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ON THE DISCRETE LOGARITHM PROBLEM

IN FINITE FIELDS OF FIXED CHARACTERISTIC

ROBERT GRANGER, THORSTEN KLEINJUNG, AND JENS ZUMBRÄGEL

Abstract. For q a prime power, the discrete logarithm problem (DLP) in Fq

consists of finding, for any g ∈ F×
q and h ∈ 〈g〉, an integer x such that

gx = h. We present an algorithm for computing discrete logarithms with which
we prove that for each prime p there exist infinitely many explicit extension
fields Fpn in which the DLP can be solved in expected quasi-polynomial time.
Furthermore, subject to a conjecture on the existence of irreducible polyno-
mials of a certain form, the algorithm solves the DLP in all extensions Fpn in
expected quasi-polynomial time.

1. Introduction

In this paper we prove the following result.

Theorem 1.1. For every prime p there exist infinitely many explicit extension
fields Fpn in which the DLP can be solved in expected quasi-polynomial time

(1) exp
(
(1/ log 2 + o(1))(logn)2

)
.

Theorem 1.1 is an easy corollary of the following much stronger result, which we
prove by presenting a randomised algorithm for solving any such DLP.

Theorem 1.2. Given a prime power q > 61 that is not a power of 4, an inte-
ger k ≥ 18, coprime polynomials h0, h1 ∈ Fqk [X] of degree at most two, and an
irreducible degree l factor I of h1X

q − h0, the DLP in Fqkl
∼= Fqk [X]/(I) can be

solved in expected time

(2) qlog2 l+O(k).

To deduce Theorem 1.1 from Theorem 1.2, note that thanks to Kummer theory,
when l = q − 1 such h0, h1 are known to exist; indeed, for all k there exists an
a ∈ Fqk such that I = Xq−1 − a ∈ Fqk [X] is irreducible and therefore I | Xq − aX.

By setting q = pi > 61 for any i ≥ 1 (odd for p = 2), k = 18, l = q − 1 = pi − 1,
and finally n = ik(pi − 1), applying (2) proves that the DLP in this representation
of Fpn can be solved in expected time (1). As one can compute an isomorphism
between any two representations of Fpn in polynomial time [16], this completes the
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proof. Observe that one may replace the prime p in Theorem 1.1 by a (fixed) prime
power pr by setting k = 18r in the argument above.

In order to apply Theorem 1.2 to the DLP in Fpn with p fixed and arbitrary n,
one should first embed the DLP into one in an appropriately chosen Fqkn . By this

we mean that q = pi should be at least n − 2 (so that h0, h1 may exist) but not
too large and that 18 ≤ k = o(log q), so that the resulting complexity (2) is given
by (1) as n → ∞. Proving that appropriate h0, h1 ∈ Fqk [X] exist for such q and k
would complete our approach and prove the far stronger result that the DLP in Fpn

with p fixed can be solved in expected time (1) for all n. However, this seems to
be a very hard problem, even if heuristically it would appear to be almost certain.

Note that if one could prove the existence of an infinite sequence of primes p
(or more generally prime powers) for which p − 1 is quasi-polynomially smooth
in log p, then the Pohlig-Hellman algorithm [17] would also give a rigorous—and
deterministic—quasi-polynomial time algorithm for solving the DLP in such fields,
akin to Theorem 1.1. However, such a sequence is not known to exist, and even if it
were, Theorem 1.1 is arguably more interesting since the present algorithm exploits
properties of the fields in question rather than just the factorisation of the order of
their multiplicative groups. Furthermore, the fields to which the algorithm applies
are explicit, whereas it may be very hard to find members of such a sequence of
primes (or prime powers), should one exist.

The first (heuristic) quasi-polynomial algorithm for discrete logarithms in fi-
nite fields of fixed characteristic was devised by Barbulescu, Gaudry, Joux, and
Thomé [2], building upon an approach of Joux [14]. We emphasise that the
quasi-polynomial algorithm presented here relies on a different principal building
block, whose roots may be found in the work of Göloğlu, Granger, McGuire, and
Zumbrägel [10]. In contrast to the algorithm of Barbulescu et al., the present al-
gorithm eliminates the need for smoothness heuristics; this feature as well as the
algebraic nature of the algorithm makes a rigorous analysis possible.

The sequel is organised as follows. In Section 2 we present the algorithm, which
involves the repeated application of what is referred to as a descent. In Section 3
we describe our descent method, provide details of its building block, and explain
why its successful application implies Theorem 1.2 and hence Theorem 1.1. Finally,
in Section 4 we complete the proof of these theorems by demonstrating that every
step of each descent is successful.

2. The algorithm

As per Theorem 1.2, let q > 61 be a prime power that is not a power of 4 and
let k ≥ 18 be an integer; the reasons for these bounds are explained in Sections 3
and 4. We also assume there exist h0, h1, I ∈ Fqk [X] satisfying the conditions of
Theorem 1.2. Finally, let g ∈ F×

qkl and let h ∈ 〈g〉 be the target element for the
DLP to base g.

The structure and analysis of the algorithm closely follow the approach of Diem
in the context of the elliptic curve DLP [8], which is based on that of Enge and
Gaudry [9]. However, a difference is that it obviates the need to factorise the group
order.
Input: A prime power q > 61 that is not a power of 4; an integer k ≥ 18; a positive inte-
ger l; polynomials h0, h1, I ∈ Fqk [X] with h0, h1 being coprime, deg(h0), deg(h1) ≤ 2

and I a degree l irreducible factor of h1X
q − h0; g ∈ F×

qkl and h ∈ 〈g〉.
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Output: An integer x such that gx = h.

1. Let N = qkl−1, let F = {F ∈ Fqk [X] | degF ≤ 1, F 
= 0}∪{h1} and denote

its elements by F1, . . . , Fm, where m = |F| = q2k (or q2k − 1 if deg h1 ≤ 1).
2. Construct a matrix R = (ri,j) ∈ (Z/NZ)(m+1)×m and column vectors α, β ∈

(Z/NZ)m+1 as follows. For each i with 1 ≤ i ≤ m+1 choose αi, βi ∈ Z/NZ
uniformly and independently at random and apply the (randomised) descent
algorithm of Section 3 to gαihβi to rewrite this as

gαihβi =

m∏
j=1

(Fj mod I)ri,j .

