Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quantum subgroups of simple twisted quantum groups at roots of one


Authors: Gastón Andrés García and Javier A. Gutiérrez
Journal: Trans. Amer. Math. Soc. 370 (2018), 3609-3637
MSC (2010): Primary 81R50, 17B37, 20G42, 16W30, 16W35
DOI: https://doi.org/10.1090/tran/7078
Published electronically: December 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected, simply connected simple complex algebraic group and let $ \epsilon $ be a primitive $ \ell $th root of unity with $ \ell $ odd and coprime with $ 3$ if $ G$ is of type $ G_{2}$. We determine all Hopf algebra quotients of the twisted multiparameter quantum function algebra $ \mathcal {O}_{\epsilon }^{\varphi }(G)$ introduced by Costantini and Varagnolo. This extends the results of Andruskiewitsch and the first author, where the untwisted case is treated.


References [Enhancements On Off] (What's this?)

  • [A] Nicolás Andruskiewitsch, Notes on extensions of Hopf algebras, Canad. J. Math. 48 (1996), no. 1, 3-42. MR 1382474, https://doi.org/10.4153/CJM-1996-001-8
  • [AE] N. Andruskiewitsch and B. Enriquez, Examples of compact matrix pseudogroups arising from the twisting operation, Comm. Math. Phys. 149 (1992), no. 1, 195-207. MR 1182417
  • [AG] Nicolás Andruskiewitsch and Gastón Andrés García, Quantum subgroups of a simple quantum group at roots of one, Compos. Math. 145 (2009), no. 2, 476-500. MR 2501426, https://doi.org/10.1112/S0010437X09003923
  • [AG2] N. Andruskiewitsch and G. A. García, Extensions of finite quantum groups by finite groups, Transform. Groups 14 (2009), no. 1, 1-27. MR 2480850, https://doi.org/10.1007/s00031-008-9039-4
  • [AST] Michael Artin, William Schelter, and John Tate, Quantum deformations of $ {\rm GL}_n$, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 879-895. MR 1127037, https://doi.org/10.1002/cpa.3160440804
  • [BW] Georgia Benkart and Sarah Witherspoon, Two-parameter quantum groups and Drinfel $ \textprime$d doubles, Algebr. Represent. Theory 7 (2004), no. 3, 261-286. MR 2070408, https://doi.org/10.1023/B:ALGE.0000031151.86090.2e
  • [BB] Teodor Banica and Julien Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626 (2009), 75-114. MR 2492990, https://doi.org/10.1515/CRELLE.2009.003
  • [BS] Teodor Banica and Roland Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), no. 4, 1461-1501. MR 2554941, https://doi.org/10.1016/j.aim.2009.06.009
  • [BD] Julien Bichon and Michel Dubois-Violette, Half-commutative orthogonal Hopf algebras, Pacific J. Math. 263 (2013), no. 1, 13-28. MR 3069074, https://doi.org/10.2140/pjm.2013.263.13
  • [BN] Julien Bichon and Sonia Natale, Hopf algebra deformations of binary polyhedral groups, Transform. Groups 16 (2011), no. 2, 339-374. MR 2806496, https://doi.org/10.1007/s00031-011-9133-x
  • [BY] Julien Bichon and Robert Yuncken, Quantum subgroups of the compact quantum group $ \rm SU_{-1}(3)$, Bull. Lond. Math. Soc. 46 (2014), no. 2, 315-328. MR 3194750, https://doi.org/10.1112/blms/bdt105
  • [BG] Ken A. Brown and Ken R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. MR 1898492
  • [BGS] K. Brown, I. Gordon, and J. Stafford, $ \mathcal {O}_{\epsilon }(G)$ is a free module over $ \mathcal {O}(G)$. Preprint: arXiv:math/0007179v1.
  • [CM] William Chin and Ian M. Musson, Multiparameter quantum enveloping algebras, J. Pure Appl. Algebra 107 (1996), no. 2-3, 171-191. Contact Franco-Belge en Algèbre (Diepenbeek, 1993). MR 1383171, https://doi.org/10.1016/0022-4049(95)00062-3
  • [CK] Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of $ 1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 471-506. MR 1103601
  • [CKP] C. De Concini, V. G. Kac, and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), no. 1, 151-189. MR 1124981, https://doi.org/10.2307/2152754
  • [CV1] M. Costantini and M. Varagnolo, Quantum double and multiparameter quantum groups, Comm. Algebra 22 (1994), no. 15, 6305-6321. MR 1303007, https://doi.org/10.1080/00927879408825192
  • [CV2] M. Costantini and M. Varagnolo, Multiparameter quantum function algebra at roots of $ 1$, Math. Ann. 306 (1996), no. 4, 759-780. MR 1418352, https://doi.org/10.1007/BF01445276
  • [DL] Corrado De Concini and Volodimir Lyubashenko, Quantum function algebra at roots of $ 1$, Adv. Math. 108 (1994), no. 2, 205-262. MR 1296515, https://doi.org/10.1006/aima.1994.1071
  • [Do] Yukio Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21 (1993), no. 5, 1731-1749. MR 1213985, https://doi.org/10.1080/00927879308824649
