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TOPOLOGY OF TWO-ROW SPRINGER FIBERS

FOR THE EVEN ORTHOGONAL AND SYMPLECTIC GROUP

ARIK WILBERT

Abstract. We define an explicit topological model for every two-row Springer
fiber associated with the even orthogonal group and prove that the respective
topological model is homeomorphic to its corresponding Springer fiber. This
confirms a conjecture by Ehrig and Stroppel concerning the topology of the
equal-row Springer fiber for the even orthogonal group. Moreover, we show
that every two-row Springer fiber for the symplectic group is homeomorphic
(even isomorphic as an algebraic variety) to a connected component of a certain
two-row Springer fiber for the even orthogonal group.

1. Introduction

In [10], Khovanov introduced a topological model for all Springer fibers of type
A corresponding to nilpotent endomorphisms with two equally sized Jordan blocks
as a means of showing that the cohomology rings of these Springer fibers are iso-
morphic to the center of the algebras appearing in his groundbreaking work on
the categorification of the Jones polynomial [8, 9]. He also conjectured that the
topological models are in fact homeomorphic to the corresponding Springer fibers;
see [10, Conjecture 1]. This conjecture was proven independently by Wehrli [21]
and Russell and Tymoczko [14, Appendix] using results contained in [1]. The con-
structions and results were generalized to all two-row Springer fibers of type A in
[13]. In this article we define topological models for all two-row Springer fibers
associated with the even orthogonal (type D) and the symplectic group (type C)
and prove that they are homeomorphic to their corresponding Springer fiber.

In order to explain our work in more detail, we fix an even positive integer
n = 2m. Let βD (resp. βC) be a nondegenerate symmetric (resp. symplectic)
bilinear form on Cn and let O(Cn, βD) (resp. Sp(Cn, βC)) be the corresponding
isometry group with Lie algebra so(Cn, βD) (resp. sp(Cn, βC)). The group O(Cn, β)
(resp. Sp(Cn, βC)) acts on the affine variety of nilpotent elements ND ⊆ so(Cn, βD)
(resp. NC ⊆ sp(Cn, βC)) by conjugation and it is well known that the orbits under
this action are in bijective correspondence with partitions of n in which even (resp.
odd) parts occur with even multiplicity; see [6, 22]. The parts of the partition
associated to the orbit of an endomorphism encode the sizes of the Jordan blocks
in Jordan normal form.

Given a nilpotent endomorphism x ∈ ND, the associated (algebraic) Springer
fiber F lxD of type D is defined as the projective variety consisting of all full isotropic
(with respect to βD) flags {0} = F0 � F1 � . . . � Fm in Cn which satisfy the
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condition xFi ⊆ Fi−1 for all i ∈ {1, . . . ,m}. Analogously one defines the Springer
fiber of type C (simply replace all the D’s in the definition by C’s). These varieties
naturally arise as the fibers of a resolution of singularities of the nilpotent cone;
see e.g. [2, Chapter 3]. In general they are not smooth and decompose into many
irreducible components.

The goal is to understand the topology of the irreducible components of the
Springer fibers and their intersections explicitly and provide a combinatorial de-
scription. In general this is a very difficult problem (even in type A). Thus, we
restrict ourselves to two-row Springer fibers, i.e., we only consider endomorphisms
of Jordan type (n− k, k), where k ∈ {1, . . . ,m}. Note that for type D (resp. type
C) that means that either k = m or k is odd (resp. even). Since the Springer
fiber depends (up to isomorphism) only on the conjugacy class of the chosen endo-
morphism, it makes sense to speak about the (n− k, k) Springer fiber, denoted by

F ln−k,k
D (resp. F ln−k,k

C ), without further specifying the nilpotent endomorphism.
Henceforth, we fix a two-row partition (n − k, k) labeling a nilpotent orbit of

type D. Note that every two-row partition for an orbit of type C arises from a
two-row partition of type D by subtracting 1 in both parts of the type D partition.

In order to proceed we first have to introduce some combinatorial tools. Consider
a rectangle in the plane together with a finite collection of vertices evenly spread
along the upper horizontal edge of the rectangle. A cup diagram is a nonintersecting
diagram inside the rectangle obtained by attaching lower semicircles called cups and
vertical line segments called rays to the vertices. We require that every vertex is
joined with precisely one endpoint of a cup or ray. Moreover, a ray always connects
a vertex with a point on the lower horizontal edge of the rectangle. Additionally,
any cup or ray for which there exists a path inside the rectangle connecting this cup
or ray to the right vertical edge of the rectangle without intersecting any other part
of the diagram may be equipped with one single marker, i.e., a small black box. We
do not distinguish between diagrams which are related by a planar isotopy fixing
the boundary. The following first two diagrams are examples of cup diagrams, but
the third is not, because the two markers cannot be connected to the right edge of
the rectangle with a path not intersecting the diagram:

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Let Bn−k,k denote the set of all cup diagrams on m vertices with �k
2 � cups. This

set decomposes as a disjoint union Bn−k,k = Bn−k,k
even � B

n−k,k
odd , where Bn−k,k

even (resp.

B
n−k,k
odd ) consists of all cup diagrams with an even (resp. odd) number of markers.
Let S2 ⊆ R3 be the standard unit sphere on which we fix the points p = (0, 0, 1)

and q = (1, 0, 0). Given a cup diagram a ∈ Bn−k,k, we define Sa ⊆
(
S2

)m
as the

submanifold of the m-fold cartesian product of the sphere with itself consisting of
all (x1, . . . , xm) ∈

(
S2
)m

which satisfy the relations xi = −xj (resp. xi = xj) if the
vertices i and j are connected by an unmarked cup (resp. marked cup). Moreover,
we impose the relations xi = p if the vertex i is connected to a marked ray, and
xi = −p (resp. xi = q) if i is connected to an unmarked ray which is the rightmost

ray in a (resp. not the rightmost ray). The topological Springer fiber Sn−k,k
D of type
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D is defined as the union

Sn−k,k
D :=

⋃
a∈Bn−k,k

Sa ⊆
(
S2
)m

.

The above definition generalizes the construction of the topological Springer fiber
in [3, §4.1] from the equal-row case to the general two-row case and returns (up
to a sign convention) the definition in the equal-row case (cf. Remark 3.5 for the
precise relationship).

The first main result of this article proves a conjecture by Ehrig and Stroppel
[3, Conjecture C] on the topology of Springer fibers of type D corresponding to
partitions with two equal parts and at the same time extends the result to all
two-row Springer fibers of type D.

Theorem A. There exists a homeomorphism

Sn−k,k
D

∼= F ln−k,k
D

such that the images of the Sa are irreducible components of F ln−k,k
D for all a ∈

Bn−k,k.

The Springer fiber F ln−k,k
D as defined above decomposes into two connected

components (cf. Remark 2.3). Under the inverse of the homeomorphism in Theorem

A the two connected components of F ln−k,k
D are mapped onto

Sn−k,k
D,odd :=

⋃
a∈B

n−k,k
odd

Sa and Sn−k,k
D,even :=

⋃
a∈B

n−k,k
even

Sa,

respectively. Let F ln−k,k
D,odd denote the image of Sn−k,k

D,odd under the homeomorphism

Sn−k,k
D

∼= F ln−k,k
D , i.e., it is one of the connected components of F ln−k,k

D . The
following result relates the two-row Springer fibers of type C and D:

Theorem B. There exists an isomorphism of algebraic varieties

F ln−k,k
D,odd

∼= F ln−k−1,k−1
C ,

i.e., the (n − k − 1, k − 1) Springer fiber of type C is isomorphic (as an algebraic
variety) to one of the connected components of the (n− k, k) Springer fiber of type
D, which can be written down explicitly. In particular, the topological model of the
type D Springer fiber also provides a topological model for the type C Springer fiber.

More precisely, we have a homeomorphism Sn−k,k
D,odd

∼= F ln−k−1,k−1
C .

In [7] two-row Slodowy slices of type C and D were studied via fixed-point sub-
varieties of certain Nakajima quiver varieties arising from diagram automorphisms.
The authors show that the Slodowy slice of type D to the orbit with Jordan type
(n − k, k) is isomorphic to the Slodowy slice of type C to the orbit with Jordan
type (n−k− 1, k− 1). They also ask whether there is an isomorphism between the
resolutions of these singular affine varieties or an isomorphism between the corre-
sponding Springer fibers (cf. [7, 1.3]). Theorem B provides an affirmative answer
to the latter question.

Remark. Since nilpotent orbits of the odd orthogonal group (type B) are parame-
terized by partitions in which even parts occur with even multiplicity, it follows that
there cannot exist a two-row partition labeling a nilpotent orbit of type B. Hence,
there are no two-row Springer fibers of type B. The only interesting Springer fibers
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of type B would correspond to nilpotent endomorphisms with at least three Jordan
blocks (every one-row Springer fiber consists of a single flag only). Those are much
more difficult to treat and so far there has been no significant progress (not even in
type A) in determining their topology in an explicit and combinatorially satisfying
way (at least the author is not aware of any results comparable to those obtained
in, e.g., [5] or [13]).

Overview of the article. In the following we discuss the contents of this article
in more detail and sketch the ideas behind the proofs of the main theorems.

In Section 2 we recall basic definitions and facts about the (algebraic) Springer
fibers of type C and D and review some known results concerning the combinatorics
of the irreducible components. In particular, we review the parameterization of the
irreducible components of the Springer fiber in terms of signed domino tableaux
as introduced by van Leeuwen in his thesis (see [19]) based on earlier work by
Spaltenstein [17] (see also [12]).

In Section 3 the topological Springer fibers are defined and in Proposition 3.8
we provide a combinatorial description of the topology of the pairwise intersections
of the submanifolds Sa ⊆

(
S2

)m
, a ∈ Bn−k,k, which yields (in connection with

Theorem A) a combinatorial description of the topology of intersections of the

irreducible components of F ln−k,k
D . In contrast to type A, the intersections of the

Springer fiber F ln−k,k
D cannot be described using the highest weight Lie theory

combinatorics [4, 11] if m �= k (see also the discussion in [3, §6.5]). In particular,

the convolution algebras arising from the Springer fibers F ln−k,k
D (by mimicking

the approach of [18]) are in general not isomorphic to the corresponding Khovanov
algebras of type D constructed in [4] (this is true if and only if k = m).

Sections 4 and 5 are concerned with the proof of the main theorems. The main
idea is the following:

Let N > 0 be a large integer and let z : C2N → C2N be a nilpotent linear
operator with two equally-sized Jordan blocks. In [1, §2] the authors define a
smooth projective variety

Ym =
{
(F1, . . . , Fm) | Fi ⊆ C2N has dimension i, F1 ⊆ . . . ⊆ Fm, zFi ⊆ Fi−1

}
and construct an explicit diffeomorphism φm : Ym

∼=−→
(
P1

)m
. The variety Ym should

be seen as a compactification of the preimage of a Slodowy slice of type A under the
Springer resolution. The diffeomorphism φm also plays a crucial role in establishing
topological models for the Springer fibers of type A which are naturally embedded
in Ym (cf. [21] and [13]). It turns out that the two-row Springer fibers of type
D, respectively of type C, can also be embedded into Ym, respectively Ym−1 (see
Section 4).

Furthermore, we introduce a diffeomorphism γn−k,k :
(
S2
)m →

(
P1

)m
(unlike

the diffeomorphism φm this diffeomorphism actually depends on the partition).
This diffeomorphism does not play a vital role and it is only introduced for cosmetic
reasons.