3. Compute a lower row echelon form R′ of R by using invertible row transforma-
tions; apply these row transformations also to α and β, and denote the results
by α′ and β′.

4. If gcd(β′
1, N) > 1, go to Step 2.

5. Return an integer x such that α′
1 + xβ′

1 ≡ 0 (mod N).

We now explain why the algorithm is correct and discuss the running time,
treating the descent in Step 2 as a black box algorithm for now. Henceforth, we
assume that any random choices used in the descent executions are independent
from each other and of the randomness of α and β. For the correctness, note
that gα

′
1hβ′

1 = 1 holds after Step 3, since the first row of R′ vanishes. Thus for any
integer x such that α′

1 + xβ′
1 ≡ 0 (mod N) we have gx = h, provided that β′

1 is
invertible in Z/NZ.

Lemma 2.1. After Step 3 of the algorithm the element β′
1 ∈ Z/NZ is uniformly

distributed. Therefore, the algorithm succeeds with probability ϕ(N)/N , where ϕ
denotes Euler’s phi function.

Proof. We follow the argument from [9, Sec. 5] and [8, Sec. 2.3]. As h ∈ 〈g〉, for any
fixed value βi = b ∈ Z/NZ the element gαihb is uniformly distributed over the group
〈g〉; therefore the element gαihβi is independent of βi. As the executions of the de-
scent algorithm are assumed to be independent, we have that the row (ri,1, . . . , ri,m)
is also independent of βi. It follows that the matrix R is independent of the vec-
tor β. Then the (invertible) transformation matrix U ∈ (Z/NZ)(m+1)×(m+1) is
also independent of β, so that β′ = Uβ is uniformly distributed over (Z/NZ)m+1,
since β is. From this the lemma follows. �

Regarding the running time, for Step 3 we note that a lower row echelon form
of R can be obtained using invertible row transformations as for the Smith normal
form, which along with the corresponding transformation matrices can be computed
in polynomial time [15], so that Step 3 takes time polynomial in m and logN .
Furthermore, from [18] we obtain N/ϕ(N) ∈ O(log logN). Altogether this implies
that the DLP algorithm has quasi-polynomial expected running time (in logN),
provided the descent is quasi-polynomial. We defer a detailed complexity analysis
of the descent to Section 3.

Observe that the algorithm does not require g to be a generator of F×
qkl , which is

in practice hard to test without factorising N . In fact, the algorithm gives rise to a
Monte Carlo method for deciding group membership h ∈ 〈g〉. Indeed, if a discrete
logarithm logg h has been computed, then obviously h ∈ 〈g〉; thus if h 
∈ 〈g〉, we
always must have gcd(β′

1, N) > 1 in Step 4.
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Practitioners may have noticed inefficiencies in the algorithm. For example,
in the usual index calculus method one precomputes the logarithms of all factor
base elements and then applies a single descent to the target element to obtain its
logarithm. Moreover, one usually first computes the logarithm in F×

qkl/F
×
qk
; i.e.,

one ignores multiplicative constants and therefore includes only monic polynomials
in the factor base, obtaining the remaining information by solving an additional
DLP in F×

qk
. However, the setup as presented simplifies and facilitates our rigorous

analysis.

3. The descent

In this section we detail the building block behind our descent method and
explain why its successful application implies Theorem 1.2. Let q be a prime power,
let k and l be positive integers, and let R = Fqk [X,Y ]. The setup for the target
field Fqkl has irreducible polynomials f1 = Y − Xq ∈ R and f2 = h1Y − h0 ∈
R with h0, h1 ∈ Fqk [X] coprime of degree at most two and h1X

q − h0 having
an irreducible factor I of degree l; i.e., R12 = Fqk [X,Y ]/(f1, f2) is a finite ring

surjecting onto Fqkl = Fqk [X]/(I).1 This implies that R1 = R/(f1) ∼= Fqk [X] and

R2 = R/(f2) ∼= Fqk [X][ 1
h1
], and from now on we identify elements in R1 and R2

with expressions inX via these isomorphisms. The setup is summarised in Figure 1.

R = Fqk [X,Y ]

R1 = R/(f1) R2 = R/(f2)

R12 = R/(f1, f2)

Fqkl

Figure 1. Setup for the target field Fqkl

By the phrase “rewriting a polynomial Q (in R1 or R2) in terms of polynomials Pi

(in R1 or R2)” we henceforth mean that in the target field the image of Q equals
a product of (positive or negative) powers of images of Pi. If the Pi are of lower
degree, then one has eliminated the polynomial Q. Typically such rewritings are
obtained by considering P mod f1 ∈ R1 and P mod f2 ∈ R2, where P ∈ R. Since h1

usually appears in P mod f2, it is adjoined to the factor base F , and for the sake
of simplicity it is sometimes suppressed in the following description. Accordingly,

1One can equally well work with f2 = h1X−h0 with hi ∈ Fqk [Y ] of degree at most two, where

h1(Xq)X − h0(Xq) has a degree l irreducible factor, as proposed in [12], with all subsequent
arguments holding mutatis mutandis.
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a descent is an algorithm that rewrites any given nonzero target field element,
represented by a polynomial Q, in terms of polynomials Fj of the factor base, i.e.,
of degree ≤ 1.

3.1. Degree two elimination. In this subsection we review the on-the-fly degree
two elimination method from [10], adjusted for the present framework. In [4] the
major portion of the set of polynomials obtained as linear fractional transformations
of Xq −X is parameterised as follows. Let Bk be the set of B ∈ F×

qk
such that the

polynomial Xq+1 − BX + B splits completely over Fqk , the cardinality of which
is approximately qk−3 [4, Lemma 4.4]. Scaling and translating these polynomials
means that all the polynomials Xq+1 + aXq + bX + c with c 
= ab, b 
= aq, and
B = (b−aq)q+1

(c−ab)q split completely over Fqk whenever B ∈ Bk.
Let Q (viewed as a polynomial in R2) be an irreducible quadratic polynomial to

be eliminated. We let LQ ⊂ Fqk [X]2 be the lattice defined by

(3) LQ = {(w0, w1) ∈ Fqk [X]2 | w0h0 + w1h1 ≡ 0 (mod Q)}.
In the case that Q divides w0h0 + w1h1 
= 0 for some w0, w1 ∈ Fqk , then Q =
w(w0h0+w1h1) for some w ∈ F×

qk
, since the degree on the right-hand side is at most

two. Therefore, Q can be rewritten in terms of w0X
q+w1 = (w

1/q
0 X + w

1/q
1 )q ∈ R1

(and h1) by considering the element P = w0Y + w1 ∈ R. We will say in this case
that the lattice is degenerate.

