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HIGGS BUNDLES FOR REAL GROUPS

AND THE HITCHIN–KOSTANT–RALLIS SECTION

OSCAR GARCÍA-PRADA, ANA PEÓN-NIETO, AND S. RAMANAN

Abstract. We consider the moduli space of polystable L-twisted G-Higgs
bundles over a compact Riemann surface X, where G is a real reductive Lie
group and L is a holomorphic line bundle over X. Evaluating the Higgs field
on a basis of the ring of polynomial invariants of the isotropy representation
defines the Hitchin map. This is a map to an affine space whose dimension is
determined by L and the degrees of the polynomials in the basis. In this paper,
we construct a section of this map and identify the connected components of
the moduli space containing the image. This section factors through the moduli
space for Gsplit, a split real subgroup of G. Our results generalize those by
Hitchin, who considered the case when L is the canonical line bundle of X
and G is complex. In this case, the image of the section is related to the
Hitchin–Teichmüller components of the moduli space of representations of the
fundamental group of X in Gsplit, a split real form of G. The construction
involves the notion of a maximal split subgroup of a real reductive Lie group
and builds on results by Kostant and Rallis.
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1. Introduction

Let G be a real reductive Lie group. Following Knapp [25], by this we mean
a tuple (G,H, θ,B), where H ⊂ G is a maximal compact subgroup, θ : g → g is a
Cartan involution, and B is a non-degenerate bilinear form on g, which is Ad(G)-
and θ-invariant, satisfying natural compatibility conditions. We will also need the
notion of a real strongly reductive Lie group (see Definition 3.1 for details). The
Cartan involution θ gives a decomposition (the Cartan decomposition)

g = h⊕m
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into its ±1-eigenspaces, where h is the Lie algebra of H. The group H acts linearly
on m through the adjoint representation of G — this is the isotropy representa-
tion that we complexify to obtain a representation (also referred to as isotropy
representation) ι : HC → GL(mC).

LetX be a compact Riemann surface and let L be a holomorphic line bundle over
X. An L-twisted G-Higgs bundle on X is a pair (E,ϕ), where E is a holomorphic
principal HC-bundle over X and ϕ is a holomorphic section of E(mC) ⊗ L, where
E(mC) = E×HCmC is themC-bundle associated toE via the isotropy representation.
The section ϕ is called the Higgs field. Two L-twisted G-Higgs bundles (E,ϕ) and
(E′, ϕ′) are isomorphic if there is an isomorphism f : E → E′ such that ϕ = f∗ϕ′

where f∗ is the obvious induced map. When L is the canonical line bundle K
of X we obtain the familiar theory of G-Higgs bundles. When G is compact the
Higgs field is identically zero and an L-twisted G-Higgs bundle is simply a principal
GC-bundle. When G is complex G = HC and the isotropy representation coincides
with the adjoint representation of G. This is the situation originally considered by
Hitchin in [22, 23], for L = K. It is worth pointing out that consideration of the
theory for an arbitrary line bundle L is indeed relevant, as illustrated for example
in the works [2, 30]. In fact, even in the study of G-Higgs bundles for L = K one
may end up with a different twisting, as in the case of maximal Toledo invariant
G-Higgs bundles (see [5]).

There is a notion of stability which depends on an element α of the centre of h.
This element is fixed by the topology of the bundle, except in the case when G/H is
a Hermitian symmetric space. In this situation α is a continuous parameter, which
varies in a way governed by the Milnor–Wood inequality (see [5]). Let Mα

L(G) be
the moduli space of isomorphism classes of α-polystable L-twisted G-Higgs bundles.
We will omit the subindex L when L = K. We will also omit the superindex α
when α = 0.

To study this moduli space one considers the Hitchin map

hL : Mα
L(G) → BL(G)

defined by evaluating the Higgs field on a basis of the ring of polynomial HC-
invariants of the isotropy representation. Here, BL(G) ∼= H0(X,

⊕a
i=1 L

mi) is the
Hitchin base, where a is the real rank of the group and mi are the exponents of
G (see Section 6 for a more intrinsic definition of this map and the definition of
exponents). Again we will omit the subindex L in hL and BL(G) when L = K.
As a first step to analyse the Hitchin map, in this paper, we construct a section
under certain conditions. This generalizes the construction given by Hitchin, who
considered a complex Lie group G and L = K [24]. In this case the image of the
section is related to the Hitchin components of the moduli space of representations
of the fundamental group of X in Gsplit, a split real form of the complex group
G. In fact, in relation to this, our construction is indeed very natural since we can
start directly with the moduli space M(Gsplit) instead of M(G) and construct the
section for the Hitchin map for Gsplit instead of that for G, which by construction
lies in M(Gsplit). It is important to point out that BL(G) = BL(Gsplit).

Sections 2 and 3 establish the Lie theoretical results necessary for the sequel.
Section 2 is essentially introductory: we recall the Cartan theory for reductive
complex Lie algebras in Section 2.1. Section 2.2 reviews the construction of the
maximal split subalgebra ĝ of any real reductive Lie algebra g, due to Kostant–
Rallis [29].
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In Section 3 we study real reductive Lie groups following Knapp’s definition
([25, Chap. VII]). We extend classical structural results in Lie theory, such as
closedness of reductivity by involutions (Proposition 2.3), or basic results used in
the Cartan theory of groups (Proposition 3.6). All of this is done in Section 3.1. Let
(G,H, θ,B) be a real reductive Lie group in the sense of Definition 3.1. The main
aim of Section 3.2 is to study the interplay between involutions ι of G and the fixed
point subgroup Gι, as well as the relations with adjoint groups and normalizing
subgroups. The main result in this direction is Proposition 3.17, which specialises
to real forms of complex reductive Lie groups in Corollary 3.18. All of these results
are essential for Sections 5 and 6. Section 3.3 deals with the construction of a
maximal split subgroup

(Ĝ0, Ĥ0, θ̂, B̂) ≤ (G,H, θ,B)

(see Definition 3.24 and Proposition 3.25). We use results by Borel and Tits [7,8] to
study the connections between the topology of both groups (Corollary 3.31), which
will be used in Section 7.

Section 4 generalizes part of the work of Kostant and Rallis [29] to our context.
More precisely, given g the reductive Lie algebra of a reductive Lie group G, consider
its Cartan decomposition g = h⊕m, where h = Lie(H) for some maximal compact
subgroup H ≤ G. We study the Chevalley morphism χ : mC → mC � HC and in
particular the existence of a section of this morphism (see Theorem 4.9). We hereby
note the prominent role of real forms of quasi-split type in the whole theory (see
Lemma 4.13(2)).

We recall the basics on moduli spaces of Higgs bundles in Section 5, following
[18]. The results in this section are not original, with the exception perhaps of
Proposition 5.9.

The main result of this paper is in Section 6, where we generalize Hitchin’s
construction of a section of the Hitchin map [24]. This yields Theorem 6.13, which
reads as follows.

Theorem. Let (G,H, θ,B) be a strongly reductive Lie group, and let (Ĝ0, Ĥ0, θ̂, B̂)
be its maximal connected split subgroup. Let L → X be a line bundle with degree
dL ≥ 2g − 2. Let α ∈ iz(so(2)) be such that ρ′(α) ∈ z(h), where ρ′ : so(2) → h is
given by (39). Then, the choice of a square root of L determines N inequivalent
sections of the map

hL : Mρ′(α)
L (G) → BL(G).

Here, N is the number of cosets in Ad(G)θ/Ad(H).
Each such section sG satisfies the following:

(1) If G is quasi-split, sG(BL(G)) is contained in the stable locus of Mρ′(α)
L (G),

and in the smooth locus if Z(G) = ZG(g) and dL ≥ 2g − 2.
(2) If G is not quasi-split, the image of the section is contained in the strictly

polystable locus.
(3) For arbitrary groups, the Higgs field is everywhere regular.

(4) If ρ′(α) ∈ iz
(
ĥ

)
, the section factors through Mρ′(α)

L (Ĝ0). This is in par-

ticular the case if α = 0.
(5) If Gsplit < GC is the split real form of a complex reductive Lie group, K = L

and α = 0, sG is the factorisation of the Hitchin section through M(Gsplit).
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We will refer to a section defined as above as a Hitchin–Kostant–Rallis, ab-
breviated HKR, section.

Due to the degree of generality in which we have chosen to work, we need to
develop the theory with new tools. A remarkable fact is that the image of the
section need not be smooth, even when the group is connected, of adjoint type,
and the twisting is the canonical bundle. This differs from the complex group
case studied by Hitchin in [24] and is due to the fact that split groups are quasi-
split (see Proposition 6.10 and Corollary 6.16). After some analysis in Section 6.1
of the representation theory involved (note the differences with the complex case
pointed out in Corollary 4.15), we move in Section 6.2 to study the basic case: the
HKR section for SL(2,R)-Higgs bundles. The latter is then used in Section 6.3 to
produce a G-Higgs bundle, which will be deformed to yield a section of the Hitchin
map. The analysis is done in Section 6.4. We use the results in this section to
prove in Proposition 6.20 that for quasi-split groups G, the image of the section
covers a connected component of the moduli space if and only if the real group is
split. We include in Section 6.5 a geometric interpretation of the algebraic notion
of regularity.

The topological type of the elements in the image of the HKR section is studied
in Section 7. We study the Hermitian and non-Hermitian cases separately. In the
first case, an answer is given in Proposition 7.2. In the second case, however, the
answer depends on the topological type of elements of the Hitchin section for the
maximal split subgroup. We deal with this in Proposition 7.1.

2. Reductive Lie algebras and maximal split subalgebras

A reductive Lie algebra over a field k is a Lie algebra g over k whose adjoint
representation is completely reducible. Semisimple Lie algebras are reductive. It is
well known that any reductive Lie algebra decomposes as a direct sum

g = gss ⊕ z(g),

where gss = [g, g] is a semisimple Lie subalgebra (the semisimple part of g) and
z(g) is the centre of g, thus an abelian subalgebra.

We will focus on Lie algebras over the real and complex numbers and the relation
between them. As a first example, note that any complex reductive Lie algebra gC

with its underlying real structure
(
gC

)
R
is a real reductive Lie algebra. On the

other hand, given a real reductive Lie algebra g, its complexification gC := g⊗R C

is a complex reductive Lie algebra.

2.1. Real forms of complex Lie algebras. A real form g ⊂ gC of a complex
Lie algebra gC is the subalgebra of fixed points of an antilinear involution σ ∈
Aut2

((
gC

)
R

)
, where Aut2

((
gC

)
R

)
denotes the subset of order two automorphisms

of the real Lie algebra underlying gC. Equivalently, it is a real subalgebra g ⊂ gC

such that the natural homomorphism of C-algebras g⊗C → gC is an isomorphism.
Any real Lie algebra g is a real form of its complexification gC := g ⊗R C with

associated involution gC ∼=R g ⊕ g 
 (X,Y ) �→ (X,−Y ). Also, given a complex
reductive Lie algebra gC, one can obtain it as a real form of gC ⊗ C by choosing a
maximal compact subalgebra u ⊂ gC (i.e., a real subalgebra whose adjoint group
is compact). Let τ ∈ AutR

((
gC

)
R

)
be the antilinear involution defining u. Then,
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considering gC ⊗ C ∼= gC ⊕ gC, define on it the antilinear involution

τC(x, y) := (τ (x),−τ (y)),

whose subalgebra of fixed points is isomorphic to u⊕ iu ∼=
(
gC

)
R
.

Two real forms g and g′ of gC (defined respectively by antilinear involutions
σ, σ′ ∈ AutR(

(
gC

)
R
)) are Cartan isomorphic, denoted by σ ∼c σ′, if there exists

ϕ ∈ AutC(g
C) such that σ′ ◦ ϕ = ϕ ◦ σ.

We will consider the stronger equivalence condition, which we will denote by
σ ∼i σ

′, if furthermore ϕ can be chosen inside the group of inner automorphisms
of the Lie algebra IntC(g

C).
It is well known (see for example [31, Sec. 3]) that there exists a correspondence

between isomorphism classes (under equivalence ∼c or ∼i) of real forms of a com-
plex semisimple Lie algebra gC and orbits of C-linear involutions (under Int(gC),
resp. Aut(gC)) of gC. This correspondence is obtained by composing the involution
defining the real form with a commuting involution defining a compact form. Both
forms are then said to be compatible.

Proposition 2.1. Given a complex reductive Lie algebra gC and a compact real
form u of gC, there is a 1-1 correspondence between conjugacy classes under ∼i

of real forms compatible with u and conjugacy classes under ∼i of linear automor-
phisms θ : gC → gC.

Proof. We note first that involutions of a Lie algebra leave the semisimple part and
the centre invariant. This, together with Theorem 3.2 in [31], implies that it is
enough to prove the proposition for abelian Lie algebras, that is, vector spaces.

Let gC be an abelian Lie algebra of dimension n. A choice of basis allows us to
identify it with Cn. A real form g is a real subspace of dimension n, which is the set
of fixed points of the reflection with respect to g. Note that the only compact real
form is (iR)n ⊂ Cn, as if v1, . . . , vn are the real vectors expanding the subspaces,
then exponentiation of any vector that is not purely imaginary contains a spiral
which is non-compact (as real forms of C are in correspondence with real vectorial
lines in C ∼= R2 which exponentiate to U(1) or spirals; the case of R corresponds to
the degenerate spiral).

Now, the only real form compatible with (iR)n is a direct sum of copies of R and
iR. On the other hand, involutions compatible with σ : (z1, . . . , zn) �→ −(z1, . . . , zn)
are combinations of complex conjugation and multiplication by ±1 on the factors
and transpositions, which composed with σ yield all possible linear involutions of
Cn, that is, transpositions and multiplication by ±1. �

Remark 2.2. Proposition 2.1 classifies real forms of an abelian Lie algebra up to
∼i equivalence. Note that the result does not depend on the choice of a compact
form, as neither does the result for semisimple algebras, and the compact form of
the centre is unique, but we are forced to consider compatible real forms. If we
considered real forms up to outer isomorphism, then the compact form and the
split one would be identified.

An involution of a real reductive Lie algebra g defining a maximal compact form
is called a Cartan involution. The decomposition of g into (+1)- and (−1)-
eigenspaces is a Cartan decomposition. Any such has the form

(1) g = h⊕m
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satisfying the relations

[h, h] ⊆ h, [m,m] ⊆ h, [h,m] ⊆ m.

In particular, we have an action ι : h → gl(m) induced by the adjoint action of g
on itself, which is called the infinitesimal isotropy representation.

Proposition 2.3. The class of reductive Lie algebras is closed by taking fixed points
of involutions.

Proof. By the preceding discussion, it is enough to prove the statement for simple
Lie algebras, as any extension of a simple Lie algebra by a central subalgebra is
reductive, and all reductive Lie algebras are a direct sum of algebras of this kind.
Now, any Lie algebra g is a real form of its complexification gC. Given ι and
involution of g, we may extend it to a C-linear involution of gC. Then, the Cartan
theory for semisimple Lie algebras and Proposition 3.21 imply that (gC)ι = hC for
some compact Lie subalgebra h ⊂ g. But [31, I.11] implies that h is reductive. �
Remark 2.4. The above proves that fixed points of involutions of simple Lie algebras
are reductive; however one cannot expect them to be semisimple. For example, the
maximal compact subalgebra u(2) ⊂ sp(4,R) is fixed by the Cartan involution and
is reductive, but not simple or semisimple.

2.2. Maximal split subalgebras and restricted root systems. Let g be a real
reductive Lie algebra with a Cartan involution θ decomposing g as g = h⊕m. Given
a maximal subalgebra a ⊂ m it follows from the definitions that it must be abelian,
and one can easily prove that its elements are semisimple and diagonalizable over
the real numbers (cf. [25, Chap. VI]. Note that Knapp proves it for semisimple Lie
algebras, but for reductive Lie algebras it suffices to use invariance of the centre and
the semisimple part of [gC, gC]) under the Cartan involution. Any such subalgebra
is called a maximal anisotropic Cartan subalgebra of g. By extension, its com-
plexification aC is called a maximal anisotropic Cartan subalgebra of gC (with
respect to g). A maximal anisotropic Cartan subalgebra a can be completed to a θ-
equivariant Cartan subalgebra of g, namely, a subalgebra whose complexification
is a Cartan subalgebra of gC. Indeed, define

(2) d = t⊕ a,

where t ⊂ ch(a) := {x ∈ h : [x, a] = 0} is a maximal abelian subalgebra ([25],
Proposition 6.47). Cartan subalgebras of this kind (and their complexifications)
are called maximally split.

The dimension of maximal anisotropic Cartan subalgebras of a real reductive
Lie algebra g is called the the real (or split) rank of g. This number measures
the degree of compactness of real forms: indeed, a real form is compact (that is,
its adjoint group is compact) if and only if rkR(g) = 0. On the other hand, a real
form is defined to be split if rkR(g) = rkgC. Note that the split rank depends on
the involution θ associated with the real form when g is not semisimple.

