Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Dehn fillings and elementary splittings


Authors: Daniel Groves and Jason Fox Manning
Journal: Trans. Amer. Math. Soc. 370 (2018), 3017-3051
MSC (2010): Primary 20F65, 20F67, 57M50
DOI: https://doi.org/10.1090/tran/7017
Published electronically: January 18, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider conditions on relatively hyperbolic groups about the nonexistence of certain kinds of splittings and show these properties persist in long Dehn fillings. We deduce that certain connectivity properties of the Bowditch boundary persist under long fillings.


References [Enhancements On Off] (What's this?)

  • [Ago00] Ian Agol, Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000), 431-449. MR 1799796, https://doi.org/10.2140/gt.2000.4.431
  • [Ago13] Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045-1087. MR 3104553
  • [AM85] Roger C. Alperin and Kenneth N. Moss, Complete trees for groups with a real-valued length function, J. London Math. Soc. (2) 31 (1985), no. 1, 55-68. MR 810562, https://doi.org/10.1112/jlms/s2-31.1.55
  • [Bea83] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
  • [Bes02] Mladen Bestvina, $ \mathbb{R}$-trees in topology, geometry, and group theory, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 55-91. MR 1886668
  • [BF95] Mladen Bestvina and Mark Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995), no. 2, 287-321. MR 1346208, https://doi.org/10.1007/BF01884300
  • [BH96] Steven A. Bleiler and Craig D. Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996), no. 3, 809-833. MR 1396779, https://doi.org/10.1016/0040-9383(95)00040-2
  • [BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486
  • [Bow98] Brian H. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998), no. 2, 145-186. MR 1638764, https://doi.org/10.1007/BF02392898
  • [Bow99a] B. H. Bowditch, Boundaries of geometrically finite groups, Math. Z. 230 (1999), no. 3, 509-527. MR 1680044, https://doi.org/10.1007/PL00004703
  • [Bow99b] B. H. Bowditch, Connectedness properties of limit sets, Trans. Amer. Math. Soc. 351 (1999), no. 9, 3673-3686. MR 1624089, https://doi.org/10.1090/S0002-9947-99-02388-0
  • [Bow01] B. H. Bowditch, Peripheral splittings of groups, Trans. Amer. Math. Soc. 353 (2001), no. 10, 4057-4082. MR 1837220, https://doi.org/10.1090/S0002-9947-01-02835-5
  • [Bow12] B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250016, 66. MR 2922380, https://doi.org/10.1142/S0218196712500166
  • [CDP90] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). MR 1075994
  • [Chi76] I. M. Chiswell, Abstract length functions in groups, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 3, 451-463. MR 0427480, https://doi.org/10.1017/S0305004100053093
  • [CJ94] Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $ 3$-manifolds, Invent. Math. 118 (1994), no. 3, 441-456. MR 1296353, https://doi.org/10.1007/BF01231540
  • [DGO11] F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152. MR 3589159, https://doi.org/10.1090/memo/1156
  • [DS99] M. J. Dunwoody and M. E. Sageev, JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999), no. 1, 25-44. MR 1664694, https://doi.org/10.1007/s002220050278
  • [Far98] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810-840. MR 1650094, https://doi.org/10.1007/s000390050075
  • [Gab92] David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447-510. MR 1189862, https://doi.org/10.2307/2946597
  • [GM] Daniel Groves and Jason Fox Manning,
    Quasiconvexity and Dehn filling,
    in preparation.
  • [GM08] Daniel Groves and Jason Fox Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317-429. MR 2448064, https://doi.org/10.1007/s11856-008-1070-6
  • [Gro13] Bradley W. Groff, Quasi-isometries, boundaries and JSJ-decompositions of relatively hyperbolic groups, J. Topol. Anal. 5 (2013), no. 4, 451-475. MR 3152211
  • [Gui04] Vincent Guirardel, Limit groups and groups acting freely on $ \mathbb{R}^n$-trees, Geom. Topol. 8 (2004), 1427-1470. MR 2119301, https://doi.org/10.2140/gt.2004.8.1427
  • [Gui08] Vincent Guirardel, Actions of finitely generated groups on $ \mathbb{R}$-trees, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 159-211 (English, with English and French summaries). MR 2401220
  • [Gur05] Dan P. Guralnik, Ends of cusp-uniform groups of locally connected continua. I, Internat. J. Algebra Comput. 15 (2005), no. 4, 765-798. MR 2160578, https://doi.org/10.1142/S0218196705002499
  • [Hru10] G. Christopher Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010), no. 3, 1807-1856. MR 2684983, https://doi.org/10.2140/agt.2010.10.1807
  • [Lac00] Marc Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000), no. 2, 243-282. MR 1756996, https://doi.org/10.1007/s002220000047
  • [Osi06] Denis V. Osin, Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra Comput. 16 (2006), no. 1, 99-118. MR 2217644, https://doi.org/10.1142/S0218196706002901
  • [Osi07] Denis V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295-326. MR 2270456, https://doi.org/10.1007/s00222-006-0012-3
  • [PS06] Panos Papasoglu and Eric Swenson, From continua to $ \mathbb{R}$-trees, Algebr. Geom. Topol. 6 (2006), 1759-1784. MR 2263049, https://doi.org/10.2140/agt.2006.6.1759
  • [PS11] Panos Papasoglu and Eric Swenson, The cactus tree of a metric space, Algebr. Geom. Topol. 11 (2011), no. 5, 2547-2578. MR 2836294, https://doi.org/10.2140/agt.2011.11.2547
  • [RS94] E. Rips and Z. Sela, Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal. 4 (1994), no. 3, 337-371. MR 1274119, https://doi.org/10.1007/BF01896245
  • [RW14] Cornelius Reinfeldt and Richard Weidmann,
    Makanin-Razborov diagrams for hyperbolic groups,
    Preprint, 2014.
  • [Sch89] Viktor Schroeder, A cusp closing theorem, Proc. Amer. Math. Soc. 106 (1989), no. 3, 797-802. MR 957267, https://doi.org/10.2307/2047438
  • [Sel97] Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), no. 3, 527-565. MR 1465334, https://doi.org/10.1007/s002220050172
  • [Sel01] Zlil Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31-105. MR 1863735, https://doi.org/10.1007/s10240-001-8188-y
  • [Thu80] William P. Thurston,
    Geometry and topology of three-manifolds,
    Princeton lecture notes available at http://www.msri.org/publications/books/gt3m/, 1980.
  • [Tuk94] Pekka Tukia, Convergence groups and Gromov's metric hyperbolic spaces, New Zealand J. Math. 23 (1994), no. 2, 157-187. MR 1313451
  • [Yam04] Asli Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004), 41-89. MR 2039323, https://doi.org/10.1515/crll.2004.007

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20F65, 20F67, 57M50

Retrieve articles in all journals with MSC (2010): 20F65, 20F67, 57M50


Additional Information

Daniel Groves
Affiliation: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, Illinois 60607-7045
Email: groves@math.uic.edu

Jason Fox Manning
Affiliation: Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, New York 14853
Email: jfmanning@math.cornell.edu

DOI: https://doi.org/10.1090/tran/7017
Received by editor(s): March 31, 2016
Received by editor(s) in revised form: July 6, 2016
Published electronically: January 18, 2018
Additional Notes: The results in this paper were instigated at the Mathematisches Forschungsinstitut Oberwolfach in June 2011. Both authors were supported in part by the NSF (under grants DMS-0953794 and DMS-1462263)
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society