In the other (nondegenerate) case, LQ has a basis of the form (1, u0X + u1),
(X, v0X + v1) with ui, vi ∈ Fqk . Since the polynomial P = XY + aY + bX + c

maps to 1
h1
((X + a)h0 + (bX + c)h1) in R2, Q divides P mod f2 if and only if

(X + a, bX + c) ∈ LQ. Note that the numerator of P mod f2 is of degree at most
three; thus it can at worst contain a linear factor besides Q. If the triple (a, b, c)
also satisfies c 
= ab, b 
= aq and (b−aq)q+1

(c−ab)q ∈ Bk, then P mod f1 splits into linear
factors, and thus Q has been rewritten in terms of linear polynomials.

Algorithmically, a triple (a, b, c) satisfying all conditions can be found in sev-
eral ways. Choosing a B ∈ Bk, considering (X + a, bX + c) = a(1, u0X+ u1) +
(X, v0X+ v1), and rewriting b = u0a+ v0 and c = u1a+ v1 give the condition

(4) B =
(−aq + u0a+ v0)

q+1

(−u0a2 + (−v0 + u1)a+ v1)q
.

By expressing a in an Fqk/Fq basis, (4) results in a quadratic system in k vari-
ables [11]. Using a Gröbner basis algorithm the running time is exponential in k.
Alternatively, and this is one of the key observations for the present work, equa-
tion (4) can be considered as a polynomial of degree q2 + q in a whose roots can
be found in (deterministic) polynomial time in q and in k by using an algorithm
of Berlekamp [3]. One can also check for random (a, b, c) such that the lattice con-
dition holds, whether Xq+1 + aXq + bX + c splits into linear polynomials, which
happens with probability q−3. Each such instance is also polynomial time in q and
in k.

These degree two elimination methods will fail when Q divides h1X
q − h0, be-

cause this would imply that the polynomial P mod f1 = Xq+1 + aXq + bX + c is
divisible by Q whenever P mod f2 is, a problem first discussed in [6]. Such poly-
nomials Q or their roots will be called traps of level 0. Similarly, these degree two

elimination methods might also fail when Q divides h1X
qk+1 − h0, in which case

such polynomials Q or their roots will be called traps of level k.
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Note that for Kummer extensions, i.e., when h1 = 1 and h0 = aX for some
a ∈ Fqk , there are no traps, and hence much of the following treatment is not
required for proving only Theorem 1.1. However, it is essential to consider traps
for proving the far more general Theorem 1.2.

3.2. Elimination requirements. The degree two elimination method can be
transformed into an elimination method for irreducible even degree polynomials.
We now present a theorem which states that under some assumptions this degree
two elimination is guaranteed to succeed, and we subsequently demonstrate that it
implies Theorem 1.2.

An element τ ∈ Fqk for which [Fqk(τ ) : Fqk ] = 2d is even and h1(τ ) 
= 0 is called

a trap root if it is a root of h1X
q − h0 or h1X

qkd+1 − h0 or if h0

h1
(τ ) ∈ Fqkd . Note

that the sets of trap roots is invariant under the absolute Galois group of Fqk . A
polynomial in R1 or R2 is said to be good if it has no trap roots; the same definitions
are used when the base field of R1 and R2 is extended. This definition encompasses
traps of level 0, of level kd, and the case where for Q 
= h1 the lattice LQ is
degenerate.

Theorem 3.1. Let q > 61 be a prime power that is not a power of 4, let k ≥ 18
be an integer, and let h0, h1 ∈ Fqk [X] be coprime polynomials of degree at most two
with h1X

q − h0 having an irreducible degree l factor. Moreover, let d ≥ 1 be an
integer, let Q ∈ Fqkd [X], Q 
= h1 be an irreducible quadratic good polynomial, and let
(1, u0X + u1), (X, v0X + v1) be a basis of the lattice LQ in (3), now over Fqkd . Then
the number of solutions (a,B) ∈ Fqkd ×Bkd of (4) resulting in good descendents is

at least qkd−5.

This theorem is of central importance for our rigorous analysis and is proven in
Section 4.

3.3. Degree 2d elimination and descent complexity. Now we demonstrate
how the degree two elimination gives rise to a method for eliminating irreducible
even degree polynomials, which is the crucial building block for our descent algo-
rithm. As per Theorem 3.1, let q > 61 be a prime power that is not a power of 4,
let k ≥ 18, and let h0, h1, I be as before.

Proposition 3.2. Let d ≥ 1 and Q ∈ R2, Q 
= h1, be an irreducible good polynomial
of degree 2d. Then Q can be rewritten in terms of at most q + 2 irreducible good
polynomials of degrees dividing d in an expected running time polynomial in q and
in d.

