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HEEGNER POINTS ON MODULAR CURVES

LI CAI, YIHUA CHEN, AND YU LIU

Abstract. In this paper, we study the Heegner points on more general mod-
ular curves other than X0(N), which generalizes Gross’ work “Heegner points
on X0(N)”. The explicit Gross-Zagier formula and the Euler system property
are stated in this case. Using such a kind of Heegner points, we construct
certain families of quadratic twists of X0(36), with the ranks of Mordell-Weil
groups being zero and one respectively, and show that the 2-part of their BSD
conjectures hold.
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1. Introduction

Let φ =
∑∞

n=1 anq
n be a newform of weight 2, level Γ0(N), normalized such that

a1 = 1. LetK be an imaginary quadratic field of discriminant D and χ a (primitive)
ring class character over K of conductor c, i.e., a character of Pic(Oc) where Oc is
the order Z+ cOK of K. Let L(s, φ, χ) be the Rankin-Selberg convolution of φ and
χ. Assume the Heegner condition:

(1) (c,N) = 1.
(2) Any prime p|N is either split in K or ramified in K with ordp(N) = 1 and

χ([p]) �= ap, where p is the unique prime ideal of OK above p and [p] is its
class in Pic(Oc).

Under this condition, the sign of L(s, φ, χ) is −1 and Gross studies the Heegner
points on X0(N) in [7]. It’s well known that X0(N)(C) parameterizes the pairs
(E,C), with E an elliptic curve over C and C a cyclic subgroup of E of order N .
By the Heegner condition, there exists a proper ideal N of Oc such that Oc/N ∼=
Z/NZ. For any proper ideal a of Oc, let Pa ∈ X0(N) be the point representing
(C/a, aN−1/a), which is defined over the ring class field Hc, the abelian extension
of K with Galois group Pic(Oc) given by class field theory. Such points are called
Heegner points over K of conductor c and only depend on the class of a in Pic(Oc).
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Let J0(N) be the Jacobian of X0(N). The cusp [∞] on X0(N) defines a mor-
phism over Q from X0(N) to J0(N) given by P �→ [P −∞]. Let Pχ be the point

Pχ =
∑

[a]∈Pic(Oc)

[Pa −∞]⊗ χ([a]) ∈ J0(N)(Hc)⊗Z C

and let Pφ
χ be the φ-isotypical component of Pχ. Under the Heegner condition, Cai-

Shu-Tian [3] give an explicit form of Gross-Zagier formula which relates the height
of Pφ

χ to L′(1, φ, χ). In fact, they give an explicit form of Gross-Zagier formula in
the general Shimura curve case.

Let the data (φ,K, χ) be as above, and generalize the Heegner condition to the
following one (∗):

(i) (c,N) = 1,
(ii) if a prime p|N is inert in K, then ordpN is even; if p|N is ramified in K,

then ordpN = 1 and χ([p]) �= ap, where p is the unique prime ideal of OK

above p and [p] is its class in Pic(Oc).

Under these assumptions, we can write N = N0N
2
1 , with p|N1 if and only if p is

inert. Given an embedding K ↪→ M2(Q) such that K∩M2(Z) = K∩R0(N0) = Oc,
where

R0(N0) =

{
A ∈ M2(Z)

∣∣∣A ≡
(
∗ ∗
0 ∗

)
(modN0)

}
.

We will consider the order R of M2(Z) given by R = Oc +N1R0(N0). Define

ΓK(N) = R× ∩ SL2(Z) =

⎧⎨⎩A ∈ SL2(Z)

∣∣∣∣∣∣ A ≡
(
∗ ∗
0 ∗

)
(modN0)

AmodN1 ∈ R/N1R

⎫⎬⎭ .

Now we have to consider the modular curve XK(N) = ΓK(N)\H ∪{cusps}, where
H = {z ∈ C : Im(z) > 0}.

This modular curve is not the usual modular curve of the form X0(M) any
longer, if N1 �= 1. XK(N) parameterizes (E,C, α) where E is an elliptic curve over
C, C is a cyclic subgroup of E of order N0 and α is an H-orbit of an isomorphism
(Z/N1Z)2 
 E[N1], where

H = (OK/N1OK)× ⊂ GL2(Z/N1Z).

The readers are referred to [9] theorem 7.1.3. Let h0 be the fixed point of H under
the action of K×. Note that since Z + Zh−1

0 is an invertible ideal of Oc, then

the triple P =

(
C/Z+ Zh0,

〈
1
N0

〉
, H

(
h0
N1
1

N1

))
is a Heegner point on XK(N) in the

sense of Definition 2.2. By CM theory, P ∈ XK(N)(Kab). The conductor of P is
also defined to be c, the conductor of Oc. For details, see Section 2.

Assume φ corresponds to an elliptic curve E/Q, by modularity of elliptic curves,
Jacquet-Langlands correspondence and [27, Theorem 3.8], there is a modular
parametrization f : XK(N) → E, taking [∞] to identity in E. It is unique in
the sense that given two parametrizations f1, f2, there exist integers n1, n2 such
that n1f2 = n2f2 [3, Proposition 3.8]. Now we can formulate the following Gross-
Zagier formula:

Theorem 1.1 ([3]). Under the assumption (∗)

(GZ) L′(1, E, χ) = 2−μ(N,D) ·
8π2(φ, φ)Γ0(N)

u2c
√
|DK |

ĥK(Pχ(f))

deg f
,
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where ( , )Γ0(N) is the Petersson inner product, ĥK is the Néron-Tate height over

K, μ(N,D) is the number of prime factors of (N,D), u = [O×
c : {±1}].

As an application of such a kind of parametrization, we will construct a family
of quadratic twists of an elliptic curve with Mordell-Weil groups of rank one. The
action of complex conjugation on the CM-points of the modular curve is a crucial
point in the proof of the nontriviality of the Heegner point. For the usual modular
curve X0(N), complex conjugation is essentially the Atkin-Lehner operator. How-
ever, it does not hold for the modular curve XK(N). We will find that the action
of complex conjugation is given in terms of a combination of local Atkin-Lehner
operators and the nontrivial normalizer of K× in GL2(Q). Denote this operator
by w. Then f + fw is a constant map with its image a nontrivial 2-torsion point;
see Lemma 3.8. This phenomenon and the norm compatible relation control the
divisibility of Heegner cycles. Together with the Gross-Zagier formula, the divisi-
bility of Heegner cycles implies the 2-part of the BSD conjecture for our family of
quadratic twists.

For each square free nonzero integer d �= 1, we write E(d) for the twist of an
elliptic curve E/Q by the quadratic extension Q(

√
d)/Q. The results of [26], [2],

[5], [14] show that there are infinitely many d such that L(E(d), s) is nonvanishing
at s = 1, and infinitely many d such that L(E(d), s) has a simple zero at s = 1.

The work of [21], [22] for the elliptic curve (X0(32), [∞]) : y2 = x3−x constructs
explicitly families of d with ords=1L(E

(d), s) = 1. The work of [4] deals with the
elliptic curve E = (X0(49), [∞]) which has CM by

√
−7, gets similar results to [21].

Here, we construct a family of quadratic twists of E = (X0(36), [∞]) such that
the ranks of the Mordell-Weil groups for these twists are one. In this paper, we have
made a new argument different from [4], [21] and [22], which is much shorter and
simpler. The new argument relies on a norm compatible relation between Heegner
points of different conductors. See Theorem 2.15.