The restriction to a of the adjoint representation of g yields a decomposition of
g into a-eigenspaces

g =
⊕

λ∈Λ(a)

gλ,

where Λ(a) ⊂ a∗ is called the set of restricted roots of g with respect to a. The
set Λ(a) forms a root system (see [25, Chap. II, Sec. 5]), which may not be reduced
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(that is, there may be roots whose double is also a root). The name restricted roots
is due to the following fact: extending restricted roots by C-linearity, we obtain
Λ(aC) ⊂

(
aC

)∗
, also called restricted roots. Now, take a maximally split θ-invariant

Cartan subalgebra d ⊂ g as in (2), and let Δ(gC, dC) be the corresponding set of
roots. Then, restricted roots are restrictions of roots. In fact, a root γ ∈ Δ(gC, dC)
decomposes as

(3) γ = λ+ iβ,

where λ is the extension by complex linearity of an element in a∗ and β is the
extension by complex linearity of an element t∗. This implies γ|aC = λ|aC . We can
decompose Δ(gC, dC) = Δi ∪Δr ∪Δc, where

Δi = {γ ∈ Δ : γ|aC ≡ 0},(4)

Δr = {γ ∈ Δ : γ|tC ≡ 0},
Δc = Δ \ (Δi ∪Δr)

are respectively called imaginary, real, and complex roots.
In [29], Kostant and Rallis give a procedure to construct a θ-invariant subalgebra

ĝ ⊂ g such that ĝ ⊂ (ĝ)C is a split real form whose Cartan subalgebra is a and such
that z(ĝ) = z(g) ∩m. Their construction relies on the following notion.

Definition 2.5. A three-dimensional subalgebra (TDS) sC ⊂ gC is the image
of an injective morphism sl(2,C) → gC. A TDS is called normal if dim sC∩hC = 1
and dim sC ∩mC = 2. It is called principal if it is generated by elements {e, f, x},
where e and f are nilpotent regular elements in mC (cf. Definition 4.6), and x ∈ hC

is semisimple. A set of generators satisfying such relations is called a normal basis
or normal triple.

Definition 2.6. A subalgebra ĝ ⊂ g generated by a and sC ∩ g, where sC is a
principal normal TDS invariant by the involution defining g inside gC, is called a
maximal split subalgebra.

Maximal split subalgebras can be constructed very explicitly; for this, consider
the following reduced system of roots:

(5) Λ̂(a) = {λ ∈ Λ(a) | λ/2 /∈ Λ(a)}.

Let {λ1, . . . , λa} = Σ(a) ⊂ Λ(a) be a system of simple restricted roots (cf. [25,

Chap. VI]), which is also a system of simple roots for Λ̂(a). Let hi ∈ a be the dual
to λi with respect to some θ and Ad(exp(g))-invariant bilinear form B satisfying
that B is negative definite on h and positive definite on m. Strictly speaking, in
[29] Kostant and Rallis take B to be the Cartan–Killing form on g; however, the
above assumptions are enough to obtain the necessary results quoted here. Now,
for each λi ∈ Σ(a) choose yi ∈ gλi

. We have

[yi, θyi] = bihi,

where bi = B(yi, θyi). Indeed, [yi, θyi] ∈ a ∩ [g, g], so it is enough to prove that
B([yi, θyi], x) = B(yi, θyi)λi(x) for all x ∈ a, which is a simple calculation.

Consider

zi =
2

λi(hi)bi
θyi, wi = [yi, zi] =

2

λi(hi)
hi.
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Table 1. Maximal split subalgebras

Type g ĝ

AI sl(n,R) sl(n,R)
AII su∗(2n) sl(n,R)

AIII
su(p, q), p < q so(p, p+ 1)
su(p, p) sp(2p,R)

BI so(2p, 2q + 1), p ≤ q so(2p, 2p+ 1)
CI sp(2n,R) sp(2n,R)

CII
sp(p, q) p < q so(p, p+ 1)
sp(p, p) sp(2p,R)

BDI so(p, q) p+ q = 2n, p < q so(p, p+ 1)
DI so(p, p) so(p, p)

DII
so∗(4p+ 2) p < q so(p, p+ 1)
so∗(4p) sp(2p,R)

Type g ĝ

EI e6(6) e6(6)

EII e6(2) f4(4)

EIII e6(−14) so(3, 2)
EIV e6(−26) sl(3,R)
EV e7(7) e7(7)

EVI e7(−5) f4(4)

EVII e7(−25) sp(6,R)
EVIII e8(8) e8(8)

EIX e8(−24) f4(4)

FI f4(4) f4(4)

FII f4(−20) sl(2,R)
G g2(2) g2(2)

We have the following (Proposition 23 in [29]).

Proposition 2.7. Let g ⊂ gC be a real form, and let σ be the antilinear involution
of gC defining g. Let ĝ be the subalgebra generated by all the yi, zi, and wi as above,
and let cm(a) be the centraliser of a in m. Let ĝC = ĝ⊗ C. Then:

(1) ĝC is a σ- and θ-invariant reductive subalgebra of gC. We thus have ĝC =

ĥC ⊕ m̂C where ĥC = hC ∩ ĝC, m̂C = mC ∩ ĝC.
(2) ĝ ⊂ g is a maximal split subalgebra as in Definition 2.6. Moreover, the

subsystem Λ̂(aC) ⊂ Λ(aC) as defined in (5) is the root system of ĝC with
respect to aC.

Since Λ̂(aC) is a reduced root system, we can uniquely assign to it a complex
semisimple Lie algebra ĝC. In [4] Araki gives the details necessary to obtain ĝC (or
its Dynkin diagram) from the Satake diagram of g whenever the latter is a simple
Lie algebra. The advantage of Araki’s procedure is that it allows identifying the
isomorphism class of ĝ easily. However, unlike Kostant and Rallis’s method, it does
not provide the embedding ĝ ↪→ g. See [4] for details. We include Table 1 with all
real forms of the simple Lie algebras.



HIGGS BUNDLES AND THE HITCHIN–KOSTANT–RALLIS SECTION 2915

Remark 2.8. Let gC be a complex reductive Lie algebra, and let
(
gC

)
R
be its un-

derlying real reductive algebra. Then, the maximal split subalgebra of
(
gC

)
R
is

isomorphic to the split real form gsplit of g
C. It is clearly split within its complex-

ification and it is maximal within
(
gC

)
R
with this property, which can be easily

checked by identifying
(
gC

)
R

∼= gsplit ⊕ igsplit.

3. Reductive Lie groups and maximal split subgroups

3.1. Real reductive Lie groups. Following Knapp [25, VII.2], we define reduc-
tivity of a Lie group as follows.

Definition 3.1. A real reductive group is a 4-tuple (G,H, θ,B) where:

(1) G is a real Lie group with reductive Lie algebra g.
(2) H < G is a maximal compact subgroup.
(3) θ is a Lie algebra involution of g inducing an eigenspace decomposition

g = h⊕m,

where h = Lie(H) is the (+1)-eigenspace for the action of θ and m is the
(−1)-eigenspace.

(4) B is a θ- and Ad(G)-invariant non-degenerate bilinear form, with respect
to which h ⊥B m and B is negative definite on h and positive definite on
m.

(5) The multiplication map H × exp(m) → G is a diffeomorphism.

Furthermore if (G,H, θ,B) satisfies

(SR) G acts by inner automorphisms on the complexification gC of its Lie algebra
via the adjoint representation,

then the group will be called strongly reductive.

Remark 3.2. Note that the definition of Knapp [25, VII.2] differs from ours in two
ways: on the one hand, he assumes (SR) in the definition of reductivity. Since
we will cite his results, we will need to pay attention to which of them really use
this hypothesis. On the other hand, he does not assume H to be maximal, just
compact. Maximality in fact results from the polar decomposition.

Remark 3.3. If GC satisfies condition (SR) in Definition 3.1, then, by definition,
Ad(GC) is equal to Ad(gC), the connected component of Aut(gC).

Given a Lie group G with reductive Lie algebra g, the extra data (H, θ,B)
defining a reductive structure will be referred to as Cartan data for G.

A morphism of reductive Lie groups (G′, H ′, θ′, B′) → (G,H, θ,B) is a morphism
of Lie groups G′ → G which respects the corresponding Cartan data in the obvious
way. In particular, a reductive Lie subgroup of a reductive Lie group (G,H, θ,B)
is a reductive Lie group (G′, H ′, θ′, B′) such that G′ ≤ G is a Lie subgroup and the
Cartan data (H ′, θ′, B′) is obtained by intersection and restriction.

Remark 3.4. When the group G is semisimple, letting B be the Killing form, the
rest of the Cartan data is fully determined by the choice of a maximal compact
subgroup H. In this case, we omit the Cartan data from the notation.

Lemma 3.5. Let G be a semisimple Lie group with maximal compact subgroup
H ≤ G. Then, Z(G) ≤ Z(H), and equality holds if G is complex.
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Proof. From Corollary 7.26(2) in [25], we have that Z(G) = ZH(G)eizm(g), as the
quoted result does not use (SR) in Definition 3.1, but semisimplicity implies that
zm(g) = 0, so Z(G) ≤ Z(H). Now, if G is a complex group, given that G = Heih

and that Z(H) ⊂ ZH(h) = ZH(ih), we have that Z(H) centralises the identity
component G0. Since any connected component of G is of the form hG0 for some
h ∈ H, it follows that Z(H) centralises all connected components, and so alsoG. �

3.2. Real forms of complex reductive Lie groups. A great variety of examples
of real reductive Lie groups is provided by real forms of complex reductive Lie
groups. Recall that a real form G of a complex Lie group GC is the group of fixed
points of an antiholomorphic involution σ : GC → GC.

Some of the results in this section are common knowledge, but due to the lack of
known references covering the general case we include them in this section. Similar
results are also proved in [19].

The following proposition proves real forms of some complex reductive Lie groups
inherit a reductive group structure from their complexification.

Proposition 3.6. Let (GC, U, τ, B) be a connected complex reductive Lie group,

and let σ be an antilinear involution of GC defining G =
(
GC

)σ
. Then, on GC,

there exists an involution conjugate by an inner element σ′ = Adg ◦ σ ◦ Adg−1

such that G′ = gGg−1 can be endowed with Cartan data (H ′, θ′, B′), making it a
reductive subgroup of (GC, U, τ, B) in the sense of Definition 3.1.

Proof. By Proposition 2.1 and the fact that all maximal compact Lie subalgebras
are conjugate, at the level of the Lie algebras there is an inner conjugate of dσ that
commutes with τ , say (dσ)′ = Adg ◦ dσ ◦Adg−1 . We notice that (dσ)′ = dσ′ where
σ′ = Adg ◦ σ ◦Adg−1 . So U0 = exp(u) is σ′-invariant.

All of this implies that the polar decomposition of GC for a choice of Cartan
data (U, τ,B) induces one for G′ = Ad(g)(G). Indeed, G′ is diffeomorphic to

H ′ × expm′ = GCσ′
, where H ′ = Uσ′

, expm′ = exp uσ
′
, as any g ∈ G′ can be

written as g = ueV for u ∈ U , V ∈ iu, and it must be

uσeσ
′V = ueV ⇐⇒ u−1uσ = e−σV eV ∈ U ∩ exp iu = {1}.

So G′ ∼= H ′ × expm′.
Non-degeneracy of B|g follows easily: for any element X ∈ g there exists Y =

Y1 + iY2 ∈ gC such that 0 �= B(X,Y ) = B(X,Y1) + iB(X,Y2). In particular
B(X,Y1) �= 0. Clearly h′ ⊥B m′, and all the other properties of Definition 3.1 are
straightforward to check. �

Remark 3.7. Proposition 3.6 is well known for semisimple Lie groups (see for ex-
ample Theorem 4.3.2 in [20]).

Corollary 3.8. Let GC be a connected complex reductive Lie group. Then, there
exists a correspondence between GC-conjugacy classes of real forms G < GC and
holomorphic involutions of GC up to conjugation by Ad(G).

Proof. It follows from Proposition 3.6 by noticing that a choice of Cartan data
is determined up to conjugation (except for the metric B, which plays no role,
so we can ignore it), and the indeterminacy in the choice of the antiholomorphic
involution yielding a given real form too. To see the latter, assume σ and σ′ are
two different involutions of GC with the same fixed point subgroup G. Then, since
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gC ∼= g⊕ ig, the differentials are the same dσ = dσ′. This means that σ and σ′ act
the same way on the identity component (GC)0, which is the group itself. �

The following important fact is a consequence of Proposition 3.6.

Proposition 3.9. Let G′ and GC be as in Proposition 3.6. We abuse notation
by calling both σ′ and τ the involutions defining G′ and U and their differentials.
Then the composition σ′τ = τσ′ defines a holomorphic involution of GC which lifts
the extension of θ to gC by complex linearity, and so we will abuse notation and
denote θ := τσ for the holomorphic involution of GC. Note that in particular, this
holomorphic involution lifts θ to G.

Proposition 3.9 is relevant at a conceptual level: it tells us that antilinear in-
volution of a connected complex reductive Lie group can be chosen to respect the
Cartan data. This motivates the following definition, covering also the case of
non-compact groups.

Definition 3.10. Let (GC, U, τ, B) be a complex reductive Lie group. We define
a real form (G,H, θ,B) < (GC, U, τ, B) to be a real reductive subgroup such that
G < GC is a real form. This implies in particular that the involution σ defining G
commutes with τ .

There are more reductive real subgroups of a complex reductive Lie group than
real forms; some of these are related to real forms, as in the following example.

Example 3.11. Consider SL(2,R) < SL(2,C), which is a real form with associated
involution σ given by complex conjugation. But its normalizer inside SL(2,C), say
N := NSL(2,C)(SL(2,R)), is not. Reductivity of this group is shown in Corollary
3.18. We just recall here some basic facts.

The group N is generated by SL(2,R) and the element(
0 i
i 0

)
,

so that it fits into an exact sequence

1 → SL(2,R) → N → Z/2Z → 1.

The importance of these normalizing subgroups will be made clear in Section 5.

More generally, one may produce a real subgroup from a real form G < GC

defined by σ as follows.

Definition 3.12. Given a complex or real Lie group G and an involution ι : G → G
(holomorphic or antiholomorphic), we define

Gι = {g ∈ G : g−1gι ∈ Z(G)}.

Remark 3.13. Note that Gι ⊂ NG(G
ι), as Z(G) ⊂ ZG(G

ι).

With the above definition, (GC)σ is a subgroup which is not necessarily a real
form.

Example 3.14. With the notation of Example 3.11, for G = SL(2,R), we have
that (GC)σ = N , which is not a real form.

The above example generalises to all semisimple Lie groups.
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Lemma 3.15. Let G < GC be a real form of a complex semisimple Lie group
defined by the involution σ. Then:

(1) Z(GC)=ZGC(G).
(2) Z(G)=Z(GC)σ.

Proof. By Corollary IV.4.22 in [25], GC ↪→ Aut(VC) ⊂ End(VC) is a matrix group,
so GC is contained in the complex subspace spanned by G inside End(VC). This
implies that ZGC(G) ⊂ Z(GC). The other inclusion is trivial, which proves (1).

As for (2), by (1), Z(GC)σ = ZGC(G)σ = ZG(G) = Z(G). �

Lemma 3.16. If G < GC is a real form of a complex semisimple Lie group, then
(GC)σ = NGC(G).

Proof. We easily see that NGC(G) = {g ∈ GC : g−1gσ ∈ ZGC(G)}, as g ∈ NGC(G)
is equivalent to σ(gfg−1) = gfg−1 for all f ∈ G, which is in turn equivalent to
g−1gσf(gσ)−1g = f , i.e., g−1gσ ∈ ZGC(G).

Now, by (1) in Lemma 3.15 above ZGC(G) = Z(GC). Substituting this in the
expression for N we get the equality we wanted. �

We next study the existence of a reductive structure of Gι and apply it to the
case (GC)σ, which we then compare with NGC(G).

Proposition 3.17. Let (G,H, θ,B) be a reductive Lie group.

(1) Assume G is connected, and let ι be an involution of G. Then, a conjugate
H ′ := Ad(g)(H) of H and its corresponding involution θ′ provide Cartan
data that induces Cartan data on Gι by restriction and intersection.

(2) When G is not necessarily connected, if ι is an involution of (G,H, θ,B)
(namely, ι leaves each component of the Cartan data invariant), then Gι is
θ stable and (Gι, (Gι)

θ, θ, B) is a reductive subgroup whose Lie algebra is
gι = g+ ⊕ z(g)− (where g = g+ ⊕ g− is the decomposition of g into the ±1
ι-eigenspaces, and likewise for z(g)).

