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MATHER–JACOBIAN SINGULARITIES

UNDER GENERIC LINKAGE

WENBO NIU

Abstract. In this paper, we prove that Mather–Jacobian (MJ) singularities
are preserved under the process of generic linkage. More precisely, let X be
a variety with MJ-canonical (resp., MJ-log canonical) singularities. Then a

generic link of X is also MJ-canonical (resp., MJ-log canonical). This further
leads us to a result on minimal log discrepancies under generic linkage.

1. Introduction

Two varieties X and Y in a nonsingular ambient variety A are linked if their
union V = X ∪ Y is a complete intersection in A. The study of linkage (also
called liaison) has a long history in classical algebraic geometry. Its modern study
has attracted considerable attention in the past fifty years from many authors (cf.
[PS74], [LR83], [Mig98]).

In many cases, the variety X is fixed and the linked variety Y is chosen to
be general in the following way: choose the general equations from the defining
equations of X to create a complete intersection V having X as a component; then
the residue part of X in V is the desired variety Y . In this approach, Y is also
called a general link of X. Generic linkage theory, which follows a rigorous algebraic
approach to construct general links, has been developed in a series of works mainly
by Huneke and Ulrich ([HU85], [HU87], [HU88b], [HU88a]) in the past thirty years.
One of the central problems in this theory is to explore and understand which
properties of X can be preserved by a generic link Y .

Motivated by the work of Chardin–Ulrich [CU02], who showed that a generic link
of a local complete intersection with rational singularities has rational singularities,
we are interested in studying the behavior of various singularities under generic
linkage, especially for the singularities with geometric nature. In the recent work
[Niu14], it was shown that log canonical singularities of pairs are always preserved
under generic linkage but rational singularities are not. When the study moves to
the singularities (such as canonical singularities) raised from birational geometry,
the major obstruction is that the conditions of Q-Gorensteiness and normality are
rarely preserved under linkage. Instead, the theory of Mather–Jacobian (MJ) singu-
larities, rooted in the study of jet schemes, does not require the normality condition
and therefore has adequate flexibility for applications, especially for linkage. This
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new notion of singularities, with different names, was introduced independently in
[Ish13], [dFD14], [EIM11], and [EI13].

The main purpose of this paper is to investigate MJ-singularities under the frame
of linkage theory. We show that MJ-singularities are indeed preserved under the
process of generic linkage.

Theorem 1.1. Let X be a variety with MJ-canonical (resp., MJ-log canonial)
singularities. Then a generic link Y of X is also MJ-canonical (resp., MJ-log
canonical).

The theorem is proved in Section 3 (Theorem 3.3 and Theorem 3.4) for the
algebraic setting (Definition 3.1). The geometric settings (Definitions 4.6 and 4.7)
are discussed in Section 4. Here we would like to mention that for MJ-log canonical
singularities, the theorem is an immediate consequence of the results of [Niu14]
by using the Inversion of Adjunction ([Ish13], [dFD14]). The new part is the case
of MJ-canonical singularities, to which most of this paper is devoted. As a quick
application of the theorem, we recover the aforementioned result of Chardin–Ulrich.
Indeed, a variety that is a local complete intersection with rational singularities is
MJ-canonical, and MJ-canonical singularities imply rational singularities.

One of the crucial points to establish Theorem 1.1 is to analyze the intersection
divisor Z = X∩Y through a suitable resolution of singularities and use the Inversion
of Adjunction. It turns out that the irreducible components of Z are the minimal
log canonical centers of the pair (A, cV ). Hence by the Subadjunction Formula
([FG12]), for such a component W of Z, there exists an effective Q-divisor DW

such that (W,DW ) is Kawamata log terminal. This shows that Z is very close
to being MJ-canonical. Along this line, we raise a conjecture in Section 4. The
study of the singularities of Z plays the central role in many applications of linkage
theory using the induction method. A typical application can be found in [CU02]
on bounding the Castelnuovo–Mumford regularity.

All of the above results further lead us to the following theorem about minimal
log discrepancies under generic linkage (Theorem 4.2 and Corollary 4.10). It shows,
roughly speaking, that the singularities improve under generic linkage.

Theorem 1.2. Let X be a codimension c subvariety of a nonsingular variety A
and let Y be a generic link of X via V . Let Z = X ∩ Y be the intersection. Then

mld(Z;A, cV ) ≤ mld(Z;A, cX) ≤ mld(Z;A, cY ).

