vi, (A)/ X, (A) = Euw,a(g; 00).
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Remark 5.3.4. We recall from Remark (.1.3] that

Bua(g ™00 = Y eVWglenv),
YEQLS(N)
Hence it follows from the special case x = e of Corollary B.3.3] that

geh(Ve(N)/ X2 (V) = Ewoa(a™,0);

cf. [LNSSS3, Theorem 35]. Here we have V- (A ) C V_( ), as mentioned in Re-
mark[5.T.3l However, we can easily show that X A) 2 X (A) (except for
some trivial cases). Therefore, there is no 1nclus1on relatlon between the quotient
modules V= (A\)/X,. (M) and V7 (A)/X7(A). This can also be observed from the
comparison of some eXphcit computations of E,,_x(¢~!,0) and E,_x(g, o).

5.4. Proof of Theorem
Lemma 5.4.1 (cf. @23)). Let x € WS. Then, we have
(5.13) B, (M) = {zpb | p € Par(X), b € B, (\) N By(A)}.

Moreover, for every p € Par(X) and b € By (A\)NBo(X), the element z,b is contained
in By (N).

Proof. We first prove the inclusion D. Let b € B, (A) N By(A), and write it as
b = Xuy for a monomial X in Kashiwara operators. For p € Par()\), we have
z2pb = Xzpuy = XuP since z, commutes with Kashiwara operators (see §4.5]). Now
we set 1 := W, (b) and i := W, (z,b), where ¥ : B(A\) = B% (\) is the isomorphism
of crystals in Theorem EG.Il Then, we have n = X7, and = XU, (uP) = Xn,
with C' := ©71(p) € Conn(B3 (\)). Therefore, noting that x(n°) = e, we deduce
from Lemma 44 that x(n') = x(n)k(n®) = x(n). Also, since b € B, (), it follows
that k(n) > x, and hence k(n') = k(n) = . Hence we obtain 1’ € B?m()\), which
implies that z,b € B, (A).

Next we prove the opposite inclusion C. Let b" € B (), and write it as b’ = 2z,b
for some p € Par(\) and b € By(\) (see [@23))); we need to show that b € B, ().
We set 17 := W, (b) € BZ (A\) and 7/ := ¥, (b') € BZ (\). Then, the same argument
as above shows that x(n) = k(1) = x. Hence we obtain 7 € ]B%?z()\), which implies
that b € By (\).

For the second assertion, let p = (p);e; € Par(A) and b € B, (A) N Bo(N);
remark that

2pb € B, (A) <= Ua(zph) € B2, (A) <= r(Ua(2ph)) = z.

We write b as b = Xuy for a monomial X in Kashiwara operators. Also, define
0 := (0W)ier € Par(\) and € := Y, ;i € QV'F as in Remark @721 Then it

follows that zpb = zpXuy = Xzpuy = X(H(€) - u@). If we set C := O 1(p) €
Conn(B% ()\)), then we have

Ua(2pb) = Ua (X (t(E) - u?)) = X (4() - Ua(u®)) = X (t(€) - n).

Note that #(¢)-n¢ is of the form [@I5) with x(t(£)-n¢) = ¥ (¢(¢)) by Remark 7711
and the fact that x(n”) = e. Therefore, we see from Lemma {44 that

(5.14) K(Wa(2pD)) = K(X (1) 1)) = K(Xne)TT® (£()).
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Here we recall that x(Xn.) = x since b € B, (A\)NBy(N). Also, recall that £ € QV-+.
From these, we deduce that

K(UA(2pb)) = R(X0)ITP (£(€)) = K(X7e) by Lemma L34
>~ T.

This proves the lemma. O

Proof of Theorem B.3.21 'We will prove that if we set

(5.15) B:={z,b| p € Par(\) \ (0)icr, b € B (\) N By(N)} € B(\)
then
(5.16) X, () =cwace

beB

We first show the inclusion D in (5I6). Let p € Par(
Bo(A). We see from Remark [£5.7] that G(zp ) = 2pG(
(A

X7\ = 2 (Ve )
pEPar(k)
p#(D)icr
by the definition, we have G(zpb) = 2,G(b) € X, (A). Thus we have shown the

inclusion D in (BI6). Next we show the opposite inclusion C in (BI6). Since
{G(b) | be B; (\)} is a C(v)-basis of V,~()), we deduce from (5.7) that

(5.17) X, (A) = Spanc, {z,G(b) | p € Par(A\) \ (0);er, b€ By (\)}.

Let p € Par(A\) \ (0)ier and b € B, (A). By Lemma B.41] we can write the b as
b= zp b/ for some p’ € Par(\) and b' € B, (A\)NBy(A). It follows that z,b = zp2,/b'.
Because z, and z, are defined to be a certain product of Schur polynomials (see
(@21)), the element z,z, can be expressed as

M\ (0)ier and b € B, (A) N
b). Since G(b) € V.7 () and

zpzp, = E ’]’Lp//Zp//7 Wlth np// (S Z,
p'' €Par()\)
I [=lpl+le’|

here we remark that |p| + |p’| > 1 since p # (0);cr. Therefore, we deduce that
2pG(b) = 2pG(2pV) = 2p2p G(V')
= Z ’I’Lp//G Zp//b @(C
p’' €Par(\) beB
lo”|=lpl+1p’|
From this, together with (EIT), we obtain the inclusion X (\) C @,z C(v)G(b)
in (BI6). Thus, we obtain (B.I6]), as desired. In what follows, we write B(X (\))
for the subset B C B(A) in (G.15).
Furthermore, we will prove that
U (B(X; (N) =B2,(M)\ {1y t(&enw) | ¥ € QLS(N) .
For this purpose, it suffices to show that for each ¢ € QLS(A),