  • [DPW] Jie Du, Brian Parshall, and Jian Pan Wang, Two-parameter quantum linear groups and the hyperbolic invariance of $ q$-Schur algebras, J. London Math. Soc. (2) 44 (1991), no. 3, 420-436. MR 1149005, https://doi.org/10.1112/jlms/s2-44.3.420
  • [FST] Uwe Franz, Adam Skalski, and Reiji Tomatsu, Idempotent states on compact quantum groups and their classification on $ \operatorname{U}_q(2)$, $ \operatorname{SU}_q(2)$, and $ \operatorname{SO}_q(3)$, J. Noncommut. Geom. 7 (2013), no. 1, 221-254. MR 3032817, https://doi.org/10.4171/JNCG/115
  • [G] Gastón Andrés García, Quantum subgroups of $ {\rm GL}_{\alpha,\beta}(n)$, J. Algebra 324 (2010), no. 6, 1392-1428. MR 2671812, https://doi.org/10.1016/j.jalgebra.2010.07.020
  • [H] Takahiro Hayashi, Quantum groups and quantum determinants, J. Algebra 152 (1992), no. 1, 146-165. MR 1190409, https://doi.org/10.1016/0021-8693(92)90093-2
  • [HLT] Timothy J. Hodges, Thierry Levasseur, and Margarita Toro, Algebraic structure of multiparameter quantum groups, Adv. Math. 126 (1997), no. 1, 52-92. MR 1440253, https://doi.org/10.1006/aima.1996.1612
  • [HPR] Yufeng Pei, Naihong Hu, and Marc Rosso, Multi-parameter quantum groups and quantum shuffles. I, Quantum affine algebras, extended affine Lie algebras, and their applications, Contemp. Math., vol. 506, Amer. Math. Soc., Providence, RI, 2010, pp. 145-171. MR 2642565, https://doi.org/10.1090/conm/506/09939
  • [LS] Serge Levendorskiĭ and Yan Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991), no. 1, 141-170. MR 1116413
  • [L] George Lusztig, Quantum groups at roots of $ 1$, Geom. Dedicata 35 (1990), no. 1-3, 89-113. MR 1066560, https://doi.org/10.1007/BF00147341
  • [Ma] Yu. I. Manin, Multiparametric quantum deformation of the general linear supergroup, Comm. Math. Phys. 123 (1989), no. 1, 163-175. MR 1002037
  • [Mo] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1993. MR 1243637
  • [Mu] Eric Müller, Finite subgroups of the quantum general linear group, Proc. London Math. Soc. (3) 81 (2000), no. 1, 190-210. MR 1757051, https://doi.org/10.1112/S002461150001248X
  • [N] Sonia Natale, Hopf algebras of dimension 12, Algebr. Represent. Theory 5 (2002), no. 5, 445-455. MR 1935855, https://doi.org/10.1023/A:1020504123567
  • [OY] Masato Okado and Hiroyuki Yamane, $ R$-matrices with gauge parameters and multi-parameter quantized enveloping algebras, Special functions (Okayama, 1990) ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, pp. 289-293. MR 1166822
  • [P] Piotr Podleś, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum $ {\rm SU}(2)$ and $ {\rm SO}(3)$ groups, Comm. Math. Phys. 170 (1995), no. 1, 1-20. MR 1331688
  • [Ra] David E. Radford, Hopf algebras, Series on Knots and Everything, vol. 49, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR 2894855
  • [R] N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990), no. 4, 331-335. MR 1077966, https://doi.org/10.1007/BF00626530
  • [Ş] Dragoş Ştefan, Hopf algebras of low dimension, J. Algebra 211 (1999), no. 1, 343-361. MR 1656583, https://doi.org/10.1006/jabr.1998.7602
  • [Su] A. Sudbery, Consistent multiparameter quantisation of $ {\rm GL}(n)$, J. Phys. A 23 (1990), no. 15, L697-L704. MR 1068228
  • [Tk] Mitsuhiro Takeuchi, A two-parameter quantization of $ {\rm GL}(n)$ (summary), Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), no. 5, 112-114. MR 1065785
  • [Tk2] Mitsuhiro Takeuchi, Cocycle deformations of coordinate rings of quantum matrices, J. Algebra 189 (1997), no. 1, 23-33. MR 1432363, https://doi.org/10.1006/jabr.1996.6878
  • [W] S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) North-Holland, Amsterdam, 1998, pp. 845-884. MR 1616348

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 81R50, 17B37, 20G42, 16W30, 16W35

Retrieve articles in all journals with MSC (2010): 81R50, 17B37, 20G42, 16W30, 16W35


Additional Information

Gastón Andrés García
Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CONICET. Casilla de Correo 172, 1900 La Plata, Argentina
Email: ggarcia@mate.unlp.edu.ar

Javier A. Gutiérrez
Affiliation: FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba. Argentina
Address at time of publication: Departamento de Matemáticas, Universidad Sergio Arboleda, Calle 74, Nro 14 - 14, Bloque B - Piso 3, Bogotá, Colombia
Email: puiguti@gmail.com

DOI: https://doi.org/10.1090/tran/7078
Received by editor(s): August 16, 2016
Published electronically: December 1, 2017
Additional Notes: The first author was partially supported by ANPCyT-Foncyt, CONICET, Secyt (UNLP-UNC)
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society