Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sequences of powers with second differences equal to two and hyperbolicity


Author: Natalia Garcia-Fritz
Journal: Trans. Amer. Math. Soc. 370 (2018), 3441-3466
MSC (2010): Primary 11D41, 32Q45, 14G05
DOI: https://doi.org/10.1090/tran/7040
Published electronically: December 27, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By explicitly finding the complete set of curves of genus 0 or $ 1$ in some surfaces of general type, we prove that under the Bombieri-Lang conjecture for surfaces, there exists an absolute bound $ M>0$ such that there are only finitely many sequences of length $ M$ formed by $ k$-th rational powers with second differences equal to $ 2$. Moreover, we prove the unconditional analogue of this result for function fields, with $ M$ depending only on the genus of the function field. We also find new examples of Brody-hyperbolic surfaces arising from the previous arithmetic problem. Finally, under the Bombieri-Lang conjecture and the ABC-conjecture for four terms, we prove analogous results for sequences of integer powers with possibly different exponents, in which case some exceptional sequences occur.


References [Enhancements On Off] (What's this?)

  • [AHW13] Ta Thi Hoai An, Hsiu-Lien Huang, and Julie Tzu-Yueh Wang, Generalized Büchi's problem for algebraic functions and meromorphic functions, Math. Z. 273 (2013), no. 1-2, 95-122. MR 3010153, https://doi.org/10.1007/s00209-012-0997-9
  • [Bog10] F. A. Bogomolov, The theory of invariants and its applications to some problems in the algebraic geometry, Algebraic surfaces, C.I.M.E. Summer Sch., vol. 76, Springer, Heidelberg, 2010, pp. 217-245. MR 2757652, https://doi.org/10.1007/978-3-642-11087-0_4
  • [BB94] J. Browkin and J. Brzeziński, Some remarks on the $ abc$-conjecture, Math. Comp. 62 (1994), no. 206, 931-939. MR 1218341, https://doi.org/10.2307/2153551
  • [Des79] Mireille Deschamps, Courbes de genre géométrique borné sur une surface de type général [d'après F. A. Bogomolov], Séminaire Bourbaki, 30e année (1977/78), Lecture Notes in Math., vol. 710, Springer, Berlin, 1979, Exp. No. 519, pp. 233-247 (French). MR 554224
  • [EH00] David Eisenbud and Joe Harris, The geometry of schemes, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000. MR 1730819
  • [Gar13] Natalia Garcia-Fritz, Representation of powers by polynomials and the language of powers, J. Lond. Math. Soc. (2) 87 (2013), no. 2, 347-364. MR 3046275, https://doi.org/10.1112/jlms/jds052
  • [Gar15] Natalia Cristina Garcia Fritz, Curves of low genus on surfaces and applications to Diophantine problems, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Queen's University (Canada), 2015. MR 3564085
  • [EGA] A. Grothendieck and J. A. Dieudonné, Eléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 166, Springer-Verlag, Berlin, 1971 (French). MR 3075000; MR 0163909; MR 0163910; MR 0163911; MR 0173675; MR 0199181; MR 0217086; MR 0238860
  • [Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
  • [Lan86] Serge Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159-205. MR 828820, https://doi.org/10.1090/S0273-0979-1986-15426-1
  • [Lan91] Serge Lang, Number theory. III, Diophantine geometry, Encyclopaedia of Mathematical Sciences, vol. 60, Springer-Verlag, Berlin, 1991. MR 1112552
  • [Lip90] L. Lipshitz, Quadratic forms, the five square problem, and diophantine equations, The Collected Works of J. Richard Büchi (S. MacLane and Dirk Siefkes, eds.), Springer, 1990, pp. 677-680.MR 1030043.
  • [Maz94] B. Mazur, Questions of decidability and undecidability in number theory, J. Symbolic Logic 59 (1994), no. 2, 353-371. MR 1276620, https://doi.org/10.2307/2275395
  • [McQ98] Michael McQuillan, Diophantine approximations and foliations, Inst. Hautes Études Sci. Publ. Math. 87 (1998), 121-174. MR 1659270
  • [Mum66] David Mumford, Lectures on curves on an algebraic surface, with a section by G. M. Bergman, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. MR 0209285
  • [Nog81] Junjiro Noguchi, A higher-dimensional analogue of Mordell's conjecture over function fields, Math. Ann. 258 (1981/82), no. 2, 207-212. MR 641826, https://doi.org/10.1007/BF01450536
  • [PPV10] H. Pasten, T. Pheidas, and X. Vidaux, A survey on Büchi's problem: new presentations and open problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), Issledovaniya po Teorii Chisel. 10 111-140, 243 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 171 (2010), no. 6, 765-781. MR 2753653, https://doi.org/10.1007/s10958-010-0181-x
  • [Pas13] Hector Pasten, Powerful values of polynomials and a conjecture of Vojta, J. Number Theory 133 (2013), no. 9, 2964-2998. MR 3057059, https://doi.org/10.1016/j.jnt.2013.03.001
  • [PV05] Thanases Pheidas and Xavier Vidaux, Extensions of Büchi's problem: questions of decidability for addition and $ k$th powers, Fund. Math. 185 (2005), no. 2, 171-194. MR 2163109, https://doi.org/10.4064/fm185-2-4
  • [PV06] Thanases Pheidas and Xavier Vidaux, The analogue of Büchi's problem for rational functions, J. London Math. Soc. (2) 74 (2006), no. 3, 545-565. MR 2286432, https://doi.org/10.1112/S0024610706023283
  • [PV10] Thanases Pheidas and Xavier Vidaux, Corrigendum: The analogue of Büchi's problem for rational functions [MR2286432], J. Lond. Math. Soc. (2) 82 (2010), no. 1, 273-278. MR 2669651, https://doi.org/10.1112/jlms/jdq002
  • [Voj98] Paul Vojta, A more general $ abc$ conjecture, Internat. Math. Res. Notices 21 (1998), 1103-1116. MR 1663215, https://doi.org/10.1155/S1073792898000658
  • [Voj00a] Paul Vojta, Diagonal quadratic forms and Hilbert's tenth problem, Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999) Contemp. Math., vol. 270, Amer. Math. Soc., Providence, RI, 2000, pp. 261-274. MR 1802018, https://doi.org/10.1090/conm/270/04378
  • [Voj00b] Paul Vojta, On the $ ABC$ conjecture and Diophantine approximation by rational points, Amer. J. Math. 122 (2000), no. 4, 843-872. MR 1771576
  • [Voj11] Paul Vojta, Diophantine approximation and Nevanlinna theory, Arithmetic geometry, Lecture Notes in Math., vol. 2009, Springer, Berlin, 2011, pp. 111-224. MR 2757629, https://doi.org/10.1007/978-3-642-15945-9_3

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11D41, 32Q45, 14G05

Retrieve articles in all journals with MSC (2010): 11D41, 32Q45, 14G05


Additional Information

Natalia Garcia-Fritz
Affiliation: Department of Mathematics, University of Toronto, 40 St. George Street BA6103, Toronto, Ontario, Canada, M5S 2E4
Address at time of publication: Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Campus San Joaquín, Avenida Vicuña Mackenna 4860, Santiago, Chile
Email: natalia.garcia@mat.uc.cl

DOI: https://doi.org/10.1090/tran/7040
Keywords: Curves of low genus, Brody-hyperbolic surfaces, rational points, undecidability
Received by editor(s): March 7, 2016
Received by editor(s) in revised form: August 8, 2016
Published electronically: December 27, 2017
Additional Notes: This work was part of the author’s thesis at Queen’s University and was partially supported by a Becas Chile Scholarship
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society