Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Higgs bundles for real groups and the Hitchin-Kostant-Rallis section


Authors: Oscar García-Prada, Ana Peón-Nieto and S. Ramanan
Journal: Trans. Amer. Math. Soc. 370 (2018), 2907-2953
MSC (2010): Primary 14H60; Secondary 53C07, 58D29
DOI: https://doi.org/10.1090/tran/7363
Published electronically: November 14, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the moduli space of polystable $ L$-twisted $ G$-Higgs bundles over a compact Riemann surface $ X$, where $ G$ is a real reductive Lie group and $ L$ is a holomorphic line bundle over $ X$. Evaluating the Higgs field on a basis of the ring of polynomial invariants of the isotropy representation defines the Hitchin map. This is a map to an affine space whose dimension is determined by $ L$ and the degrees of the polynomials in the basis. In this paper, we construct a section of this map and identify the connected components of the moduli space containing the image. This section factors through the moduli space for $ G_{\mathrm {split}}$, a split real subgroup of $ G$. Our results generalize those by Hitchin, who considered the case when $ L$ is the canonical line bundle of $ X$ and $ G$ is complex. In this case, the image of the section is related to the Hitchin-Teichmüller components of the moduli space of representations of the fundamental group of $ X$ in $ G_{\mathrm {split}}$, a split real form of $ G$. The construction involves the notion of a maximal split subgroup of a real reductive Lie group and builds on results by Kostant and Rallis.


References [Enhancements On Off] (What's this?)