In order to prove Theorem A one needs to check that the image of Sn−k,k
D ⊆(

S2
)m

under the diffeomorphism φ−1
m ◦ γn−k,k is the Springer fiber F ln−k,k

D ⊆ Ym.
In Lemma 5.2 we provide the first step by giving an explicit description of the image

of Sn−k,k
D under the map γn−k,k. The following picture summarizes the results and
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constructions discussed so far:

(
S2
)m (

P1
)m

Ym

Sn−k,k
D
�⋃

a∈Bn−k,k

Sa

γn−k,k(Sn−k,k
D )

�⋃
a∈Bn−k,k

γn−k,k (Sa)

F ln−k,k
D

Does φ−1
m restrict to

a homeomorphism with
image F ln−k,k

D ?

embedding of
Lemma 4.4described

explicitly in
Lemma 5.2

γn−k,k

∼=

γn−k,k|Sn−k,k
D

∼=

φ−1
m∼=

∼=

In Section 5 we answer the remaining question in the picture above by showing that

φ−1
m does indeed restrict to a homeomorphism γn−k,k

(
Sn−k,k
D

)
∼= F ln−k,k

D . Note

that it suffices to prove the following statement (cf. Proposition 5.3):

Proposition. The preimages of the sets γn−k,k(Sa) under φm are pairwise different

irreducible components of F ln−k,k
D ⊆ Ym for all a ∈ Bn−k,k.

Since the irreducible components of F ln−k,k
D are in bijective correspondence with

cup diagrams in Bn−k,k we deduce that the inclusion

φ−1
m

(
γn−k,k

(
Sn−k,k
D

))
=

⋃
a∈Bn−k,k

φ−1
m (γn−k,k (Sa)) ⊆ F ln−k,k

D

is in fact an equality which finishes the proof of Theorem A.
In order to prove the above proposition we proceed by induction on the number

of unmarked cups in a ∈ Bn−k,k which is is more or less the same proof as in type
A (cf. [13]). One only needs to be careful about the additional isotropy condition
(cf. Lemma 4.5). Thus, the main difficulty lies in establishing the induction start,
i.e., to prove the claim for cup diagrams without any unmarked cups. This is done
in Proposition 5.5 (which itself is a proof by induction on the number of marked
cups) and is considered the technical heart of the argument because it requires new
techniques which are not straightforward generalizations of the type A case.

In order to prove Theorem B we consider the surjective morphism of varieties
πm : Ym � Ym−1 given by (F1, . . . , Fm) �→ (F1, . . . , Fm−1) and show (using similar

arguments as in the proof of Theorem A) that the restriction of πm to F ln−k,k
D,odd ⊆ Ym

yields a homeomorphism (even an isomorphism of varieties) whose image is the

embedded Springer fiber F ln−k−1,k−1
C ⊆ Ym−1. Deleting the vector space Fm of

a given flag (F1, . . . , Fm) ∈ F ln−k,k
D,odd in order to pass from type D to type C fits

nicely into the combinatorial picture since signed domino tableaux of type C can
be obtained from signed domino tableaux of type D by deleting the domino labeled
m (cf. Lemma 3.15 for details).

2. Algebraic Springer fibers

We begin by defining the (algebraic) Springer fibers and provide an overview over
some known results concerning the combinatorics of the irreducible components.
The purpose is to set up notation and establish conventions used throughout this
article which sometimes differ slightly from the ones in related publications. Unless
stated otherwise, n = 2m denotes an even positive integer.
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2.1. Nilpotent orbits and algebraic Springer fibers. Let N ⊆ sl(Cn) be the
nilpotent cone consisting of all nilpotent endomorphisms of Cn (in the usual sense
of linear algebra). The Jordan normal form implies that the orbits under the
conjugation action of the special linear group SL(Cn) on N can be parameterized
in terms of partitions of n, i.e., r-tuples λ = (λ1, . . . , λr) ∈ Zr

>0, r ∈ Z>0, of positive
integers such that λ1 ≥ λ2 ≥ . . . ≥ λr and λ1 + . . .+ λr = n, where the parts λi of
λ encode the sizes of the Jordan blocks of the elements contained in an orbit. Let
P(n) denote the set of all partitions of n.

Fix an element ε ∈ {±1} and let βε be a nondegenerate bilinear form on Cn

which satisfies βε(v, w) = εβε(w, v) for all v, w ∈ Cn. Let Aut(Cn, βε) denote the
isometry group consisting of all linear automorphisms of Cn preserving βε. The Lie
algebra aut(Cn, βε) of Aut(Cn, βε) is the subalgebra of sl(Cn) consisting of all en-
domorphisms x of Cn which satisfy the equation βε(x(v), w) = −βε(v, x(w)) for all
v, w ∈ Cn. Note that Aut(Cn, β1) ∼= On(C) and aut(Cn, β1) ∼= son(C) if βε is non-
degenerate and symmetric, whereas Aut(Cn, β−1) ∼= Spn(C) and aut(Cn, β−1) ∼=
spn(C) if βε is symplectic.

We define Pε(n) as the subset of P(n) consisting of all partitions λ of n for
which the cardinality of {i | λi = j} is even for all j satisfying (−1)j = ε, i.e.,
even (resp. odd) parts occur with even multiplicity. We refer to the partitions in
P1(n) (resp. P−1(n)) as admissible of type D (resp. type C) since they parameterize
nilpotent orbits in the simple Lie algebra of the corresponding type. The following
classification of nilpotent orbits is well known [6, 22].

Proposition 2.1. The orbits under the conjugation-action of Aut(Cn, βε) on the
variety of nilpotent elements Naut(Cn,βε) = N ∩ aut(Cn, βε) are in bijective corre-
spondence with the partitions contained in Pε(n). The parts of the partition asso-
ciated with the orbit of an endomorphism encode the sizes of the Jordan blocks in
Jordan normal form.

Definition 2.2. A full isotropic flag in Cn (with respect to βε) is a sequence F• of
subspaces {0} = F0 � F1 � . . . � Fm of Cn such that Fm is isotropic with respect
to βε, i.e., βε vanishes on Fm × Fm. The set of all full isotropic flags is denoted by
F lβε

.

Since the inclusions of the subspaces of a flag F• are strict, Fm is maximal
isotropic and we have dim(Fi) = i for all i ∈ {1, . . . ,m}. The set F lβε

can be
equipped with the structure of a smooth projective variety, e.g., by identifying it
with a homogeneous Aut(Cn, βε)-space. Adding the vector spaces Fn−i = F⊥

i to a
given full isotropic flag F• (the orthogonal complement is taken with respect to βε)
defines an embedding of F lβε

into the full flag variety F l of type A. Given any other
nondegenerate symmetric (resp. symplectic) bilinear form β on Cn, the correspond-
ing varieties F lβ and F lβ1

(resp. F lβ−1
) are isomorphic which allows us to speak

about the full flag variety of type D (resp. type C), denoted by F lD (resp. F lC),
without further specifying a nondegenerate symmetric (resp. symplectic) bilinear
form.

Remark 2.3. According to our conventions the full flag variety F lD of type D is
isomorphic to a quotient of On(C) (and not SOn(C)). Hence, it consists of two
isomorphic connected components. The component containing a given flag F• is
determined by Fm. More precisely, there is a unique flag F ′

• such that Fi = F ′
i for
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all i ∈ {1, . . . ,m − 1} and Fm �= F ′
m and the two flags lie in different connected

components (cf. [19, §1.4] or [3, Remark 2.2]).

Definition 2.4. The (algebraic) Springer fiber F lxβε
associated with βε and x ∈

Naut(Cn,βε) is the projective subvariety of F lβε
consisting of all isotropic flags F•

which satisfy the conditions xFi ⊆ Fi−1 for all i ∈ {1, . . . ,m}.

If β is another nondegenerate symmetric (resp. symplectic) bilinear form on Cn

and y a nilpotent endomorphism of Cn contained in aut(Cn, β), then the Springer
fibers F lyβ and F lxβε

are isomorphic if and only if x and y have the same Jordan

type. Thus, by Proposition 2.1, there is (up to isomorphism) precisely one Springer
fiber for every admissible partition λ of type D (resp. type C) which we denote by
F lλD (resp. F lλC) assuming that some nondegenerate symmetric (resp. symplectic)
bilinear form and a compatible nilpotent endomorphism of Jordan type λ have been
fixed beforehand.

2.2. Irreducible components and combinatorics. Recall that a partition λ =
(λ1, . . . , λr) of n can be depicted as a Young diagram, i.e., a collection of n boxes
arranged in r left-aligned rows, where the i-th row consists of λi boxes (this is
commonly known as “English notation”).

Definition 2.5. A standard Young tableau of shape λ is a filling of the Young
diagram of λ ∈ P(n) with the numbers 1, 2, . . . , n such that each number occurs
exactly once and the entries decrease in every row and column. Let SY T (λ) be the
set of all standard Young tableaux of shape λ.

Example 2.6. Here is a complete list of all elements contained in the set SY T (3, 2):

5 4 3
2 1

5 4 2
3 1

5 3 2
4 1

5 3 1
4 2

5 4 1
3 2

Let x ∈ N be a nilpotent endomorphism of Cn of Jordan type λ and let F lx be
the associated Springer fiber (of type A) consisting of all sequences {0} = F0 � F1 �

. . . � Fn = Cn of subspaces satisfying xFi ⊆ Fi−1 for all i ∈ {1, . . . , n}. By work
of Spaltenstein [16] and Vargas [20] there exists a surjection Sx : F lx � SY T (λ)
which can be used to parameterize the irreducible components of the Springer fiber
as follows.

Proposition 2.7. The set SY T (λ) of standard Young tableaux of shape λ is in
bijective correspondence with the irreducible components of the Springer fiber F lx

via the map which sends a tableau T to the closure of the fiber of Sx over T .

In order to obtain a parameterization of the irreducible components of the
Springer fibers of type C or D one has to replace standard Young tableaux by
admissible domino tableaux which we define below.

Definition 2.8. A domino diagram of shape λ with m dominoes is given by a
partitioning of the set of boxes of the Young diagram corresponding to λ into
two-element subsets, called dominoes, such that any two associated boxes have a
common vertical or horizontal edge.

We depict a domino diagram by deleting the common edge of any two boxes
forming a domino.
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Example 2.9. Here is a complete list of all domino diagrams of shape (5, 3):

Definition 2.10. An admissible domino tableau of shape λ, where λ ∈ Pε(n), is
obtained from a domino diagram of shape λ by filling the n boxes of its underlying
Young diagram with the numbers 1, . . . ,m such that:

(ADT1) Each of the numbers 1, . . . ,m occurs exactly twice and any two boxes with
the same number form a domino.

(ADT2) The entries in each row and column are weakly decreasing from left to
right and top to bottom.

(ADT3) For every i ∈ {1, . . . ,m}, the partition corresponding to the shape of the
diagram obtained by deleting all dominoes with label smaller than or equal
to i is admissible of type D (resp. type C) if ε = 1 (resp. ε = −1).

The set of all admissible domino tableaux of shape λ is denoted by ADT (λ).

When depicting an admissible domino tableau we draw dominoes instead of
paired boxes and only write a single number in every domino.

Example 2.11. Here is a complete list of all admissible domino tableaux of shape
(5, 3) ∈ P1(8):

4 3 2
1

4
3
2

1
4

3
1

2

Indeed, in case of the rightmost tableau above, removing the domino with label 1
yields a diagram whose shape corresponds to the partition (5, 1) ∈ P1(6), removing
the dominoes labeled 1 and 2 yields (3, 1) ∈ P1(4) and removing the dominoes
with labels 1, 2 and 3 gives (1, 1) ∈ P1(2). This proves condition (ADT3) for this
particular diagram (note that (ADT1) and (ADT2) are evidently satisfied). Similar
arguments apply in the other cases.