(3) Let AdG : G → Aut(G) be the adjoint representation, and define the action
ι � Aut(G) by ϕι(g) = ι(ϕ(ι(g))). Then, Gι is the preimage by AdG of
AdG(G)ι.

(4) With the hypothesis of (2), consider N = NG(G
ι). If ZG(g

ι) = ZG(G
ι),

then (N,Nθ, θ, B) is a reductive subgroup whose Lie algebra is also gι.
(5) If ZG(G

ι) = Z(G), then Gι = N .
(6) We have(
Adg(N),Adg(N)θ, adg(θ), adg(B)

)
=

(
Adg(Gι),Adg(Gι)

θ, adg(θ), adg(B)
)
,

where Adg : G → Aut(g) is the adjoint representation.

Proof. To prove (1), we first need to prove a conjugate of H is ι-invariant. The
proof is the same as in Proposition 3.6 (with the difference that we conjugate the
Cartan data rather than ι). Once this has been done, if we prove (2), the remaining
part of (1) follows.

For the proof of (2), note that the fact that ι is an involution of the whole reduc-
tive structure implies that each datum is left invariant by ι. In particular, the max-
imal compact subgroup of Gι is H ∩Gι = (Gι)

θ. The polar decomposition follows
from Corollary 7.26(2) in [25], just noticing that its proof does not use condition
(SR) in Definition 3.1. Indeed, according to this result Z(G) = ZH(G)ezm(g), so that
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if g = heV is the polar decomposition of an element g ∈ Gι, then h−1hι ∈ ZH(G),
V − ιV ∈ zm(g), namely h ∈ (Gι)

θ, V ∈ m ∩ gι. Reductivity of gι will follow
once we prove its decomposition, as reductivity is closed by taking fixed points of
involutions (Proposition 2.3) and extensions by central abelian subalgebras.

Now, X ∈ gι ⇐⇒ X − ιX ∈ z(g). Let Y ∈ z(g) be such that X = ιX + Y (*).
Then ιX = X + ιY , which substituting yields X = X + Y + ιY . Namely, Y ∈
z(g)∩ g−. Now let X = X+ +X−, with X± ∈ g±. Then, substituting again in (*),
we find 2X− = Y ∈ z(g) ∩ g− ⇐⇒ X− ∈ z(g)−.

We have proved conditions (1), (2), and (5) in Definition 3.1. The remaining
ones follow directly from the fact that σ respects the Cartan involution induced by
θ.

As for (3), we have that

AdG(g) ∈ AdG(G)ι ⇐⇒ AdG(g) = AdG(g
ι)

⇐⇒ g−1gι ∈ Ker(AdG) = Z(G) ⇐⇒ g ∈ Gι.

For point (4), we easily check that Lie(N) =: n = gι, so conditions (1), (3), and (4)
in Definition 3.1 follow from point (2) in this proposition. All that’s left to check
is polar decomposition, as it is clear that Nθ = NH(Gι) is maximally compact. By
Lemma 7.22 in [25] applied to the reductive group G (plus the fact that the proof
of the quoted result does not use (SR) in Definition 3.1), since both N and Nθ

normalize the θ-invariant Lie algebra gι, it follows that NG(g
ι) = NU (g

ι)× einh(g
ι).

Now, n ∈ NG(g
ι) ⇐⇒ n−1nι ∈ ZG(g

ι). Likewise, n ∈ N ⇐⇒ n−1nι ∈ ZG(G
ι).

Hence, we have (4).
Finally, (5) and (6) are easy to check from the definitions. In (6) note that

Adg(N) is always reductive, as Adg(Z(G)) = Adg(ZG(g
ι)) = 1. �

Now, when ι defines a real form of a complex Lie group, Proposition 3.17 can be
completed as follows.

Corollary 3.18. Let (G,H, θ,B) < (GC, U, τ, BC) be a real form defined by σ.
Then:

(1) The tuple (Uσ, θ, B) defines a reductive structure on (GC)σ.
(2) We have (GC)σ = N when ZGC(G) = Z(GC). This is the case, for example,

for semisimple groups.
(3) The Lie algebra gσ ⊂ gC is a real form of gC ⊕ z(gC).

Proof. Point (1) follows from the equality ZU (G
C) = Z(U), proved just as Lemma

3.5 was proved.
The first statement in (2) follows as in Proposition 3.17, while the second is a

consequence of (1) in Lemma 3.15.
Point (3), is an easy remark, as from (2) in Proposition 3.17, we have gσ =

g⊕ iz(g). �

Note that strong reductivity need not be preserved.

Example 3.19. We easily see that NSL(2,C)(SO(2,C)) = SL(2,C)θ, which is the
extension

0 → SO(2,C) → N → Z/2Z → 0

generated by the element ( 0 i
i 0 ).
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The following lemma points out an important relation between the groups (GC)σ
and (GC)θ.

Lemma 3.20. Let G < GC be a real form of a semisimple Lie group whose defining
involution we denote by σ. Then, if θ denotes the holomorphic involution corre-
sponding to σ after a choice of a compatible maximal compact subgroup (see Remark
3.7), we have

(GC)σ/G = (GC)θ/H
C.

Proof. We note that the above groups fit into the following exact sequences:

0 → G ↪→ (GC)σ
f1→ Z(GC), f1(g) = g−1gσ,

0 → HC ↪→ (GC)θ
f2→ Z(GC), f2(g) = g−1gθ.

Thus we just need to prove that g−1gσ ∈ Z(GC) ⇐⇒ g−1gθ ∈ Z(GC). By Lemma
3.5, Z(GC) = Z(U). So let g = ueV be the polar decomposition of some element of
GC. Then,

g−1gσ ∈ Z(U) ⇐⇒ u−1uσ = u−1uθ ∈ Z(U) ⇐⇒ g−1gθ ∈ Z(U).

�

Our interest in groups such as (GC)σ is twofold. On the one hand, they produce
examples of real Lie groups which are not real forms. On the other hand, we will
see in Section 4 that the group Ad(GC)θ = Ad(GC)θ is relevant in the study of the
HC-module mC. Lemma 3.20 and Corollary 3.18 show that Ad(GC)θ determines
the real form Ad(GC)σ = Ad((GC)σ) = Ad(GC)σ and vice versa.

Proposition 3.21. Let (G,H, θ,B) < (GC, U, τ, B) be a real form of a complex
strongly reductive Lie group. Let

(6) A = ea,

and consider

(7) F = {a ∈ A : a2 ∈ Z(G)}.
Then:

(1) We have that Gθ = F · H and Ad(Gθ) = Ad(G)θ = Q · Ad(H), where
Q = {a ∈ Ad(a) : a2 = 1}.

(2) There are equalities

Ad(GC)θ = Ad(GC)θ = Ad((GC)θ) = Q ·Ad(HC) = Ad(Gθ)
C.

(3) Let AdG : G → Aut(G) be the adjoint representation. Then Gθ is the
preimage of Ad(G)θ.

Proof. To prove (1), consider the decomposition G = HAH (see [25, VII.3], not-
ing that the arguments leading to Theorem 7.39 do not require condition (SR)
in Definition 3.1). Now, choose g ∈ Gθ. By the above, it can be expressed as
g = h1ah2, where h1, h2 ∈ H, a ∈ A. Thus, g(gθ)−1 = h1a

2h−1
1 ∈ Z(G) if and only

if a2 ∈ Z(G), whence the result.
As for (2), the first equality is a remark, whilst the second follows from

Ad(g)θ = Ad(gθ) = Ad(g) ⇐⇒ g−1gθ ∈ Z(GC).
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For the third equality, the same proof as in Proposition 1 in [29] can be used (note
that the proposition itself can only be directly applied if Ad(GC) is connected),
yielding

Ad(GC)θ = Q ·Ad(HC),

where Q = exp(iad(a))[2]. But then, Q ⊂ Ad(G), as σ(g) = g−1 = g as Q is two
torsion (see Proposition 2 in [29]). The proof of (3) follows from (3) in Proposition
3.17.

Finally, the last equality follows from (1), as Ad(F ) = Q. �

Remark 3.22. When GC is the adjoint group of a complex reductive Lie algebra, we
obtain that (GC)θ = (GC)θ, as the centre is trivial. This case is the one considered
by Kostant and Rallis, who distinguish between two groups: Kθ, in our notation
(GC)θ, and K, the identity component of Kθ, in our notation (HC)0. This distinc-
tion is important for the orbit structure of mC under the action of (HC)0 (see [29],
Theorem 11). In the real case, if the centre of G is trivial, then F ⊂ H, as in this
situation a ∈ F if and only if a2 = 1, so a−1 = aθ = a. Hence Gθ = H.

3.3. Maximal split subgroup. Just as there is a maximal split subalgebra of a
real reductive Lie algebra, we can define the maximal connected split subgroup of
a reductive Lie group (G,H, θ,B). We introduce the following notions.

Definition 3.23. We say that a real reductive Lie group (G,H, θ,B) is split, quasi-
split, etc., if g ⊂ gC is split, quasi-split, etc., respectively.

Definition 3.24. Let G be a Lie group whose Lie algebra is reductive. The max-

imal connected split subgroup is defined to be the analytic subgroup Ĝ0 ≤ G
with Lie algebra ĝ.

Consider the tuple (Ĝ0, Ĥ0, θ̂, B̂) where Ĥ0 := exp(ĥ) ≤ H, and θ̂ and B̂ are
obtained by restriction.

Proposition 3.25. If (G,H, θ,B) is a reductive Lie group, then the tuple

(Ĝ0, Ĥ0, θ̂, B̂) is a strongly reductive Lie group.

Proof. By Proposition 2.7, conditions (1), (3), and (4) in Definition 3.1 hold. Since

Ĝ0 is connected, we may assume that G is connected, as Ĝ0 ⊂ G0. In this case,

writing the polar decomposition of g ∈ Ĝ0, we have, by connectedness of H, g =
eXeY , for some X ∈ h, Y ∈ m. By construction, ĝC is self-normalizing within gC (as
it is the subalgebra generated by a principal normal TDS, aC, and the centre of gC),
and the same holds for ĝ. This implies that, modulo the kernel of the exponential,

X and Y can be chosen in ĥ and m̂. So we may work at the level of the universal

cover Gu of G, to which there corresponds a maximal split subgroup Ĝu
0 , and then

induce the result for Ĝ0.
This gives the polar decomposition, and maximality of Ĥ0 follows from Propo-

sition 7.19 in [25], just noticing that its proof does not use (SR) in Definition 3.1,
and Remark 3.2. Strong reductivity follows from connectedness, as condition (5)
in Definition 3.1 implies that G = eh · em, since H being compact and connected it
must be H = eh. A simple computation shows that in the case of matrix groups
AdeX ◦AdeY ≡ AdeX+Y ∈ Aut g. Since Ad(G) is semisimple, it is a matrix group,
and furthermore Ad (Ad(G)) ∼= Ad(G), so condition (SR) in Definition 3.1 follows
for connected groups. �
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If (G,H, θ,B) < (GC, U, τ, B) is a real form of a complex reductive Lie group,
there is an alternative natural candidate for a maximal split subgroup. Note that

even in the situation when G has a complexification, Ĝ0 need not be a real form of
a complex Lie group. It is so just up to a finite extension.

Lemma 3.26. Let (G,H, θ,B) < (GC, U, τ, B) be a real form of a complex reduc-
tive Lie group, and let σ be the corresponding antiholomorphic involution. Define

ĜC < GC to be the analytic subgroup corresponding to ĝC, where ĝ is defined as in
Definition 2.6. Then:

(1) The involution σ leaves ĜC invariant.

(2) Let Ĝ =
(
ĜC

)σ

, and let Ĥ ≤ Ĝ be the maximal compact subgroup. Then

(Ĝ, Ĥ, θ̂, B̂), where θ̂ and B̂ are as in Proposition 3.25, is a reductive Lie

group and a real form of (ĜC, U ∩ ĜC, τ |ĝC , B|ĝC).

Proof. We first note that ĜC = (Ĝ0)
C, as both are connected complex Lie subgroups

of GC with the same Lie algebra. Then the first statement follows from the following

fact: by definition σ leaves G pointwise invariant, and it also leaves Ĝ0. Thus, the

complexification (Ĝ0)
C = ĜC is σ-invariant. Indeed, Ĝ0 ⊂ ĜC ∩ σ

(
ĜC

)
; the

intersection is a complex group, so that the complexification of Ĝ0 is also contained
in the intersection; namely, it is all of the intersection.

The second assertion follows from Proposition 3.25. �

Definition 3.27. Let (G,H, θ,B) < (GC, U, τ, BC) be a real form of a complex

reductive Lie group. Let (Ĝ, Ĥ, θ̂, B̂) be as in Lemma 3.26. We call this group the
maximal split subgroup of (G,H, θ,B).

Given a reductive Lie group, we would like to determine its maximal connected
split subgroup. This is studied in work by Borel and Tits [8] in the case of real forms
of complex semisimple algebraic groups. It is important to note that over R, the
category of semisimple algebraic groups differs from the category of semisimple Lie
groups. For example, the semisimple algebraic group Sp(2n,R) has a finite cover
of any given degree, all of which are semisimple Lie groups, but none of them is a
matrix group. So although their results do not apply to real Lie groups in general,
they do apply to real forms of complex semisimple Lie groups.

In an earlier work [7], in the context of reductive algebraic groups, Borel and Tits
built a maximal connected split subgroup, unique up to the choice of a maximal
split subtorus A and a choice of one unipotent generator of an A-invariant three-
dimensional subgroup corresponding to each root α ∈ Δ such that 2α /∈ Δ.

Let G be a reductive algebraic group, and let Ĝ0 be the maximal connected split

subgroup. In the case Ĝ has a complexification ĜC, it is well known that the map
taking a group to its complex points

ĜC �→ ĜC(C)

establishes an equivalence of categories between the categories AG of complex
semisimple algebraic groups and LG of (holomorphic) complex semisimple Lie
groups (also reductive, but on the holomorphic side we get a subcategory). This
yields the following.
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Proposition 3.28. Let GC be a complex semisimple Lie group, and let GC be the
corresponding algebraic group, so that GC = GC(C). Let G < GC be a real form.
Then, there exists a real linear algebraic group G such that G(R) = G and moreover

Ĝ0(R) = Ĝ0.

Proof. The equivalence betweenAG and LG implies that the holomorphic involution
θ � GC corresponding to G via Corollary 3.8 is algebraic. Thus, both τ and σ are
real algebraic, that is, defined by polynomial equations over the real numbers. This
implies that they induce involutions (which we denote by the same letters) of GC.

Let G =
(
GC

)σ
. Then, G(R) =

(
GC(C)

)σ
= G. By construction of Ĝ0, the choices

required for the uniqueness of Borel-Tits’s maximal connected split subgroup are

met. So there is a unique algebraic group Ĝ0 such that Ĝ0(R) = Ĝ0. �

The following lemma gives a necessary condition for a subgroup to be the max-
imal connected split subgroup.

Lemma 3.29. Let G be a real semisimple algebraic group, and let Ĝ be a semisimple

subgroup such that there exist maximal tori T , T̂ of G and Ĝ, respectively, with

T̂ ⊆ T . Let Δ be a root system of G with respect to T , and let Δ̂ be the (non-zero)

restriction of elements of Δ to T̂ . Assume Δ̂ is a root system. If G is simply

connected or Δ̂ is a non-reduced root system, then Ĝ is simply connected.

Remark 3.30. In the above lemma, simple connectedness is meant in the algebraic
sense: namely, the lattice of inverse roots is maximal within the lattice of weights
of the group. Note that the algebraic fundamental group for compact linear alge-
braic groups and the topological fundamental group of their corresponding groups
of matrices of complex points are the same (see [13] for details). The polar decom-
position implies the same for the class of reductive Lie groups. However, algebraic
simple connectedness does not mean that the fundamental group is trivial.

Lemma 3.29 has the following consequence.

Corollary 3.31. Let GC be a complex semisimple Lie group, and let G < GC be a
real form that is either simply connected or of type BC. Then the analytic subgroup

ĜC
0 ≤ GC is (topologically) simply connected.

Proof. By Proposition 3.28, we have algebraic groups GC, ĜC and real forms G, Ĝ
to which the results of Borel and Tits may be applied. In particular Ĝ is simply

connected. Assume ĜC was not. Then, it would have a finite cover (ĜC)′, which in

turn would contain a real form (Ĝ)′ (defined by a lifting σ) that would be a finite

cover of Ĝ and an algebraic group. �

Example 3.32. Take the real form SU(p, q) < SL(p+q,C). Its fundamental group
is

π1(S(U(p)×U(q))) = Z.