  • [1] Jeffrey Adams, Nonlinear covers of real groups, Int. Math. Res. Not. 75 (2004), 4031-4047. MR 2112326, https://doi.org/10.1155/S1073792804141329
  • [2] Arnaud Beauville, M. S. Narasimhan, and S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169-179. MR 998478, https://doi.org/10.1515/crll.1989.398.169
  • [3] M. Aparicio-Arroyo, The geometry of $ \mathrm {SO}(p,q)$-Higgs bundles, PhD thesis, Universidad de Salamanca, 2009.
  • [4] Shôrô Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1-34. MR 0153782
  • [5] O. Biquard, O. García-Prada, and R. Rubio, Higgs bundles, Toledo invariant and the Cayley correspondence, Journal of Topology 10 (2017), 795-826.
  • [6] I. Biswas and S. Ramanan, An infinitesimal study of the moduli of Hitchin pairs, J. London Math. Soc. (2) 49 (1994), no. 2, 219-231. MR 1260109, https://doi.org/10.1112/jlms/49.2.219
  • [7] Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55-150. MR 0207712
  • [8] Armand Borel and Jacques Tits, Compléments à l'article: ``Groupes réductifs'', Inst. Hautes Études Sci. Publ. Math. 41 (1972), 253-276. MR 0315007
  • [9] Steven B. Bradlow, Oscar García-Prada, and Peter B. Gothen, Surface group representations and $ {\mathrm{U}}(p,q)$-Higgs bundles, J. Differential Geom. 64 (2003), no. 1, 111-170. MR 2015045
  • [10] Steven B. Bradlow, Oscar García-Prada, and Peter B. Gothen, Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata 122 (2006), 185-213. MR 2295550, https://doi.org/10.1007/s10711-007-9127-y
  • [11] Steven B. Bradlow, Oscar García-Prada, and Peter B. Gothen, Higgs bundles for the non-compact dual of the special orthogonal group, Geom. Dedicata 175 (2015), 1-48. MR 3323627, https://doi.org/10.1007/s10711-014-0026-8
  • [12] Steven B. Bradlow, Oscar García-Prada, and Ignasi Mundet i Riera, Relative Hitchin-Kobayashi correspondences for principal pairs, Q. J. Math. 54 (2003), no. 2, 171-208. MR 1989871, https://doi.org/10.1093/qjmath/54.2.171
  • [13] Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344
  • [14] Marc Burger, Alessandra Iozzi, and Anna Wienhard, Surface group representations with maximal Toledo invariant, Ann. of Math. (2) 172 (2010), no. 1, 517-566. MR 2680425, https://doi.org/10.4007/annals.2010.172.517
  • [15] S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), no. 1, 127-131. MR 887285, https://doi.org/10.1112/plms/s3-55.1.127
  • [16] Kevin Corlette, Flat $ G$-bundles with canonical metrics, J. Differential Geom. 28 (1988), no. 3, 361-382. MR 965220
  • [17] Oscar García-Prada, Involutions of the moduli space of $ {\mathrm{SL}}(n,\mathbb{C})$-Higgs bundles and real forms, Vector bundles and low codimensional subvarieties: state of the art and recent developments, Quad. Mat., vol. 21, Dept. Math., Seconda Univ. Napoli, Caserta, 2007, pp. 219-238. MR 2544088
  • [18] O. García-Prada, P. B. Gothen, and I. Mundet i Riera, The Hitchin-Kobayashi correspondence, Higgs pairs and surface group representations, arXiv:0909.4487.
  • [19] O. García-Prada and S. Ramanan, Involutions and higher order automorphisms of Higgs bundle moduli spaces, arXiv:1605.05143.
  • [20] V. V. Gorbatsevich, A. L. Onishchik, and E. B. Vinberg, Lie groups and Lie algebras III: Structure of Lie groups and Lie algebras, EMS, Encyclopaedia of Mathematical Sciences, 41.
  • [21] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454
  • [22] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59-126. MR 887284, https://doi.org/10.1112/plms/s3-55.1.59
  • [23] Nigel Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), no. 1, 91-114. MR 885778, https://doi.org/10.1215/S0012-7094-87-05408-1
  • [24] N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3, 449-473. MR 1174252, https://doi.org/10.1016/0040-9383(92)90044-I
  • [25] Anthony W. Knapp, Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
  • [26] Shoshichi Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Kanô Memorial Lectures, 5, Princeton University Press, Princeton, NJ, 1987. MR 909698
  • [27] Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032. MR 0114875, https://doi.org/10.2307/2372999
  • [28] Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404. MR 0158024, https://doi.org/10.2307/2373130
  • [29] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809. MR 0311837, https://doi.org/10.2307/2373470
  • [30] Bao Châu Ngô, Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006), no. 2, 399-453 (French, with English summary). MR 2218781, https://doi.org/10.1007/s00222-005-0483-7
  • [31] Arkady L. Onishchik, Lectures on real semisimple Lie algebras and their representations, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2004. MR 2041548
  • [32] A. Peón-Nieto, Higgs bundles, real forms and the Hitchin fibration, PhD thesis, Universidad Autónoma de Madrid, 2013.
  • [33] Norman Steenrod, The topology of fibre bundles, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. Reprint of the 1957 edition. MR 1688579
  • [34] Domingo Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom. 29 (1989), no. 1, 125-133. MR 978081
  • [35] K. B. Wolf, The symplectic groups, their parametrization and cover, Lie methods in optics (León, 1985) Lecture Notes in Phys., vol. 250, Springer, Berlin, 1986, pp. 227-238. MR 855671

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14H60, 53C07, 58D29

Retrieve articles in all journals with MSC (2010): 14H60, 53C07, 58D29


Additional Information

Oscar García-Prada
Affiliation: Instituto de Ciencias Matemáticas, CSIC-UAM-UCM-UC3M, Nicolás Cabrera 13, 28049 Madrid, Spain
Email: oscar.garcia-prada@icmat.es

Ana Peón-Nieto
Affiliation: Ruprecht-Karls-Universität, Heidelberg Mathematisches Institut, Im Neuenheimer Fel, 69120 Heidelberg, Germany
Email: apeonnieto@mathi.uni-heidelberg.de

S. Ramanan
Affiliation: Chennai Mathematical Institute, H1, SIPCOT IT Park, Siruseri, Kelambakkam 603103, India
Email: sramanan@cmi.ac.in

DOI: https://doi.org/10.1090/tran/7363
Received by editor(s): February 8, 2017
Published electronically: November 14, 2017
Additional Notes: The second author was supported by an FPU grant from the Ministerio de Educación
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society