Furthermore, here are all admissible domino tableaux of shape (4, 2) ∈ P−1(6):

3 2
1 3

2
1 3

1
2

Let x ∈ Naut(Cn,βε) be a nilpotent endomorphism of Cn of Jordan type λ. We
define a surjection Sx

βε
: F lxβε

� ADT (λ) as follows: Given F• ∈ F lxβε
, we obtain a

sequence x(m), . . . , x(0) of nilpotent endomorphisms, where x(i) : F⊥
i /Fi → F⊥

i /Fi

denotes the map induced by x (the orthogonal complement is taken with respect to
βε). The Jordan types J(x(m−1)), . . . , J(x(i)), . . . , J(x(0)) are admissible partitions,
where successive Jordan types differ by precisely one domino. We label the new
domino by comparing Jordan types of x(i) and x(i+1) with i. More details can be
found in [17], [19] or [12].

Example 2.12. Let x ∈ sl(C8) be a nilpotent endomorphism of Jordan type (5, 3)
and let

(2.1) e1 e2 e3 e4 e5 f1 f2 f3

be a Jordan basis (the arrows indicate the action of x, e1 and f1 are mapped to
zero by x). Let β1 be the nondegenerate symmetric bilinear form on C8 given by

β1(ei, fj) = 0, β1(ei, ei′) = (−1)i−1δi+i′,6, β1(fj , fj′) = (−1)jδj+j′,4,
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where i, i′ ∈ {1, . . . , 5} and j, j′ ∈ {1, 2, 3}. Then one easily checks that x ∈
Naut(C8,β1). Consider the flag F• ∈ F lxβ1

, where

F1 = span(e1) , F2 = span(e1, f1) , F3 = span(e1, e2, f1) ,

F4 = span(e1, e2, f1, ie3 + f2) ,

and i =
√
−1 ∈ C. F⊥

1 is spanned by all Jordan basis vectors (see (2.1)) except e5,
F⊥
2 is spanned by all vectors except e5, f3 and F⊥

3 = span(e1, e2, e3, f1, f2). Hence,
one easily computes the Jordan types

J(x(3)) = (1, 1) , J(x(2)) = (3, 1) , J(x(1)) = (3, 3) , J(x(0)) = (5, 3)

and the tableau associated with F• via Sx
β1

is constructed as follows:

4 �������� 4
3 �������� 4

3
2

�������� 4
3
2

1

Remark 2.13. The closures of the preimages of the elements in ADT (λ) under the
map Sx

βε
are not necessarily connected and hence cannot be irreducible (as in type

A). Nonetheless, the irreducible components of F lxβε
contained in the closure of

(Sx
βε
)−1(T ) are precisely its connected components [19, Lemma 3.2.3].

Example 2.14. Consider the Springer fiber F lxβ1
as in Example 2.12. Then one

can check (e.g. by using the inductive construction in [3, §6.5]) that the fiber of Sx
β1

over T , where T denotes the rightmost admissible domino tableau of shape (5, 3)
in Example 2.11, is the union of the following two disjoint sets of flags:{
span(μe1+f1)⊆span(e1, f1) ⊆ span(e1, e2, f1) ⊆ span(e1, e2, f1, ie3+f2) | μ ∈ C

}
,{

span(μe1+f1)⊆span(e1, f1) ⊆ span(e1, e2, f1) ⊆ span(e1, e2, f1, ie3−f2) | μ ∈ C
}
,

each of which is isomorphic to an affine space A1. By taking the closure we add
the possibility of choosing span(e1) as a one-dimensional subspace of these flags.
Thus, the closure of the preimage of T under Sx

β1
is isomorphic to a disjoint union

of two projective spaces P1 each of which corresponds to an irreducible component
of F lxβ1

.

By the above discussion the map Sx
βε

does not provide a parameterization of the
irreducible components of F lxβε

. It is necessary to add more combinatorial data to
the tableaux in order to count the connected components.

Definition 2.15. A signed domino tableau of shape λ is an admissible domino
tableau of shape λ together with a choice of sign (an element of the set {+,−}) for
each vertical domino in an odd (resp. even) column if λ ∈ P1(n) (resp. λ ∈ P−1(n)).
We write ADT sgn(λ) for the set of signed domino tableau of shape λ. We define
ADT sgn

odd(λ) (resp. ADT sgn
even(λ)) as the set of all signed domino tableaux with an

odd (resp. even) number of minus signs.

Example 2.16. The set ADT sgn((5, 3)) consists of the following eight elements:

4
+

3 2
+

1 4
+

3 2
−

1 4
−

3 2
+

1 4
−

3 2
−

1

4
+

3
2

1 4
−

3
2

1 4
+

3
1

2 4
−

3
1

2
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The set ADT sgn((4, 2)) consists of the following four elements:

3 2
+

1 3 2
−

1 3
2

1 3
1

2

The next proposition summarizes the discussion above and should be seen as the
analog of Proposition 2.7 for two-row Springer fibers of types C and D.

Proposition 2.17 ([19, Lemmas 3.2.3 and 3.3.3]). Let λ = (λ1, λ2) ∈ Pε(n) be a
partition and x ∈ Naut(Cn,βε) a nilpotent endomorphism of Jordan type λ.

For every T ∈ ADT (λ) the closure of the preimage of T under Sx
βε

is a union of
disjoint irreducible components of F lxβε

indexed by all signed domino tableaux which
equal T after forgetting the signs. There exists a bijection between the set of all
irreducible components of F lxβε

and ADT sgn(λ).

Remark 2.18. For general Jordan types the irreducible components are parame-
terized by equivalence classes of signed domino tableaux. However, in the case of
two-row partitions (which is the case we are primarily interested in) this equiva-
lence relation is trivial. We refer to [19, §3.3] or [12, §3] for details and the more
general statement for arbitrary Jordan types.

Example 2.19. The two rightmost signed domino tableaux of shape (5, 3) in
the second row of Example 2.16 index the two disjoint irreducible components
in Example 2.14. The sign on the vertical domino corresponds to the two choices
span(e1, e2, f1, ie3+f2), respectively, span(e1, e2, f1, ie3−f2) as the four-dimensional
subspace (see also Remark 2.3).

3. Topological Springer fibers

In this section we fix a partition (n − k, k) of n = 2m, 1 ≤ k ≤ m, labeling a
nilpotent orbit of the orthogonal group, i.e., either k = m or k is odd.

3.1. Definition of topological Springer fibers. We fix a rectangle in the plane
with m vertices evenly spread along the upper horizontal edge of the rectangle. The
vertices are labeled by the consecutive integers 1, . . . ,m in increasing order from
left to right.

Definition 3.1. A cup diagram is a nonintersecting diagram inside the rectangle
obtained by attaching lower semicircles called cups and vertical line segments called
rays to the vertices. In doing so we require that every vertex is connected with
precisely one endpoint of a cup or ray. Moreover, a ray always connects a vertex
with a point on the lower horizontal edge of the rectangle. Additionally, any cup or
ray for which there exists a path inside the rectangle connecting this cup or ray to
the right edge of the rectangle without intersecting any other part of the diagram
is allowed to be decorated with a single marker, i.e., a small black box.

If the cups and rays of two given cup diagrams are incident with exactly the
same vertices (regardless of the precise shape of the cups) and the distribution of
markers on corresponding cups and rays coincides in both diagrams we consider
them as equal.

We write Bn−k,k to denote the set of all cup diagrams on m vertices with �k
2 �

cups. This set decomposes as a disjoint union Bn−k,k = Bn−k,k
even � B

n−k,k
odd , where

Bn−k,k
even (resp. Bn−k,k

odd ) consists of all cup diagrams with an even (resp. odd) number
of markers.
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We usually neither draw the rectangle around the diagrams nor display the vertex
labels.

Example 3.2. The set B5,3 consists of the cup diagrams

a = b = c = d =

e = f = g = h =

where the diagrams in the first (resp. second) row are the ones in Bn−k,k
even (resp.

B
n−k,k
odd ).

Let S2 ⊆ R3 be the two-dimensional standard unit sphere on which we fix the
points p = (0, 0, 1) and q = (1, 0, 0).

Given a cup diagram a ∈ Bn−k,k, define Sa ⊆
(
S2

)m
as the submanifold consist-

ing of all (x1, . . . , xm) ∈
(
S2
)m

which satisfy the relations xi = −xj (resp. xi = xj)
if the vertices i and j are connected by an unmarked cup (resp. marked cup). More-
over, we impose the relations xi = p if the vertex i is connected to a marked ray and
xi = −p (resp. xi = q) if i is connected to an unmarked ray which is the rightmost

ray in a (resp. not the rightmost ray). Note that Sa is homeomorphic to (S2)�
k
2 �,

i.e. each cup of a contributes a sphere.

Definition 3.3. The (n−k, k) topological Springer fiber Sn−k,k
D of type D is defined

as the union

Sn−k,k
D :=

⋃
a∈Bn−k,k

Sa ⊆
(
S2
)m

.

Example 3.4. In the following we discuss in detail the topological Springer fiber

S5,3
D . The submanifolds of

(
S2

)4
associated with the cup diagrams in B5,3 (cf.

Example 3.2) are the following:
• Sa = {(x,−x, q,−p) | x ∈ S2}
• Sc = {(q,−p, x,−x) | x ∈ S2}

• Sb = {(q, x,−x,−p) | x ∈ S2}
• Sd = {(q, p, x, x) | x ∈ S2}

• Se = {(x,−x, q, p) | x ∈ S2}
• Sg = {(q, p, x,−x) | x ∈ S2}

• Sf = {(q, x,−x, p) | x ∈ S2}
• Sh = {(q,−p, x, x) | x ∈ S2}

Each of these manifolds is homeomorphic to a two-sphere. Their pairwise inter-
section is either a point or empty, e.g., we have Sa ∩ Sb = {(q,−q, q,−p)} and
Sa ∩ Sc = ∅ (cf. also Proposition 3.8). The (5, 3) topological Springer fiber of type
D is a disjoint union of two Kleinian singularities of type D4, [15]:

S5,3
D

∼=

Sb Sd

Sa

Sc

SfSe

Sg

Sh

Remark 3.5. A topological model for the Springer fibers of type D corresponding
to the partition (k, k) using a slightly different sign convention was introduced in
[3, §4.1]. In order to see that this model is in fact homeomorphic to our topological
Springer fiber one considers the involutory diffeomorphism

Ik : (S
2)k → (S2)k , (x1, . . . , xk) �→ (−x1, x2,−x3, . . . , (−1)kxk).
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Note that if two vertices i and j of a given cup diagram a ∈ Bk,k are connected
by a cup (marked or unmarked) then either i is odd and j is even, or i is even
and j is odd. Moreover, the ray in a (which exists if and only if k is odd) must
be attached to an odd vertex. Thus, the image of the set Sa under Ik, denoted by
S′
a, consists of all elements (x1, . . . , xk) ∈ (S2)k which satisfy the relations xi = xj

(resp. xi = −xj) if the vertices i and j are connected by an unmarked cup (resp.
marked cup), xi = −p if the vertex i is connected to a marked ray and xi = p if i
is connected to an unmarked ray. In particular, we have

Ik

(
Sk,k
D

)
=

⋃
a∈Bn−k,k

Ik (Sa) =
⋃

a∈Bn−k,k

S′
a.

This is precisely the definition of the topological Springer fiber as in [3, §4.1] (after
reversing the order of the coordinates).

3.2. Intersections of components. In the following we provide a combinato-
rial description of the topology of the pairwise intersections of the submanifolds
Sa ⊆

(
S2
)m

, a ∈ Bn−k,k, using circle diagrams (see Proposition 3.8 below). In

combination with the homeomorphism Sn−k,k
D

∼= F ln−k,k
D (cf. Theorem 5.12) this

yields a combinatorial description of the topology of the pairwise intersections of

the irreducible components of F ln−k,k
D .