Theorem 1.2. Let � be a prime such that 3 is split in Q(
√
−�) and 2 is unramified

in Q(
√
−�). Let M = q1 · · · qr be a positive square-free integer with prime factors

qi all inert in Q(
√
−3), qi ≡ 1 (mod 4) and qi inert in Q(

√
−�). Then

(1) ords=1L(s, E
(−�M)) = 1 = rankE(−�M)(Q);

(2) #X(E(−�M)/Q) is odd, and the p-part of the full BSD conjecture of E(−�M)

holds for p � 3�M , i.e.,

ordp

(
L′(E(−�M))

Ω(E(−�M))Reg(E(−�M))

)
= ordp

(
#X(E(−�M))∏

q<∞ cq(E(−�M))(#E(−�M)(Q)tor)2

)
.

The nontriviality of Heegner cycles and Gross-Zagier formula also imply the rank
part of BSD conjecture for E(M), namely,

ords=1L(s, E
(M)) = 0 = rankE(M)(Q).

We are also interested in the full BSD conjecture for E(M). In fact, the part (2)
of Theorem 1.2 depends on the similar assertion for E(M), which is the part (2) of
Theorem 1.3.

A new feature of this paper is that we give a parallel proof of the BSD conjecture
for E(M) as we have mentioned above, that is, using the Waldspurger formula and
the norm property of Gross points. For the induction method used in [4], [23],
there is an embedding problem of imaginary quadratic fields to quaternion algebras
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which is related to the problem of representing integers by ternary quadratic forms
(see also the argument before [4, Definition 5.5], [23, Section 2.1] and [13]). The use
of the norm compatible property of Gross points avoids this embedding problem.

If, for the data (φ,K, χ), the root number ε(φ, χ) equals +1, by [3] we can choose
an appropriate definite quaternion algebra B over Q containing K, an order R of B

of discriminant N with R∩K = OK and a “unique” function f : B×\B̂×/R̂× → C.
Assume the conductor c of χ satisfies (c,N) = 1. Let xc ∈ K×\B̂×/R̂× be a Gross

point of conductor c, that is, xc satisfies that xcR̂x−1
c ∩ K̂ = Ôc. Denote by

Pχ(f) =
∑

σ∈Gal(Hc/K)

f(σ · xc)χ(σ).

Then with similar notation as for Gross-Zagier formula, we have the Waldspurger
formula (see Theorem 2.16)

L(1, E, χ) = 2−μ(N,D) ·
8π2(φ, φ)Γ0(N)

u2
√
|Dc2|

· |Pχ(f)|2
〈f, f〉 .

Moreover, the Gross points of different conductors also form an “Euler system”(see
Section 2). The following theorem can be viewed as the rank zero version of Theo-
rem 1.2:

Theorem 1.3. Let M = q1 · · · qr be a positive square-free integer with prime factors
qi all inert in Q(

√
−3) and qi ≡ 1 (mod 4); then

(1) ords=1L(s, E
(M)) = 0 = rankE(M)(Q);

(2) #X
(
E(M)/Q

)
is odd, and the p-part of the full BSD conjecture of E(−�M)

holds for p �= 3.

2. The modular curve and Heegner points

2.1. The modular curve XK(N). Let K be an imaginary quadratic field with
discriminant D. Let N = N0N

2
1 be a positive integer such that p|N1 if and only if p

is inert in K. Let c be another positive integer coprime to N . Take an embedding
K ↪→ M2(Q) which is admissible in the sense that

K ∩M2(Z) = K ∩R0(N0) = Oc.

Let R be the order ofM2(Z) given by R = Oc+N1R0(N0). Then R has discriminant
N with R ∩K = Oc.

Let ΓK(N) = R× ∩ SL2(Z) and XK(N) be the modular curve over Q with
level ΓK(N). It’s well known that X(N0N1)(C) parameterizes (E, (Z/N0N1)

2 

E[N0N1])) where E is an elliptic curve over C. By [9] chapter 3.5, it parameterizes
(E, (Z/N0)

2 
 E[N0], (Z/N1)
2 
 E[N1])). Then by [9] chapter 7, XK(N) param-

eterizes (E,C, α : (Z/N1)
2 
 E[N1])), where C is a cyclic subgroup of E[N0] of

order N0, and α is an H-orbit of a basis of E[N1] where H := (OK/N1OK)× ⊂
GL2(Z/N1Z). Precisely, the class of z ∈ H in XK(N) corresponds to the triple(

C/Z · z + Z,
〈 1

N0

〉
, H

(
z
N1

1
N1

))
.
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Recall that h0 = H K×
. For X a field, a quaternion algebra over Q (the situa-

tions involved in this paper), or an order in them, we denote X̂ = X ⊗Z

∏
�<∞ Z�.

Lemma 2.1. If m is a positive integer and (m, cNDK) = 1, then for any invertible
fractional ideals a,N of Ocm, satisfying N−1a/a 
 Z/N0Z, there exist a Z-basis

{u, v} of a and g ∈ GL+
2 (Q), such that N−1a = Z

u

N0
+ Zv,

v

u
= g−1h0, and

K ∩ gRg−1 = Ocm.

Proof. Consider the natural projection between curves over Q: XK(N) → X0(N0),
which is the forgetful functor in the moduli aspect (E,C, [α]) �→ (E,C). a,N define
a Heegner point (C/a,N−1a/a) on X0(N0). Then there exists a Z-basis {u, v} of

a and g =

(
a b
c d

)
∈ GL+

2 (Q), such that N−1a = Z〈 u

N0
, v〉, v

u
= g−1h0, and

K ∩ gR̂0(N0)g
−1 = Ocm. If we choose another basis, g will differ by an element in

Γ0(N0) on the right and an element in K× on the left. So we have to prove there

exists g′ ∈ Γ0(N0), such that K ∩ gg′R̂g
′−1g−1 = Ocm.

Denote by O′ = g−1Ocmg, it suffices to prove that there exists g′ ∈ Γ0(N0), such

that for any �|N1, O′
� ⊂ g′R�g

′−1. In fact, if it holds, then

O′
� ⊂ g−1K�g ∩ g′R�g

′−1,

hence they are equal, since O′
� is the maximal compact subring of g−1K�g. This

implies that O′ = g−1Kg ∩ g′R̂g
′−1. i.e., K ∩ gg′R̂g

′−1g−1 = Ocm.
Note that O� ⊂ R�, by Lemma 2.7, there exists a g� ∈ SL2(Z�), such that

O′
� = g�O�g

−1
� . By Lemma 2.9, there exists a g′ ∈ Γ0(N0), such that

g′ ≡ g� (mod �ord�N1) ∀�|N1.

Let β : M2(Z�) → M2(Z�/N1Z�), be the natural projection. We see that g′R�g
′−1 =

β−1(β(O′
�)). This induces O′

� ⊂ g′R�g
′−1. �

Definition 2.2. Let a,N and u, v, g be as in Lemma 2.1. A Heegner point on
XK(N) of conductor cm is a triple

P =

(
C/a,N−1

a/a, H

(
v
N1
u
N1

))
.

Remark 2.3. This point corresponds to the point v
u ∈ H .

The order Oc is of the form Z+Z�c where �c =
cD+c

√
D

2 . Denote by

(
x y
z w

)
∈

GL2(Q) the image of �c under the fixed embedding K ↪→ M2(Q). Since K is a
field, yz �= 0.

Lemma 2.4. K = Q+Qh0 and Oc = Z+ Zyh−1
0 .

Proof. We have x+ w = Dc, xw − yz =
c2(D2 −D)

4
. As h0 is fixed by

(
x y
z w

)
,

xh0 + y

zh0 + w
= h0 and zh2

0 + (w − x)h0 − y = 0.
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Hence

h0 =
(x− w) + c

√
D

2z
∈ K\Q and h−1

0 =
2z

(x− w) + c
√
D

=
(x− w)− c

√
D

2y
,

so

yh−1
0 = −w +

Dc+ c
√
D

2
.

�

Lemma 2.5. Let a = Z + Z · h−1
0 and N−1 = Z + Z · N−1

0 h−1
0 . Then End(a) :=

{x ∈ K : xa ⊂ a} = Oc, and End(N−1) = Oc.