It is worth pointing out that in contrast to the behavior of log canonical thresh-
olds proved in [Niu14] that

lct(A, Y ) ≥ lct(A, V ) = lct(A,X),

a similar equality mld(Z;A, cV ) = mld(Z;A, cX) does not hold in general, even
when X is nonsingular. Therefore, taking V as a bridge, as we did for lct, to com-
pare mld(Z;A, cY ) with mld(Z;A, cX) does not work here. This issue is discussed
in Section 4 and showed by Example 4.1.

2. Mather–Jacobian singularities

Throughout this paper, we work over an algebraically closed field k of characteristic
zero. A variety is a separated reduced and irreducible scheme of finite type over k.
In this section, we briefly go through the theory of Mather–Jacobian singularities.
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For further details, we refer the reader to the works [Ish13], [dFD14], [EIM11], and
[EI13].

Definition 2.1. Let X be a variety of dimension n and let f : X ′ −→ X be a
log resolution of the Jacobian ideal JacX of X. Then the image of the canonical
homomorphism

f∗(
n∧
Ω1

X) −→
n∧
Ω1

X′

is an invertible sheaf of the form Jacf ·
∧n

Ω1
X , where Jacf is the relative Jacobian

ideal of f . The ideal Jacf is invertible and defines an effective divisor K̂X′/X which
is called the Mather discrepancy divisor.

Remark 2.2. In the above definition, the fact that the relative Jacobian ideal Jacf
is invertible follows from [Lip69] (see also [EIM11, Remark 2.3]).

Definition 2.3. Let X be a variety and a ⊆ OX be an ideal and let t ∈ Q≥0. For a
prime divisor E over X, we denote by CX(E) the center of E on X. Consider a log
resolution ϕ : X ′ −→ X of JacX ·a such thatE appears inX ′ and a·OX′ = OX′(−Z)
and JacX ·OX′ = OX′(−JX′/X), where Z and JX′/X are effective divisors on X ′.
We define the Mather–Jacobian-discrepancy (MJ-discrepancy for short) of E to be

aMJ(E;X, at) = ordE(K̂X′/X − JX′/X − tZ).

The number aMJ(E;X, at) + 1 is called the Mather–Jacobian-log discrepancy (MJ-
log discrepancy for short). It is independent on the choice of the log resolution ϕ.
When X is nonsingular, the MJ-discrepancy aMJ(E;X, at) is the same as the usual
discrepancy a(E;X, at).

Let W be a proper closed subset of X and let η be a point of X such that
its closure {η} is a proper closed subset of X. We define the minimal MJ-log
discrepancy of (X, at) along W as

mldMJ(W ;X, at) = inf
CX(E)⊆W

{ aMJ(E;X, at) + 1 | E a prime divisor over X}

and the minimal MJ-log discrepancy of (X, at) at η as

mldMJ(η;X, at) = inf
CX(E)={η}

{ aMJ(E;X, at) + 1 | E a prime divisor over X}.

We use the convention that if dimX = 1 and the above values are negative, then we
set them as −∞. Notice that if X is nonsingular, then minimal MJ-log discrepancy
is just the usual minimal log discrepancy, and we use the notation mld for this case.

Recall that a prime divisor E over a variety X is called exceptional if there
exists a birational morphism ϕ : Y −→ X such that Y is normal, E is a divisor
on Y , and ϕ is not isomorphic at the generic point of E. Having the definition of
MJ-discrepancy as above, we now are able to define MJ-singularities.

Definition 2.4. Let X be a variety. We say that X is MJ-canonical (resp., MJ-
log canonical) if for every exceptional prime divisor E over X, the MJ-discrepancy
aMJ(E;X,OX) ≥ 0 (resp., ≥ −1) holds.

Remark 2.5.
(1) For MJ-log canonical singularities, we have the following equivalent defini-

tion: X is MJ-log canonical if and only if the MJ-discrepancy aMJ(E;X,OX) ≥ −1
for every prime divisor E over X ([EI13, Proposition 2.23]). Simply from the
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definition of minimal MJ-log discrepancy, we can define MJ-log canonical singular-
ities locally: X is MJ-log canonical if and only if for every closed point x ∈ X,
mldMJ(x;X,OX) ≥ 0 ([EI13, Proposition 2.21]).