Proof. Over the extension Fqkd the polynomial Q splits into d irreducible good
quadratic polynomials, which are all conjugates under Gal(Fqkd/Fqk); let Q′ be
one of them. Since Q′ 
= h1 is good it does not divide w0h0 + w1h1 
= 0 for
some w0, w1 ∈ Fqkd . By Theorem 3.1, with an expected polynomial number of
trials, the degree two elimination method for Q′ ∈ Fqkd [X] produces a polynomial
P ′ ∈ Fqkd [X,Y ] such that P ′ mod f1 splits into a product of at most q + 1 good
polynomials of degree one over Fqkd and such that (P ′ mod f2)h1 is a product of Q′

and a good polynomial of degree at most one. Let P be the product of all conjugates
of P ′ under Gal(Fqkd/Fqk). As the product of all conjugates of a linear polynomial
under Gal(Fqkd/Fqk) is the d1-th power of an irreducible degree d2 polynomial for d1
and d2 satisfying d1d2 = d, the rewriting assertion of the proposition follows.
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The three steps of this method—computing Q′, the degree two elimination (when
the second or third approach listed above for solving (4) is used), and the compu-
tation of the polynomial norms—all have running time polynomial in q and in d,
which proves the running time assertion. �

By recursively applying Proposition 3.2 we can rewrite a good irreducible poly-
nomial of degree 2e, e ≥ 1, in terms of at most (q + 2)e linear polynomials. The
final step of this recursion, namely eliminating up to (q + 2)e−1 quadratic polyno-
mials, dominates the running time, which is thus upper bounded by (q + 2)e times
a polynomial in q.

Lemma 3.3. Any nonzero element in Fqkl can be lifted to an irreducible good
polynomial of degree 2e in Fqk [X], provided that 2e > 4l.

Proof. By the effective Dirichlet-type theorem on irreducibles in arithmetic pro-
gressions [19, Thm. 5.1], for 2e > 4l the probability of irreducibility for a random
lift is lower bounded by 2−e−1. One may actually find an irreducible polynomial

of degree 2e which is good, since the number of possible trap roots (< qk2
e−1+2) is

much smaller than the number (> qk(2
e−l)2−e−1) of irreducibles produced by this

Dirichlet-type theorem. �

Finally, putting everything together (and assuming Theorem 3.1) proves the
quasi-polynomial expected running time of a descent and therefore the running
time of the algorithm, establishing Theorem 1.2.

Note that when q = Lqkl(α), where LN (α) for α ∈ [0, 1] is the usual subexpo-

nential function exp(O((logN)α(log logN)1−α)), as in [2] the complexity stated in

1 2 2eFqkl

Fq2kl 1 2

Fq4kl 1 2

...

...

F
q2

e−2kl 1 2

F
q2

e−1kl 1 2

Figure 2. Elimination of irreducible polynomials of degree a
power of 2 when considered as elements of Fqk [X]. The arrow
directions ↖,←, and ↘ indicate factorisation, degree two elimi-
nation, and taking a norm with respect to the indicated subfield,
respectively. (We have suppressed the rare cases, where linear
polynomials are already in a subfield of index 2.)
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Theorem 1.2 is Lqkl(α+ o(1)), which is therefore better than the classical function

field sieve for α < 1
3 .

Also note that during an elimination step, one need not use the basic building
block as stated, which takes the norms of the linear polynomials produced back
down to Fqk . Instead, one need only take their norms to a subfield of index 2, thus
becoming quadratic polynomials, and then recurse, as depicted in Figure 2.

4. Proof of Theorem 3.1

In this section we prove Theorem 3.1, which by the arguments of the previous
section demonstrates the correctness of the algorithm and the main theorems.

4.1. Notation and statement of supporting results. Let K = Fqkd where
kd ≥ 18, let L = Fq2kd be its quadratic extension, and let B be the set of B ∈ K×

such that the polynomial Xq+1 − BX + B splits completely over K. Using an
elementary extension of [13, Prop. 5] we have the following characterisation; we
add a short proof for the reader’s convenience.

Lemma 4.1. The set B equals the image of K \ Fq2 under the map

u �→ (u− uq2)q+1

(u− uq)q2+1
.

Proof. We consider the right action of PGL2(K) on polynomials; cf. Subsection 4.4.
For u ∈ K \ Fq2 the matrix

(
1 0
u 1

)(
1 μ
0 1

)(
λ 0
0 1

)
with λ =

(u− uq)q

(u− uq)(u− uq2)
and μ = − 1

u− uq

transforms the polynomial Xq−X into Xq+1−BX+B with B = (u−uq2)q+1

(u−uq)q2+1
. Thus

the set B contains the image of the map.
Conversely, assume that Xq+1−BX+B splits completely and B 
= 0. Since the

polynomial has no double roots, it isXq−X transformed under some g ∈ PGL2(K).
As the polynomial has degree q + 1 the matrix g can be decomposed as above, a
priori with different λ and μ. Since the shape of the polynomial determines λ and μ
in terms of u, B must be as above. �

Now let Q be an irreducible quadratic polynomial in K[X] such that a basis of its
associated lattice LQ in (3), now over K, is given by (1, u0X + u1), (X, v0X + v1).
Then Q is a scalar multiple of −u0X

2 + (−u1 + v0)X + v1. By Lemma 4.1 and (4),
in order to eliminate Q we need to find (a, u) ∈ K × (K \ Fq2) satisfying

(u− uq2)q+1(−u0a
2 + (−v0 + u1)a+ v1)

q − (u− uq)q
2+1(−aq + u0a+ v0)

q+1 = 0.

The two terms have a common factor (u − uq)q+1 which motivates the following
definitions. Let α = −u0, β = u1 − v0, γ = v1, and δ = −v0 with α, β, γ, δ ∈ K, as
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well as

D =
Uq2 − U

Uq − U
=

∏
ε∈Fq2\Fq

(U − ε),

E = Uq − U =
∏
ε∈Fq

(U − ε),

F = αA2 + βA+ γ = α(A− ρ1)(A− ρ2) with ρ1, ρ2 ∈ L,

G = Aq + αA+ δ, and

P = Dq+1F q − Eq2−qGq+1 ∈ K[A,U ].

Note that F equals Q(−A) (up to a scalar), so that deg(F ) = 2, F is irreducible,
and ρ1, ρ2 /∈ K. We consider the curve C defined by P = 0 and are interested in
the number of (affine) points (a, u) ∈ C(K) with u /∈ Fq2 . More precisely, we want
to prove the following.

Theorem 4.2. Let q > 61 be a prime power that is not a power of 4. If the
conditions

(∗) ρq1 + αρ2 + δ 
= 0,

(∗∗) ρq1 + αρ1 + δ 
= 0

hold, then there are at least qkd−1 pairs (a, u) ∈ K×(K\Fq2) satisfying P (a, u) = 0.