Definition 3.6. Let a,b ∈ Bn−k,k be cup diagrams. The circle diagram ab is
defined as the diagram obtained by reflecting the diagram a in the horizontal middle
line of the rectangle and then sticking the resulting diagram, denoted by a, on top
of the cup diagram b, i.e., we glue the two diagrams along the horizontal edges of
the rectangles containing the vertices (thereby identifying the vertices of a and b
pairwise from left to right). In general the diagram ab consists of several connected
components each of which is either closed (i.e. it has no endpoints) or a line segment.
A line segment which contains a ray of a and a ray of b is called a propagating line.

Example 3.7. Here is an example illustrating the gluing of two cup diagrams in
order to obtain a circle diagram:

a = b =

reflect a

and glue
������������ ab =

Hence, ab consists of one closed connected component and one line segment which
is propagating. Note that the circle diagram eh, where e and h are the respec-
tive cup diagrams from Example 3.2, consists of two line segments which are not
propagating.

Proposition 3.8. Let a,b ∈ Bn−k,k be cup diagrams. We have Sa ∩Sb �= ∅ if and
only if the following conditions hold:

(I1) Every connected component of ab contains an even number of markers.
(I2) Every line segment in ab is propagating.

Furthermore, if Sa∩Sb �= ∅, then there exists a homeomorphism Sa∩Sb
∼=

(
S2
)circ

,
where circ denotes the number of closed connected components of ab.
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Proof. Assume that Sa ∩ Sb �= ∅ and let (x1, . . . , xm) ∈ Sa ∩ Sb. Consider a
connected component of ab containing the vertices i1, . . . , ir which are ordered such
that ij and ij+1 are connected by a cup for all j ∈ {1, . . . , r− 1}. If the component
is closed (resp. a line segment) the total number of cups on the component equals r
(resp. r−1). We denote by c (resp. d) the total number of unmarked (resp. marked)
cups of this component.

(1) If the component is closed we have equalities xij = ±xij+1
for all j ∈ {1, . . . ,

r− 1} and xir = ±xi1 , where the signs depends on whether the cup connecting
the respective vertices is marked or unmarked. By successively inserting these
equations into each other we obtain xi1 = (−1)cxi1 = (−1)r−dxi1 . In order for
this equation to hold, r−d must be even. Since r is even for closed components
we deduce that d is even which proves property (I1).

(2) If the component is a line segment and i1 is connected to the rightmost ray
of either a or b we have xi1 ∈ {±p} and thus xir ∈ {±p} because xi1 =
(−1)(r−1)−dxir . This shows that ir is also connected to a rightmost ray. In
particular, this line segment is propagating which proves (I2).

Since r − 1 is even for a propagating line, xi1 = (−1)(r−1)−dxir reduces to
xi1 = (−1)dxir . If d is even, then both rays are either marked or unmarked,
and if d is odd, then precisely one of the two rays is marked (otherwise this
equation would not be true). In any case, the total number of markers on the
line segment is even which shows (I1).

(3) If the component is a line segment and i1 is connected to a ray which is not
a rightmost ray in a nor b we have xi1 = q and thus also xir = q because
xi1 = (−1)(r−1)−dxir as in the previous case. This implies (−1)(r−1)−d = 1.
Moreover, d = 0 because we already know that the rightmost ray is connected
to the rightmost ray. Thus, r − 1 is even and hence the line is propagating.

In order to prove the implication “⇐” we assume that a,b ∈ Bn−k,k are such
that (I1) and (I2) are true. Any element (x1, . . . , xm) ∈ Sa∩Sb can be constructed
according to the following rules:

(1) Given a closed connected component of ab containing the vertices i1, . . . , ir
(ordered such that successive vertices are connected by a cup) we fix an element
xi1 ∈ S2 and then define xi2 , . . . , xir by the relations imposed from a and b.
More precisely, under the assumption that xi1 , . . . , xij are already constructed
we define xij+1

= ±xij , j ∈ {1, . . . , r − 1}, and proceed inductively.
It remains to check that xi1 and xir satisfy the relation imposed by the cup

connecting i1 and ir (by construction xi1 , . . . , xir automatically satisfy all the

other relations imposed by ab). We have xi1 = (−1)(r−1)−d′
xir = −(−1)d

′
xir ,

where d′ denotes the number of marked cups on the component excluding the
cup connecting i1 and ir. If d′ is even (resp. odd) this cup must be unmarked
(resp. marked) because of (I1). Hence, the equation gives the correct relation.

(2) For every line segment of ab containing the vertices i1, . . . , ir (again, successive
vertices are assumed to be connected by a cup) we define xi1 = q if i1 is not
connected to a rightmost ray and xi1 = −p (resp. xi1 = p) if i1 is connected
to an unmarked (resp. marked) rightmost ray. We then define coordinates
xi2 , . . . , xir by the relations coming from the cups in a and b (as in the case of
a closed component).

We need to check that xir satisfies the relation imposed by the ray connected
to ir. We have xi1 = (−1)(r−1)−dxir = (−1)dxir , where d is the number of
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marked cups of the line segment (r − 1 is even because the line segment is
propagating by (I2)).

If xi1 = −p (resp. xi1 = p), i.e., i1 is connected to a rightmost ray which
is unmarked (resp. marked), then ir is connected to a rightmost ray as well
(otherwise the diagram would not be crossingless) and we have to show that
xir = −p (resp. xi1 = p) if the ray connected to ir is unmarked (resp. marked).
In case that d is even and i1 is marked (resp. unmarked), then ir is also marked
(resp. unmarked) and in case that d is even and i1 is marked (resp. unmarked),
then ir is unmarked (resp. marked). In any case, everything is compatible.

If xi1 = q, i.e., i1 is connected to a ray which is not a rightmost ray, then
ir is connected to a ray which is not a rightmost ray either and we have to
check that xir = (−1)dxi1 equals q. Since there exists a propagating line in ab
containing the two rightmost rays of a and b it follows that d = 0.

Observe that this construction does not only prove the implication “⇐” but it also

shows that Sa ∩ Sb is homeomorphic to
(
S2
)circ

if Sa ∩ Sb �= ∅. �

Remark 3.9. If a ∈ Bn−k,k
even and b ∈ B

n−k,k
odd there exists a connected component of

ab with an odd number of markers. Thus, it follows directly from Proposition 3.8
that Sa ∩ Sb = ∅ because ab violates (I1). In particular, the topological Springer

fiber Sn−k,k
D always decomposes as the disjoint union of the spaces Sn−k,k

D,even :=⋃
a∈B

n−k,k
even

Sa and Sn−k,k
D,odd :=

⋃
a∈B

n−k,k
odd

Sa.

3.3. Some combinatorial bijections. We finish this section by describing some
combinatorial bijections which already foreshadow the existence of the homeomor-
phisms in Theorem 5.12 and Theorem 5.13 on a purely combinatorial level.

Let (n−k, k) be a two-row partition (not necessarily admissible of type C or D)
and let T be a standard Young tableau of shape (n− k, k). Let ψ(T ) be the unique
undecorated cup diagram on n vertices whose left endpoints of cups are precisely
the k entries in the lower row of T .

Lemma 3.10 ([18, Proposition 3]). The assignment ψ defines a bijection

(3.1) ψ : SY T (n− k, k)
1:1←→

{
undecorated cup diagrams
on n vertices with k cups

}
.

Example 3.11. Via (3.1) the five standard Young tableaux in Example 2.6 cor-
respond (in the same order) to the following undecorated cup diagrams on five
vertices with two cups:

In the following we will establish a bijection between signed domino tableaux
and cup diagrams similar to the one between standard tableaux and undecorated
cup diagrams (cf. [3, Section 5]), thereby providing a precise connection between
the combinatorics of tableaux and the combinatorics of cup diagrams involved in
the definition of the topological Springer fiber.

Note that condition (ADT3) implies that all horizontal dominoes of an admissible
domino tableau of shape (n−k, k) of type D have their left box in an even column.
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In particular, the domino diagram underlying a given signed domino tableau can
be constructed by placing the following “basic building blocks” side by side:

(i) . . . (ii) . . . . . .

The left type of building block, called a closed cluster, consists of a collection of
horizontal dominos enclosed by two vertical dominoes. The vertical domino on the
left lies in an odd column, whereas the right one lies in an even column. Note that
it might happen that a closed cluster has no horizontal dominoes.

The right building block is called an open cluster. It consists of a vertical domino
lying in an odd column and a bunch of horizontal dominoes to its right. There is
at most one open cluster in a given signed domino tableau and if it exists it has to
be the rightmost building block.

When decomposing a signed domino tableau into clusters we number them from
right to left.

Example 3.12. The signed domino tableau

19
−

18
16

17
15

14 13
−

12 11
+

10
9

8
7

6 5
−

4
2

3 1

is built out of the following four clusters:

C1 = 5
−

4
2

3 1
, C2 = 11

+
10
9

8
7

6 , C3 = 13
−

12 , C4 = 19
−

18
16

17
15

14 .

In order to understand the relationship between cup diagrams and signed domino
tableaux we first explain how to assign a cup diagram to a cluster of a given tableau
T .

Let C be a cluster (open or closed) of T and consider its standard tableau part,
i.e., the part of the cluster which remains after removing all vertical dominoes. By
viewing the horizontal dominoes as boxes of a Young tableau1 one can use bijection
(3.1) to assign an undecorated cup diagram to the standard tableau part TC of C.

The cup diagram associated with the entire cluster is constructed as follows:

• If C is a closed cluster then we enclose the cup diagram corresponding to
the standard tableau part by an additional cup. This cup is marked if and
only if the left vertical domino of the cluster has sign −:

Ψ

(
. . .

+−

)
=

⎧⎪⎪⎨
⎪⎪⎩

ψ (TC) if +,

ψ (TC) if − .

• If C is an open cluster we add a ray to the right side of the diagram cor-
responding to the standard tableau part. This ray is marked if and only if
the vertical domino of the cluster has sign −:

Ψ

(
. . . . . .

+−

)
=

⎧⎪⎪⎨
⎪⎪⎩

ψ (TC) if +,

ψ (TC) if − .

1If C is a closed cluster one has to subtract the number contained in the right vertical domino
from the numbers of the horizontal dominoes in order to obtain a correct filling.
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Finally, we define Ψ(T ) as the cup diagram obtained by placing the cup diagrams
Ψ(Ci) associated with each cluster side by side, starting with Ψ(C1) as the leftmost
piece, followed by Ψ(C2) to its right, etc. This is clearly a well-defined cup diagram.
Note that the numbers contained in the horizontal dominoes in the lower row and
the vertical dominoes in an odd column are precisely the left endpoints of the cups
in Ψ(T ).

Example 3.13. To the signed domino tableau from Example 3.12, Ψ assigns the
cup diagram

.

Lemma 3.14 ([3, Lemma 5.12]). Let (n− k, k) be an admissible partition of type
D. The assignment Ψ explained above defines the bijections

ADT sgn
D (n− k, k)

1:1←→ Bn−k,k,

ADT sgn
D,odd(n− k, k)

1:1←→ B
n−k,k
odd .

Lemma 3.15. Deleting the leftmost vertical domino in a signed domino tableau of
shape (n− k, k) gives rise to the bijections

ADT sgn
D,odd(n− k, k)

1:1←→ ADT sgn
C (n− k − 1, k − 1),

ADT sgn
D,even(n− k, k)

1:1←→ ADT sgn
C (n− k − 1, k − 1).

Proof. This follows easily from the above. �

4. A smooth variety containing the algebraic Springer fiber

Let N > 0 be a large integer (cf. Remark 4.2 for a more accurate description of
what is meant by “large”) and let z : C2N → C2N be a nilpotent linear endomor-
phism with two Jordan blocks of equal size, i.e., there exists a Jordan basis

(4.1) e1 e2 . . . eN f1 f2 . . . fN .

on which z acts as indicated (the vectors e1 and f1 are sent to zero). We equip C2N

with a hermitian structure by declaring e1, . . . , eN , f1, . . . , fN to be an orthonormal
basis.