We know from [4] that the maximal split Lie subalgebra of su(p, q), p > q, is
so(q + 1, q), whereas the maximal split subalgebra of su(p, p) is sp(2p,R). In what
follows, we analyse what the maximal split subgroup is in the various cases:

• p > q. Since the root system is non-reduced (see [25, VI.4]), Lemma 3.29 and
Corollary 3.31 imply that the maximal split subgroup is the algebraic universal
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cover of SO(q + 1, q)0. We have the following table of fundamental groups of the
connected component of SO(p+ 1, p):

q = 1 Z

π1(SO(q + 1, q)0) q = 2 Z× Z/2Z
q ≥ 3 Z/2Z× Z/2Z

For q = 1, we have the exact sequence

1 → Z/2Z → Sp(2,R) → SO(2, 1)0 → 1,

since Sp(2,R) is simply connected (for example, since no finite covering of it is a

matrix group). In particular ̂SU(p, 1) = Spin(2, 1)0 ∼= Sp(2,R).
When q = 2, the maximal split subgroup is again the algebraic universal cover

of SO(3, 2)0, which is a two cover considering the fundamental group. It is well
known that so(3, 2) ∼= sp(4,R), and that Spin(3, 2)0 ∼= Sp(4,R) are connected.

Since moreover Spin(3, 2)0 is algebraically simply conected, we have ŜU(2, 3) ∼=
Spin(3, 2)0.

As for q ≥ 3, the universal covering group of SO(q, q + 1)0 is the connected
component of Spin(q, q + 1). This group is a 4-fold cover of SO(q, q + 1)0, which is
thus simply connected.

• p = q. Since Sp(2n,R) ⊆ SU(n, n), the candidate to the maximal split sub-
group is a finite cover of Sp(2n,R) embedding into Sp(2n,C) (which is simply

connected). Thus ̂SU(n, n) = Sp(2n,R).

The group SU(p, q) is a group of Hermitian type, a class of groups which will
become relevant in Section 5.

Definition 3.33. A reductive group (G,H, θ,B) is said to be of Hermitian type if
the symmetric space associated to it admits a complex structure which is invariant
by the group of isometries. If the group G is simple, this is equivalent to H having
non-discrete centre.

The Lie algebras of simple such groups are sp(2n,R), su(p, q), so∗(2, n), so(2, n),
e6(−14), and e7(−25).

4. The Kostant–Rallis section

Let (G,H, θ,B) be a reductive Lie group, and consider the decomposition g =
h⊕ m induced by θ. Let a ⊆ m be a maximal anisotropic Cartan subalgebra, and
let HC, gC, etc., denote the complexifications of the respective groups, algebras,
etc. Note that we do not assume that GC exists. In [29], Kostant and Rallis study
the orbit structure of the HC module mC in the case when GC is the adjoint group
of a complex reductive Lie algebra gC, namely, GC = Int(gC) = Aut(gC)0. In this
section, we study a generalization of their result to reductive Lie groups in the sense
of Definition 3.1.

The first result we will be concerned about is the Chevalley restriction theorem,
which is well known for Lie groups of adjoint type. Recall that given a complex
reductive Lie algebra gC, its adjoint group, denoted by Ad(gC), is the connected
component of its automorphism group Aut(gC). It coincides with the connected
component of the image of the adjoint representation of any Lie group GC such
that Lie(GC) = gC. We need the following.
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Definition 4.1. We define the restricted Weyl group of g (resp. gC) associated
to a (resp. aC), W (a) (resp. W (aC)) to be the group of automorphisms of a (resp.
aC) generated by reflections on the hyperplanes defined by the restricted roots
λ ∈ Λ(a) (resp. Λ(aC)).

The Chevalley restriction theorem asserts that, given a group G of adjoint type,
the restriction C[mC] → C[aC] induces an isomorphism

C[mC]H
C ∼=→ C[aC]W (aC).

See for example [21].
The restricted Weyl group admits other useful characterisations in the case of

strongly reductive Lie groups.

Lemma 4.2. Let (G,H, θ,B) be a strongly reductive Lie group. We have:

(1) W (a) = NH(a)/CH(a), where

NH(a) = {h ∈ H : Adh(x) ∈ a for all x ∈ a},

CH(a) = {h ∈ H : Adh(x) = x for all x ∈ a}.
(2) W (aC) = NHC(aC)/CH(aC), where NHC(aC) and CHC(aC) are defined as

above.
(3) Moreover, W (aC) = W (a) as automorphism groups of aC, where the action

of W (a) on aC is defined by extension by complex linearity.

Proof. The first statement follows from Proposition 7.24 in [25].
As for (3), it follows by definition of restricted roots.
To prove (2), it is therefore enough to prove that W (a) = NHC(aC)/CHC(aC)

when acting on aC. Now, if (G,H, θ,B) is strongly reductive, then (HC, H, τ, Bh)
is also strongly reductive for τ , the involution defining h inside its complexification,
and a suitable choice of Bh. Hence, by Lemma 7.22 in [25], if h = xeY is the polar
decomposition of an element in NHC(aC), we have, by τ -invariance of aC, that both
x and Y normalise aC. This means that x ∈ NH(aC) = NH(a), and Y ∈ nhC(aC).

Now, by Lemma 6.56 in [25], nhC(aC) = chC(aC), so the statement is proved. �

We have the following.

Proposition 4.3. Let (G,H, θ,B) be a strongly reductive Lie group and let

(Ĝ0, Ĥ0, θ̂, B̂) be the maximal connected split subgroup. Then, restriction induces
an isomorphism

C[mC]H
C ∼= C[aC]W (aC) ∼= C[m̂C](

̂H0)
C

.

If moreover (G,H, θ,B) < (GC, U, τ, BC) is a real form, from Definition 3.27

one has the maximal split subgroup (Ĝ, Ĥ, θ̂, B̂) < (G,H, θ,B), and

C[mC]H
C ∼= C[m̂C]

̂HC

.

Proof. By Lemma 7.24 in [25],

Ad(H) ⊆ Int(h⊕ im).

Then, given that HC = Heih, HC clearly acts on gC by inner automorphisms of gC.
So Ad(hC) = Ad(HC) ⊆ (Ad gC)θ, which implies that

(8) C[mC]Ad h
C

= C[mC]Ad HC ⊇ C[mC](Ad g
C)θ .
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Now, Proposition 10 in [29] implies that

C[mC](Ad g
C)θ = C[mC]Ad h

C

,

and so we obtain equalities in equation (8) above.

Since W (aC) = NAd h(a)/CAd h(a), the isomorphism C[mC]H
C ∼= C[aC]W (aC)

follows from the adjoint group case and (8).
As for the split subgroup, by the adjoint case and Proposition 3.25, we have

C[aC]W (aC) ∼= C[m̂C]
̂HC

0 . Also, by the definition of Ĥ (see Definition 3.27), Ad(Ĥ0) ⊂
Ad(Ĥ) ⊂ Ad(Ĝ0)θ, which by Proposition 3.21 and Proposition 10 in [29] implies

that C[aC]W (aC) ∼= C[m̂C]
̂HC

. �

Proposition 4.4. Let a = dim aC. Then:

(1) C[aC]W (aC) is generated by homogeneous polynomials of degrees m1, . . . ,ma,
canonically determined by (G, θ).

(2) If (Ĝ0, Ĥ0, θ̂, B̂) < (G,H, θ,B) is the maximal connected split subgroup, the
exponents are the same for both groups.

Proof. Statement (1) is well known and follows from Proposition 2.7(2).
(2) follows by Proposition 4.3 and the fact that the exponents of the group

(G,H,B, θ) are mk−1, where mk are the degrees of the generators of C[mC]H
C

. �

Remark 4.5. Note that the ring of invariant polynomials depends on the choice of
involution θ for non-semisimple groups, as the number of degree one generators of

C[mC]H
C

is the dimension dimR z(g)∩m, which depends on θ if G is not semisimple.
So two instances of Cartan data on the same Lie group will yield different rings of
invariants.

We thus have an algebraic morphism

(9) χ : mC � mC � HC ∼= aC/W (aC),

where the double quotient sign � stands for the affine GIT quotient.
We next build a section of the above surjective map. This is done by Kostant

and Rallis in the case GC = Ad(gC) for a complex reductive Lie algebra gC. Let us
start with some preliminary definitions.

Definition 4.6. An element x ∈ mC is said to be regular if dim cmC(x) = dim aC.
Here

(10) cmC(x) = {y ∈ mC : [y, x] = 0}.

Denote the subset of regular elements of mC by mC
reg.

Regular elements are those whose HC-orbits are maximal dimensional, so this
notion generalises the classical notion of regularity of an element of a complex
reductive Lie algebra.

Remark 4.7. Note that the intersection mC ∩ gCreg is either empty or the whole of

mreg. Here greg denotes the elements of gC with maximal dimensional GC-orbit.

The following definition follows naturally from the preceding remark.
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Definition 4.8. A real form g ⊂ gC is quasi-split if m∩gCreg = mC
reg. These include

split real forms and the Lie algebras su(p, p), su(p, p + 1), so(p, p + 2), and e6(2).
Quasi-split real forms admit several equivalent characterizations: g is quasi-split
if and only if cg(a) is abelian, which holds if and only if gC contains a θ-invariant
Borel subalgebra and if and only if m ∩ gCreg = mreg.

Theorem 4.9. Let (G,H, θ,B) be a strongly reductive Lie group. Let sC ⊆ gC be
a principal normal TDS with normal basis {x, e, f} (see Definition 2.5). Then

(1) The affine subspace f + cmC(e) is isomorphic to aC/W (aC) as an affine
variety.

(2) f + cmC(e) is contained in the open subset mC
reg, where cmC(e) is defined

as in (10).
(3) f + cmC(e) intersects each (Ad(Gθ))

C-orbit at exactly one point. Here Gθ

is given in Definition 3.12.
(4) f + cmC(e) is a section of the Chevalley morphism (9).

(5) Let (Ĝ0, Ĥ0, θ̂, B̂) < (G,H, θ,B) be the maximal connected split subgroup.
Then, sC can be chosen so that f + cmC(e) ⊆ m̂C. If moreover G is a real

form of GC, say, then f + cmC(e) is the image of Kostant’s section for ĜC

[28]. Here, m̂C is defined as in Proposition 2.7 and ĜC as in Lemma 3.26.

Proof. We follow the proof due to Kostant and Rallis (see Theorems 11, 12, and 13
in [29]), adapting their arguments to our setting when necessary.

First note that Proposition 4.3 implies the existence of a surjective map

mC → aC/W (aC).

As in [29], consider the element

(11) ec = i
∑
j

djyj ∈ ig,

where yi ∈ gλi
are as in Section 2.2 and

(12) dj =

√
−cj
bj

.

Here the elements cj are defined so that

(13) w =
∑
i

cihi ∈ a

is the only element in a such that λ(w) = 2 for any λ ∈ Λ(a), and hi is the dual of
λi via the bilinear form B. Note that in order for ec to belong to ig, we must prove
that ci/bi < 0. Now, following the proof of Proposition 18 in [29], for any y ∈ g, we
have 2B(y, θy) = B(y + θy, y + θy) < 0 since y + θy ∈ h. Hence, if bi = B(yi, θyi)
it must be a negative real number. Also the fact that ci > 0 follows from general
considerations on the representations of three-dimensional subalgebras (see Lemma
15 in [29]) and so does not depend on the choice of pairing B.

Once we have that, taking

fc = θec,

it follows by the same arguments found in [29] that {ec, fc, w} generate a principal
normal TDS sC stable by σ and θ (Proposition 22 in [29]). In particular, sC has a
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normal basis, say {e, f, x}. By construction, it is clear that f + cmC(e) ⊆ m̂C
reg. It is

furthermore a section, which is proved as in [29], as groups act by inner automor-
phisms of the Lie algebra, together with Lemma 4.10 following this theorem. This
proves (1), (2), and (4)

As for (3), it follows directly from Theorem 11 in [29], which asserts that the
affine space f + cmC(e) hits each Ad(G)Cθ orbit exactly at one point, taking Remark
3.22 and (2) in Proposition 3.21 into account.

Statement (5) follows from the fact that Ĝ0 is strongly reductive; hence the state-
ment follows from Theorem 7 in [28], where a section for the Chevalley morphism
for complex groups is defined, together with Remark 19 in [29] and its proof, where
it is checked that f + cmC(e) defines a section of the restriction of the Chevalley
morphism to m̂C

reg ↪→ mC
reg. �

Lemma 4.10. The Lie algebra sC is the image of a σ and θ-equivariant morphism
sl(2,C) → gC where σ on sl(2,C) is complex conjugation and θ on sl(2,C) is defined
by X �→ −Ad ( 0 1

1 0 ) (
tX).

Proof. Consider the basis of sl(2,R):

(14) E =
1

2

(
1 −1
1 −1

)
, F =

1

2

(
1 1
−1 −1

)
, W =

(
0 1
1 0

)
,

and note that W ∈ sym0(2,R) =: msl, E = θF , so that E + F ∈ so(2,R).
Consider ec, fc, w as described in the proof of Theorem 4.9. Then the map

defined by

(15) ρ′ : E �→ iec, F �→ ifc, W �→ −w

is the desired morphism. Indeed, it is σ-invariant by definition. Furthermore,
so(2,R) 
 E + F �→ iec + ifc ∈ h by construction. Finally, msl is generated by
W and E − F , and so is s ∩ m. Indeed, we must only prove that iec − ifc is not
a multiple of w. But this follows from simplicity of sl(2,C), the fact that sC is
homomorphic to it, and w �= 0, which forces S-triples to be independent. �

Remark 4.11. Theorem 4.9 implies that the GIT quotient mC � HC does not pa-
rameterise HC orbits or regular elements, but rather Ad(HC)θ orbits, each of which
contains finitely many HC-orbits. This is a consequence of the fact that not all nor-
mal principal TDS’s are HC conjugate, which yields different sections for different
choices of a TDS. See [29] for more details.

By the above remark, we will need to keep track of conjugacy classes of principal
normal TDS’s.

Proposition 4.12. Let sC ⊆ gC be a normal TDS, and let (e, f, x) be a normal
triple generating it. Then:

(1) The triple is principal if and only if e + f = ±w, where w is defined by
(13).

(2) There exist e′, f ′ such that (e′, f ′, w) is a TDS generating sC and e′ = θf ′.
Under these hypotheses, e′ is uniquely defined up to sign.

Proof. See Lemma 5 and Proposition 13 in [29]. �
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In the classical setting of complex reductive Lie algebras, there is also a notion
of principal TDS. These are defined to be Lie algebras homomorphic to sl(2,C)
generated by regular nilpotents, except that regularity is now taken in the sense of
the whole Lie algebra gC, which need not coincide with the notion for a given real
form g (see Remark 4.7).

Let us recall some facts about three-dimensional subalgebras. Let sC be a
normal TDS (cf. Definition 2.5) generated by the normal S-triple {e, f, x}. Let
n = dim cgC(e). The adjoint representation induces a splitting

(16) g
C ∼=

n⊕
k=1

Mk

into irreducible sl(2,C)-modules Mk, generated from the highest weight vector ek
by the action of f , possibly isomorphic to one another. Since the highest weight
vectors are annihilated by the action of e, it follows that cgC(e) is generated by the

highest weight vectors. Note that cgC(e) is θ-invariant. Given that [x, hC] ⊂ hC and

[x,mC] ⊂ mC, then ek ∈ mC or ek ∈ hC.

Lemma 4.13. Let g be a real reductive Lie algebra, and let s ⊂ g be such that sC is
a principal normal TDS of gC with generating normal triple {e, f, x}. Let gλ ⊂ gC

be the eigenspace of eigenvalue λ for the action of x. Let ek, k = 1, . . . , n, be highest
weight vectors for the action of x with eigenvalues mk − 1 ≥ 0, k = 1, . . . , n, and
assume mk < mk+1, so that m0 ≥ 1. Then:

(1) If m1 = 1, then g0 = cCg (s
C) = cCh (s

C)⊕ zmC(gC) = M
dim c

C

g(s
C)

1 .

(2) Moreover, g ⊂ gC is quasi-split if and only if g1 = z(gC).
(3) For all values of k,

(17) mk − 1 :=
dimMk − 1

2
.

Proof. To prove (1), note that it is clear that g1 = cCg (s
C). We need to prove g1∩mC

is central. Note that cgC(s) = cgC(w)∩cgC(iec), where ec and w are as in Proposition
4.3. By Theorem 3.6 in [27] cgC(e) is fully composed of nilpotent elements; however,

all elements in cgC(w) = aC are semisimple, hence

cgC(w) ∩ cgC(iec) = chC(w) ∩ chC(iec).

For (2), by the proof of (1) above, cgC(s) = z(gC) if and only if chC(w) is composed
of semisimple elements, which happens if and only if Δi = 0, for Δi as in (4).
Namely, if and only if g is quasi-split.