Proof. Let (a+ bh−1
0 )a ⊂ a. It is equivalent to that

(a+ bh−1
0 ) ∈ a and (a+ bh−1

0 )h−1
0 ∈ a.

The first condition implies a, b ∈ Z; then the second one is equivalent to bh−2
0 ∈ a.

But
bh−2

0 = y−1b((w − x)h−1
0 + z) ∈ a.

The condition R ∩ K = Oc tells (w − x, z, y) = 1, so the above condition implies
b ∈ yZ, which tells us that End(a) = Oc. The assertion for N−1 is similar, noticing
that N0|z. �

Clearly, a and N are invertible ideals of Oc, and N−1/a 
 Z/N0Z. Summing
up:

Proposition 2.6. Let K ↪→ M2(Q) be an admissible embedding and h0 ∈ HK×
.

Denote by a = Z+ Z · h−1
0 and N−1 = Z+ Z ·N−1

0 h−1
0 ; then

P =

(
C/a,N−1/a, H

( y
N1

yh−1
0

N1

))
is a Heegner point on XK(N) of conductor c.

Now we prove lemmas needed in Lemma 2.1.

Lemma 2.7. For any two embeddings ϕi : Zp2 → M2(Zp), i = 1, 2, there exists
g ∈ SL2(Zp), such that ϕ1 = g−1ϕ2g.

Remark 2.8. If we change Zp to Qp, Zp2 to Qp2 and SL2 to GL2, this lemma is
well-known as a consequence of Noether-Skolem theorem.

Proof. Consider V = Zp ⊕ Zp, with the natural action of M2(Zp). Via ϕi, we view
V as a Zp2-module, denoted by Vi, i = 1, 2. Since Zp2 is a discrete valuation ring
and Vi are torsion free, both V1, V2 are free Zp2-modules of rank one. So there
exists an isomorphism g0 : V1 → V2 of Zp2-modules, this isomorphism corresponds
to an element of GL2(Zp), also denoted by g0. The fact g0 is an isomorphism of
Zp2-modules means that

g0ϕ1(x) = ϕ2(x)g0 ∀x ∈ Zp2 .

Note that NZp2/Zp
Z×
p2 = Z×

p , choose t ∈ Z×
p2 , such that NZp2/Zp

t = (det g0)
−1, i.e.,

detϕ1(t) = (det g0)
−1. Therefore

g0ϕ1(t)ϕ1(x) = g0ϕ1(x)ϕ1(t) = ϕ2(x)g0ϕ1(t).

So g = g0ϕ1(t) ∈ SL2(Zp) is the desired element. �
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Lemma 2.9. Let M1,M2 be two coprime positive integers, and let ϕ : SL2(Z) →
SL2(Z/M1Z) be the natural projection. Then ϕ(Γ0(M2)) = SL2(Z/M1Z).

Proof. By Chinese remainder theorem, we have

SL2(Z/(M1M2Z)) 
 SL2(Z/M1Z)× SL2(Z/M2Z).

Given any g ∈ SL2(Z/M1Z), let g′ ∈ SL2(Z/(M1M2Z)) correspond to (g, 1) ∈
SL2(Z/M1Z) × SL2(Z/M2Z) via the above isomorphism. It’s well-known that for
any integer M , SL2(Z) −→ SL2(Z/MZ) is surjective. So we choose a matrix G
such that G ≡ g′ (modM1M2). Then G ∈ Γ(M2) ⊂ Γ0(M2) and ϕ(G) = g. �

Example 2.1. Now we construct an admissible embedding K ↪→ M2(Q) as follow-
ing. Since �|N0 implies that � is split in K, there exists an integral ideal N0 of OK

such that OK/N0 
 Z/N0, which implies Z +N0 = OK . Then there exists n ∈ Z
and m ∈ N0 such that

D +
√
D

2
= n+m.

Taking trace and norm, we get

D = 2n+ (m+ m̄) and
D2 −D

4
= n2 + n(m+ m̄) +mm̄.

Since mm̄ ∈ N0N0 = N0OK and it is an integer, we have mm̄ = N0b for some
b ∈ Z. Let a = D − 2n. We see that

D = a2 − 4N0b.

It’s easy to check that (a, b,N0) = 1. Given an integer c such that (c,N) = 1, we
let the embedding ic : K −→ B be given by

D +
√
D

2
� ��

(
D+a
2 −c−1

N0bc
D−a
2

)
, or

Dc+
√
Dc2

2
� ��

(
Dc+ac

2 −1
N0bc

2 Dc−ac
2

)
.

We can see this embedding is normalized in the sense of [18, p. 104], and

h0 =
a+

√
D

2N0bc
.

We should mention that, for the normalized embedding, we have Shimura’s reci-
procity law, which interpretes the Galois action on Heegner points.

The modular curve XK(N) depends on the admissible embedding K ↪→ M2(Q).
However, we will prove that all those modular curves given by admissible embed-
dings are isomorphic over Q. Let i : K ↪→ M2(Q) be an admissible embedding. Let
H = i(OK/N1OK) ⊂ GL2(Z/N1Z), and let H0 be the upper-triangular matrices in
GL2(Z/N0Z); then H =

∏
p|N1

Hp, where Hp ⊂ GL2(Z/pordpN1Z). Then

XK(N) = X(N0N1)/(H ×H0).

If i′ is another admissible embedding, and for any p|N1, Hp and H ′
p are conjugate

in GL2(Z/pordpN1Z), we obviously have

X(N0N1)/(H ×H0) 
 X(N0N1)/(H
′ ×H0).
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In fact, Hp is the image of the composition homomorphism of Z×
p2 → GL2(Zp)

and GL2(Zp) → GL2(Zp/p
ordp(N1)Zp). Lemma 2.7 implies that Hp and H ′

p are

conjugate in GL2(Z/pordpN1Z). Thus,

Proposition 2.10. The modular curve XK(N) is unique up to an isomorphism
over Q.

Cusps. Now we study the cusps on XK(N).

Lemma 2.11. Let ζN1
be a primitive N1-th root of unity. Then the cusp [∞] of

XK(N) is defined over Q(ζN1
).

Proof. In the adelic language, we have the following complex uniformization:

XK(N)(C) = GL+
2 (Q)\H ×GL2(Ẑ)/R̂

× ∪ {cusps},

where the cusps are

GL+
2 (Q)\P1(Q)×GL2(Ẑ)/R̂

×.

The cusps are all defined over Qab. By [16, p. 507], if we let r : Q̂×/Q× →
Gal(Qab/Q) be the Artin map, then r(x) ∈ Gal(Qab/Q) acts on the cusps by left

multiplication the matrix

(
x 0
0 1

)
. Since Q̂×/Q× 
 Ẑ×, if x ∈ Ẑ× is such that

r(x)·[∞, 1] = [∞, 1], there exists

(
α β
0 γ

)
∈ GL+

2 (Q), such that

(
α β
0 γ

)(
x 0
0 1

)
∈

R̂×, which implies

γ ∈ Z×
p , αxp ∈ Z×

p , β ∈ N1Zp for all p, and αxp ≡ γ (modN1) for all p|N1.

Hence α = γ = ±1, and xp ≡ 1 (modN1). So the definition field of [∞, 1] corre-
sponds to

Q̂×/Q×Z×(N1)
∏
p|N1

(1 +N1Zp),

via class field theory, this is Q(ζN1
). �

In the following, we fix the embedding ic : K ↪→ M2(Q) given in Example 2.1.

Atkin-Lehner operator. For each p | N0, let

wp =

(
0 1

pordpN 0

)
∈ GL2(Qp)

be the local Atkin-Lehner operator.
Although it will not be used later in this paper, to compare with equation (5.1)

of [7], we give a description of wpP for p|N0 and P =

(
C/a,N−1

a/a, H

(
v
N1
u
N1

))
.