Let e, f be the standard basis of C2 and let C : C2N → C2 be the linear map
defined by C(ei) = e and C(fi) = f , i ∈ {1, . . . , N}. Note that C2 has the structure
of a unitary vector space coming from the standard Hermitian inner product.

The following lemma is well known [1, Lemma 2.2] (cf. also [21, Lemma 2.1]).

Lemma 4.1. Let U ⊆ C2N be a z-stable subspace, i.e., zU ⊆ U , such that U ⊆
im(z). Then C restricts to a unitary isomorphism C : z−1U ∩ U⊥ ∼=−→ C2.

Following [1] we define a smooth projective variety:

Ym :=
{
(F1, . . . , Fm) | Fi ⊆ C2Nhas dimension i, F1 ⊆ . . . ⊆ Fm, zFi ⊆ Fi−1

}
.
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Remark 4.2. Note that the conditions zFi ⊆ Fi−1 imply

Fm ⊆ z−1Fm−1 ⊆ . . . ⊆ z−m(0) = span(e1, . . . , em, f1, . . . , fm).

In particular, the variety Ym is independent of the choice of N as long as N ≥ m
and we can always assume (by increasing N if necessary) that all the subspaces of
a flag in Ym are contained in the image of z.

Proposition 4.3 ([1, Theorem 2.1]). The map φm : Ym → (P1)m defined by

(F1, . . . , Fm) �→
(
C(F1), C(F2 ∩ F⊥

1 ), . . . , C(Fm ∩ F⊥
m−1)

)
is a diffeomorphism.

We fix a partition (n− k, k) of n = 2m > 0 labeling a nilpotent orbit of type D,
1 ≤ k ≤ m. Let En−k,k ⊆ C2N be the subspace spanned by e1, . . . , en−k, f1, . . . , fk.

We equip En−k,k with a bilinear form βn−k,k
D defined as follows:

• If k = m, we define for all j, j′ ∈ {1, . . . , k}:

βk,k
D (ej′ , fj) = βk,k

D (fj , ej′) = (−1)j−1δj+j′,k+1,

βk,k
D (ej , ej′) = 0 and βk,k

D (fj , fj′) = 0.

• If k < m, we define

βn−k,k
D (ei, fj) = 0, βn−k,k

D (ei, ei′) = (−1)i−1δi+i′,n−k+1,

βn−k,k
D (fj , fj′) = (−1)jδj+j′,k+1,

for all i, i′ ∈ {1, . . . , n− k} and j, j′ ∈ {1, . . . , k}.
Note that the bilinear form βn−k,k

D is nondegenerate and symmetric. Moreover, a

straightforward computation shows that βn−k,k
D (z(v), w) = −βn−k,k

D (v, z(w)) for all
v, w ∈ En−k,k, i.e., the restriction zn−k,k of z to the subspace En−k,k is a nilpotent

endomorphism in the orthogonal Lie algebra associated with βn−k,k
D .

Similarly, we equip En−k−1,k−1 = span(e1, . . . , en−k−1, f1, . . . , fk−1) ⊆ C2N with

a bilinear form βn−k−1,k−1
C defined as follows:

• If k = m, we define for all j, j′ ∈ {1, . . . , k − 1}:

−βk−1,k−1
C (ej′ , fj) = βk−1,k−1

C (fj , ej′) = (−1)j−1δj+j′,k,

βk−1,k−1
C (ej , ej′) = 0 and βk−1,k−1

C (fj , fj′) = 0.

• If k < m, we define βn−k−1,k−1
C (ei, fj) = 0 and

βn−k−1,k−1
C (ei, ei′) =

{
(−1)iδi+i′,n−k if i < i′,

(−1)i−1δi+i′,n−k if i > i′,

βn−k−1,k−1
C (fj , fj′) =

{
(−1)j−1δj+j′,k if j < j′,

(−1)jδj+j′,k if j > j′,

for all i, i′ ∈ {1, . . . , n− k − 1} and j, j′ ∈ {1, . . . , k − 1}.
Note that the bilinear form βn−k−1,k−1

C is nondegenerate and symplectic. We
also see that the restriction zn−k−1,k−1 of z to En−k−1,k−1 is contained in the

symplectic Lie algebra associated with βn−k−1,k−1
C . The following observation is

now evident.
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Lemma 4.4. We can view the Springer fiber F ln−k,k
D as a subvariety of Ym via the

identification

(4.2) F ln−k,k
D

∼=
{
(F1, . . . , Fm) ∈ Ym

∣∣∣∣ Fm is contained in En−k,k and

isotropic with respect to βn−k,k
D

}
,

and similarly
(4.3)

F ln−k−1,k−1
C

∼=
{
(F1, . . . , Fm−1) ∈ Ym

∣∣∣∣ Fm−1 is contained in En−k−1,k−1 and

isotropic with respect to βn−k−1,k−1
C

}
.

From now on we will always write F ln−k,k
D and F ln−k−1,k−1

C for the embedded
Springer varieties via identifications (4.2) and (4.3).

Lemma 4.5. Let U ⊆ C2N be a subspace. If zU is contained in En−k−2,k−2 (resp.

En−k−3,k−3) and isotropic with respect to βn−k−2,k−2
D (resp. βn−k−3,k−3

C ), then U is

contained in En−k,k (resp. En−k−1,k−1) and isotropic with respect to βn−k,k
D (resp.

βn−k−1,k−1
C ).

Proof. We only prove the lemma for the type D case since the type C case works
completely analogous. By combining the obvious inclusion En−k−1,k−1 ⊆ En−k,k

with the inclusion

(4.4) U ⊆ z−1 (zU) ⊆ z−1 (En−k−2,k−2) = En−k−1,k−1

we obtain U ⊆ En−k,k. Hence, it suffices to show that U is isotropic with respect

to βn−k,k
D .

Pick two arbitrary elements v, w ∈ U ⊆ En−k,k and write

v =
n−k∑
i=1

λiei +
k∑

j=1

μjfj and w =
n−k∑
i=1

νiei +
k∑

j=1

ξjfj .

Note that λn−k = νn−k = 0 and μk = ξk = 0 because v, w ∈ En−k−1,k−1 by (4.4).
A straightforward calculation (using the definition of the bilinear form) shows that
(4.5)

βn−k,k
D (v, w) =

{∑k−1
i=2 (−1)i+1 (ξiλk−i+1 + μiνk−i+1) if k = m,∑n−k−1
i=2 (−1)i+1λiνn−k+1−i +

∑k−1
i=2 (−1)iμiξk+1−i if k < m.

In order to see that this is zero we apply z to v, w which yields

z(v) =
n−k−2∑
i=1

λi+1ei +
k−2∑
j=1

μj+1fj , z(w) =
n−k−2∑
i=1

νi+1ei +
k−2∑
j=1

ξj+1fj .

Another computation shows that

βn−k−2,k−2
D (z(v), z(w))

=

{∑k−1
i=2 (−1)i (ξiλk−i+1 + μiνk−i+1) if k = m,∑n−k−1
i=2 (−1)iλiνn−k+1−i +

∑k−1
i=2 (−1)i−1μiξk+1−i if k < m.

(4.6)

By comparing (4.5) and (4.6) we get βn−k,k
D (v, w) = −βn−k−2,k−2

D (z(v), z(w)).

Since, by assumption, zU is isotropic with respect to βn−k−2,k−2
D , we know that the

right-hand side of this equality must be zero. This proves the lemma. �
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5. Proof of the main theorems

In this section we prove our main results (see Theorem 5.12 and Theorem 5.13).
We fix an admissible partition (n− k, k) of n = 2m > 0 of type D, 1 ≤ k ≤ m.

5.1. The diffeomorphism γn−k,k. In this subsection we define the diffeomor-

phism γn−k,k and compute the images of the submanifolds Sa ⊂
(
S2

)m
for all

a ∈ Bn−k,k.
Consider the stereographic projection

R3 ⊇ S2 \ {p} σ−→ C , (x, y, z) �→ x

1− z
+ i

y

1− z

and the map θ : C → P1\{span(e)}, λ �→ span(λe + f), which can be combined to
define a diffeomorphism

γ : S2 → P1 , (x, y, z) �→
{
θ (σ(x, y, z)) if (x, y, z) �= p,

span(e) if (x, y, z) = p.

This induces a diffeomorphism γm :
(
S2

)m →
(
P1

)m
on the m-fold products by

setting

γm(x1, . . . , xm) := (γ(x1), . . . , γ(xm)) .

Moreover, consider the diffeomorphisms s : S2 → S2, (x, y, z) �→ (x, z, y), and

t : S2 → S2, (x, y, z) �→ (z, y, x). These yield diffeomorphisms sm, tm :
(
S2

)m →(
S2
)m

by taking m-fold products of the respective maps.

We define the diffeomorphisms γn−k,k :
(
S2

)m →
(
P1

)m
as follows:

γn−k,k :=

⎧⎪⎨
⎪⎩
γm if m = k,

γm ◦ tm if m− k is odd,

γm ◦ sm if m− k is even.

Given a cup diagram, we write i—j (resp. i—j) if the vertices i < j are connected
by a cup (resp. marked cup) and i—� (resp. i—�) if there is a ray (resp. marked ray)
attached to the vertex i. If a ∈ Bn−k,k and k �= m, let ρ(a) ∈ {1, . . . ,m} denote
the vertex connected to the rightmost ray in a.

Definition 5.1. Let a ∈ Bn−k,k be a cup diagram. We define Ta ⊆
(
P1

)m
as the

set consisting of all m-tuples (l1, . . . , lm) ∈ (P1)m whose entries satisfy the following
list of relations:

• If k = m, we impose the relations

(R1) l⊥i = lj if i—j, (R3) xi = span(f) if i—�,

(R2) li = lj if i—j, (R4) xi = span(e) if i—�

for all i, j ∈ {1, . . . ,m}.
• If k �= m, we impose the relations

(R1’) l⊥i = lj if i—j, (R2’) li = lj if i—j, (R3’) li = span(e) if i—�

for all i, j ∈ {1, . . . ,m} \ {ρ(a)} and the additional relation

(R4’) lρ(a) =

{
span (e+ (−1)εf) if m− k is even,

span (ie+ (−1)εf) if m− k is odd,

where ε = 0 if ρ(a)—� and ε = 1 if ρ(a)—�.
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Lemma 5.2. We have an equality of sets γn−k,k(Sa) = Ta for every a ∈ Bn−k,k.

Proof. A careful comparison of the definitions in question proves the lemma. We
omit the details for brevity. �

5.2. Topology of the irreducible components. The goal of this subsection is
to prove that the diffeomorphism(

S2
)m γn−k,k−−−−→

(
P1

)m φ−1
m−−→ Ym

maps each of the submanifolds Sa ⊆
(
S2
)m

onto an irreducible component of the

Springer fiber F ln−k,k
D ⊆ Ym. Moreover, if k > 1, we check that the composition

(
S2

)m γn−k,k−−−−→
(
P1

)m φ−1
m−−→ Ym � Ym−1,

where πm : Ym → Ym−1, (F1, . . . , Fm) �→ (F1, . . . , Fm−1), is the morphism of alge-
braic varieties which forgets the last vector space of a flag, maps the submanifolds

Sa onto an irreducible component of F ln−k,k
C ⊆ Ym−1. By Lemma 5.2 it suffices to

prove the following.

Proposition 5.3. The preimage φ−1
m (Ta) ⊆ Ym is an irreducible component of

the (embedded) Springer fiber F ln−k,k
D ⊂ Ym for all cup diagrams a ∈ Bn−k,k.

Moreover, if k > 1, πm

(
φ−1
m (Ta)

)
⊂ Ym−1 is an irreducible component of the

(embedded) Springer fiber F ln−k−1,k−1
C ⊆ Ym−1 for all cup diagrams a ∈ B

n−k,k
odd .

In order to prove the above proposition (which will occupy most of the remaining
section) we proceed by induction on the number of unmarked cups.