(5.18) o7 (@) NOA(BEG (V) = (7 @) NBL M)\ {ne - Heom) -
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Let ¢ € QLS()); recall that X, is a monomial in root operators such that n, =
XyMNe. Then we know from (B.4) that

A7) NBE,(N)
= {Xy(t(¢) - n°) | C € Com(BF (\)), ¢ € Q", [(] > [€r ] }-
We first show the inclusion D in (BI8]). Let 7 be an element in the set on the right-
hand side of (5I8), and write it as n = Xy (¢(¢) - n°) for some C € Conn(BZ (\))

and ¢ € QY such that [(] > [£; (y)]. We write the difference [¢] — [€, ()] € Q¥
as [C] = [€a,n(w)] = 2icr cicyy with ¢; € Zsq for i € I (note that ¢; = 0 for all i € S),

and define p := (¢;)ier + O(C) € Par()) as in ([B5). We claim that p # (0);e;.
Suppose, for a contradiction, that p = (#);c;. Then we have ©(C) = (0);er and

¢; =0 for all 7 € I, and hence
0= Xy(t(C) 1) = Xy (t(C) - me) = Xy (II7(¢(C)) 5 0, 1)
= Xy (I ((€x ()5 0, 1) since [¢] = [€ ()]
= Xy (t(Ean(y)) “Ne) = My -t n(w))

which contradicts the assumption that n is an element in the set on the right-hand
side of (BI8). Thus we obtain p # (0);c7. Now, we set

b:= ‘I’;l(w 't(gm,n(d)))) = \IIII(Xd)(t(gx,K(d’)) '776)) € B; ()‘) N BO(/\)7

note that 1y - t(&5 k(p)) € Bfw()\) by (B.4) and that b = Xy (t(€z,k(y)) - ur). Then
we see by (BI0) that z,b € B(X, ()\)). Also, we have

2p0 = 2p (X (t () - un)) = Xy (t(Ean()) - (2pun))
= Xy (t€aniw)) - 1([C] = Eam)) - u®?) by Remark
= Xy (t(C+7) - u®D)  for some v € QY
= Xy (t(¢) - u®).

Therefore, Wy (z,b) = Xy(t(¢) - n¢) = 7, which implies that 7 is contained in
U5 (B(X, (N)). Thus we have shown the inclusion D in (GI8]).
Next we show the opposite inclusion C in (BI8). Since B(X (\)) C B, (A), it
follows that .
A7 ) NWA(B(X, (V) C el (@) NBZ,(A).

Hence it suffices to show that 1y - ¢(&,nw)) & Ua(B(X;(X))). Suppose, for a
contradiction, that there exists b" € B(X ())) such that Wx(b') = 1y -t(&z k(). By
(517), we can write it as b’ = z,b for some p € Par(\)\(0);e; and b € B, (\)NBy(N).
We set 1= W, !(b) € B?x()\) OB? (M) and write k(1) € (WS)ag as k(n) = yzet(£)
for some y € W% and ¢ € QY524 Then, k(n) = yzet(£) = = since n € B?x()\),
and hence

(5.19) €] > [¢ry] by Lemma [LET

Let us write b as b = Yu, for some monomial Y in Kashiwara operators (note that
n = Yn.), and define ( = 3, ;ciaf € Q¥ and @ = (0);c; € Par()) in such
a way that p = (¢;)ier + 0 (see Remark and (53); note that ¢; = 0 for all
i € S. Then, by (£29), we have

V' = z2pb = 2,Yuy = Yzpuy = Y(t(C) - u®).
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Therefore, we see that

(5.20) (€ n(w) = = U (Y(HQ) - u?) =Y Q) - 1),
with C := 07 (g ) € Conn(IB%%()\)).

Since 1y - H&a k() = Xo(t(anw)) - 1) € IB(? (A), it follows that n¢ = 7., and
hence @ = (0)ie;. Hence we obtain ny, - (&5 (y)) = Y (£(C) - ). Since t(C) - ne =
(IT1%(t(¢)) ; 0, 1), we see from Lemma EZ4 that x(Y (t(¢) -0 ) k(n)k ( (€)-ne) =
yzet(E)II%(t(¢)). Similarly, we see that H(’hp t(&, mm)) = K(W)I5 (4 w())-
Combining these equalities, we obtain r(¥)I1%(£(&,,n(y))) = y2zet(EIT(E(C)), and
hence (y = £(¢) and) [( +&] = [€on(y)]- Since [§] = [€2y] by BI9) and ¢ €
QY-+, it follows that ([¢] = [¢,] and) [¢] = 0, which implies that ¢; = 0 for
all i € I\ S. Recall that ¢; = 0 for all i € S by the definition. Therefore,
we conclude that p = (¢;)ier + 0 = (0);cr; this contradicts our assumption that
p € Par(\)\ (0);e7. Thus we have shown the inclusion C in (5I8). This completes
the proof of Theorem O
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