The relation of the two conditions to the quadratic polynomial Q, as well as
properties of traps, is described in the following propositions.

Proposition 4.3. If condition (∗) is not satisfied, then Q divides h1X
q − h0;

i.e., Q is a trap of level 0. If condition (∗∗) is not satisfied, then Q divides
h1X

qkd+1 − h0; i.e., Q is a trap of level kd. In particular, if Q is a good poly-
nomial, then conditions (∗) and (∗∗) are satisfied.

Proposition 4.4. Let (a, u), (a′, u′) ∈ K × (K \ Fq2) be two solutions of P = 0
with a 
= a′, corresponding to the polynomials Pa = XY + aY + bX + c and Pa′ =
XY +a′Y +b′X+c′, respectively. Then Pa mod f1 and Pa′ mod f1 have no common
roots. Furthermore, the common roots of Pa mod f2 and Pa′ mod f2 are precisely
the roots of Q.

Now we explain how (for q > 61 not a power of 4) Theorem 3.1 follows from
the above theorem and the propositions. Since the irreducible quadratic polyno-
mial Q is good, the lattice LQ is nondegenerate so that a basis as above exists,
and by Proposition 4.3 the two conditions of Theorem 4.2 are satisfied. The map
of Lemma 4.1 is q3 − q : 1 on K \ Fq2 ; hence there are at least qkd−4 solutions

(a,B) ∈ K×B of (4), which contain at least qkd−4 different values a ∈ K. Observe
that a trap root τ that may occur in this situation is a root of h1X

q − h0 or of
h1X

qkd′+1 − h0 for d
′ | d

2 , or it satisfies
h0

h1
(τ ) ∈ Fqkd/2 . The cardinality of these trap

roots is at most q
kd
2 +3. By Proposition 4.4 a trap root can appear in Pa mod fj

for at most two values a, at most once for j = 1, and at most once for j = 2.
Hence there are at most q

kd
2 +4 ≤ qkd−5 values a for which a trap root appears in

Pa mod fj , j = 1, 2. Thus there are at least qkd−5 different values a for which a so-
lution (a,B) leads to an elimination into good polynomials. This finishes the proof
of Theorem 3.1; hence we focus on proving the theorem and the two propositions
above.
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4.2. Outline of the proof method. The main step of the proof of the theorem
consists of showing that, subject to conditions (∗) and (∗∗), there exists an ab-
solutely irreducible factor P1 of P that lies already in K[A,U ]. Since the (total)
degree of P1 is at most q3 + q, restricting to the component of the curve defined
by P1 and using the Weil bound for possibly singular plane curves gives a lower
bound on the cardinality of C(K) which is large enough to prove the theorem after
accounting for projective points and points with second coordinate in Fq2 . This
argument is given in the next subsection before dealing with the more involved
main step.

For proving the main step the action of PGL2(Fq) on the variable U is considered.
An absolutely irreducible factor P1 of P is stabilised by a subgroup S1 ⊂ PGL2(Fq)
satisfying some conditions. The first step is to show that, after possibly switching
to another absolutely irreducible factor, there are only a few cases for the subgroup.
Then for each case it is shown that the factor is defined over K[A,U ] or that one
of the conditions on the parameters is not satisfied.

The propositions are proven in the final subsection.

4.3. Weil bound. Let C1 be the absolutely irreducible plane curve defined by P1

of degree d1 ≤ q3 + q. Corollary 2.5 of [1] shows that

|#C1(K)− qkd − 1| ≤ (d1 − 1)(d1 − 2)q
kd
2 .

Since degA(P1) ≤ q2 + q there are at most q4 + q3 affine points with u ∈ Fq2 . The
number of points at infinity is at most d1 ≤ q3 + q < q4. Denoting by C1(K )̃ the
set of affine points in C1(K) with second coordinate u 
∈ Fq2 one obtains

|#C1(K )̃ | > qkd − (q4 + q3)− d1 − (d1 − 1)(d1 − 2)q
kd
2 > qkd − q

kd
2 +8 ≥ qkd−1,

since kd ≥ 18, thus proving the theorem if there exists an absolutely irreducible
factor P1 defined over K[A,U ].

4.4. PGL2 action. Here the following convention for the action of PGL2(Fq) on
P1 and on polynomials is used. A matrix ( a b

c d ) ∈ PGL2(Fq) acts on P1(M), where
M is an arbitrary field containing Fq, by

(x0 : x1) �→
(
a b
c d

)
(x0 : x1) = (ax0 + bx1 : cx0 + dx1)

or, via P1(M) = M ∪ {∞}, by x �→ ax+b
cx+d . This is an action on the left; i.e., for

σ, τ ∈ PGL2(Fq) and x ∈ P1(M) the following holds: σ(τ (x)) = (στ )(x). On a
homogeneous polynomial H in the variables (X0 : X1) the action of σ = ( a b

c d ) is
given by Hσ(X0 : X1) = H(aX0+bX1 : cX0+dX1). This is an action on the right,
satisfying H(στ) = (Hσ)τ . In the following we will usually use this action on the
dehomogenised polynomials given by Hσ(X) = H(aX+b

cX+d ), clearing denominators in
the appropriate way.

The polynomial P ∈ (K[A])[U ] is invariant under PGL2(Fq) acting on the vari-
able U ; this can be seen by considering the actions of ( a 0

0 1 ), (
1 b
0 1 ), and ( 0 1

1 0 ) and
noticing that PGL2(Fq) is generated by these matrices. Let

P = s

g∏
i=1

Pi, Pi ∈ (K[A])[U ], s ∈ K[A],
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be the decomposition of P in (K[A])[U ] into irreducible factors Pi and possibly
reducible s. Notice that s must divide F q and Gq+1; hence it divides a power of
gcd(F,G). As F is irreducible, gcd(F,G) is either constant or of degree two. In
the latter case ρ1 is a root of G contradicting condition (∗∗). Therefore one can
assume that s ∈ K is a constant.

Let

P = F q

q3−q∏
i=1

(U − ri), ri ∈ K(A),

be the decomposition of P in K(A)[U ]. Then PGL2(Fq) permutes the set {ri} and,
since fixed points of PGL2(Fq) lie in Fq2 but ri /∈ Fq2 , the action is free. Since
#PGL2(Fq) = q3 − q the action is transitive.