Finally, (3) follows from [27, 2.5(c) and (d)] (or simply, by the way the Mk’s are
generated). �

Remark 4.14. Note that mk is an exponent of G whenever ek ∈ mC.

Corollary 4.15. Let i : S ↪→ G be a three-dimensional subgroup corresponding to
a three-dimensional subalgebra s ⊂ g. Then i is irreducible into the component of
the identity G0 (namely, ZG0

(S) = Z(G0)) if and only if G is quasi-split.
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5. G-Higgs bundles

For this section, we follow [18].

5.1. Basic theory. Let X be a smooth complex projective curve, and let L → X
be a holomorphic line bundle on X. Let (G,H,B, θ) be a real reductive Lie group
as defined in Section 3, and consider h, m, etc., as defined in Section 2. Note that
by condition (5) in Definition 3.1, we have a representation

(18) ι : H → GL(m),

which complexifies to HC � mC. We will refer to both as the isotropy representa-
tion.

Definition 5.1. An L-twisted G-Higgs bundle over X is a pair (E,ϕ), where
E is a holomorphic principal HC-bundle on X and ϕ ∈ H0(X,E(mC) ⊗ L). Here,
E(mC) is the vector bundle associated to E via the isotropy representation. When
L = K is the canonical bundle of X, these pairs are referred to simply as G-Higgs
bundles.

Remark 5.2. (1) When G is the real Lie group underlying a complex reductive Lie
group, the above definition reduces to the classical definition for complex groups
given by Hitchin [23]. Indeed, if U < G is the maximal compact subgroup, then
G = (UC)R, so mC = (iu)C = g and the complexified isotropy representation is the
adjoint representation.

(2) Note that the above definition uses all the ingredients of the Cartan data of
G except the bilinear form B. Its role will become apparent in the definition of
stability conditions, as well as the Hitchin equations for G-Higgs bundles.

Given s ∈ ih, we define:

(19)

ps = {x ∈ hC | Ad(ets)(x) is bounded as t → ∞},
Ps = {g ∈ HC | Ad(ets)(g) is bounded as t → ∞},
ls = {x ∈ hC | [x, s] = 0 = ch(x)},
Ls = {g ∈ HC | Ad(ets)(g) = g = CHC(eRs)},
ms = {x ∈ mC : limt→0 ι(e

ts)(x) exists},
m0

s = {x ∈ mC : ι(ets)(x) = x}.
We call Ps and ps (respectively Ls and ls) the parabolic (respectively Levi) sub-
group and subalgebra associated to s. For each s ∈ ih, we define χs to be the
character of ps dual to s via the bilinear form B. We note it is a strictly antidomi-
nant character of ps (cf. [18]).

Consider an L-twisted G-Higgs bundle (E,ϕ). Given a parabolic subgroup Ps ≤
HC and σ ∈ Γ(X,E(HC/Ps)) a holomorphic reduction of the structure group to
Ps, let Eσ denote the corresponding principal bundle. The isotropy representation
restricts to actions Ps � ms, Ls � m0

s, so it makes sense to consider Eσ(ms).
Similarly, given a choice of a holomorphic reduction of the structure group σL ∈
Γ(X,Ps/Ls), one may consider EσL

(m0
s).

Let Fh be the curvature of the Chern connection of E with respect to a C∞

reduction of the structure group h ∈ Ω0(X,E(HC/H)). Let s ∈ ih, and let σ ∈
Γ(X,E(HC/Ps)) be holomorphic. We define the degree of E with respect to s
and the reduction σ as follows:

(20) degE(s, σ) =

∫
X

χs(Fh).
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An alternative definition of the degree when the character χs lifts to a character
δs : Ps → C× is given by

(21) degE(s, σ) = deg(E ×δs C).

See [18] for the equivalence of both definitions.
We can now define the stability of a G-Higgs bundle. This notion naturally

depends on an element in iz, which has special significance when G is a group of
Hermitian type (cf. Definition 3.33).

Definition 5.3. Let α ∈ iz. We say that the pair (E,ϕ) is:

(1) α-semistable if for any s ∈ ih and any holomorphic reduction of the
structure group σ ∈ Γ(X,E(HC/Ps)) such that ϕ ∈ H0(X,E(ms) ⊗ L),
then

degE(s, σ)−B(α, s) ≥ 0;

(2) α-stable if it is semistable and for any s ∈ ih \ Ker(dι), given any holo-
morphic reduction σ ∈ Γ(X,E(HC/Ps)) such that ϕ ∈ H0(X,E(ms)⊗ L),
then

degE(s, σ)−B(α, s) > 0;

(3) α-polystable if it is α-semistable and whenever

degE(s, σ)−B(α, s) = 0

for some s and σ as above, there exists a reduction σ′ to the corresponding
Levi subgroup Ls such that ϕ takes values in H0(X,Eσ′(m0

s)⊗ L).

The moduli space of α-polystable L-twisted G-Higgs bundles is defined
as the set Mα

L(G) of isomorphism classes of such objects. It coincides with the
moduli space of S-equivalence classes of α-semistable Higgs bundles. For a more
detailed account of these notions, as well as the geometry of Mα

L(G), we refer the
reader to [18].

Parameters appear naturally when studying the moduli problem from the gauge-
theoretic point of view. This relation is established by the Hitchin–Kobayashi
correspondence as follows (cf. [18]).

Theorem 5.4. Let α ∈ iz. Let L → X be a line bundle, and let hL be a Hermitian
metric on L. Fix ω a Kähler form on X. An L-twisted G-Higgs bundle (E,ϕ) is
α-polystable if and only if there exists h ∈ Ω0(X,E(HC/H)) satisfying

(22) Fh − [ϕ, τh(ϕ)]ω = −iαω,

where Fh is the curvature of the Chern connection on E corresponding to h, and τh :
Ω0

(
E(mC ⊗ L)

)
→ Ω0

(
E(mC)⊗ L

)
is the antilinear involution on Ω0(E(mC)⊗L)

determined by h and hL.

In the above theorem, we fix a G-Higgs bundle and look for a solution of equa-
tion (22). From a different perspective, we can construct the gauge moduli space
associated to equation (22) as follows. Fix a C∞ principal HC-bundle E. Given a
reduction h ∈ Ω0(X,E(HC/H)), let Eh be the corresponding principal H-bundle.
Consider pairs (A,ϕ) where A is a connection on Eh and ϕ ∈ Ω0(X,Eh⊗L) is holo-
morphic with respect to the holomorphic structure defined by A and both satisfy
(22). The gauge group H = Ω0(X,Ad Eh), where Ad Eh := Eh ×Ad H is the asso-
ciated bundle of groups, acts on solutions of (22). Let Mgauge,α

L,Eh
(G) be the gauge

moduli space obtained by taking the quotient of the space of solutions to (22) by this
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action. In a similar fashion, we can define the moduli space Mα
L,E(G) ⊂ Mα

L(G) of

α-polystable G-Higgs bundles with underlying smooth HC-bundle E. Theorem 5.4
defines a homeomorphism

(23) Mα
L,Eh

(G) ∼= Mgauge,α
L,E (G).

In the case L = K, for α = 0, there is a third moduli space that can be considered.
Let R(G) = Hom+(π1(X), G)/G be the quotient of the set of reductive homomor-
phisms ρ : π1(X) → G by the conjugation action of G. Combining the homeomor-
phism (23) with Corlette–Donaldson’s theorem [15, 16], from each ρ ∈ R(G) one
obtains a polystable Higgs bundle (E,ϕ) ∈ Mα

L,E(G). This induces a homeomor-
phism

(24) R(G) ∼= M0
K(G).

This correspondence is the basic content of non-abelian Hodge theory.

5.2. Topological type of Higgs bundles. Given a C∞ principal bundle E, its
isomorphism class is determined by a topological invariant, which in the case when
G is connected is given by an element d ∈ π1(H). This goes as follows: consider
the short exact sequence

1 → π1(H
C) → H̃C → HC → 1.

Then, since dimR(X) = 2 and the fundamental group of a Lie group is abelian
(see Theorem 7.1 in [13]), one has that H2(X, π1(H

C)) ∼= π1(H
C) ∼= π1(H), where

the last isomorphism follows from the fact that H is a deformation retract of HC.
So through the associated long exact sequence in cohomology one associates to
each class [E] ∈ H1(X,HC) an element d(E) ∈ π1(H). In particular, given a G-
Higgs bundle, (E,ϕ), one may consider the class corresponding to the differentiable
principal bundle underlying E. Fixing the topological class d ∈ π1(H), we can
consider the subspace Mα

L,d(G) ⊂ Mα
L(G) consisting of isomorphism classes of

α-polystable L-twisted G-Higgs bundles with class d.
In the case of groups of Hermitian type, there is an equivalent invariant that one

can define called the Toledo invariant. The original definition of this invariant in
the context of representations of the fundamental group is due to Toledo [34] when
G = PU(n, 1), generalised by several authors for the various simple classical and
exceptional groups of Hermitian type and extended to arbitrary groups of Hermitian
type by Burger–Iozzi–Wienhard [14]. In the context of L-twisted G-Higgs bundles
the Toledo invariant has been defined for arbitrary groups of Hermitian type in [5].
These two general definitions naturally coincide when L = K.

Let G be a simple Hermitian Lie group such that G/H is irreducible. In this
situation the centre z of h is isomorphic to R, and the adjoint action of an element
J ∈ z defines an almost complex structure on m = To(G/H), where o ∈ G/H
corresponds to the coset H, making the symmetric space G/H into a Kähler mani-
fold. The almost complex structure ad(J) gives a decomposition mC = m++m− in
±i-eigenspaces, which isHC-invariant. An immediate consequence of this decompo-
sition for an L-twistedG-Higgs bundle (E,ϕ) is that it gives a bundle decomposition
E(mC) = E(m+) ⊕ E(m−), and hence the Higgs field decomposes as ϕ = (β, γ),
where β ∈ H0(X,E(m+)⊗ L) and γ ∈ H0(X,E(m−)⊗ L).

There is a character of χT : hC → C called the Toledo character and a rational
number qT such that qTχT lifts to a character χ̃T of HC. We define the Toledo
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invariant of an L-twisted G-Higgs bundle (E,ϕ) by

(25) T (E) =
1

qT
deg(E ×χ̃T

C×).

One can define the ranks of β and γ (see [5]). These are integers bounded by the
rank of the symmetric space G/H. The following can be found in [5] (see Theorem
3.18 and the discussion preceding Theorem 4.14 therein):

Proposition 5.5. Let G be a simple group of Hermitian type with irreducible asso-
ciated symmetric space, so that z(h) = iR. Let (E, (β, γ)) be an L-twisted G-Higgs
bundle, α-semistable for some α = iλJ . Then:

(1) The Toledo invariant satisfies the Milnor–Wood inequality

(26) −rkβ · dL − λ

(
dimm

N
− rkβ

)
≤ T (E) ≤ rkγ · dL − λ

(
dimm

N
− rkγ

)
,

where N is the dual Coxeter number of gC and dL is the degree of L. More-
over, when G is of tube type (i.e., G/H is biholomorphic to a tube domain),

T (resp. −T ) is maximal if and only if γ(x) ∈ mC+
reg (resp. β(x) ∈ mC−

reg)
for all x ∈ X.

(2) There exists a canonical k > 0 such that

d(E) = kT (E),

where d(E) denotes the projection of the topological class d(E) to the torsion
free part of π1(H).

Now, the curvature of a principal bundle E determines the torsion free part of its
topological class d(E) via the first Chern class. This information is partially deter-
mined by the parameter and vice versa. Let z(g)⊥ be the orthogonal complement
of z(g) inside g.

Proposition 5.6. Let (E,ϕ) be an α-polystable Higgs bundle. Let α = α0 + α1,
where α0 ∈ iz(h) ∩ iz(g) and α1 ∈ iz(h) ∩ iz(g)⊥ are the projections to iz(g) and
iz(g)⊥. Then, α0 determines d(E).

Proof. In order to see this, we note that α0 is determined by the image χ(α) for
all χ ∈ Char(hC)∩Char(gC). Now, [HC, HC]-invariance implies that it makes sense
to evaluate χ(FA − [ϕ, ϕ∗]), and, moreover, the evaluation of all such characters
determines FA − [ϕ, ϕ∗]. Furthermore, for χ ∈ Char(hC) ∩ Char(gC), we have
χ([ϕ, ϕ∗]) = 0, as [ϕ, ϕ∗] is a two form with values in [gC, gC]. This proves the
statement. �

Remark 5.7 (Topological type and parameters). A non-zero parameter α �= 0 makes
sense only when z(h) �= 0. This includes the case of real groups underlying a complex
non-semisimple reductive Lie group (GC)R (cf. Remark 5.2) or the case of simple
groups of Hermitian type (cf. Definition 3.33).

Proposition 5.6 implies that when GC has a positive dimensional centre, the
topology of the bundle fully determines the parameter, and conversely, the torsion
free piece of the topological type is also determined by the parameter. On the other
hand, the same result implies that for Hermitian groups we are in the opposite
situation, as these are characterised by having large z(h) ∩ z(g)⊥.
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5.3. Morphisms induced by group homomorphisms. Consider a morphism
of reductive Lie groups f : (G′, H ′, θ′, B′) → (G,H, θ,B).

Definition 5.8. Given a G′-Higgs bundle (E′, ϕ′), we define the extended G-
Higgs bundle (by the morphism f) to be the pair (E′(HC), df(ϕ′)), where E′(HC)
is the principal HC-bundles associated to E′ via f . Note that df(ϕ′) is well defined
as df commutes with the adjoint action.

These pairs satisfy the following.

Proposition 5.9. With notation as above, if the G′-Higgs bundle (E′, ϕ′) is α-
polystable and df(α) ∈ iz(h), then the corresponding extended G-Higgs bundle (E,ϕ)
is df(α)-polystable.

Proof. By Theorem 5.4, polystability of (E′, ϕ′) is equivalent to the existence of a
solution to the Hitchin equation (22). Let h′ be the corresponding solution. Now,
h′ extends to a Hermitian metric on E, as f defines a map

Ω0(E((H ′)C/H ′)) → Ω0(E(HC/H)).

Let h ∈ Ω0(E(HC/H)) be the image of h′ via that map. Clearly Fh′ is a two form
with values in h. But Fh = df(Fh′), where df is evaluated on the coefficients of the
two-form Fh′ , as the canonical connection ∇h is defined by

dh = 〈∇h·, ·〉+ 〈·,∇h·〉.

Since dh = df(dh′), it follows that ∇h = df(∇h′) solves the modified equations. By
Theorem 5.4, this gives a polystable Higgs bundle, which by construction must be
(E,ϕ). �

As a corollary we have the following.

Corollary 5.10. With the above notation, if α ∈ iz′ is such that df(α) ∈ iz, then
the map

(E′, ϕ′) �→
(
E′(HC), df(ϕ′)

)
induces a morphism

Mα
d (G

′) → Mdf(α)
f∗d

(G),

where f∗d is the topological type of E(HC). When G is connected, this corresponds
to the image via the map f∗ : π1(H

′) → π1(H) induced by f .

Lemma 5.11. Let G′ ⊆ G be two Lie groups. Let E, Ẽ be two principal G′-bundles
over X, and suppose there exists a morphism

F : E(G) → Ẽ(G)

of principal G-bundles. Then there exists an isomorphism of principal NG(G
′)-

bundles E(NG(G
′)) ∼= Ẽ(NG(G

′)).

Proof. By Theorem 10.3 in [33], F is an isomorphism. Denote NG(G
′) by N .

Choose common trivialising neighbourhoods Ui → X such that

E|Ui
∼= Ui ×G′, Ẽ|Ui

∼= Ui ×G′.
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Let gij , g̃ij be the transition functions for E and Ẽ respectively and define Fi :=
F |E(G)|Ui

. Then we have the following commutative diagram:

Uj ×G

��

�� Uj ×G

��

(x, g) � ��
�

��

(x, Fj(g))�

��
(x, ggij)

� �� (x, Fi(ggij)) = (x, Fj(g)g̃ij)

Ui ×G �� Ui ×G.

Now, since for any n ∈ N, g ∈ G′ we have that ng ∈ N , it follows that for all i, j,

Fi(N) = Fj(N)g̃ij . Namely, the image bundle of E(N) is isomorphic to Ẽ(N). �

5.4. Deformation theory. The deformation theory of Higgs bundles was studied
by several authors, amongst which we cite [6] in the setting of arbitrary pairs and
[18] and references therein for G-Higgs bundle when G is a real reductive Lie group.
Let us recall the basics.

The deformation complex of a G-Higgs bundle (E,ϕ) → X is

(27) C• : [dϕ, · ] : E(hC) → E(mC)⊗ L,

whose hypercohomology sets fit into the exact sequence

0 → H0(C•) → H0(X,E(hC)) → H0(X,E(mC)⊗ L)(28)

→ H1(C•) → H1(E(hC)) → H1(X,E(mC)⊗ L) → H2(C•) → 0.