Write N0 = pkm with (p,m) = 1. We can choose a, b ∈ Z such that pka+mb = 1.

Let g =

(
pk 1

−N0b pka

)
∈ GL+

2 (Q) ∩M2(Z), such that g−1wp ∈ R̂×, so

wpP = [v/u, wp] = [g−1v/u, 1] =

(
C/Z · g−1v/u+ Z,

〈 1

N0

〉
, H

(
g−1v/u

N1

1
N1

))
.
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Modifying it, we get

wpP =

⎛⎝C/a′,N ′−1a′/a′, H

⎛⎝ av−u/pk

N1

mbv+u
N1

⎞⎠⎞⎠
where a′ = Z〈v, u/pk〉 and N ′−1a′ = Z〈v/pk, u/(pkm)〉. Considering the quotient
map ξ : XK(N) → X0(N0) induced by ΓK(N) ⊂ Γ0(N0), which is defined over Q,
the above argument says that ξ ◦wp = wp ◦ ξ, where the action of wp on X0(N0) is
defined by [7, p. 90].

Take j =

(
1 0
ac −1

)
, then kj = jk for all k ∈ K where¯is the complex conjuga-

tion of K and coincides with the nontrivial element in Gal(K/Q).
Define

w = j(N0) ·
∏
p|N0

wp ∈ GL2(Q̂) ∩M2(Ẑ).

Since w normalizes R̂×, it acts on XK(N). To study the action of w on XK(N),
we can prove the following lemma:

Lemma 2.12. There exists t0 ∈ K̂× and u ∈ R̂× such that w = t0ju.

Proof. For p|N0, let k = ordpN0 ≥ 1, K×
p = (Qp +Qp(

√
D))×. Let x, y ∈ Qp; then

(x+ y
√
D)j−1

p wp =

(
−2pky x+ ay

−pk(x+ ay) a(x+ ay)− 2N0by

)
.

So we choose ordpy = −k−ordp2, x+ay ∈ Zp and such that a(x+ay) ∈ Z×
p . Then

let t0,p = x+ y
√
D.

For p � N0, let t0,p = 1. Then such choice of t0 works. �

Remark 2.13. By Shimura reciprocity law, if we use [x] �→ [x] to denote the complex
conjugation on XK(N)(C), then

[h0, g] = [h0, jg] ∀g ∈ GL2(Af ).

Lemma 2.12 in fact tells us that the action of w on certain Heegner points is a
combination of a Galois action and complex conjugation. For details, we can see
the proof of Lemma 3.11.

Hecke correspondences. Let � � N be a prime. The Hecke correspondence T� on
XU is defined by

T�

(
E,C,H

(
x1

x2

))
=
∑
i

(
E/Ci, (C + Ci)/Ci, H

(
x1 modCi

x2 modCi

))
,

where the sum is taken over all cyclic subgroups Ci of E of order �, αi is given by

(Z/N1Z)2
α−→ E[N1] 
 (E/Ci)[N1]. E[N1] 
 (E/Ci)[N1] is because (�,N) = 1.

This is just by definition.
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2.2. Gross-Zagier formula. Let E be an elliptic curve of conductor N , let K be
an imaginary quadratic field of discriminant D and let χ be a ring class character
over K of conductor c. Assume

E,K, χ satisfy the condition (∗).
Then we can write N = N0N

2
1 , where p|N is inert in K if and only if p|N1.

Embed K in M2(Q) by ic. There is a modular parametrization f : XK(N) → E
mapping [∞] to the identity of E. If f1, f2 are two such morphisms, then there
exist integers n1, n2 such that n1f1 = n2f2. Let h0 be the point in H fixed by K×;
then Oc = Z + Zh−1

0 , N = Z + ZN−1
0 h−1

0 is an invertible ideal of Oc such that
N/Oc

∼= Z/N0Z. Consider the following Heegner point on XK(N) of conductor c:

P =

(
C/Oc,N/Oc, H

(
1
N1

h−1
0

N1

))
∈ XK(N)(Hc).

Form the cycle:

Pχ(f) =
∑

σ∈Gal(Hc/K)

f(P σ)χ(σ) ∈ E(Hc)⊗Z C.

Theorem 2.14 (Explicit Gross-Zagier formula [3]). We have the following equa-
tion:

(GZ) L′(1, E, χ) = 2−μ(N,D) ·
8π2(φ, φ)Γ0(N)

u2c
√
|D|

ĥK(Pχ(f))

deg f
.

Here φ is the normalized newform associated to E, μ(N,D) is the number of prime

factors of (N,D), u = [O×
K : Z×], ĥK is the Néron-Tate height pairing over K and

(φ, φ)Γ0(N) is the Petersson inner product defined by

(φ, φ)Γ0(N) =

∫
Γ0(N)\H

|φ(x+ iy)|2dxdy.

2.3. Euler system. Let S be a finite set of primes containing the prime factors of
6cNDK ,

NS = {n is an integer : �|n ⇒ � /∈ S}.
For any �,m ∈ NS with � a prime and � � m, let Pm = (C/am,N−1

m am/am, αm)
be a Heegner point of conductor cm. Let Pm� = (C/am�,N−1

m� am�/am�, αm�), such
that Nm� = Nm ∩ Om�, am� = a ∩ Om�, and αm� is the composition

(Z/N1Z)
2 αm−→ N−1

1 am/am
∼−→ N−1

1 am�/am�.

Theorem 2.15. We have that [Hm� : Hm] = (� + 1)/um if � is inert in K and
(�− 1)/um if � is split and

um

∑
σ∈Gal(Hm�/Hm)

P σ
m� =

{
T�Pm, if � is inert in K,

(T� −
∑

w|� Frobw)Pm, if � is split in K,

where T� is the Hecke correspondence, Frobw is the Frobenius at w|� in Gal(Hm/K),
and um = 1 if m �= 1 and u1 = [O×

K : Z×].

This theorem is proved in general by [10, Proposition 4.8] or [20, Theorem 3.1.1].
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2.4. Waldspurger formula and Gross points. Let φ =
∑∞

n=1 anq
n be a new-

form of weight 2, level Γ0(N), normalized such that a1 = 1. Let K be an imaginary
quadratic field of discriminant D and χ a ring class character over K of conductor
c. Let L(s, φ, χ) be the Rankin-Selberg convolution of φ and χ.

Assume that (c,N) = 1. Denote by S the set of primes p|N satisfying one of the
following conditions:

• p is inert in K with ordp(N) odd;
• p|D, ordp(N) = 1 and χ([p]) = ap where p is the prime of OK above p and
[p] is its class in Pic(Oc);

• p|D, ordp(N) ≥ 2 and the local root number of L(s, φ, χ) at p equals
−ηp(−1) where ηp is the quadratic character for Kp/Qp.

Assume S has odd cardinality; then the sign of L(s, φ, χ) is +1. Let B be the
definite quaternion algebra defined over Q ramified exactly at primes in S ∪ {∞}.
Fix an embedding from K into B. Let R be an order in B with discriminant N
and such that R ∩K = Oc. Denote by R̂ = R⊗Z Ẑ and U = R̂× which is an open
compact subgroup of B̂×. Consider the Shimura set XU = B×\B̂×/U which is a

finite set. A point in XU represented by x ∈ B̂× is denoted by [x]. Note that for
p|(D,N), K×

p normalizes U and then K×
p acts on XU by right multiplication. Let

C[XU ]
0 =

{
f ∈ C[XU ]

∣∣∣∣∣ ∑
x∈XU

f(x) = 0

}
.