Therefore the action on the decomposition over K[A,U ] is also transitive (ad-
justing the Pi by scalars in K[A] if necessary). Denoting by Si ⊂ PGL2(Fq) the
stabiliser of Pi it follows that all Si are conjugates of each other; thus they have
the same cardinality and hence q3 − q = g ·#Si. Moreover the degree of Pi in U is
constant, namely degU (Pi) = #Si, and also the degree of Pi in A is constant, thus
g | q2 + q = degA(P ). In particular, q − 1 | #Si and degA(Pi) =

#Si

q−1 .

4.5. Subgroups of PGL2. The classification of subgroups of PSL2(Fq) is well
known [7] and allows us to determine all subgroups of PGL2(Fq) [5]. Since #Si

is divisible by q − 1 (in particular #Si > 60), only the following subgroups are of
interest (per conjugation class only one subgroup is listed):

1. the cyclic group ( ∗ 0
0 1 ) of order q − 1,

2. the dihedral group ( ∗ 0
0 1 ) ∪ ( 0 1

∗ 0 ) of order 2(q − 1) and, if q is odd, its two
dihedral subgroups{(a 0

0 1

)
| a 
= 0 a square

}
∪
{(0 1

c 0

)
| c 
= 0 a square

}
and

{(a 0
0 1

)
| a 
= 0 a square

}
∪
{(0 1

c 0

)
| c not a square

}
,

both of order q − 1,
3. the Borel subgroup ( ∗ ∗

0 1 ) of order q
2 − q,

4. if q is odd, PSL2(Fq) of index 2,
5. if q = q′2 is a square, PGL2(Fq′) of order q

′3 − q′ = q′(q − 1), and
6. PGL2(Fq).

In the last case P is absolutely irreducible; thus it remains to investigate the
first five cases which are treated in the next subsection.

Remark. The condition q > 61 rules out some small subgroups as A4, S4, and A5.
In many of the finitely many cases q ≤ 61 the proof of the theorem also works (e.g.,
q not a square and q − 1 � 120). The condition of q not being a power of even
exponent of 2 eliminates the fifth case in characteristic 2. Removing this condition
would be of some interest.

4.6. The individual cases. Since the stabilisers Si are conjugates of each other,
one can assume without loss of generality that S1 is one of the explicit subgroups
given in the previous subsection. Then the polynomial P1 is invariant under certain
transformations of U , so that P1 and P can be rewritten in terms of another variable
as stated in the following.
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If a polynomial (in the variable U) is invariant under U �→ aU , a ∈ F×
q , it can

be considered as a polynomial in the variable V = Uq−1. For the polynomials D
and Eq−1 one obtains

D =
V q+1 − 1

V − 1
and Eq−1 = V (V − 1)q−1.

Similarly, in the case of odd q, if a polynomial is invariant under U �→ aU for all

squares a ∈ F×
q , it can be rewritten in the variable V ′ = U

q−1
2 . For D and Eq−1

this gives

D =
V ′2q+2 − 1

V ′2 − 1
and Eq−1 = V ′2(V ′2 − 1)q−1.

If a polynomial is invariant under U �→ U + b, b ∈ Fq, it can be considered as a

polynomial in Ṽ = Uq − U , which gives

D = Ṽ q−1 + 1 and Eq−1 = Ṽ q−1.

Combining the above yields that a polynomial which is invariant under both
U �→ aU , a ∈ F×

q , and U �→ U + b, b ∈ Fq, can be considered as a polynomial in

W = Ṽ q−1 = (Uq − U)q−1. For D and Eq−1 one obtains

D = W + 1 and Eq−1 = W.

This is now applied to the various cases for S1.

4.6.1. The cyclic case. Rewriting P and P1 in terms of V = Uq−1 one obtains

P =
(V q+1 − 1

V − 1

)q+1

F q − V q(V − 1)q
2−qGq+1

and degV (P1) = 1; i.e., P1 = p1V − p0 with pi ∈ K[A], gcd(p0, p1) = 1,
max(deg(p0), deg(p1)) = 1, and it can be assumed that p0 is monic.

The divisibility P1 | P transforms into the following polynomial identity in K[A]:(pq+1
0 − pq+1

1

p0 − p1

)q+1

F q = pq1p
q
0(p0 − p1)

q2−qGq+1.

The degree of the first factor on the left-hand side is either q2 + q or q2 − 1 (if
p0 − ζp1 is constant for some ζ ∈ μq+1(Fq2) \ {1}). Since the degrees of the other
factors are all divisible by q, the latter case is impossible. Since deg(F ) = 2 one gets

deg(F q) = 2q. Furthermore, deg((p0p1)
q) ∈ {q, 2q}, deg((p0−p1)

q2−q) ∈ {0, q2−q},
and deg(Gq+1) = q2+q, which implies that deg(p0−p1) = 0, deg(p0) = deg(p1) = 1
since q > 2.

Let p0 − p1 = c1 ∈ K; in the following ci will be some constants in K. Since the
first factor on the left-hand side is coprime to p0p1, it follows that

pq+1
0 − pq+1

1

p0 − p1
= c2G, F = c3p0p1, and cq+1

2 cq3 = cq
2−q

1 .

Exchanging ρ1 and ρ2, if needed, one obtains

p0 = A− ρ1, p1 = A− ρ2, c3 = α, and c1 = ρ2 − ρ1.

Considering the coefficient of Aq in the equation for G gives c2 = 1, and evaluating
this equation at A = ρ2 gives

ρq1 + αρ2 + δ = 0.

This means that condition (∗) does not hold.
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4.6.2. The dihedral cases. The case of the dihedral group of order 2(q − 1) is con-
sidered first. Then, as above, P and P1 can be expressed in terms of V , and, since
P and P1 are also invariant under V �→ 1

V , they can be expressed in terms of

W+ = V + 1
V . This gives degW+

(P1) = 1 and with Z = μq+1(Fq2) \ {1},

Dq+1V − q2+q
2 =

∏
ζ∈Z

(W+ − (ζ + ζq))
q+1
2 and

PV − q2+q
2 =

( ∏
ζ∈Z

(W+ − (ζ + ζq))
q+1
2

)
F q − (W+ − 2)

q2−q
2 Gq+1.