In particular, we see that H0(C•) = aut(E,ϕ), where aut(E,ϕ) denotes the Lie
algebra of the automorphism group of (E,ϕ).

On the other hand, the space of infinitesimal deformations of a pair (E,ϕ) is
canonically isomorphic to H1(C•) ([6, Theorem 2.3]). Hence, the expected dimen-
sion of the moduli space is the dimension of H1(C•(E,ϕ)) at a smooth point (E,ϕ).

Definition 5.12. A G-Higgs bundle (E,ϕ) is said to be simple if

Aut(E,ϕ) = H0(X,Ker(ι) ∩ Z(HC)).

(E,ϕ) is said to be infinitesimally simple if

H0(X,C•) ∼= H0(X, (Ker(dι) ∩ z(hC))).

Here ι is the isotropy representation of HC in mC .

These notions are deeply related to smoothness of the points of the moduli space,
as the next result shows. For an alternative proof of the following proposition, see
[11].

Proposition 5.13. Let (E,ϕ) be a stable and simple G-Higgs bundle, where
(G,H, θ,B) is a real strongly reductive Lie group. Let zm = z(gC) ∩ mC. Assume
that H2(C•) = H1(X, zm ⊗ L). Then (E,ϕ) is a smooth point of the moduli space.
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Proof. This follows from Theorem 3.1 in [6] applied to the algebraic group HC and
the isotropy representation ι : HC → Aut(mC).

Indeed, singularities of the moduli space can be of orbifold origin, which are
discarded by the simplicity assumption, or caused by the existence of obstructions
to deformations, measured by H2(C•). Now, although Theorem 3.1 in [6] assumes
the vanishing of the whole hypercohomology group, a simple argument shows that
the centre plays no role in obstructing infinitesimal deformations.

To understand this, let mss = [gC, gC] ∩ mC, hCss = (h ∩ gss)
C, zm = z(gC) ∩ mC,

and zh = hC ∩ z(gC). Observe that Ad : G → Aut(g) factors through Gss := [G,G],
which implies that

E(hC) ∼= Ess(h
C

ss)⊕X × zh, E(mC) ∼= E(mC

ss)⊕X × zm.

Moreover, [ϕ,E(hC)] = [ϕss, Ess(h
C
ss)] ⊂ Ess(m

C
ss), which implies that the complex

C• splits into a direct sum of complexes C• = C•
ss ⊕ Z(C•) where

(29) C•
ss : Ess(h

C

ss) → Ess(m
C

ss)⊗ L

and

(30) Z(C•) := X × zh
0→ X × zm ⊗ L.

Hence

(31) Hi(C•) = Hi(C•
ss)⊕Hi(Z(C•)).

Now, following the proof of Theorem 3.1 in [6], we have complexes

G•
n : p∗nE(hC)⊗ C[ε]/εn → p∗nE(mC)⊗ L⊗ C[ε]/εn → 0,

where pn : X × Spec(C[ε]/εn) → X is the projection on the first factor. With this
we obtain a short exact sequence of complexes

(32) 0 → C• ⊗ 〈εn〉 → Gn+1 → Gn → 0,

which splits into the direct sum of

0 → C•
ss ⊗ 〈εn〉 → Gn+1,ss → Gn,ss → 0

and

(33) 0 → Z(C•)⊗ 〈εn〉 → Z(Gn+1) → Z(Gn) → 0,

where G•
n,ss, Z(Gn) are defined similarly to (29), (30). Hence, the long exact se-

quence in hypercohomology induced by (32) also splits. This, together with (31)
and Theorem 3.1 in [6], implies that the only obstructions to deformation come
from the long exact sequence induced by (33). We see that this long exact sequence
splits into short exact sequences

0 → Hi(Z(C•)) → Hi(Z(G•
n+1)) → Hi(Z(G•

n)) → 0,

and so we may conclude that no obstruction to deformation lies in H2(Z(C•)). �

The above has its counterpart in terms of the gauge moduli space. This is
done in full detail in [18] in the case α = 0, L = KX . We extend it here to the
deformation complex of an arbitrary pair. Coming back to the gauge moduli setup
developed in Section 5.1, let (A,ϕ) be a pair of a connection on some differentiable
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principal HC-bundle E, and let ϕ ∈ Ω0(E(mC) ⊗ L). Then, if h is the solution to
(22) corresponding to (A,ϕ), we get a deformation complex,

C•(A,ϕ) : Ω0(X,Eh(h))
d0−→ Ω1(X,Eh(h))⊕ Ω0(X,Eh(m

C)⊗ L)

−→
d1

Ω2(X,Eh(h))⊕ Ω0,1(X,Eh(m
C)⊗ L),

where Eh is the reduction of E to a principal H-bundle given by h, and the maps
are defined by

d0(ψ) = (dAψ, [ϕ, ψ]),(34)

d1(
.

A,
.
ϕ) = (dA(

.

A)− [
.
ϕ, τϕ]ω − [ϕ, τ

.
ϕ]ω, ∂A

.
ϕ +[

.

A
0,1

, ϕ]).

Definition 5.14. A pair (A,ϕ) is said to be irreducible if its group of automor-
phisms

(35) Aut(A,ϕ) := {h ∈ H : h∗A = A, ι(h)(ϕ) = ϕ} = Z(H) ∩Ker(ι).

It is said to be infinitesimally irreducible if

aut(A,ϕ) := Lie(Aut(A,ϕ)) = z(h) ∩Kerdι.

The following two propositions are explained in full detail in [18] for moduli
spaces of (0-polystable) Higgs bundles. For the general case, arguments are also
standard and consist of resolving the hypercohomology complex H1(C•(E,ϕ)) and
choosing harmonic representatives (see for example [26, VI.8]).

Proposition 5.15. Let (E,ϕ) ∈ Mα
L,d(G), and let (A,ϕ) ∈ Mgauge

L,d (G) be its
corresponding gauge counterpart. Assume they are both smooth points of their re-
spective moduli. Then

H0(C•(E,ϕ)) ∼= H0(C•(A,ϕ)).

Proposition 5.16. Let (E,ϕ) ∈ Mα
L,d(G), and let (A,ϕ) ∈ Mgauge

L,d (G) be its
corresponding gauge counterpart. Then

H1(C•(E,ϕ)) ∼= H1(C•(A,ϕ)).

Proposition 5.17. Under the correspondence established by Theorem 5.4, stable
Higgs bundles correspond to infinitesimally irreducible solutions to (22). On the
other hand, simple and stable bundles correspond to irreducible solutions.

6. The Hitchin map and the Hitchin–Kostant–Rallis section

Let (G,H, θ,B) be a reductive Lie group as in Definition 3.1, and let h, m, a,
etc., be as in Sections 2 and 4.

Consider the Chevalley morphism defined in Section 4:

(36) χ : mC → a
C/W (aC).

This map is C×-equivariant. In particular, it induces a morphism

hL : mC ⊗ L → a
C ⊗ L/W (aC).

The map χ is also HC-equivariant, thus defining a morphism

(37) hL : Mα
L(G) → BL(G) := H0(X, aC ⊗ L/W (aC)).

Definition 6.1. The map hL in (37) is called the Hitchin map, and the space
BL(G) is called the Hitchin base.
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Proposition 6.2. Let a = dim aC, and let zm = z(gC) ∩ mC. Let ĝC ⊂ gC be the
complexification of the maximal split subalgebra defined in Section 2.2. Assume
degL ≥ g − 1. Then

(38) dimBL(G) =
dL
2
(dim ĝ

C) + a

(
dL
2

− g + 1

)
+ h1(L) dim zm.

Proof. By definition

dimBL(G) =
∑

ek∈mC

h0(Lmk) =
∑

ek∈mC

(mkdL − g + 1) +
∑

ek∈mC

h1(Lmk)

=
∑

ek∈mC

(
(2mk − 1)

dL
2

− g + 1 +
dL
2

)
+ h1(L) dim zm

=
dL
2
(dim ĝCss + dim zm) + a

(
dL
2

− g + 1

)
+ h1(L) dim zm,

which yields (38) since by definition z(ĝC) = zm. �

Corollary 6.3. If L = K and G = (UC)R is the real group underlying a complex
reductive subgroup, then dimBL(G) = (g − 1) dim uC + dim z(uC).

Proof. We need only note that in this case mC = hC = uC, and ĝ is the split real
form of uC (cf. Remark 2.8). Hence, dim ĝC = dim uC, and dim zh = dim zm =
dim z(uC). �

Remark 6.4. We will see later that the dimension of BL(G) fails to be half the
dimension of the moduli space unless L = K, the case considered by Hitchin [23].

In what follows, we proceed to the construction of a section of the Hitchin map
(37). This generalises Hitchin’s construction [24] in essentially two ways. First of
all, Hitchin considers the case L = K, and he builds the section into MK(GC)
for a complex Lie group GC of adjoint type. A consequence of this is that α = 0,
as is the case for all semisimple groups (see Remark 5.7). Hitchin then checks
that the monodromy of the corresponding representations takes values in Gsplit,
the split real form of GC, so it is implicit in his construction that the section
factors through MK(Gsplit). In what follows, we consider the existence of the
section for arbitrary real reductive Lie groups, allowing arbitrary α ∈ iz(h), and
twisting by an arbitrary line bundle L; this requires the implementation of new
techniques to prove stability and smoothness results. Moreover, our section is
directly constructed into the moduli space of G-Higgs bundles, in particular, into
MK(Gsplit) when G = Gsplit is the split real form of a complex reductive Lie group
GC and K = L. In the latter case, this is precisely a factorisation of Hitchin’s
section through MK(Gsplit). Recall (cf. Remark 5.7) that α ∈ iz(h) decomposes
as β + γ ∈ z(h) ∩ z(g) ⊕ z(h) ∩ z(g)⊥. Then β is determined by the topology of
the bundle and determines its torsion free part. As for γ, it is not of topological
nature. Amongst groups with z(h) ∩ z(g)⊥ �= 0 we find groups of Hermitian type
(such as Sp(2n,R), SU(p, q), SO∗(2n) and SO(2, n)) or any group containing one
amongst its simple factors. On the other hand, z(g)⊥ ∩ z(h) = 0 implies that the
parameter is purely topological. This includes the case of complex reductive Lie
groups. Indeed, z(gC) = z(u)⊕ iz(u), and so z(gC)⊥ ∩ z(u) = 0.
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6.1. Some representation theory. The content of this section can be found in
[27, 29].

Choose sC ⊂ gC, a principal normal TDS (cf. Definition 2.5) defined by the
homomorphism (15) of Lemma 4.10,

(39) ρ′ : sl(2,C) → sC ⊂ gC,

which is σ- and θ-equivariant for the action of σ and θ on sl(2,C) as defined in
Lemma 4.10. Recall from (1) that the Cartan decomposition of sl(2,R) under θ is

(40) sl(2,R) ∼= so(2)⊕ sym0(2,R),

which identifies so(2) to trace zero diagonal matrices and sym0(2,R) to real antidi-
agonal matrices.

The image under ρ′ of the standard basis

(41)
1√
2

(
0 1
0 0

)
�→ e,

1√
2

(
0 0
1 0

)
�→ f,

1

2

(
1 0
0 −1

)
�→ x

is a normal triple (e, f, x) (cf. Definition 2.5).
By θ-equivariance, ρ′ = ρ′+ ⊕ ρ′−, where

(42) ρ′+ : so(2,C) ∼= C → h
C, ρ′− : sym0(2,C)

∼= C2 → m
C.

In particular, ρ′+ fits into a commutative diagram

(43) C
ρ′
+ ��

ι

��

hC

ι

��
gl(C2) �� gl(mC).

We claim that the restriction of ρ′ to sl(2,R) lifts to a θ-equivariant group homo-
morphism

(44) ρ : SL(2,R) → G

taking SO(2) to H. Indeed, by connectedness of SL(2,R) and the polar decompo-

sition, we can define ρ(eUeV ) = eρ
′Xeρ

′V for given U ∈ so(2,C), V ∈ iso(2,C). We
will abuse notation and use ρ+ both for the restriction ρ|SO(2) and its complexifi-
cation. That is,

(45) ρ+ : SO(2,C) → HC.

Now, by simple connectedness of SL(2,C), ρ′ lifts to

(46) Ad(ρ) : SL(2,C) → Ad(G)C,

where Ad : G → Aut(gC) is the adjoint representation and Ad(ρ)|SL(2,R) = Ad ◦ ρ.
Note that

(47) Ker(Ad) = ZG(g) ⊇ Z(G).



2940 OSCAR GARCÍA-PRADA, ANA PEÓN-NIETO, AND S. RAMANAN

6.2. SL(2,R)-Higgs bundles. Our basic case is SL(2,R), which is a group of Her-
mitian type, as SL(2,R)/SO(2) is the hyperbolic plane. Let us start by analysing
Mα

d (SL(2,R))L for an arbitrary line bundle L of degree dL.
An L-twisted SL(2,R)-Higgs bundle on a curve X is a line bundle F → X

together with morphisms β : F ∗ → F ⊗ L and γ : F → F ∗ ⊗ L.

Lemma 6.5. The moduli space Mα
L,d(SL(2,R)) :

(1) is empty if d > |dL/2| or d < α,
(2) consists of all isomorphism classes of semistable SL(2,R)-Higgs pairs if

degree d > α, and
(3) is isomorphic to Picd(X) if α = d.
(4) Furthermore, if iα′ ≤ iα ∈ h, there is an inclusion

(48) Mα(SL(2,R)) ⊆ Mα′
(SL(2,R)).

Proof. To prove (1), we first observe that the existence of sections β ∈ H0(X,F 2⊗
L) and γ ∈ H0(X,F−2⊗L) implies that |dL/2| ≥ | degF | with equality if and only
if F±2 ∼= L. This accounts for the first condition.

For the second, sinceHC ∼= C× is abelian, for all s ∈ ih, Ps = HC, and so the only
reduction of the structure group is the identity; moreover, the only antidominant
character is the identity (see [18, Section 2.2]) and B(α, id) = α||id||B . Hence, a
Higgs bundle is α-semistable if and only if

(49) degF ≥ α||id||B .

So after normalizing ||id||B = 1, we find that there will be no α-semistable bundles
for α > dL/2, and for α ≤ dL/2 we get bundles whose degree is at least �α� (where
�α� is the lowest integer greater that real number α) and at most [dL/2].

Statements (2) and (3) follow from the above dicussion together with the fact
that conditions for stability are limited to strictness of the inequality (49). Indeed,
the Levi is again HC itself. As for polystability, all stable bundles are polystable, so
the only remaining case is when (49) is an equality. Then, (F, (β, γ)) is polystable
if and only if β = γ = 0, as for s ∈ z \ 0, m0

s = {0}.
Assertion (4) follows from the definitions. �

Following [24], fix a holomorphic line bundle L → X of non-negative even degree,
and consider

(50) L1/2, ϕ =

(
0 0
1 0

)
∈ H0(X,Hom(L1/2, L−1/2 ⊗ L)).

By Lemma 6.5, the pair (L1/2, (0, 1)) is a stable L-twisted SL(2,R)-Higgs bundle
whenever iα ≤ dL/2. Furthermore, if iα ≥ 0, we can map

(51) Mα
L(SL(2,R)) → M0

L(SL(2,C))

by (48), and the associated SL(2,C)-Higgs bundle is stable for degL �= 0 (the case
in which the pair is strictly polystable whenever β = γ = 0).

From now on we will assume that

(52) dL > 0, iα ≤ dL/2, 2|dLF.

We analyse the degree zero case in Remark 6.15.
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Proposition 6.6. Given L → X and iα ∈ R = z(so(2)) satisfying (52), we have
two well-defined non-gauge equivalent sections to the Hitchin map

hL : Mα
L(SL(2,R)) → H0(X,L2)

given by

(53) s+ : ω �→ (L1/2, (1, ω))

and

(54) s− : ω �→ (L−1/2, (ω, 1)).

Proof. Conditions (52) on α ensure polystability of the elements in the image of
the section by Lemma 6.5. The same result ensures it is enough to consider the
case dL = 2α.

Non-equivalence of (53) and (54) follows from the fact that both sections are
conjugate via the complex gauge transformation Ad ( 0 i

i 0 ) of M(SL(2,C)) which is
not in the image of SO(2,C) under Ad : SL(2,C) → Aut(SL(2,C)). �

Remark 6.7. (1) By Remark 4.7, sym0(2,C)
reg ⊂ sl(2,C)reg, and since sl(2,C)reg =

sl(2,C)\{0}, the Higgs field of every element in the image of the section is trivially
everywhere regular (cf. Definition 4.6).