For each p � N , there are Hecke correspondences Tp and Sp. In this case, Bp is split
while Up is maximal. Then the quotient B×

p /Up can be identified with Zp-lattices

in Q2
p. Then for any [x] ∈ XU ,

Sp[x] := [x(p)sp], Tp[x] :=
∑
hp

[x(p)hp],

where if xp corresponds to a lattice Λ, then sp is the lattice pΛ and the set {hp}
is the set of sublattices Λ′ of Λ with [Λ : Λ′] = p. There is then a line V (φ, χ) of
C[XU ]

0 characterized as follows:

• for any p � N , Tp acts on V (φ, χ) by ap and Sp acts trivially;
• for any p|(D,N) with ordp(N) ≥ 2, K×

p acts on V (φ, χ) by χp.

Let f be a nonzero vector in V (φ, χ) and consider the period

Pχ(f) =
∑

σ∈Gal(Hc/K)

f(σ)χ(σ),

where the embedding of K into B induces a map

Gal(Hc/K) = K×\K̂×/Ô×
c −→ XU .

Theorem 2.16 (Explicit Waldspurger formula [3]). We have the following equa-
tion:

L(1, φ, χ) = 2−μ(N,D) ·
8π2(φ, φ)Γ0(N)

u2c
√
|D|

|Pχ(f)|2
〈f, f〉 ,
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where the pairing is given by

〈f, f〉 =
∑

[x]∈XU

|f(x)|2w([x])−1

and w([x]) is the order of the finite group (B× ∩ xUx−1)/{±1}.

There is an analogue to Heegner points, the so-called Gross points. Let S and
NS be the same as in Section 2.3.

Definition 2.17. Let m ∈ NS . A point xm ∈ K×\B̂×/U is called a Gross point

of conductor cm, if xmUx−1
m ∩ K̂× = Ô×

cm.

Each element in K×\K̂×/Ô×
cm acts on xm by left multiplication. This induces

an action of Gal(Hcm/K) on xm, also called the Galois action.

For each prime � ∈ NS , fix an isomorphism β� : B�
∼→ M2(Q�), such that

β�(U�) = GL2(Z�), and, under this isomorphism, we have

• β�(K�) =

{(
a 0
0 b

)
: a, b ∈ Q�

}
, if � is split in K;

• β�(K�) =

{(
a bδ
b a

)
: a, b ∈ Q�

}
, where δ ∈ Z×

p \Z×2
p , if � is inert in K.

For m ∈ NS , define xm ∈ B̂× by

(xm)� =

⎧⎨⎩ β−1
�

(
�ord�m 0

0 1

)
�|m,

1 � � m.

Then the image of xm in K×\B̂×/U , still denoted by xm, is a Gross point of
conductor cm.

Theorem 2.18. For any �,m ∈ NS with � a prime and � � m, we have that

um

∑
σ∈Gal(Hcm�/Hcm)

[σ.xm�] =

{
T�[xm], if � is inert in K,

(T� −
∑

w|� Frobw)[xm], if � is split in K,

where the equality holds as divisors on XU , with Frobw and um the same as Theorem
2.15.

The proof is the same as the norm relation of Heegner points on Shimura curves.
One can refer to [10, Proposition 4.8] or [20, Theorem 3.1.1].

3. Quadratic twists of X0(36)

The modular curve X0(36) has genus one and its cusp [∞] is rational over Q so
that E = (X0(36), [∞]) is an elliptic curve defined over Q. The elliptic curve E has
CM by Q(

√
−3) and has minimal Weierstrass equation

y2 = x3 + 1.

Note that its Tamagawa numbers are c2 = 3, c3 = 2 and E(Q) ∼= Z/6Z is generated
by the cusp [0] = (2, 3). We use T to denote the nontrivial 2-torsion point in the
following. Denote by Lalg(E, s) the algebraic part of L(E, s). Then Lalg(E, 1) =
1/6.

For a nonzero integer m, let E(m) : y2 = x3 +m3 be the quadratic twist of E by
the field Q(

√
m). Then E(m) and E(−3m) are 3-isogenous to each other.
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Lemma 3.1. Let D ∈ Z be a fundamental discriminant of a quadratic field. Then
the sign for the functional equation of E(D), denoted by ε(E(D)), is

(−1)#{p|D,p=2,3,∞},

where ∞|D means that D < 0.

Proof. For each D, denote by K = Q(
√
D); then

L(s, EK) = L(s, E)L(s, E(D)),

where L(s, EK) is the base change L-function and it suffices to determine the sign
of L(s, EK). Note that the local components of the cuspidal automorphic rep-
resentation for E at places 2 and 3 are supercuspidal with conductor 2; then by
[19, Proposition 3.5], the local root number for the base change L-function at places
2 (resp. 3) is negative if and only if 2|D (resp. 3|D). Meanwhile, the local root
number at ∞ is positive if and only if D is positive and for any place not dividing
6∞ it is positive. Summing up, the result holds. �

3.1. The Waldspurger formula. Let B be the definite quaternion algebra over
Q ramified at 3,∞; then we know that

B = Q+Qi+Qj +Qk, i2 = −1, j2 = −3, k = ij = −ji.

Let OB = Z[1, i, (i+ j)/2, (1 + k)/2] be a maximal order of B. The unit group O×
B

of OB is equal to

{±1,±i,±(i+ j)/2,±(i− j)/2,±(1 + k)/2,±(1− k)/2} .

Let K = Q(
√
−3) and η : Q̂×/Q× → {±1} be the quadratic character associated to

K. Embed K ↪→ B by sending
√
−3 to k, this induces an embedding K̂× ↪→ B̂×.

Let π = ⊗vπv be the automorphic representation of B×
A corresponding to E via

the modularity of E and the Jacquet-Langlands correspondence. Let R =
∏

p Rp

be an order of B̂× defined as follows. If p = 2, then R2 = OK,2 + 2OB,2. If p = 3,
then R3 = OK,3 + λOB,3 where λ ∈ B× is a uniformizer of B3; for example, we
may choose λ = k, which is also a uniformizer of K3. For p � |6, Rp = OB,p. Denote

by U = R×. Then U is an open compact subgroup of B̂×.
The local components of π have the following properties:

• π∞ is trivial;

• πp is unramified if p �= 2, 3,∞, i.e., πO×
B,p is one dimensional;

• π
O×

K,2

2 is one dimensional and π
O×

K,3

3 is two dimensional.

The first two properties are standard, while the last property comes from [3, propo-
sition 3.8]. Then πU is a representation of B×

3 with dimension 2. As K×
3 -modules,

πU = Cχ+ ⊕Cχ− where χ+ is the trivial character of K×
3 and χ− is the nontrivial

quadratic unramified character on K×
3 .

This representation πU is naturally realized as a subspace of the space of the

infinitely differentiable complex-valued functions C∞(B×\B̂×/Q̂×). The space πU

is contained in the space C∞(B×\B̂×/Q̂×U) and is perpendicular to the spectrum
consisting of characters (the residue spectrum). In fact, we have the following more
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detailed proposition, which are easy calculations on automorphic representations,
based on the discussion above:

Proposition 3.2. (1) πU has an orthonormal basis f+, f− under the Peters-
son inner product defined by

‖ f ‖2=
∫
B×\ ̂B×/̂Q×

|f(g)|2dg

with the Tamagawa measure Vol(B×\B̂×/Q̂×) = 2.

(2) Moreover, f+ (resp. f−) is the function on B×\B̂×/Q̂×U , supported on

those g ∈ B̂× with χ0(g) = +1 (resp. = −1), valued in 0,±1 with total
mass zero, where χ0 is the composition of the following morphisms:

B×\B̂×/Q̂×U
det−→ Q̂× η−→ ±1.

(3) For any t ∈ K×
3 , π(t)f+ = χ+(t)f+ and π(t)f− = χ−(t)f−.

The values of f± on Gross points essentially induce Theorem 1.3, via explicit
Waldspurger formula, as we will see later.