5.2.1. Proof of Proposition 5.3: Base case of the induction. In the following we
prove Proposition 5.3 for all cup diagrams without unmarked cups contained in
Bn−k,k. It is useful to distinguish two different cases:

(1) If k is odd, Bn−k,k contains precisely two such diagrams, namely

. . . . . . and . . . . . .

which consist of m − k + 1 rays followed by k−1
2 marked cups placed side

by side.
(2) If k is even (which implies k = m), there is precisely one such cup diagram

in Bk,k (namely the one which consists of k
2 successive cups).

The following lemma treats the extremal case in which the cup diagram consists of
rays only.

Lemma 5.4. The preimage φ−1
m (Ta) ⊆ Ym is an irreducible component of the

(embedded) Springer fiber F ln−1,1
D ⊂ Ym for all cup diagrams a ∈ Bn−1,1.

Proof. We distinguish between three different cases:
Let m = 1 and let a ∈ B1,1 be a cup diagram. By Definition 5.1 we have

Ta = {span(f)} (resp. Ta = {span(e)}) if the ray is unmarked (resp. marked). The
preimage of Ta under the diffeomorphism

φ1 :

{
one-dimensional subspaces

F1 ⊂ C2N contained in ker(z)

}
∼=−→ P1 , F1 �→ C(F1)
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is φ−1
1 (Ta) = {span(f1)} (resp. φ−1

1 (Tb) = {span(e1)}) because φ1(span(f1)) =
C(span(f1)) = span(f) and C(span(e1)) = span(e). Note that span(f1), span(e1) ⊆
E1,1 are clearly isotropic with respect to β1,1. Hence, φ−1

1 (Ta) is an irreducible

component of the (embedded) Springer fiber F l1,1D .
Assume that m > 1 is odd and fix a cup diagram a ∈ Bn−1,1. Then Ta consists

of a single element (span(e), . . . , span(e), span(e + (−1)εf)) ∈
(
P1

)m
, where ε = 0

if the rightmost ray is marked and ε = 1 if it is unmarked. Let (F1, . . . , Fm) ∈ Ym

be the preimage of this element under the diffeomorphism φm. Since F1 ⊂ ker(z)
we have F1 = span(λe1 + μf1) for some λ, μ ∈ C, λ �= 0 or μ �= 0. The condition
C(F1) = span(e) together with

C(F1) = C (span(λe1 + μf1)) = span(λe+ μf)

implies μ = 0 and hence F1 = span(e1). By induction we assume that we have
already shown

F1 = span(e1), . . . , Fj = span(e1, . . . , ej), . . . , Fi = span(e1, . . . , ei),

for some i ∈ {1, . . . ,m − 1}. If i < m − 1 we are looking for Fi+1 such that
zFi+1 ⊂ Fi and

span(e) = C(Fi+1 ∩ F⊥
i ) = C (Fi+1 ∩ span(ei+1, . . . , e2m−1, f1)) .

By Lemma 4.1 this subspace is unique. Since span(e1, . . . , ei, ei+1) satisfies these
properties we deduce Fi+1 = span(e1, . . . , ei, ei+1). If i = m − 1, we replace the
condition span(e) = C(Fi+1∩F⊥

i ) by span(e+(−1)εf) = C(Fi+1∩F⊥
i ). Note that

span(e1, . . . , em−1, em + (−1)εf1) is a possible choice. Hence, we deduce that this
is Fm.

In order to check that F1, . . . , Fm are isotropic with respect to βn−1,1
D we note

that the Gram matrix of βn−1,1
D restricted to the span of the vectors e1, . . . , em, f1

is given by

(5.1)

⎛
⎜⎜⎜⎜⎝

0 0

0
0 . . . 0 1

-1

⎞
⎟⎟⎟⎟⎠ .

Thus, the vectors e1, . . . , em−1 are pairwise orthogonal and therefore F1, . . . , Fm−1

are isotropic. Since em +(−1)εf1 is clearly orthogonal to e1, . . . , em−1 it suffices to
compute

βn−1,1
D (em + (−1)εf1, em + (−1)εf1) = βn−1,1

D (em, em) + βn−1,1
D (f1, f1)

= 1 + (−1) = 0.

This shows that Fm is isotropic, too.
Ifm is even, we have Ta = {(span(e), . . . , span(e), span(ie+(−1)εf))} and obtain

F1 = span(e1), . . . , Fm−1 = span(e1, . . . , em−1),

Fm = span(e1, . . . , em−1, iem + (−1)εf1)

by arguing similarly as in the case in which m is odd. Note that the two nonzero
entries in the Gram matrix (5.1) are both −1 if m is even. Hence, the additional
factor of i in front of em guarantees that Fm is again isotropic. �
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Proposition 5.5 (Special case of Proposition 5.3). Let a ∈ Bn−k,k be a cup diagram
without unmarked cups, k > 1.

(1) The preimage φ−1
m (Ta) ⊆ Ym is an irreducible component of F ln−k,k

D ⊆ Ym

contained in the closure of
(
S
zn−k,k

D

)−1
(T ), where T ∈ ADTD(n − k, k) is

the D-admissible domino tableau obtained by forgetting the signs of Ψ−1(a),
i.e., the domino diagram

. . . . . .

consisting of k vertical dominoes followed by m − k successive horizontal
dominoes in the first row together with the unique filling such that (ADT1)–
(ADT3) are satisfied.

(2) Moreover, πm(φ−1
m (Ta)) is an irreducible component of F ln−k−1,k−1

C

contained in the closure of
(
S
zn−k−k,k−1

C

)−1
(T ′), where T ′ ∈

ADTC(n− k − 1, k − 1) is obtained from T by deleting the leftmost vertical
domino.

Notation 5.6. Let U ⊆ En−k−1,k−1 be a subspace. In the following we write U⊥D

(resp. U⊥C ) to denote the orthogonal complement of U with respect to βn−k,k
D

(resp. βn−k−1,k−1
C ). We write U⊥ to denote the orthogonal complement of U in

C2N with respect to the hermitian structure of C2N .

For the proofs of Lemma 5.8 and Lemma 5.9 below it is useful to introduce a
technical definition.

Definition 5.7. Let (F1, . . . , Fm) ∈ Ym be a flag such that Fi ⊂ En−k−1,k−1 and

Fi is isotropic with respect to both βn−k,k
D and βn−k−1,k−1

C . Moreover, assume that
we have Jordan types

J(z
(i)
n−k,k) = (k − i, k − i), J(z

(i)
n−k−1,k−1) = (k − i− 1, k − i− 1),

where z
(i)
n−k,k is the endomorphism of F⊥D

i /Fi induced by zn−k,k and z
(i)
n−k−1,k−1 is

the endomorphism of F⊥C
i /Fi induced by zn−k−1,k−1.

A collection of linearly independent vectors in C2N

e
(i)
1 , e

(i)
2 , . . . , e

(i)
k−i−1, e

(i)
k−i,

f
(i)
1 , f

(i)
2 , . . . , f

(i)
k−i−1, f

(i)
k−i,

(5.2)

where z maps each vector to its left neighbor (the leftmost vectors in each row

are sent to Fi) is called a simultaneous Jordan system for z
(i)
n−k,k and z

(i)
n−k−1,k−1

if their residue classes (modulo Fi) form a Jordan basis of z
(i)
n−k,k and z

(i)
n−k−1,k−1

(the latter after excluding e
(i)
k−i and f

(i)
k−i).

A simultaneous Jordan system as above is called special if the following additional
properties hold:

(SJS1) The restriction of βn−k,k
D to the simultaneous Jordan system (5.2) is given

by the formulae

βn−k,k
D

(
f
(i)
j , e

(i)
j′

)
= (−1)j−1δj+j′,k−i+1
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for all j, j′ ∈ {1, . . . , k− i}. Moreover, the restriction of βn−k−1,k−1
C is given

by

−βn−k−1,k−1
C

(
e
(i)
j′ , f

(i)
j

)
= βn−k−1,k−1

C

(
f
(i)
j , e

(i)
j′

)
= (−1)j−1δj+j′,m−i

for all j, j′ ∈ {1, . . . , k − i− 1}.
(SJS2) The vectors in (5.2) form an orthonormal system with respect to the her-

mitian structure on C2N and they are all contained in F⊥
i .

(SJS3) We have equalities C(e
(i)
j ) = C(z(e

(i)
j )) and C(f

(i)
j ) = C(z(f

(i)
j )) for all

j ∈ {2, . . . , k − i}.

Lemma 5.8. Assume that k > 1 is odd and let a ∈ Bn−k,k be a cup diagram
without unmarked cups and (F1, . . . , Fm) ∈ φ−1

m (Ta).
Then F1, . . . , Fm−k+1 are contained in En−k−1,k−1 and isotropic with respect to

βn−k,k
D as well as βn−k−1,k−1

C , and we have

J(z
(i)
n−k,k) = (n− k − 2i, k), J(z

(i)
n−k−1,k−1) = (n− k − 2i− 1, k − 1),

for all i ∈ {1, . . . ,m− k}, and

J(z
(m−k+1)
n−k,k ) = (k − 1, k − 1), J(z

(m−k+1)
n−k−1,k−1) = (k − 2, k − 2).

Furthermore, there is a simultaneous Jordan system for z
(m−k+1)
n−k,k and z

(m−k+1)
n−k−1,k−1

which is special (in the sense of Definition 5.7).

Proof. Let (F1, . . . , Fm) ∈ φ−1
m (Ta), i.e., there exists (l1, . . . , lm) ∈ Ta such that

(5.3) C(F1) = l1, C(F2 ∩ F⊥
1 ) = l2, . . . , C(Fm ∩ F⊥

m−1) = lm.

As in the proof of Lemma 5.4 we distinguish between three different cases:
If k = m, we have l1 = span(f) if a has an unmarked ray and l1 = span(e) if a

has a marked ray. It follows directly from (5.3) that F1 = span(f1) or F1 = span(e1)

both of which are obviously isotropic with respect to βk,k
D and βk−1,k−1

C .
If F1 = span(e1), we have

F⊥D
1 = span(e1, . . . , ek, f1, . . . , fk−1)

and

F⊥C
1 = span(e1, . . . , ek−1, f1, . . . , fk−2)

which immediately yields the proposed Jordan types of z
(1)
k,k and z

(1)
k−1,k−1. Note

that the vectors

e
(1)
j := ej+1 and f

(1)
j := fj , j ∈ {1, . . . , k − 1}

form a special simultaneous Jordan system for z
(1)
k,k and z

(1)
k−1,k−1. Similarly, if

F1 = span(f1), we have F⊥D
1 = span(e1, . . . , ek−1, f1, . . . , fk) as well as F⊥C

1 =
span(e1, . . . , ek−2, f1, . . . , fk−1) and the vectors

e
(1)
j := fj+1 and f

(1)
j := ej , j ∈ {1, . . . , k − 1}

form a special simultaneous Jordan basis for z
(1)
k,k and z

(1)
k−1,k−1.

If k �= m and m− k is even, then we have

l1 = span(e), . . . , lm−k = span(e), lm−k+1 = span(e+ (−1)εf),
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where ε = 0 if the rightmost ray is marked and ε = 1 if it is unmarked. By arguing
as in Lemma 5.4 we obtain Fi = span(e1, . . . , ei), 1 ≤ i ≤ m− k, and

Fm−k+1 = span (e1, . . . , em−k, em−k+1 + (−1)εf1) .

Note that Fm−k+1 is indeed isotropic with respect to both βn−k,k
D and βn−k−1,k−1

C

(the vectors e1, . . . , em−k+1, f1 are isotropic and pairwise orthogonal with respect
to either of the two forms).