(2) Note that for iα ≥ 0, the images of s+ and s− are identified in M0
L(SL(2,C))

under the morphism (51).

6.3. The induced basic G-Higgs bundle. We are interested in a section of (37)
for arbitrary reductive groups (G,H, θ,B). It turns out that the SL(2,R)-Higgs
bundle (L1/2, ϕ) defined in (50) induces a G-Higgs bundle as follows.

Let V be the principal bundle of frames of L1/2. This has a structure group
equal to C×, which is isomorphic to SO(2,C). Let ρ+ be as in (44), and consider
the corresponding associated bundle

(55) E = V (HC).

Letting ρ′− be as in (42), we obtain a Higgs field

(56) Φ := ρ′−(ϕ) ∈ H0(X,E(mC)⊗ L),

where ϕ is as in (50) and E(mC) is the bundle associated to E via the isotropy
representation.

Since E extends a principal C×-bundle, the structure of E(mC)⊗L is determined
by the action of ad(x), where x is defined in (41). Furthermore, Lemma 4.10 implies
that e is a principal nilpotent element of mC.

Note that V (sym0(2,C))
∼= E(Ms ∩ mC) (where Ms is the module as defined

in (16) corresponding to the irreducible representation sC) is the bundle of sym-
metric endomorphisms of L1/2 ⊕ L−1/2, so we can identify it with L ⊕ L−1, as
L ∼= Hom(L−1/2, L1/2). It follows that

(57) E(Mk ∩mC) ∼=
	mk−1/2
⊕

i=0

Lmk−1−2i if ek ∈ mC.

In particular, Φ can be identified with the element f ∈ mC considered as a section
of mC

−1⊗L−1⊗L⊂E(mC)⊗L, where mC

λ is the eigenspace of ad(x) with eigenvalue
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λ. More generally

(58) ek ∈ mC

mk−1 ⊗ Lmk−1 ⊗ L−mk+1 ⊂ E(Mk ∩mC ⊗ L−mk+1),

since mk is odd whenever ek ∈ mC by (17).

Definition 6.8. We call the pair (E,Φ) the basic G-Higgs bundle.

In what follows, we study stability and smoothness properties of the basic G-
Higgs bundle.

Lemma 6.9. Let (E,Φ) be defined by (55) and (56). Then (E,Φ) ∈ M0
L(G).

Proof. By θ-equivariance of (44), we obtain a principal HC-bundle and a Higgs field
taking values in mC. Corollary 5.10 gives the rest. �

Moreover, we have the following.

Proposition 6.10. If G is quasi-split, the pair (E,Φ) defined by (55) and (56)
is stable. Moreover, if G is strongly reductive and Z(G) = ZG(g), then it is also
simple.

Before we prove Proposition 6.10, we need a lemma.

Lemma 6.11. Let G be a strongly reductive quasi-split group (cf. Definition 3.23).
Then, the map ρ (see (44)) satisfies that ZG(Im(ρ)) = ZG(g).

Proof. Let S = Im(ρ). Under the hypothesis on the group, by Lemma 4.13(2), we
have that cg(s) = 0. Thus, by definition, Ad(ρ) (see (46)) is irreducible, so we have
a three-dimensional subgroup Ad(S)C = Ad(ρ)(SL(2,C)) < Ad(G)C. In particular
ZAd(G)C(Ad(S)C) = 1.

Now, let g ∈ ZG(S). Since Ad(G)C is a group of matrices, we have that Ad(S)C ⊂
C ⊗ Ad(S) ⊂ End(gC), so ZAd(G)C(Ad(S)) ⊂ ZAd(G)C(Ad(S)C). This implies that
g ∈ Ker(Ad) = ZG(g). �

Proof of Proposition 6.10. Assume first G is connected. Note that (E,Φ) is ob-
tained by extending the stable SL(2,R)-Higgs pair (V, ϕ) via the morphism ρ de-
fined in (44); by Proposition 5.9, (E,Φ) is polystable. By Theorem 5.4, there exists
a solution h ∈ Ω0(X,V (SO(2,C)/SO(2))) (resp. h′ ∈ Ω0(X,E(HC/H))) to the
Hitchin equations (22) for α = 0 and group SL(2,R) (resp. G). Let A (resp. A′)
be the corresponding Chern connection for the given holomorphic structure of V
(resp. E). From the proof of Proposition 5.9, we may assume that A′ = ρ′(A).
Locally, write

A = d+MA,

where MA ∈ Ω1(X, so(2)). Then MA is generically non-zero, as otherwise L1/2

would be flat, which by assumption (52) is not the case. Now, an automorphism g
of (A′,Φ) satisfies that for each x ∈ X,

Adgxρ
′(MA,x) = ρ′(MA,x)

and

AdgxΦx = Φx.

Since for generic x, MA,x and ϕx generate sl(2,C), it follows that gx must centralise

ρ′(sl(2,C)) = sC. In particular, gx centralises the subgroup S = ρ(eso(2)esym0(2,R)).
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By Lemma 6.11, we have that gx ∈ H ∩ ZG(g) = ZH(g). Now, by closedness of
ZH(g) inside H, it follows that gx ∈ ZH(g) ∩Ker(ι) for arbitrary x ∈ X. Thus

aut(A′,Φ) ⊆ zh(g) = z(h) ∩Ker(dι) ⊂ aut(A′,Φ),

so (A′,Φ) is infinitesimally irreducible, and by Proposition 5.17 (E,Φ) is stable.
When Z(G) = ZG(g), then gx ∈ H ∩ Z(G) = ZH(G) = Z(H) ∩ Ker(ι), and we

also have Aut(A′,Φ) = Z(H)∩Ker(ι). That is, (A′,Φ) is irreducible, and so (E,Φ)
is stable and simple by Proposition 5.17.

As for disconnected groups, we note that the basic G-Higgs bundle (E,Φ) reduces
its structure group to G0, the component of the identity in G. Let (E0,Φ0) be the
G0-Higgs bundle whose extension is (E,Φ). By the previous discussion, (E0,Φ0) is
stable, and by Proposition 5.9, (E,Φ) is polystable. Assume σ ∈ Γ(X,E(HC/Ps))
is a reduction of the structure group to a parabolic subgroup Ps ⊂ H violating
the stability condition, namely, degE(s, σ) > B(α, s). We claim that σ induces a
reduction σ′ ∈ Γ(X,E0(HC/Ps ∩ HC

0 )). Indeed, let σα(x) = (x, hα(x)Ps) be the
expression of σ on a trivialising neighbourhood Uα. Then, on Uα ∩ Uβ , σβ(x) =
(x, gαβ(x)hα(x)Ps), where gαβ : Uα∩Uβ → HC

0 are the transition functions of E =
E0(HC). Then, we readily check that σ′

α(x) = (x, hα(x)Ps∩HC
0 ) is well defined, as

h−1
α gαβhα ∈ HC

0 . So we obtain a principal Ps ∩HC
0 -bundle Es such that Es(H

C) =
E. Since Ps ∩ HC

0 ⊂ HC
0 , also E′ = Es(H

C
0 ). Let σ0 ∈ Γ(X,E0(HC

0 /Ps ∩HC
0 ))

be the corresponding reduction of the structure group. We need to check that
degE(s, σ) = degE0(s, σ0), which is easily seen using the definition of the degree
given in (21). This contradicts stability of (E,Φ).

Concerning simplicity, Lemma 6.11 applies just as in the connected case. �

Proposition 6.12. If G is a strongly reductive Lie group and (E,ϕ) is the basic
G-Higgs bundle as defined in (55) and (56), then H2(C•(E,Φ)) = H1(X, zm ⊗ L).

Proof. First note that S ↪→ G factors through S ↪→ Gss. Let (Ess, ϕss) be the
corresponding Gss bundle. Then

E(hC) ∼= Ess(h
C

ss)⊕X × zh,

where zh = hC ∩ z(gC) and hCss = (h∩ gss)
C. Likewise, E(mC) ∼= Ess(m

C
ss)⊕X × zm.

So the exact sequence (28) has the form:

H0(C•) ↪→ H0(Ess(h
C

ss))⊕H0(zh) → H0(Ess(m
C

ss)⊗ L)⊕H0(zm ⊗ L)

→ H1(C•) → H1(Ess(h
C

ss))⊕H1(zh) → H1(Ess(m
C

ss)⊗ L)⊕H1(zm ⊗ L)

→ H2(C•) → 0.

Moreover,

[ϕ,E(hC)] = [ϕss, Ess(h
C

ss)] ⊂ Ess(m
C

ss),

which implies that Hi−1(zm ⊗ L) ↪→ Hi(C•), and thus

H2(C•) = H2(Ad(C•))⊕H1(X, zm ⊗ L).

With the notation of Proposition 5.13 we just need to prove that if dL ≥ 2(g − 1),
then

[ϕss, H
1(X,Ess(h

C

ss))] = H1(X,Ess(m
C

ss)⊗ L).
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By (57), we have
(59)

Ess(h
C

ss ∩Mk) =

{
Lmk−1 ⊕ Lmk−3 ⊕ · · · ⊕ Ljk ⊕ · · · ⊕ L−mk+1 if ek ∈ hC,
Lmk−2 ⊕ Lmk−4 ⊕ · · · ⊕ Llk ⊕ · · · ⊕ L−mk+2 if ek ∈ mC,

where jk = 0 if mk − 1 ≡ 0(2), jk = 1 if mk − 1 ≡ 1(2), and lk = jk + 1(2). In a
similar way, we see that
(60)

Ess(m
C

ss∩Mk) =

{
Lmk−2 ⊕ Lmk−4 ⊕ · · · ⊕ Ljk+1(2) ⊕ · · · ⊕ L−mk+2 if ek ∈ hC,
Lmk−1 ⊕ Lmk−3 ⊕ · · · ⊕ Ljk ⊕ · · · ⊕ L−mk+1 if ek ∈ mC.

Now, by definition

(61) Φ : Lj �→
{

Lj−1 ⊗ L = Lj if j > −mk + 1, mk �= 1,
0 otherwise.

Hence

[Φ, H1(Ess(h
C

ss)∩Mk)] =

{
H1(Lmk−1 ⊕ · · · ⊕ Ljk ⊕ · · · ⊕ L−mk+3) if ek ∈ hC,
H1(Lmk−2 ⊕ Lmk−4 ⊕ · · · ⊕ L−mk+2) if ek ∈ mC.

We thus have

Ker(ad(Φ)) =

{
H1(L−mk+1) if ek ∈ hC,
0 if ek ∈ mC,

which implies that

Coker(ad(Φ)) =

{
0 if ek ∈ hC,
H1(Lmk−1) if ek ∈ mC.

If G is quasi-split, given that mk > 1 (as we are only considering the semisimple
part), we have h1(Lmk−1) = h0(L−mk+1K) = 0, and thus H2(Ad(C•)) = 0, which
proves the statement.

If G is not quasi-split, the only thing that is different is the fact that the trivial
representation cgC(sC) has m1 = 1 and positive multiplicity n1 by Lemma 4.13.

Therefore, H1(X,L⊗ cmC(sC)) ↪→ H2(Ad(C•)). But cmC(sC) = 0 by (1) in Lemma
4.13. �
6.4. Construction of the section. We now have all the ingredients to yield to the
Hitchin–Kostant–Rallis section. Let us recall some of the notation before stating the
theorem. Let ρ′ : sl(2,R) → g be the homomorphism defining the principal normal
TDS s ⊂ g (see (15)). Consider the group Q satisfying (Ad(G)C)θ = QAd(HC) (see
Proposition 3.21 for other characterizations). It is a finite group whose cardinality
we denote by N .

Theorem 6.13. Let (G,H, θ,B) be a strongly reductive Lie group, and let

(Ĝ0, Ĥ0, θ̂, B̂) be its maximal connected split subgroup. Let L → X be a line bundle
with degree dL ≥ 2g − 2. Let α ∈ iz(so(2)) be such that ρ′(α) ∈ z(h). Then, the
choice of a square root of L determines N inequivalent sections of the map

hL : Mρ′(α)
L (G) → BL(G).

Each such section sG satisfies the following:

(1) If G is quasi-split, sG(BL(G)) is contained in the stable locus of Mρ′(α)
L (G),

and in the smooth locus if Z(G) = ZG(g) and dL ≥ 2g − 2.
(2) If G is not quasi-split, the image of the section is contained in the strictly

polystable locus.
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(3) For arbitrary groups, the Higgs field is everywhere regular.

(4) If ρ′(α) ∈ iz
(
ĥ

)
, the section factors through Mρ′(α)

L (Ĝ0). This is in par-

ticular the case if α = 0.
(5) If Gsplit < GC is the split real form satisfying z(gC) ∩ iu ⊂ m, K = L, and

α = 0, then sG is the factorization of the Hitchin section through M(Gsplit).

Proof. The proof consists of three parts: firstly, we construct a section into M0
L(G)

for quasi-split real forms. This in particular includes the split group case. Secondly,
using the maximal split subgroup, we are able to extend the section to M0

L(G) for
all groups. A third part deals with stability for other values of the parameter.

(1) Quasi-split groups. To start with, we note that the deformation argument
used by Hitchin in [24] adapts to the case of quasi-split groups: for each γ ∈⊕a

i=1 H
0(X,Lmi), define the field

Φγ = f +
a∑

i=1

γiei,

where ei, i = 1, . . . , a, generate cmC(e) and e1 = e. Note that this is a well-defined
section of E(mC ⊗ L) by (58).

Now, any family of Higgs bundles containing a stable point automatically con-
tains a dense open set of stable points. In particular, by Proposition 6.10, (E,Φ)
is 0-stable, so for sufficiently small γi’s, we have that (E,Φγ) is 0-stable. Namely,
the basic solution (E,Φ) can be deformed to a section from an open neighbourhood
of 0 ∈ BG,L into M0

L(G)stable. Next, note that exponentiation of x produces an
automorphism of E and E(mC)⊗ L sending Φγ to

Ψγ = μ−1f1 + γ1μ
m1e1 + · · ·+ γaμ

maea.

That is, the automorphism transforms the family corresponding to (E,Φ) into the
family corresponding to (E, μ−1Φ). The same arguments apply to the latter bundle,
so that for sufficiently small μmiγi, Ψγ is stable. So every element of the family can
be identified to one with small γi, as mi > 0 by (17). Since gauge transformations
preserve stability, we are done. Furthermore, by Propositions 6.12 and 5.13, if
Z(G) = ZG(g), the points in the image of the section are smooth.

For moduli spaces depending on an arbitrary parameter, we note that the hy-
potheses on the parameter and equation (48) imply that for α �= 0, M0

L(SL(2,R)) ⊂
Mα

L(SL(2,R)), and stability is preserved. Since (E,Φ) is the extended G-Higgs
bundle of (V, ϕ) via ρ (cf. Definition 5.8 and equation (44)), polystability is au-
tomatic for any ρ′(α) such that (V, ϕ) is α′ stable, where ρ′ = dρ is as in (15).

Hence, we have (E,Φ) ∈ Mρ′(α)
L (G) for all iα ≤ 0. Namely, for all s ∈ ih and all

σ ∈ Ω0(X,E(HC/Ps)) satisfying conditions in Definition 5.3, we have

deg(E(s, σ)) ≥ B(ρ′(α), s).

Now, B(ρ′(α), s) = iαB(ρ′(i), s), which, given that B is definite positive on ih,
means that iαB(ρ′(i), s) ≤ 0. But 0-stability of (E,Φ) implies that

deg(E(s, σ)) > 0 ≥ B(ρ′(α), s),

whence stability follows.
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(2) Non-quasi-split groups. By (1), the elements in the image of the Hitchin–
Kostant–Rallis section for the split subgroup are 0-stable, as split groups are quasi-
split. So Corollary 5.10 and Theorem 4.9 imply the existence of a 0-polystable
section for any group. Strict polystability follows from Proposition 2.14 in [18] and
Corollary 4.15.

Points (3) and (4) follow by construction. For (5), we just note that from Defini-
tion 4.8, the principal normal TDS is in particular a TDS in the usual sense [28], so

the construction matches Hitchin’s as long as the rings of invariants C[mC]H
C

and

C[gC]G
C

match. This is guaranteed for a split subgroup satisfying the hypotheses of
statement (5) above (see Remark 4.5). Such a split form always exists as the maxi-
mal connected split subgroup for a choice of Cartan data (GC, U, τ, B)) satisfies the
conditions.

Concerning the number of sections, the construction depends on a choice of
principal normal TDS. By Theorem 6 in [29], all such are (Ad(H)θ)

C conjugate,
and by Proposition 3.21, the number of non-conjugate HC-orbits is determined by
#Q.