Since the class number of B with respect to OB is 1 by [24, p. 152], one has

B̂× = B×Ô×
B = B×B×

3 Ô×(3)
B .

Therefore,

B×\B̂×/Q̂×U = B×\B×B×
3 Ô×(3)

B /U2U3Ô×(6)
B = H\B×

3 O×
B,2/U2U3,

where H = B× ∩ B×
3 Ô×(3)

B = O×
Bλ

Z ⊂ B×
3 O×

B,2 and the last inclusion is given by
the diagonal embedding.

Lemma 3.3. The double coset H\O×
B,2/U2 is trivial and H∩U2\B×

3 /U3=O×
B,3/U3.

Proof. The proof is elementary. First, we prove that H\O×
B,2/U2 is trivial. Recall

that U2 = O×
K,2(1 + 2M2(Z2)). As GL2(Z2)/(1 + 2M2(Z2)) = GL2(F2), for any

g ∈ GL2(F2), one may find h ∈ H and u ∈ O×
K,2 such that g ≡ hu (mod 2Z2). For

the second claim, note that

H ∩ U2 = 〈k,−1,
1 + k

2
〉.

For any x ∈ B×
3 , x−1(1 + λ)x = 1 + x−1λx ∈ U3 where λ is any uniformizer of

B×
3 . In particular, the action of H ∩ U2 on B×

3 /U3 is equal to the action of the
group generated by some uniformizer. Hence H∩U2\B×

3 /U3 = H ∩U2\(B×
3 /U3) =

O×
B,3/U3. �

If we denote Z9 the integer ring for the unramified quadratic extension field of
Q3, then

O×
B,3 = Z×

9 (1 + λZ9);U3 = O×
K,3(1 + λOB,3) = μ2(1 + 3Z9)(1 + λZ9),

where μ2 = {±1}. Hence

H\B×
3 O×

B,2/U2U3
∼←− H ∩ U2\B×

3 /U3

∼←− O×
B,3/U3

∼←− Z×
9 /μ2(1 + 3Z9) ∼= Z/4Z,
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and we can identify C∞(B×\B̂×/Q̂×U) with C[Z/4Z].
The image of B×\B̂×/U under the norm map is Q×

+\Q̂×/NrU . If p �= 3, NrUp =
Z×
p while if NrU3 = 1 + 3Z3. Therefore, by the approximation theorem,

Q×
+\Q̂×/NrU = Z×

3 /NrU3 = Z×
3 /1 + 3Z3.

In paticular, the cardinality of Q×
+\Q̂×/NrU is 2. Forms in C∞(B×\B̂×/Q̂×U) of

the form μ ◦ Nr for some Hecke character μ corresponds to characters on C[Z/4Z]
of order dividing 2. Summing up, we obtain

Lemma 3.4. There is a natural bijection

Z×
9 /μ2(1 + 3Z9)

∼−→ B×\B̂×/Q̂×U

which is induced by the embedding Z×
9 → B×

3 → B̂×, and the left hand side of the
above bijection is isomorphic to the cyclic group of order 4. Via this bijection, the
space πU is spanned by characters on the cyclic group with order not dividing 2.

Since O×
K,3 ⊂ U3, f is χ±-eigen if and only if π3(�3)f = ±f , if and only if

f(ζa�3) = ±f(ζa) for a = 0, · · · , 3 where ζ is a primitive 8-th root of unity in Z×
9 .

Moreover, we may assume ζ ≡ 1 +
√
−1 (mod 1 + 3Z9).

To compute f(ζa�3), since k ∈ H ∩ U2 and f ∈ πU , we have

f(ζa�3) = f(k−1ζa�3) = f(k−1
3 ζa�3),

where k3 denotes the 3-component of k.
Take �3 =

√
−3 ∈ K×

3 . Then

f(k−1
3 ζa�3) = f(k−1

3 ζak3) = f(ζ3a), a ∈ Z/4Z,

because the conjugate action of k3 on Z9 is the Galois conjugation. Thus

π(�3)f(ζ) = f(ζ3), π(�3)f(ζ
a) = f(ζa) if 2a = 0.

Thus, one may take f+ and f− by

f+(1) = 1, f+(ζ
2) = −1, f+(ζ) = f+(ζ

3) = 0 and
f−(ζ) = 1, f−(ζ

3) = −1, f−(1) = f−(ζ
2) = 0.

Finally, we show that χ0 is the nontrivial element in the residue spectrum of

C∞(B×\B̂×/Q̂×U) and χ0(ζ
a) = (−1)a for a = 0, · · · , 3. Thus, up to ±1, f+

(resp. f−) is the function on B×\B̂×/Q̂×U , supported on those g ∈ B̂× with
χ0(g) = +1 (resp. = −1), valued in 0,±1 with total mass zero. It is clear that f+
and f− is an orthonormal basis of πU . We have completed the proof of Proposition
3.2.

Now let M = q1 . . . qr with qi ≡ 5 (mod 12). For any q|M , we take an iso-

morphism ιq : Bq
∼→ M2(Qq) given by i �→

(
1 0
0 −1

)
and k �→

(
0 3
1 0

)
. In

particular,ιq(OB,q) = M2(Zq). Denote by xq ∈ B×
q an element such that ιq(xq) =(

q
1

)
. Then xqOB,qx

−1
q ∩Kq = OM,q. Take xM =

∏
i xqi ∈ B̂×. Denote by

fM =

{
f+(·xM ) if r is even;

f−(·xM ) if r is odd.
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Let χM be the quadratic Hecke character of K associated to K(
√
M)/K; then

χM (�3) = (−1)r. Then fM is in the line V (π, χM ) defined in Section 2.4. In
particular, it satisfies that

(1) ∀p � 6M,TpfM = apfM ;
(2) fM is integer-valued with minimal norm;
(3) π(�3)fM = χM (�3)fM .

Let HM be the ring class field of K of conductor M , i.e., the abelian extension

of K with Galois group Gal(HM/K) 
 Pic(OM ) = K̂×/K×Ô×
M . The embedding

K ↪→ B induces a map

K×\K̂×/Ô×
M −→ B×\B̂×/U.

Consider

PχM
(fM ) =

∑
t∈Pic(OM )

fM (t)χM (t).

Denote by

Lalg(s, E) = L(s, E)/Ω(E),

where for any elliptic curve A over Q, Ω(A) is the real period for the Neron differ-
ential of A; and for simplicity, we let Ω = Ω(E); then the imaginary period of E is
Ω− = Ω/

√
−3.

Proposition 3.5. Up to ±1, Lalg(1, E(M)) = 2−1PχM
(fM ).

Proof. By Theorem 2.16,

L(1, E, χM) = 2−1 8π
2(φ, φ)Γ0(36)√

3M

|PχM
(fM )|2

〈fM , fM 〉 .

Here,

〈fM , fM 〉 = ||fM ||2
2

Vol(XU )

and Vol(XU ) is the mass of U . By [3, Lemma 2.2],

Vol(XU ) = 2(4π2)−1Vol(U)−1,

where Vol(U) is with respect to Tamagawa measures so that for any finite p �= 3,
Vol(GL2(Zp)) = L(2, 1p)

−1, Vol(O×
B,3) = 2−1L(2, 13)

−1. Therefore Vol(XU ) = 4/3,

and 〈fM , fM 〉 = 2/3. On the other hand,

8π2(φ, φ)Γ0(36) = 8π2

∫
Γ0(36)\H

|φ(x+ iy)|2dxdy = iΩΩ−.

As E(M) and E(−3M) are isogenous over Q, L(s, E, χM) = L(s, E(M))L(s, E(−3M))

= L(s, E(M))2. Denote by Ω(M) the real period for E(M); then Ω(M) = Ω/
√
M .

Thus, Lalg(1, E(M))2 = (L(1, E(M))/Ω(M))2 = ML(1, E, χM )/Ω2 and

Lalg(1, E(M))2 = 2−2|PχM
(fM )|2.