To check the Jordan types note that F⊥D
i = span(e1, . . . , en−k−i, f1, . . . , fk) and

F⊥C
i = span(e1, . . . , en−k−i−1, f1, . . . , fk−1) for i ∈ {1, . . . ,m − k}. The residue

classes of the vectors ei+1, . . . , en−k−i, f1, . . . , fk clearly form a Jordan basis of

z
(i)
n−k,k of the correct type. Similarly, we obtain a Jordan basis of z

(i)
n−k−1,k−1 after

deleting en−k−i and fk. Furthermore, F⊥D

m−k+1 is spanned by the linearly indepen-
dent vectors
(5.4)

em−k+1 + (−1)εf1, . . . , em−1 + (−1)εfk−1

e1, e2, . . . , em−k,
em−k+1 − (−1)εf1, . . . , em−1 − (−1)εfk−1, em − (−1)εfk.

Note that z sends a vector to its left neighbor (the leftmost vectors in the first and

third row are sent to the rightmost vector in the second row). Furthermore, F⊥C

m−k+1

is spanned by the same vectors excluding em − (−1)εfk and em−1 + (−1)εfk−1. It

follows directly from (5.4) that z
(m−k+1)
n−k,k and z

(m−k+1)
n−k−1,k−1 have the correct Jordan

type. It is straightforward to check that the vectors

e
(m−k+1)
j :=

1√
2
(em−k+1+j + (−1)εfj+1)

and

f
(m−k+1)
j :=

1√
2
(em−k+j − (−1)εfj) ,

where j ∈ {1, . . . , k − 1}, form a special simultaneous Jordan system.
If m− k is odd, we similarly get Fi = span(e1, . . . , ei), i ∈ {1, . . . ,m− k}, and

Fm−k+1 = span (e1, . . . , em−k, iem−k+1 + (−1)εf1)

which is isotropic with respect to βn−k,k
D and βn−k−1,k−1

C (again, e1, . . . , em−k+1, f1
are isotropic and pairwise orthogonal). As in the case in which m−k is even one can

show that the maps z
(i)
n−k,k have the correct Jordan type for all i ∈ {1, . . . ,m−k+1}.

We omit the details and claim that

e
(m−k+1)
j :=

1√
2
(iem−k+1+j + (−1)εfj+1)

and

f
(m−k+1)
j :=

1√
2
(iem−k+j − (−1)εfj) ,

where j ∈ {1, . . . , k − 1}, yields a special Jordan system. �

Lemma 5.9. Let a ∈ Bn−k,k be a cup diagram without unmarked cups and let
(F1, . . . , Fm) ∈ φ−1

m (Ta).
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If k > 1 is odd, then the vector spaces Fm−k+2, . . . , Fm are isotropic with respect

to βn−k,k
D and for all i ∈ {m− k + 2, . . . ,m} we have

J(z
(i)
n−k,k) = (k − i, k − i).

In addition to that, the vector spaces Fm−k+2, . . . , Fm−1 are isotropic with respect

to βn−k−1,k−1
C and we have

J(z
(i)
n−k−1,k−1) = (k − i− 1, k − i− 1)

for all i ∈ {m− k + 2, . . . ,m− 1}.
Furthermore, there exists a special simultaneous Jordan system for z

(i)
n−k,k and

z
(i)
n−k−1,k−1 for all i ∈ {m− k+3,m− k+5, . . . ,m− 2} (that is all right endpoints

of cups except the rightmost one).

Proof. Let (F1, . . . , Fm) ∈ φ−1
m (Ta), i.e., we have the equalities

C(F1) = l1, C(F2 ∩ F⊥
1 ) = l2, . . . , C(Fm ∩ F⊥

m−1) = lm.

for some (l1, . . . , lm) ∈ Ta. Let i ∈ {m − k + 2, . . . ,m − 1} be a left endpoint of a
marked cup in a and assume by induction that the claims of the lemma are true
for Fm−k+2, . . . , Fi−1. The goal is to show the claim for Fi and Fi+1.

By induction (or by Lemma 5.8 if the cup connecting i and i+ 1 is the leftmost
cup) there exists a special simultaneous Jordan system

e
(i−1)
1 , e

(i−1)
2 , . . . , e

(i−1)
k−i , e

(i−1)
k−i+1,

f
(i−1)
1 , f

(i−1)
2 , . . . , f

(i−1)
k−i , f

(i−1)
k−i+1,

(5.5)

for z
(i−1)
n−k,k and z

(i−1)
n−k−1,k−1. Since e

(i−1)
1 and f

(i−1)
1 form an orthonormal basis of

z−1Fi−1 ∩ F⊥
i−1it follows from Lemma 4.1 that C(e

(i−1)
1 ) and C(f

(i−1)
1 ) form an

orthonormal basis of C2 and we can write li = span(C(e
(i−1)
1 ) + μ(i)C(f

(i−1)
1 )),

where μ(i) ∈ C, or li = span(C(f
(i−1)
1 )).

Check that Fi and Fi+1 are isotropic: In order to determine the vector spaces Fi

and Fi+1 we first assume that li = span(C(e
(i−1)
1 ) + μ(i)C(f

(i−1)
1 )). Consider the

z-invariant vector space Fi−1 ⊕ span(e
(i−1)
1 + μ(i)f

(i−1)
1 ). Note that

C
((

Fi−1 ⊕ span(e
(i−1)
1 + μ(i)f

(i−1)
1 )

)
∩ F⊥

i−1

)
= C

(
span(e

(i−1)
1 + μ(i)f

(i−1)
1 )

)
= span

(
C(e

(i−1)
1 )+μ(i)C(f

(i−1)
1 )

)
.

Hence, it follows that Fi = Fi−1⊕ span(e
(i−1)
1 +μ(i)f

(i−1)
1 ) because Fi is the unique

z-invariant subspace satisfying C(Fi ∩ F⊥
i−1) = li (cf. Lemma 4.1). Next consider

the vector space Fi ⊕ span(e
(i−1)
2 +μ(i)f

(i−1)
2 ). Again, this space is z-invariant and

we have

C
((

Fi−1 ⊕ span(e
(i−1)
2 + μ(i)f

(i−1)
2 )

)
∩ F⊥

i−1

)
= span

(
C(e

(i−1)
2 ) + μ(i)C(f

(i−1)
2 )

)
(3)
= span

(
C(z(e

(i−1)
2 )) + μ(i)C(z(f

(i−1)
2 ))

)
= span

(
C(e

(i−1)
1 ) + μ(i)C(f

(i−1)
1 )

)
.
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Hence, Fi+1 = Fi ⊕ span(e
(i−1)
2 + μ(i)f

(i−1)
2 ) because C(Fi+1 ∩ F⊥

i ) = li.

If li = span(C(f
(i−1)
1 )) we argue as above and obtain Fi = Fi−1 ⊕ span(f

(i−1)
1 )

as well as Fi+1 = Fi ⊕ span(f
(i−1)
2 ).

Using formula (1) and the fact that the vectors in (5.5) are perpendicular to

Fi−1 it is now easy to deduce that Fi and Fi+1 are isotropic with respect to βn−k,k
D .

Moreover, Fi and Fi+1 are isotropic with respect to βn−k−1,k−1
C if i < m − 1. If

i = m− 1 only Fi is isotropic with respect to βn−k−1,k−1
C .

Jordan types and special Jordan systems: It remains to compute the Jordan

types of the maps z
(i)
n−k,k, z

(i+1)
n−k,k and construct a special Jordan system.

Assume that Fi = Fi−1 ⊕ span(e
(i−1)
1 + μ(i)f

(i−1)
1 ) with μ(i) �= 0 and consider

the following linearly independent vectors:

e
(i−1)
1 − μ(i)f

(i−1)
1 , e

(i−1)
2 − μ(i)f

(i−1)
2 , . . . , e

(i−1)
m−(i−1) − μ(i)f

(i−1)
m−(i−1),

e
(i−1)
1 + μ(i)f

(i−1)
1 , e

(i−1)
2 + μ(i)f

(i−1)
2 , . . . , e

(i−1)
m−(i−1) + μ(i)f

(i−1)
m−(i−1).

(5.6)

Again, note that z maps each vector to its left neighbor (the lefmost vectors are
sent to Fi−1).

Note that F⊥D
i is the direct sum of Fi−1 and the span of all the vectors in (5.6)

except the rightmost one in the first row. In particular, z
(i)
n−k,k has the correct

Jordan type. Similarly, we see that F⊥D

i+1 is the direct sum of Fi−1 and the span of

all vectors in (5.6) except the two rightmost ones in the first row. Hence, z
(i+1)
n−k,k

also has the correct Jordan type.
Moreover, F⊥C

i is the direct sum of Fi−1 and the span of all the vectors in (5.6)
except the two rightmost ones in the first row and the last one in the second row.

In particular, z
(i)
n−k−1,k−1 has the correct Jordan type. Similarly, if i < m − 1, we

see that F⊥C
i+1 is the direct sum of Fi−1 and the span of all vectors in (5.6) except

the three rightmost ones in the first row and the two rightmost ones in the second

row. Hence, z
(i+1)
n−k−1,k−1 also has the correct Jordan type.

In order to finish the induction step we define linearly independent vectors

e
(i+1)
j :=

1√
2μ

(
e
(i−1)
j − μf

(i−1)
j

)
and f

(i+1)
j :=

1√
2μ

(
e
(i−1)
j+2 + μf

(i−1)
j+2

)
for j ∈ {1, . . . ,m− i− 1}. It is straightforward to check that these vectors form a
special simultaneous Jordan system.

If Fi = Fi−1 ⊕ span(e
(i−1)
1 ) or Fi = Fi−1 ⊕ span(f

(i−1)
1 ) we see that F⊥D

i is the

direct sum of Fi−1 and the span of all vectors in (5.5) except f
(i−1)
m−(i−1), if Fi =

Fi−1 ⊕ span(e
(i−1)
1 ), respectively e

(i−1)
m−(i−1), if Fi = Fi−1 ⊕ span(f

(i−1)
1 ). Similarly,

we have that F⊥D
i+1 is the direct sum of Fi−1 and the span of all vectors in (5.5)

except f
(i−1)
m−i and f

(i−1)
m−(i−1), if Fi = Fi−1 ⊕ span(e

(i−1)
1 ), respectively e

(i−1)
m−i and

e
(i−1)
m−(i−1), if Fi = Fi−1 ⊕ span(f

(i−1)
1 ). In both cases we obtain the correct Jordan

types for z
(i)
n−k,k and z

(i+1)
n−k,k.

If Fi = Fi−1 ⊕ span(e
(i−1)
1 ) or Fi = Fi−1 ⊕ span(f

(i−1)
1 ) we see that F⊥C

i is the
direct sum of Fi−1 and the span of all vectors in (5.5) except the rightmost one in
the first (resp. second) row and the two rightmost ones in the second (resp. first)
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row if Fi = Fi−1⊕ span(e
(i−1)
1 ) (resp. Fi = Fi−1⊕ span(f

(i−1)
1 )). Similarly, we have

that F⊥C
i+1 is the direct sum of Fi−1 and the span of all vectors in (5.5) except the

three rightmost vectors in the second (resp. first) row and the rightmost one in the

first (resp. second) row if Fi = Fi−1⊕ span(e
(i−1)
1 ) (resp. Fi = Fi−1⊕ span(f

(i−1)
1 )).

In both cases z
(i)
n−k−1,k−1 has Jordan type (m − i − 1,m − i − 1) and z

(i+1)
n−k−1,k−1

has Jordan type (m− i− 2,m− i− 2).

In order to finish we set e
(i+1)
j := e

(i−1)
j and f

(i+1)
j := f

(i−1)
j+2 for j ∈ {1, . . . ,

m− i−1} in case Fi+1 = Fi−1⊕ span(f
(i−1)
1 , f

(i−1)
2 ) and we set e

(i+1)
j := e

(i−1)
j+2 and

f
(i+1)
j := f

(i−1)
j for j ∈ {1, . . . ,m− i−1} in case Fi+1 = Fi−1⊕ span(e

(i−1)
1 , e

(i−1)
2 ).