In characteristic 2 each factor of the product over Z appears twice, thus justifying
their exponent q+1

2 .

By writing P1 = p1W+ − p0, with pi ∈ K[A], gcd(p0, p1) = 1,
max(deg(p0), deg(p1)) = 2, and p0 being monic, the divisibility P1 | P transforms
into the following polynomial identity in K[A]:( ∏

ζ∈Z
(p0 − (ζ + ζq)p1)

q+1
2

)
F q = pq1(p0 − 2p1)

q2−q
2 Gq+1.

Again the degree of the first factor on the left-hand side must be divisible by q
(respectively, q

2 in characteristic 2), and since p0 − (ζ + ζq)p1 can be constant or

linear for at most one sum ζ + ζq, the degree of the first factor must be q2 + q for
q > 4. Also the degree of p0 − 2p1 must be zero since q > 3, and thus the degree of
p1 is 2.

In even characteristic p0 − 2p1 = p0 is a constant, thus p0 = 1 (p0 is monic).
The involution ζ �→ ζq = ζ−1 on Z has no fixed points, and, denoting by Z2 a set
of representatives of Z modulo the involution, one obtains∏

ζ∈Z2

(1− (ζ + ζq)p1) = c1G, F = c2p1, and cq+1
1 cq2 = 1.

Modulo F one gets F | c1G − 1, which implies c1 ∈ K. Thus c2 ∈ K, p1 ∈ K[A],
and therefore P1 ∈ K[A,U ].

In odd characteristic the factor corresponding to ζ = −1, namely (p0 + 2p1)
q+1
2 ,

is coprime to the other factors in the product and coprime to p1(p0 − 2p1). Hence
p0 + 2p1 must be a square, and its square root must divide G. Moreover, one gets
F = c1p1. Since p0 − 2p1 = c2 is a constant and p0 is monic, one gets c1 = 2α,
implying p1 ∈ K[A]. Since p0 + 2p1 = 4p1 + c2 is a square, its discriminant is zero;
thus c2 ∈ K, and hence P1 ∈ K[A,U ].

If S1 is one of the two dihedral subgroups of order q − 1 (which implies that
q is odd), the argumentation is similar. The polynomials P and P1 are expressed

in terms of V ′ = U
q−1
2 and then, since U �→ 1

cU becomes V ′ �→ c−
q−1
2

1
V ′ with

c−
q−1
2 = ±1, in terms of W ′

+ = V ′ + 1
V ′ or W ′

− = V ′ − 1
V ′ , respectively. In the first

case P is rewritten as

PV ′−(q2+q) =
( ∏

ζ∈Z′

(W ′
+ − (ζ + ζ−1))

q+1
2

)
F q − (W ′

+ − 2)
q2−q

2 (W ′
+ + 2)

q2−q
2 Gq+1,
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where Z ′ = μ2(q+1)(Fq2) \ {±1}. By setting P1 = p1W
′
+ − p0 with pi ∈ K[A],

gcd(p0, p1) = 1, max(deg(p0), deg(p1)) = 1, and p0 being monic, one obtains( ∏
ζ∈Z′

(p0 − (ζ + ζ−1)p1)
q+1
2

)
F q = p2q1 (p0 − 2p1)

q2−q
2 (p0 + 2p1)

q2−q
2 Gq+1.

Since one of p0 ± 2p1 is not constant, the degree of the right-hand side exceeds the
degree of the left-hand side for q > 5, which is a contradiction.

In the second case P is rewritten as

PV ′−(q2+q) =
( ∏

ζ∈Z′

(W ′
− − (ζ − ζ−1))

q+1
2

)
F q −W ′q2−q

− Gq+1,

and by setting P1 = p1W
′
− − p0 with pi ∈ K[A], gcd(p0, p1) = 1,

max(deg(p0), deg(p1)) = 1, and p0 being monic, one obtains( ∏
ζ∈Z′

(p0 − (ζ − ζ−1)p1)
q+1
2

)
F q = p2q1 pq

2−q
0 Gq+1.

Considering the degrees for q > 3 it follows that p0 must be constant, and hence
p1 is of degree one. Since p1 is coprime to the first factor on the left-hand side, it
must divide F q, which implies that ρ1 = ρ2 ∈ K, contradicting the irreducibility
of F .

4.6.3. The Borel case. In this case, rewriting P and P1 in terms ofW = (Uq−U)q−1

gives

P = (W + 1)q+1F q −W qGq+1

and degW (P1) = 1, P1 = p1W − p0, with pi ∈ K[A], gcd(p0, p1) = 1,
max(deg(p0), deg(p1)) = q, and p1 being monic. Then the divisibility P1 | P
transforms into the following polynomial identity in K[A]:

(p0 + p1)
q+1F q = p1p

q
0G

q+1.

From deg(Gq+1) = q2 + q, deg(p1p
q
0) ≥ q, and deg(F q) = 2q it follows that the

degree of p0+p1 must be q. This implies that deg(F q) = deg(p1p
q
0); thus deg(p0) ≤

2, and therefore deg(p1) = q, since q > 2, and deg(p0) = 1.
Since p0 + p1 is coprime to p0p1, it follows that

p0 + p1 = c1G, p1 = p̃q, F = c2p̃p0, and cq+1
1 cq2 = 1

for a monic linear polynomial p̃ ∈ K[A].
Exchanging ρ1 and ρ2, if needed, one obtains

p̃ = A− ρ1, p0 = c3(A− ρ2), c1 = 1, c2 = 1, and c3 = α.

Evaluating p0 + p1 = G at A = 0 gives

ρq1 + αρ2 + δ = 0.

This means that condition (∗) does not hold.
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4.6.4. The PSL2 case. This case can only occur for odd q, and then P splits as
P = sP1P2 with a scalar s ∈ K. The map U �→ aU for a nonsquare a ∈ Fq

exchanges P1 and P2. Since PSL2(Fq) is a normal subgroup of PGL2(Fq), P2 is

invariant under PSL2(Fq) as well. By rewriting P in terms of W ′ = (Uq − U)
q−1
2

one obtains

P = (W ′2 + 1)q+1F q −W ′2qGq+1 = sP1(W
′)P1(−W ′).