�
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3.2. Rank zero twists. Keep the notation from the last section. Denote by A =

Gal(HM/K); then 2A = Gal(HM/H0
M ), where H0

M = K(
√
q : q | M). Let Â

(resp.Â /2A ) be a group of characters on A (resp. on A which factors through
2A ). Then ∑

χ∈Â /2A

Pχ(fM ) = 2ry0, where y0 :=
∑

σ∈2A

fM (σ).

Note that each χ ∈ Â /2A corresponds to an integer d|M , in the sense that χ

corresponds to the extension K(
√
d)/K.

Proposition 3.6. If χ ∈ Â /2A corresponds to an integer d �= M , then Pχ(fM ) =
0.

Proof. Choose a prime q ∈ NS such that qd|M . Then

Pχ(fM ) =
∑
σ∈A

fM (σ)χ(σ)

=
∑

σ∈Gal(HM/q/K)

∑
τ∈Gal(HM/HM/q)

fM (στ )χ(στ )

=
∑

σ∈Gal(HM/q/K)

χ(σ)
∑

τ∈Gal(HM/HM/q)

f(στxM ).

By Theorem 2.18, we have

uM/q

∑
τ∈Gal(HM/HM/q)

f(στxM ) = aqf(σxM/q) = 0.

So the proposition holds. �
By Proposition 3.6, we have the equality

PχM
(fM ) = 2ry0.

Lemma 3.7. The values of fM |
̂B×2 are odd. In particular, y0 is odd and

v2(PχM
(fM )) = r.

Proof. By the definition of fM , fM |
̂B×2 is odd if and only if for any g ∈ B̂×2,

χ0(gxM ) = (−1)r. Since χ0 is quadratic, χ0(g) = 1. Then χ0(gxM ) = χ0(xM ) =∏r
i=1 χ0(xqi) = (−1)r as qi is inert in K. Hence

y0 ≡ [HM : H0
M ] ≡ 1

3

∏
q|M

q + 1

2
≡ 1 (mod 2).

�
The Proof of Theorem 1.3. By Proposition 3.5, v2(L

alg(1, E(M))) = r − 1. The
2-part of BSD is equivalent to

v2

(
Lalg

(
1, E(M)

))
=
∑
p|6M

v2

(
cp

(
E(M)

))
−2v2

(
#E

(M)
tor

)
+v2

(
#X

(
E(M)/Q

))
.

The Tamagawa numbers of E(M) are: c2(E
(M)) = 3 (resp. = 1) if M ≡ 1 (mod 8)

(resp. otherwise), c3(E
(M)) = 2 and cq(E

(M)) = 2 for q|M . On the other hand,

E(M)(Q) = E(M)(Q)tor = Z/2Z. Finally, using classical 2-descent, X(E(M)/Q)[2]
= 0. Combining the results above, it is clear that the 2-part of BSD conjecture
holds.
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By [15, Theorem 11.1], the p-part of the BSD-conjecture for E(M) holds for p � 6,
therefore the first part of Theorem 1.3 holds. �

3.3. The Gross-Zagier formula. Let K = Q(
√
−�) with � ≡ 11 (mod 12). Let

N = 36. Write N = N0N
2
1 as before. There are two cases:

(1) if � ≡ −1 (mod 24), then the Heegner hypothesis holds and N = N0 = 36;
(2) if � ≡ 11 (mod 24), then N0 = 9.

Embed K into M2(Q) as ic with c = 1 in Example 2.1. Precisely, take an odd
integer a with 4 ·N0|(�+ a2) and embed K into M2(Q) by

√
−� �→

(
a 2

− �+a2

2 −a

)
.

Then M2(Z) ∩K = R0(N0) ∩K = OK . Under such embedding, take R = OK +
N1R0(N0) and consider the modular curve XK(N). For the first case, XK(N) =
X0(36). For the second case, the modular curve XK(N) has genus one and by
Lemma 2.11, the cusp [∞] is defined over Q. In fact, by [6, Example 11.7.c],
A := (XK(N), [∞]) is the elliptic curve

y2 = x3 − 27 (36C)

which is 3-isogenous to E. We have A(Q) = A(Q)[2] ∼= Z/2Z. For the first case
(resp. the second case), take f to be the identity morphism on E (resp. on A).
Denote by

j =

(
1 0
−a −1

)
∈ K−.

Lemma 3.8. Take w ∈ GL2(Q̂) the Atkin-Lehner operator defined in Section 2.1.
More precisely, for the Heegner hypothesis case, w = j(36)w2w3 while for the second

case, w = j(3)w3. Then w normalizes R̂× and w = t0ju for some t0 ∈ K̂× and

u ∈ R̂×. Moreover, f + fw is a constant map and its image is not in 2E(Q) for
the Heegner hypothesis case or not in 2A(Q) = {O} for the other case.

Proof. By Lemma 2.12, it suffices to prove the “Moreover” part.
For the first case, denote by Hom[∞](X0(N), E) the space of Q-morphisms from

X0(N) to E taking [∞] to O and Hom0
[∞](X0(N), E) = Hom[∞](X0(N), E)⊗Z Q.

By Atkin-Lehner theory, fw = −f in Hom0
[∞](X0(N), E). So fw + f is a constant

map. However, f([∞]) = O, fw([∞]) = f([0]) = [0], while [0] is the generator of
E(Q) = Z/6Z. Thus, the image of f + fw is not in 2E(Q).

For the second case, view f ∈ Hom0
[∞](XK(N), A). Then fw3 = ε(A/Q3)f = f .

As f and f j2 are both K×
2 -invariant and such elements in Hom0

[∞](XK(N), A) form

a Q-vector space of dimension 1, there is a sign ε ∈ {±1} such that f j2 = ε2f . By
[11, Theorem 4], the sign ε2 = +1 if and only if ε(A/Q2) = ε(A(−�)/Q2) = 1. Since
ε(A/Q2) = −1, we obtain f j2 = −f . Thus fw = −f and, as a morphism from
XK(N) to A, f + fw = T for some torsion point T ∈ A(Q). To see T �= O, it

suffices to show [∞] �= [∞]w. This is equivalent to saying that w �∈ P (Q)R̂× with
P the upper-triangular matrices in GL2. This holds since w3 �∈ P (Q3)R

×
3 . In fact,

P (Q3)w3 ⊂
{(

a b
c 0

)
: bc ∈ Q×

3

}
, while R×

3 =

{(
a b
c d

)
∈ GL2(Z3) : 9|c

}
. �
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Write IsomQ(A) for the group of algebraic isomorphisms ofA overQ and AutQ(A)
the subrgroup of algebraic isomorphisms over Q which fix O. Then AutQ(A) =
Z/2Z is generated by multiplication −1 and IsomQ(A) = 〈tT 〉 × AutQ(A) where
tT : P �→ P + T the translation on A by T .

Lemma 3.9. For any P ∈ A, Pw3 = tT (P ) and P j(3) = −P .

Proof. In the above proof, we have seen that w3 �∈ PU3. Thus [∞]w3 �= [∞]. Hence
for any point P , Pw3 = tT (P ). On the other hand, Pw = tT (−P ). Therefore,

P j(3) = (Pw)w
−1
3 = −P . �

Let M =
∏

i qi where qi are distinct positive integers ≡ 5 (mod 12). Denoted by

χM the quadratic character of K is associated to the extension K(
√
M)/K. Let

PM ∈ XK(N)(HM ) be the Heegner point defined in Subsection 2.3. Consider

PχM
(f) =

∑
σ∈Gal(HM/K)

f(PM )σχM (σ) ∈ E(K).

Proposition 3.10. Up to ±1,

Lalg(1, E(M))
L

′
(1, E(−�M))

Ω(E(−�M))
= ĥK(PχM

(f)).