�
Lemma 5.10. If k is even, then the vector spaces F1, . . . , Fm are isotropic with

respect to βk,k
D and

J(z
(i)
k,k) = (k − i, k − i)

for all i ∈ {1, . . . ,m}. Moreover, the vector spaces F1, . . . , Fm−1 are isotropic with

respect to βk−1,k−1
C and we have

J(z
(i)
k−1,k−1) = (k − i− 1, k − i− 1)

for all i ∈ {1, . . . ,m− 1}.

Proof. The lemma can be proven by an inductive construction similar to the one
in the proof of Lemma 5.9. Note that this inductive construction starts with the
Jordan basis e1, . . . , ek, f1, . . . , fk of the restriction of z to Ek,k as a special Jordan
system. �
Proof of Proposition 5.5. By Lemmas 5.8, 5.9 and 5.10 we see that the vector spaces

of an arbitrary flag (F1, . . . , Fm) ∈ φ−1
m (Ta) are isotropic with respect to βn−k,k

D and

that the Jordan types of the sequence of endomorphisms z
(m−1)
n−k,k , z

(m−2)
n−k,k , . . . , z

(1)
n−k,k

are
(1, 1), (2, 2), . . . , (k − 1, k − 1), (k, k), (k + 2, k), . . . , (n− k, k),

if k < m, and
(1, 1), (2, 2), . . . , (k − 1, k − 1), (k, k),

if m = k. Moreover, the vector spaces of the flag

(F1, . . . , Fm−1) = πm(F1, . . . , Fm) ∈ πm

(
φ−1
m (Ta)

)
are isotropic with respect to βn−k−1,k−1

C and the maps

z
(m−2)
n−k−1,k−1, z

(m−2)
n−k−1,k−1, . . . , z

(1)
n−k−1,k−1

have Jordan types

(1, 1), (2, 2), . . . , (k − 2, k − 2), (k − 1, k − 1), (k + 1, k − 1), . . . , (n− k − 1, k − 1),

if k < m, and
(1, 1), (2, 2), . . . , (k − 2, k − 2), (k − 1, k − 1),

if m = k. Thus, it follows that

S
zn−k,k

D (F1, . . . , Fm) = T and S
zn−k−1,k−1

C (F1, . . . , Fm−1) = T ′.

So (F1, . . . , Fm) is contained in the closure of
(
S
zn−k,k

D

)−1
(T ) and (F1, . . . , Fm−1) is

contained in the closure of
(
S
zn−k−1,k−1

C

)−1
(T ′). In particular, since (F1, . . . , Fm) is



2734 ARIK WILBERT

an arbitrarily chosen flag in φ−1
m (Ta), we have proven the inclusion of φ−1

m (Ta) in the

closure of
(
S
zn−k,k

D

)−1
(T ) and πm

(
φ−1
m (Ta)

)
in the closure of

(
S
zn−k−1,k−1

C

)−1
(T ′).

Finally, note that φ−1
m (Ta) is a closed subvariety of F ln−k,k

D which is connected
because it is the preimage of Ta (which is obviously connected) under a diffeo-
morphism. Thus, φ−1

m (Ta) must be contained in precisely one of the irreducible
components whose disjoint union is the closure of (S

zn−k,k

D )−1(T ). Since the dimen-
sion of φ−1

m (Ta) equals the dimension of F ln−k,k, it follows that φ−1
m (Ta) equals the

irreducible component of F ln−k,k
D in which it is contained.

Hence, πm

(
φ−1
m (Ta)

)
is also an irreducible closed subvariety of F ln−k−1,k−1

C of
the correct dimension. �
5.2.2. Proof of Proposition 5.3: Inductive step. In [1, Section 2] the authors intro-
duce a smooth subvariety Xi

m ⊆ Ym, i ∈ {1, . . . ,m− 1}, defined by

Xi
m := {(F1, . . . , Fm) ∈ Ym | Fi+1 = z−1Fi−1},

and a surjective morphism of varieties qim : Xi
m � Ym−2 given by

(F1, . . . , Fm) �→ (F1, . . . , Fi−1, zFi+2, . . . , zFm) .

We want to make use of the following lemma (cf. [1, Theorem 2.1] and [21, Lemma
2.4]).

Lemma 5.11. The diffeomorphism φm maps Xi
m bijectively to the set

(5.7) Ai
m := {(l1, . . . , lm) ∈ (P1)m | li+1 = l⊥i }

and we have a commutative diagram

(5.8)

Xi
m Ym−2

Ai
m

(
P1

)m−2

qim

∼=φm|Xi
m

φm−2∼=
fi
m|Ai

m

where f i
m :

(
P1

)m �
(
P1

)m−2
is the map which forgets the coordinates i and i+ 1.

The orthogonal complement in (5.7) is taken with respect to the hermitian structure
of C2.

We prove the proposition by induction on the number of unmarked cups in
a. If there is no unmarked cup in a, then the claim follows from Lemma 5.4
and Proposition 5.5. Hence, we may assume that there exists an unmarked cup
in a. Then there exists a cup connecting neighboring vertices i and i + 1. Let
a′ ∈ Bn−k−2,k−2 be the cup diagram obtained by removing this cup.

We have

(5.9)
(
qim

)−1 (
φ−1
m−2(Ta′)

)
= φ−1

m

((
f i
m

)−1
(Ta′)

)
= φ−1

m (Ta),

where the first equality followes directly from the commutativity of the diagram

(5.8) and the second one is the obvious fact that
(
f i
m

)−1
(Ta′) = Ta. Thus,

φ−1
m (Ta) ⊆ Ym is a closed subvariety because it is the preimage of the closed

subvariety φ−1
m−2(Ta′) (which is even an irreducible component of F ln−k−2,k−2

D by

induction) under the morphism qim.
Thus, by (5.9), for any given flag (F1, . . . , Fm) ∈ φ−1

m (Ta), we have

qm,i(F1, . . . , Fm) = (F1, . . . , Fi−1, zFi+2, . . . , zFm) ∈ φ−1
m−2(Ta′)



TOPOLOGY OF TWO-ROW SPRINGER FIBERS OF TYPE C AND D 2735

which shows that zFm is containd in En−k−2,k−2 and isotropic with respect to

βn−k−2,k−2
D because φm−2(Ta′) ⊆ F ln−k−2,k−2

D by induction. Hence, by Lemma

4.5, Fm is contained in En−k,k and isotropic with respect to βn−k,k
D . Thus, we have

proven that φ−1
m (Ta) ⊆ Ym is an algebraic subvariety contained in F ln−k,k

D .
Note that φ−1

m (Ta) is smooth and connected because it is the preimage of Ta

(which is obviously smooth and connected) under a diffeomorphism. This shows
that φ−1

m (Ta) is irreducible. Finally, the dimension of the variety φ−1
m (Ta) obvi-

ously equals the dimension of F ln−k,k
D (because the manifold Ta has the correct

dimension). To sum up, φ−1
m (Ta) must therefore be an irreducible component of

the (embedded) Springer variety F ln−k,k
D .

Let a ∈ B
n−k,k
odd . If a only has one unmarked cup which connects the vertices

m − 1 and m it is easy to see that πm

(
φ−1
m (Ta)

)
equals πm

(
φ−1
m (Tb)

)
, where b

denotes the cup diagram obtained by exchanging the unmarked cup connecting
m − 1 and m with a marked cup. Then the claim follows from Proposition 5.5.
Analogously, if i �= m − 1, by applying πm to (5.9), it is easy to see that we also
have an equality of sets

πm

(
φ−1
m (Ta)

)
= πm

(
(qim)−1

(
φ−1
m−2(Ta′)

))
= (qim−1)

−1
(
πm−2

(
φ−1
m−2(Ta′)

))
.

Now the claim follows as for the type D Springer fiber. This finishes the proof of
Proposition 5.3. �

5.3. Gluing the irreducible components. Now we state and prove our main
results.

Theorem 5.12. The diffeomorphism
(
S2

)m γn−k,k−−−−→
(
P1

)m φ−1
m−−→ Ym restricts to a

homeomorphism

Sn−k,k
D

∼=−→ F ln−k,k
D

such that the images of the Sa under this homeomorphism are precisely the irre-

ducible components of F ln−k,k
D for all a ∈ Bn−k,k.

Proof. We know that the image of Sn−k,k
D ⊆

(
S2
)m

under the diffeomorphism

φ−1
m ◦ γn−k,k is given by

φ−1
m

(
γn−k,k

(
Sn−k,k
D

))
=

⋃
a∈Bn−k,k

φ−1
m (γn−k,k (Sa))

Lemma
=
5.2

⋃
a∈Bn−k,k

φ−1
m (Ta) .

If a �= b, we obviously have Ta �= Tb and thus also φ−1
m (Ta) �= φ−1

m (Tb), because φm

is bijective. In combination with Proposition 5.3 this yields that
⋃

a∈Bn−k,k φ−1
m (Ta)

is a union of irreducible components of F ln−k,k
D which are pairwise different. Since

the cup diagrams in Bn−k,k are in bijective correspondence with the irreducible

components of the Springer fiber F ln−k,k
D (cf. Proposition 2.17 and Lemma 3.14),

we deduce that
⋃

a∈Bn−k,k φ−1
m (Ta) is the entire (embedded) Springer fiber. In

particular, the restriction of the diffeomorphism φ−1
m ◦ γn−k,k to Sn−k,k

D yields the
desired homeomorphism as claimed in the theorem. �

We define F ln−k,k
D,odd as the image of Sn−k,k

D,odd and F ln−k,k
D,odd as the image of Sn−k,k

D,even

under the homeomorphism of Theorem 5.12. It follows from Remark 3.9 that these

are precisely the two connected components of F ln−k,k
D . Since they are isomorphic

we restrict ourselves to F ln−k,k
D,odd (the results are also true for F ln−k,k

D,even).



2736 ARIK WILBERT

Theorem 5.13. The morphism of algebraic varieties Ym
πm−−→ Ym−1 restricts to a

homeomorphism (even an isomorphism of algebraic varieties)

F ln−k,k
D,odd

∼=−→ F ln−k−1,k−1
C ,

i.e., F ln−k−1,k−1
C is isomorphic to one of the two (isomorphic) connected compo-

nents of F ln−k,k
D . In particular, in combination with Theorem 5.12, we obtain a

homeomorphism

Sn−k,k
D,odd

∼= F ln−k−1,k−1
C

and thus an explicit topological model for F ln−k−1,k−1
C .

Proof. Since F ln−k,k
D,odd is a connected components of F ln−k,k

D , it follows directly from

Remark 2.3 that the restriction of πm to F ln−k,k
D,odd ⊆ Ym defines a continuous injec-

tion with image

πm

(
F ln−k,k

D,odd

)
=

⋃
a∈B

n−k,k
odd

πm

(
φ−1
m (Ta)

)
.

By Proposition 5.3 this is a union of irreducible components of F ln−k−1,k−1
C which

are pairwise different (because the restriction of πm to F ln−k,k,
D,odd is bijective and

the φ−1
m (Ta) are pairwise different irreducible components of F ln−k,k

D by Theo-

rem 5.12). Recall that the irreducible components of F ln−k−1,k−1
C are in bijective

correspondence with the cup diagrams in B
n−k,k
odd (combine Proposition 2.17 with

the bijections Lemma 3.14 and Lemma 3.15). Hence, the image of F ln−k,k
D,odd un-

der πm equals F ln−k−1,k−1
C ⊆ Ym−1. In particular, πm restricts to the desired

homeomorphism.

Note that the homeomorphism πm : F ln−k,k
D,odd

∼=−→ F ln−k−1,k−1
C is even an isomor-

phism of algebraic varieties. �
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