Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Heegner points on modular curves


Authors: Li Cai, Yihua Chen and Yu Liu
Journal: Trans. Amer. Math. Soc. 370 (2018), 3721-3743
MSC (2010): Primary 11G05, 11G07
DOI: https://doi.org/10.1090/tran/7053
Published electronically: December 14, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the Heegner points on more general modular curves other than $ X_0(N)$, which generalizes Gross' work ``Heegner points on $ X_0(N)$''. The explicit Gross-Zagier formula and the Euler system property are stated in this case. Using such a kind of Heegner points, we construct certain families of quadratic twists of $ X_0(36)$, with the ranks of Mordell-Weil groups being zero and one respectively, and show that the $ 2$-part of their BSD conjectures hold.


References [Enhancements On Off] (What's this?)

  • [1] Massimo Bertolini and Henri Darmon, Heegner points, $ p$-adic $ L$-functions, and the Cerednik-Drinfeld uniformization, Invent. Math. 131 (1998), no. 3, 453-491. MR 1614543, https://doi.org/10.1007/s002220050211
  • [2] Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Nonvanishing theorems for $ L$-functions of modular forms and their derivatives, Invent. Math. 102 (1990), no. 3, 543-618. MR 1074487, https://doi.org/10.1007/BF01233440
  • [3] Li Cai, Jie Shu, and Ye Tian, Explicit Gross-Zagier and Waldspurger formulae, Algebra Number Theory 8 (2014), no. 10, 2523-2572. MR 3298547, https://doi.org/10.2140/ant.2014.8.2523
  • [4] John Coates, Yongxiong Li, Ye Tian, and Shuai Zhai, Quadratic twists of elliptic curves, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 357-394. MR 3335282, https://doi.org/10.1112/plms/pdu059
  • [5] Solomon Friedberg and Jeffrey Hoffstein, Nonvanishing theorems for automorphic $ L$-functions on $ {\mathrm{GL}}(2)$, Ann. of Math. (2) 142 (1995), no. 2, 385-423. MR 1343325, https://doi.org/10.2307/2118638
  • [6] Benedict H. Gross, Local orders, root numbers, and modular curves, Amer. J. Math. 110 (1988), no. 6, 1153-1182. MR 970123, https://doi.org/10.2307/2374689
  • [7] Benedict H. Gross, Heegner points on $ X_0(N)$, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 87-105. MR 803364
  • [8] Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $ L$-series, Invent. Math. 84 (1986), no. 2, 225-320. MR 833192, https://doi.org/10.1007/BF01388809
  • [9] Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569
  • [10] Jan Nekovář, The Euler system method for CM points on Shimura curves, $ L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 471-547. MR 2392363, https://doi.org/10.1017/CBO9780511721267.014
  • [11] Dipendra Prasad, Some applications of seesaw duality to branching laws, Math. Ann. 304 (1996), no. 1, 1-20. MR 1367880, https://doi.org/10.1007/BF01446282
  • [12] Bernadette Perrin-Riou, Points de Heegner et dérivées de fonctions $ L$ $ p$-adiques, Invent. Math. 89 (1987), no. 3, 455-510 (French). MR 903381, https://doi.org/10.1007/BF01388982
  • [13] H. Qin, Representation of integers by positive ternary quadratic forms, preprint, 2015.
  • [14] M. Ram Murty and V. Kumar Murty, Mean values of derivatives of modular $ L$-series, Ann. of Math. (2) 133 (1991), no. 3, 447-475. MR 1109350, https://doi.org/10.2307/2944316
  • [15] Karl Rubin, The ``main conjectures'' of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25-68. MR 1079839, https://doi.org/10.1007/BF01239508
  • [16] A. J. Scholl, On modular units, Math. Ann. 285 (1989), no. 3, 503-510. MR 1019715, https://doi.org/10.1007/BF01455070
  • [17] Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, 3rd ed., Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt; With a foreword by Brown and Serre. MR 1757192
  • [18] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; Kanô Memorial Lectures, 1. MR 1291394
  • [19] Jerrold B. Tunnell, Local $ \epsilon$-factors and characters of $ {\mathrm{GL}}(2)$, Amer. J. Math. 105 (1983), no. 6, 1277-1307. MR 721997, https://doi.org/10.2307/2374441
  • [20] Ye Tian, Euler systems of CM points on Shimura curves, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)-Columbia University. MR 2704579
  • [21] Ye Tian, Congruent numbers and Heegner points, Camb. J. Math. 2 (2014), no. 1, 117-161. MR 3272014, https://doi.org/10.4310/CJM.2014.v2.n1.a4
  • [22] Ye Tian, Congruent numbers with many prime factors, Proc. Natl. Acad. Sci. USA 109 (2012), no. 52, 21256-21258. MR 3023667, https://doi.org/10.1073/pnas.1216991109
  • [23] Y. Tian, X. Yuan, and S. Zhang, Genus Periods, Genus Points and Congruent Number Problem, preprint, 2015.
  • [24] Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
  • [25] Vivek Pal, Periods of quadratic twists of elliptic curves, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1513-1525. With an appendix by Amod Agashe. MR 2869136, https://doi.org/10.1090/S0002-9939-2011-11014-1
  • [26] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375-484 (French). MR 646366
  • [27] Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Zagier formula on Shimura curves, Annals of Mathematics Studies, vol. 184, Princeton University Press, Princeton, NJ, 2013. MR 3237437

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11G05, 11G07

Retrieve articles in all journals with MSC (2010): 11G05, 11G07


Additional Information

Li Cai
Affiliation: Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, People’s Republic of China
Email: lcai@math.tsinghua.edu.cn

Yihua Chen
Affiliation: Academy of Mathematics and Systems Science, Morningside center of Mathematics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Email: yihuachenamss@163.com

Yu Liu
Affiliation: Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, People’s Republic of China
Email: yliu@math.tsinghua.edu.cn

DOI: https://doi.org/10.1090/tran/7053
Received by editor(s): May 31, 2016
Received by editor(s) in revised form: August 18, 2016, and August 21, 2016
Published electronically: December 14, 2017
Additional Notes: The first author was supported by the Special Financial Grant from the China Postdoctoral Science Foundation 2014T70067.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society