Proof. By Theorem 2.14,

L′(1, E, χM ) =
8π2(φ, φ)Γ0(36)√

�M
· ĥK(PχM

(f)).

Since L(s, E, χM) = L(s, E(M))L(s, E(−�M)), and we have proved that L(s, E(M))
is nonvanishing at s = 1,

L′(1, E, χM) = L(1, E(M))L′(1, E(−�M)).

As in in the proof of Proposition 3.5

8π2(φ, φ)Γ0(36) = 8π2

∫
Γ0(36)\H

|φ(x+ iy)|2dxdy = iΩΩ−.

By [25], we know Ω(E(M)) = Ω/
√
M and up to sign Ω(E(−�M)) = Ω−/

√
−�M , so

up to sign

Ω(E(M))Ω(E(−�M)) =
Ω√
M

Ω−
√
−�M

= −
8π2(φ, φ)Γ0(36)

M
√
�

;

thus up to sign:

Lalg(1, E(M))
L

′
(1, E(−�M))

Ω(E(−�M))
= ĥK(PχM

(f)).

�

3.4. Rank one twists. Let � be a prime with � ≡ 11 (mod 12). Denote by K =
Q(

√
−�). We only prove Theorem 1.2 in the case � ≡ 11 (mod 24), that is, 2 is inert

in K and 3 is split in K, while its proof for the other case is similar.
Let M = q1 · · · qr where qi are distinct primes such that qi ≡ 5 (mod 12) and

inert in K. Denote by A = Gal(HM/K). Then 2A = Gal(HM/H0
M ), where

H0
M = K(

√
q : q | M). Let Â (resp.Â /2A ) be the group of characters on A (resp.

on A which factors through Gal(H0
M/K)).
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Let A be the elliptic curve y2 = x3−27. Observe that A(H0
M )[2∞] = A(Q)[2∞] =

A(Q)[2]. In fact, suppose Q ∈ A(H0
M )[2∞] but Q /∈ A(Q)[2∞]. Then the extension

Q(Q)/Q is unramified outside 2 and 3. However, as Q(Q) ⊂ H0
M , Q(Q)/Q must

be ramified at � or qi for some i. It’s a contradiction. Let T be the nontrivial
element in A(Q)[2], and let C = #A(H0

M )tor/2 be the cardinality of the odd part
of A(H0

M )tor. Denote by

yM = PχM
(f) =

∑
σ∈A

f(PM )σχM (σ) ∈ A(H0
M ).

Similar to Proposition 3.6, we have

yM = 2ry0, where y0 :=
∑

σ∈2A

f(PM )σ,

as an equality of divisors in A(H0
M ). The key point is the following lemma:

Lemma 3.11.
y0 + y0 = T.

Proof. By Lemma 2.12, one can write w = t0ju with t0 ∈ K̂×, j = K− and u ∈ R̂×.

Take xM ∈ B̂× as before such that PM = [h0, xM ] ∈ XK(N)(HM ) with h0 ∈ H K×
.

Thus, for any σt ∈ 2A with t ∈ K̂×

fw(PM )σt = f([h0, txM t0j]).

Note that xM ∈ GL2(Q(N)) while t0 ∈ K×
(N) ⊂ GL2(Q(N)). Hence xM t0 = t0xM

and
fw(PM )σt = f([h0, xMj])σtt0 .

Finally, we need to show that xMj ∈ jxMU . This reduces to show that for any
q|M , the q-part of x−1

M j−1xMj belongs to R×
q = GL2(Zq). It is easy to check this

holds. Thus
fw(PM )σt = f([h0, jxM ])σtt0 = f([h0, xM ])

σtt0 .

On the other hand, note that in the proof of Lemma 2.12, t0,p = 1 for any

p � N0 = 9. Denote by a0 = NK/Q(t0) ∈ Q̂×. Taking determinant for the equation

w = jt0u, we get a0,p = 1 if p �= 3 and a0,3 ∈ 9Z×
3 . Thus for any prime q|M

σt0(
√
q) = σa0

(
√
q) =

√
q,

where σa0
∈ Gal(Q(

√
q)/Q) via the Artin map over Q. Hence, σt0 ∈ 2A.

Summing up, since [HM : H0
M ] = [H : K]

∏
q|M

q + 1

2
is odd, we get

y0 + y0 =
∑

σ∈2A

(f + fw)(PM )σ = [HM : H0
M ]T = T.

�
Theorem 3.12. yM ∈ A(K(

√
M))− and the 2-index of yM is r−1 in A(K(

√
M)).

Proof. Consider the maps

A(K(
√
M))/2rA(K(

√
M))

δ

��
0 �� H1(H0

M/K(
√
M), A[2r ](H0

M )) �� H1(K(
√
M), A[2r]) �� H1(H0

M , A[2r])
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where δ is the Kummer map, which is injective, and the horizontal line is
the inflation-restriction exact sequence. Since yM = 2ry0 with y0 ∈ A(H0

M ), the
image of δ(yM ) is 0 in H1(H0

M , A[2r]), hence we see that δ(yM ) lies in the image

of H1(H0
M/K(

√
M), A[2r](H0

M )), which is killed by 2. It follows that 2yM ∈
2rA(K(

√
M)); then

yM = 2r−1z + t, z = 2y0 + s

for some z ∈ A(K(
√
M)) and s, t ∈ A(Q)[2].

Let σ ∈ Gal(K(
√
M)/K) be the nontrivial element. Then by definition, we have

yM +yσM = 0, so y0+yσ0 ∈ A(H0
M )[2r] = A(Q)[2], so z+zσ = 0. On the other hand

z + z = 2(y0 + y0) = 0,

which implies z ∈ A(Q(
√
−�M))− = A(−�M)(Q). Therefore

yM ∈ 2r−1A(Q(
√
−�M))− +A(Q)[2].

We will show that the 2-index of yM is exactly r−1. Suppose that yM = 2rz+ t
for some z ∈ A(Q(

√
−�M))− and t ∈ A(Q(

√
−�M))tor. Then 2r(z − y0) + t = 0,

which implies C(z− y0) ∈ A(Q)[2]. Hence C(z− y0) +C(z− y0) = 0. But we have
z+z = 0, so C(y0+y0) = 0. But this contradicts the fact that y0+y0 = T �= 0. �

The Proof of Theorem 1.2. Observe that A and E are 3-isogenuous, so to prove
Theorem 1.2, we only need to prove that it holds for A.

By Proposition 3.10, up to ±1,

Lalg(1, A(M))
L

′
(1, A(−�M))

Ω(A(−�M))
= ĥK(yM ).

Denote by R(−�M) = ĥ(P−�M ) where P−�M is the generator of A(−�M)(Q)/
A(−�M)(Q)tor. In particular, by Theorem 3.12

ĥK(yM ) = 22(r−1)R(−�M).

Thus, if we denote by

L
′alg(s, A(−�M)) =

L
′
(s, A(−�M))

R(−�M)Ω(A(−�M))
,

then by the result of the rank zero case, we have

v2(L
′alg(1, A(−�M))) = r.

The Tamagawa numbers of A(−�M) are: c2(A
(−�M)) = 1 or 3, c3(A

(−�M)) = 2
and cq(A

(−�M)) = 2 for q|�M . On the other hand, A(−�M)(Q) = A(−�M)(Q)tor =

Z/2Z. Finally, using classical 2-descent, X(A(−�M)/Q)[2] = 0. Combining the
results above, it is clear that the 2-part of BSD conjecture for A(−�M) holds.

Since A(−�M) has CM, the p-adic height pairing on A(−�M)(Q) is nondegenerate.
Then by [12, Corollary 1.9], p-part of the BSD conjecture for A(−�M) holds for
p � 6�M . So the second part of Theorem 1.2 holds for A, and hence for E. �
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