Finally, regularity follows from Theorem 4.9. �

Remark 6.14. The Hitchin–Kostant–Rallis section is a section in the sense that for
a given choice of homogeneous generators {p1, . . . , pa} ⊂ C[mC]H

C

, the map

(p1, . . . , pa) ◦ sG : BL(G) → BL(G)

is the identity. This follows from Theorem 7 in [28].

Remark 6.15 (Degree zero twisting). When dL = 0, there are two cases to consider:
(1) Trivial bundle: if L = OX , the existence and construction of the section

amounts to the results in [29]. Indeed, the Hitchin base

BG,O = H0(X,O ⊗ a
C/W (aC)) ∼= a

C/W (aC).

On the other hand, by (58), ei ∈ H0(X,E(mC)). Thus everything follows from [29],
modulo the choice of a square root of O, i.e., an order two point of Jac(X).

(2) Non-trivial bundle: this is a trivial case, as BG,L = 0.

Propositions 5.13, 6.10, and 6.12 and Theorem 6.13 yield the following.

Corollary 6.16. Let G be a strongly reductive quasi-split group. Assume that
Z(G) = ZG(g) and dL ≥ 2g − 2. Then the G-Higgs bundle (E,Φ) defined by (55)
and (56) is a smooth point of M0

L(G). In particular, for any quasi-split group, the
associated Ad(G)-Higgs bundle (E([H]C), [ϕ]) is a smooth point of ML(Ad(G)),
where [H] = H/Z(G) ∩H, [ϕ] = ϕ/zm.

Proposition 6.17. Let α ∈ iz(h) be such that the basic G-Higgs bundle (E,Φ)
is α-stable. Let a = dim aC, b = dim chC(aC) and c = dim chC(sC), where sC is a
normal principal TDS. Let G be a strongly reductive Lie group. Then the expected
dimension of the irreducible component of the moduli space Mα

L(G) containing the
image of the HKR section is

(62) exp. dim (Mα
L(G)) = c+ h1(zm ⊗ L) +

dL
2

dim gC + (a− b)

(
dL
2

− g + 1

)
.

In particular, if G is quasi-split and degL ≥ 2g − 2, the expected dimension is the
actual dimension of the moduli space.
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Proof. Letting hi = dimHi(X,C•), the expected dimension is h1. From the long
exact sequence (28), we have

(63) h1 = χ(E(mC)⊗ L)− χ(E(hC)) + h0 + h2.

By (59)

χ(E(hC)) =
∑

ek∈hC

∑
0≤j≤mk−2

χ
(
Lmk−2j−1

)
+

∑
ek∈mC

∑
1≤j≤mk−1

χ
(
Lmk−2j

)
.

Similarly

χ(E(mC)⊗ L) =
∑

ek∈hC

∑
0≤i≤mk−2

χ
(
Lmk−2i−1

)
+

∑
ek∈mC

∑
0≤i≤mk−1

χ
(
Lmk−2i

)
.

Also, by Proposition 6.12 h2 = h1(zm ⊗ L). On the other hand, we easily de-
duce from (61) that h0 = dim chC(sC). Substituting it all into (63) and applying
Riemann–Roch yields

h1 = c+ h1(zm ⊗ L) +
∑

ek∈mC

(dLmk − g + 1) +
∑

ek∈hC

((mk − 1)dL + g − 1) .

Using (17), we obtain

h1 = c+ h1(zm ⊗ L) +
∑

ek∈mC

(
dL
2
(2mk − 1) +

dL
2

− g + 1

)

+
∑

ek∈hC

(
(2mk − 1)

dL
2

− dL
2

+ g − 1

)

= c+ h1(zm ⊗ L) +
dL
2

dim gC + (a− b)

(
dL
2

− g + 1

)
.

This yields the result about the expected dimension.
The last assertion follows fom Corollary 6.16. �

Remark 6.18. We can give the expected dimension of the moduli space ML(G).
Indeed, let (E,ϕ) be a smooth point. This implies that h0 = dim zh and h2 =
h1(zm ⊗ L). On the other hand, by Hirzebruch–Riemann–Roch, we have

χ(E(hC)) = c1(E(hC)) + dim(hC)(1− g).

Now, c1(h
C) = 0, as hC ∼=BC

(hC)∧. Likewise, χ(E(mC) ⊗ L) = c1(E(mC) ⊗ L) +
dim(mC)(1 − g). Since c1(E(hC)) + c1(E(mC)) = 0 = c1(E(gC)), then χ(E(mC) ⊗
L) = dim(mC)(dL + 1− g). So altogether

h1 = dim zh + h1(zm ⊗ L) + dim(mC)(dL + 1− g)− dim(hC)(1− g).

Expressing dim(mC)(dL + 1 − g) = (dL

2 + dL

2 + 1 − g) and dim(hC)(1 − g) =

dim(hC)(−dL

2
dL

2 + 1− g) we have

h1 = dim zh + h1(zm ⊗ L) + dim(gC)
dL
2

+ (dimm
C − dim h

C)(
dL
2

+ 1− g).
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By Proposition 5 in [29], dimmC−dim hC = a−b, where a and b are as in Proposition
6.17. So in the particular example of quasi-split groups, the expected dimension of
the component containing the image of the HKR section is the expected dimension
of the moduli space (as it should be by smoothness). On the other hand, we find
that for non-quasi-split groups, the singularities of the image of the HKR section
are of orbifold origin.

Corollary 6.19. Assume L = K. Then:

(1) If G is the real group underlying a complex reductive Lie group UC, then

exp. dimMK(UC) = dimMK(UC) = 2
(
dim(UC)(g − 1) + dimZ(UC)

)
.

(2) If G < GC is a real form of a complex reductive Lie group, then

exp. dimMK(G) =
1

2
dimMK(UC) + dim chC

ss
(sC).

Therefore, it matches the expected dimension of the moduli space if and
only if G is quasi-split.

Proof. To see (1) first remark that G < GC ×GC is quasi-split, and by Proposition
6.17 the expected dimension at any element in the HKR section is the actual di-
mension. So under the given hypotheses, c = dimZ(UC) = dim zm, where the first
equality follows from Lemma 4.13.

For (2), we note that c = dim zh + dim chC
ss
(sC) and that z(gC) = zh ⊕ zm. �

Proposition 6.20. Let G be a quasi-split Lie group. Let L → X be a holomorphic
line bundle such that dL := degL ≥ 2g − 2. Then the HKR section covers a
connected component of the moduli space of L-twisted Higgs bundles if and only if
G is split.

Under the above possible hypothesis, our construction yields N ·22g Hitchin com-
ponents, where N is defined as in Theorem 6.13.

Proof. Since G is quasi-split, by Theorem 6.13, the image of the section defines a
closed subspace contained in the smooth locus of the moduli space. Moreover, by
construction, the image of the section is open whenever

(64) dimBL(G) ≥ dimML(G),

as it is an affine subset of a manifold of the right dimension (cf. Theorem 3.4
in [18]), and it is open as it is a family of stable elements parameterised by the
Hitchin base. So we apply Propositions 6.17 and 6.2, noting that by quasi-splitness
c = dim zh (cf. Lemma 4.13(3)). Comparing dimensions, we obtain that (64) holds
if and only if

(65)
dL
2

(
dim ĝ

C − dim g
C
)
+ b

(
dL
2

− g + 1

)
− dim zh ≥ 0.

Note that dim ĝC − dim gC = −b − 2 · (#Δ −#Λ̂(a)), where Δ denotes the set of

roots and Λ̂(a) the set of reduced restricted roots defined in (5). It follows that
(65) is equivalent to

−dL

(
#Δ−#Λ̂(a)

)
− b(g − 1)− dim zh ≥ 0,

which is possible if and only if each of the (negative) terms vanishes. But this
implies in particular that b = 0, so that g must be split, and consequently all other
terms vanish.
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As for the statement concerning the number of sections, the factor N is the one
appearing in Theorem 6.13. The remaining choices correspond to taking a square
root of L. We could have also chosen such for L−1, but the sections obtained this
way are identified with the ones resulting from using L1/2 by the action of Ad(Hθ).
A way to see this is by considering the section into M(Ad(G)) and complexifying
them. The conclusion follows from Remark 6.7, together with Proposition 3.21 and
Lemma 5.11. The same reasoning implies inequivalence of the N · 22g sections. �
6.5. Regularity. Regularity of the Higgs field is directly related to smoothness of
points in the Hitchin fiber. This essentially goes back to Kostant’s [28], as it is
proved by Biswas and Ramanan for complex Lie groups ([6], Theorem 5.9). Their
proof applies to the real case, so we have the following.

Proposition 6.21. Let ω ∈ BL(G), and assume (E,ϕ) ∈ M(G)∩h−1
G (ω)smooth is

a smooth point of h−1
G (ω). Then ϕ(x) ∈ mC

reg for all x ∈ X.

Proof. Fixing x ∈ X, we have that evx ◦ h(E,ϕ) = χϕx, where χ : mC → aC/W (a)
is the Chevalley map. At a smooth point of the fiber, dh is surjective, and since
evx is surjective too, it follows that d(χ ◦ evx) is itself surjective. Since devx :
H0(X,E(mC ⊗ K)) → mC ⊗Kx is surjective and is itself an evaluation at x, this
implies that dϕx

χ is surjective. But Kostant–Rallis’s work [29], citing Kostant [28],
implies this happens if and only if ϕx is regular. �

7. Topological type of the elements in the image of the HKR section

Recall from Section 5.2 that to a Higgs bundle we can assign a topological in-
variant. We now come to the problem of determining the topological invariant of
the component of the moduli space where the image of the HKR section falls in.

We remark that given a G-Higgs bundle (E,Φ), the topological type depends
uniquely on E, so it is enough to compute the invariants for the principal bundle
defined in (55). Moreover, by construction of the section, the type of E is indepen-
dent of the value of α = 0, as it is the principal bundle associated to some fixed
SO(2,C) bundle.

Proposition 7.1. Let G be a connected simply connected simple algebraic group

over R, let Ĝ be its maximal split subgroup, and let G := G(R), Ĝ = Ĝ(R) be the
groups of their respective real points. Assume G is not of Hermitian type. Let E

and Ê be the principal bundles defined by (55) for the groups G and Ĝ respectively.

Then either π1(G) = 1 (and then d(E) = 0) or d(E) = d(Ê) mod 2.

Proof. We observe that by simplicity, π1(G) = 1, Z/2Z, or Z, but the last option
corresponds to Hermitian groups, so either π1(G) = 1 or π1(G) = Z/2Z. Likewise,

π1(Ĝ) is either Z/2Z or Z, as on the one hand Ĝ is simple by construction, and on
the other, split groups are never simply connected by Corollary 1.2 in [1]. We will

prove that the map i∗ : π1(Ĝ) � π1(G) (induced by the inclusion i) is surjective,
which implies the statement. Indeed, the only homomorphisms Z → Z/2Z are
constant or reduction modulo two, and similarly for Z/2Z → Z/2Z.

By Proposition 2.10 in [1],

π1(G) = Z〈Δ∨
nc(g

C, dCc )〉/Δ∨
nc(g

C, dCc ) ∩Δ∨(hC, dCc ∩ h
C),

where dc ⊂ g is a maximally compact Cartan subalgebra. Let β∨ ∈ Δ∨(gC, dCc )
be a generator. Using the Cayley transform, we may identify it with a real coroot
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α∨ ∈ Δ∨(gC, dC), where d ⊂ g is a maximally split Cartan subalgebra. Since

α ∈ Δr, (α|a)∨ = α∨, so i∗(α|a)∨ = α∨. In particular, the image of (α|a)∨ in π1(Ĝ)
is non-trivial, and so i∗ is surjective. �

Proposition 7.2. Let G be a connected simple real Lie group of Hermitian type.
Then, the topological invariant d(E) corresponding to the Hitchin–Kostant–Rallis
section for the moduli space of Higgs bundles is maximal if G is of tube type and
zero if it is of non-tube type.

Proof. First of all, by Proposition 5.5(2), maximality or vanishing are equivalent
whether we consider T or d, so we will use them indistinctly. As discussed above,
it is enough to determine the degree of E.

Let G be of tube type. Then, by Theorem 6.13, the Higgs field is regular at every
point, and thus Proposition 5.5(1) implies maximality of the Toledo invariant.

Now, if G is of non-tube type, Ĝ0 is not of Hermitian type unless its split rank is
one or two. Indeed, the simple Lie algebras of Hermitian non-tube type are su(p, q)
with p �= q, so∗(4p + 2), and e6(−14). The maximal split subalgebra of all of them
is so(rkR(g), rkR(g) + 1), which is not of Hermitian type whenever the real rank is
higher than two (see Table 1).

Now, the basic G-Higgs bundle E is associated to the basic Ĝ0-Higgs bundle by
extension of the structure group. By Corollary 5.10, if G has rank at least three,
the topological type is zero, as it is the image of a torsion group inside π1(G) = Z.

As for ranks 1 and 2, for Lie groups with Lie algebra su(n, 1) with n > 1, su(n, 2)
with n > 2, and e6(−14), as well as simply connected Lie groups, the result follows
from Corollary 3.31.

The only remaining groups are so∗(6) and so∗(10), of ranks 1 and 2 respectively,
which are covered by Lemma 7.3 below. �

Lemma 7.3. Let g be the Lie algebra so∗(6) or so∗(10). Then, if {e, f, x} is a
normal triple generating a principal normal TDS, then the semisimple element x
decomposes as

x =

(
A 0
0 B

)
, where tr(A) = tr(B) = 0.

Proof. Following [25], we realise the Lie algebra so∗(2n) as the subalgebra of
sl(2n,C), whose elements satisfy

−Ad(In,n)
tA = A, −Ad(Jn,n)

tA = A,

where

In,n =

(
In 0
0 −In

)
, Jn,n =

(
0 In
In 0

)
.

We also have

h
C =

{(
A 0
0 −tA

)
: A ∈ gl(n,C)

}
,

m
C =

{(
0 B
C 0

)
: B,C ∈ gl(n,C), B +t B = 0 = C +t C

}
.

In particular,

(66) θ

(
A B
C −tA

)
=

(
A −B
−C −tA

)
.
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Now, with the same notation of Theorem 4.9, we can easily compute generators
ec, fc, w for a principal normal TDS. From these, a normal triple is given by
e = −ec+fc+w

2 , e = ec−fc+w
2 , x = ec + fc. So to have x, it is enough to compute ec,

as fc = θec.
We start with so∗(6). In this case ec is a multiple of an eigenvector y ∈ so∗(6)

for

w =

(
0 A

−A 0

)
, A =

⎛⎝ 0 0 1
0 0 0

−1 0 0

⎞⎠ .

By setting [w, y] = y, we obtain

y =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0

−1 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 1 0
0 0 −1 −1 0 0
1 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then, since both diagonal blocks of y have zero trace, so do the ones of ec = λy,
and fc by (66); hence the same holds for x.

As for so∗(10), an element of the maximal anisotropic Cartan subalgebra has the
form

w =

(
0 A

−A 0

)
= ah1 + bh2, A =

⎛⎜⎜⎜⎜⎝
0 0 0 0 a
0 0 0 b 0
0 0 0 0 0
0 −b 0 0 0

−a 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

We compute yi to be the eigenmatrix of yi within so∗(10). We see that

y1 =

(
C D

−D C

)
, C =

⎛⎜⎜⎜⎜⎝
0 1 1 1 0

−1 0 0 0 1
−1 0 0 0 1
−1 0 0 0 1
0 −1 −1 −1 0

⎞⎟⎟⎟⎟⎠ ,

D =

⎛⎜⎜⎜⎜⎝
0 −1 −1 −1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 −1 −1 −1 0

⎞⎟⎟⎟⎟⎠ .

As for y2, h2 = Ah1A
−1 is obtained from h1 by exchange of columns and rows

1 ↔ 2, 4 ↔ 5, 6 ↔ 7, 9 ↔ 10, so y2 can be obtained from y1 in the same way. We
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readily check that

y2 =

(
E F

−F E

)
, E =

⎛⎜⎜⎜⎜⎝
0 −1 0 1 0
1 0 1 0 1
0 −1 0 1 0
−1 0 −1 0 −1
0 −1 0 1 0

⎞⎟⎟⎟⎟⎠ ,

F =

⎛⎜⎜⎜⎜⎝
0 1 0 1 0

−1 0 −1 0 −1
0 1 0 1 0

−1 0 −1 0 −1
0 1 0 1 0

⎞⎟⎟⎟⎟⎠
belong to so∗(10), and so we are done, as ec = l1y1 + l2y2 and the arguments used
for the rank one case apply. �
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[17] Oscar Garćıa-Prada, Involutions of the moduli space of SL(n,C)-Higgs bundles and real
forms, Vector bundles and low codimensional subvarieties: state of the art and recent develop-
ments, Quad. Mat., vol. 21, Dept. Math., Seconda Univ. Napoli, Caserta, 2007, pp. 219–238.
MR2544088
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