Denoting by p0 ∈ K[A] the constant coefficient of P1 ∈ (K[A])[W ′] this becomes
modulo W ′

F q = sp20,

which implies that ρ1 = ρ2 ∈ K, contradicting the irreducibility of F .

4.6.5. The case PGL2(Fq′). Since PGL2(Fq′) ⊂ PSL2(Fq) in odd characteristic, one
can reduce this case to the previous case as follows.

Let I1 ⊂ {1, . . . , g} be the subset of i such that Si is a conjugate of S1 by an
element in PSL2(Fq), and let I2 = {1, . . . , g} \ I1. These two sets correspond to
the two orbits of the action of PSL2(Fq) on the Si (or Pi). Both orbits contain
#I1 = #I2 = g

2 elements, and an element in PGL2(Fq) \ PSL2(Fq) transfers one
orbit into the other.

Let P̃j =
∏

i∈Ij
Pi, j = 1, 2; then P splits as P = sP̃1P̃2, s ∈ K, and both P̃j ,

j = 1, 2, are invariant under PSL2(Fq). Notice that the absolute irreducibility of
P1 and P2 was not used in the argument in the PSL2 case.

This completes the proof of Theorem 4.2.

4.7. Traps. In the following Proposition 4.3 and Proposition 4.4 are proven.
Let Q be an irreducible quadratic polynomial in K[X] such that

(1, u0X + u1), (X, v0X + v1) is a basis of the lattice LQ, so that Q is a scalar mul-
tiple of −u0X

2 + (−u1 + v0)X + v1 = F (−X) and has roots −ρ1 and −ρ2. By
definition of LQ the pair (h0, h1) must be in the dual lattice (scaled by Q), given
by the basis (u0X + u1,−1), (v0X + v1,−X).

For the assertions concerning conditions (∗) and (∗∗), assume that ρ1, ρ2 ∈ L\K
and that

ρq1 + αρj + δ = 0

holds for j = 1 or j = 2.
First consider the case j = 2, i.e., condition (∗). To show that −ρi, i = 1, 2, are

roots of h1X
q − h0 it is sufficient to show this for the basis of the dual lattice of

LQ given above. For (u0X + u1,−1) one computes

−(−ρq1)− u0(−ρ1)− u1 = ρq1 − αρ1 − β + δ = −αρ2 − αρ1 − β = 0,

and for (v0X + v1,−X) one obtains

−(−ρ1)(−ρq1)− v0(−ρ1)− v1 = (−ρq1 − δ)ρ1 − γ = αρ1ρ2 − γ = 0.

Therefore h1X
q − h0 is divisible by Q, which is then a trap of level 0.

In the case j = 1 an analogous calculation shows that −ρi, i = 1, 2, are roots of

h1X
qkd+1 − h0, namely for (u0X + u1,−1) one has

−(−ρq
kd+1

2 )− u0(−ρ2)− u1 = ρq1 − αρ2 − β + δ = −αρ1 − αρ2 − β = 0,

and for (v0X + v1,−X) one gets

−(−ρ2)(−ρq
kd+1

2 )− v0(−ρ2)− v1 = (−ρq1 − δ)ρ2 − γ = αρ1ρ2 − γ = 0.



3144 ROBERT GRANGER, THORSTEN KLEINJUNG, AND JENS ZUMBRÄGEL

Therefore h1X
qkd+1 − h0 is divisible by Q, which is then a trap of level kd. This

finishes the proof of Proposition 4.3.
Regarding Proposition 4.4, note that a solution (a,B) gives rise to the polynomial

Pa = a(u0X + (Y + u1)) + ((Y + v0)X + v1). If, for j = 1 or j = 2, ρ is a root of
Pa mod fj for two different values of a, then ρ is a root of u0X + (Y + u1) mod fj
and of (Y + v0)X + v1 mod fj . Since

−X(u0X + (Y + u1)) + (Y + v0)X + v1 = −u0X
2 + (−u1 + v0)X + v1 = F (−X),

which equals Q up to a scalar, it follows that ρ is also a root of Q. Furthermore,
in the case j = 1 the polynomial Pa mod f1 splits completely, so that ρ ∈ K,
contradicting the irreducibility of Q, finishing the proof of Proposition 4.4.

This completes the proof of Theorem 3.1.
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quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic,
Advances in cryptology—EUROCRYPT 2014, Lecture Notes in Comput. Sci., vol. 8441,
Springer, Heidelberg, 2014, pp. 1–16, DOI 10.1007/978-3-642-55220-5 1. MR3213210

[3] E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970),
713–735, DOI 10.2307/2004849. MR0276200

[4] Antonia W. Bluher, On xq+1 + ax + b, Finite Fields Appl. 10 (2004), no. 3, 285–305, DOI
10.1016/j.ffa.2003.08.004. MR2067599

[5] P. J. Cameron, G. R. Omidi, and B. Tayfeh-Rezaie, 3-designs from PGL(2, q), Electron. J.
Combin. 13 (2006), no. 1, Research Paper 50, 11. MR2240756

[6] Qi Cheng, Daqing Wan, and Jincheng Zhuang, Traps to the BGJT-algorithm for dis-
crete logarithms, LMS J. Comput. Math. 17 (2014), no. suppl. A, 218–229, DOI
10.1112/S1461157014000242. MR3240805

[7] Leonard E. Dickson, Linear groups: With an exposition of the Galois field theory, Teubner,
Leipzig, 1901.

[8] Claus Diem, On the discrete logarithm problem in elliptic curves, Compos. Math. 147 (2011),

no. 1, 75–104, DOI 10.1112/S0010437X10005075. MR2771127
[9] Andreas Enge and Pierrick Gaudry, A general framework for subexponential discrete loga-

rithm algorithms, Acta Arith. 102 (2002), no. 1, 83–103, DOI 10.4064/aa102-1-6. MR1884958
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