(2) It has been proved in [EIM11] and [dFD14] that if a variety has MJ-canonical
singularities, then it is normal and has rational singularities.

(3) For varieties of dimensions one and two, the MJ-log canonical and MJ-
canonical singularities have been classified in the work [EI13].

We shall use the following version of the Inversion of Adjunction. It plays a
critical role in transferring singularity information from a variety to its ambient
space.

Theorem 2.6 (Inversion of Adjunction, [Ish13], [dFD14]). Let X be a codimension
c subvariety of a nonsingular variety A defined by the ideal IX .

(1) Let W ⊂ X be a proper closed subset of X. Then

mldMJ(W ;X,OX) = mld(W ;A, IcX).

(2) Let η ∈ X be a point such that its closure {η} is a proper closed subset of
X. Then

mldMJ(η;X,OX) = mld(η;A, IcX).

Proof. (1) is a simple version of [Ish13, Theorem 3.10]. For (2), write W = {η}. We
can find a small open set U of η in A such that mld(η;A, IcX) = mld(W ∩U ;U, IcX |U )
and mldMJ(η;X,OX) = mldMJ(W ∩ U ;X ∩ U,OX |X∩U ). Such an open set U can
be constructed as follows. Take a log resolution f : A′ −→ A of IX · IW . Then
remove the center f(E) from A for any prime divisor E ⊂ A′ such that f(E) does
not contain W (hence also remove f(E) if it is a proper subset of W ). On this open
set U we apply result (1) to get the desired result (2). �

Using the Inversion of Adjunction, we see that MJ-log canonical singularities
are essentially the same as log canonical singularities of pairs once we embed the
variety in a nonsingular ambient space. We state this observation in the following
proposition, which is known to the experts.

Proposition 2.7. Let X be a codimension c subvariety of a nonsingular variety A
defined by the ideal IX . Then X is MJ-log canonical if and only if the pair (A, IcX)
is log canonical.

Proof. X is MJ-log canonical if and only if for any closed point x ∈ X,

mldMJ(x;X,OX) ≥ 0.

By Theorem 2.6, we deduce that mld(x;A, IcX) = mldMJ(x;X,OX) ≥ 0, which
implies that the pair (A, IcX) is log canonical. �

The following proposition was implicitly proved in [EI13, Proposition 3.22]. It
turns out to be very useful in our study, so we include its proof here. Recall that a
closed subset W of a nonsingular variety A is called a log canonical center for a pair
(A, at) if there is a prime divisor E over A such that ordE(K /A)− t ordE a+1 ≤ 0
and the center CA(E) = W .

Proposition 2.8. Let X be a codimension c subvariety of a nonsingular variety
A. Assume that X is MJ-canonical. Then X is the unique log canonical center of
the pair (A, IcX).
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Proof. Let η be a point of A such that the closure {η} is a proper closed subset
of A. If η is not in X, then mld(η;A, IcX) = mld(η;A,OA) ≥ 1. If η is in X and

{η} is a proper closed subset of X, then by the Inversion of Adjunction Theorem
2.6, mld(η;A, IcX) = mldMJ(η;X,OX) ≥ 1 since X is MJ-canonical ([EI13, Propo-
sition 2.21(ii)]). If η is the generic point of X, we can compute directly that
mld(η;A, IcX) = 0 by blowing up A along X. �

The following corollary gives an interesting property that the ideal of a codimen-
sion one subvariety of a MJ-canonical variety can be represented as a multiplier
ideal. Recall that given a pair (A, a), we denote by I (A, at) the multiplier ideal
of weight t associated to the pair. If a defines a subscheme Z of A, we also use
I (A, tZ) instead of I (A, at).

Corollary 2.9. Let X be a codimension c subvariety of a nonsingular variety A.
Let Z be a codimension one subvariety of X. Assume that X is MJ-canonical.
Then the pair (A, cZ) is canonical and IZ = I (A, (c+ 1)Z).

Proof. Since X is the only log canonical center of (A, cX) and Z is generically
nonsingular, the pair (A, cZ) has no log canonical centers. Hence the pair (A, cZ)
is canonical. So the multiplier ideal I (A, cZ) = OA. Now by [Niu14, Ein’s Lemma],
we see that IZ = I (A, (c+ 1)Z). �

3. Generic linkage of affine varieties

In this section, we study MJ-singularities under generic linkage. A generic link is
constructed through a ring extension by adjoining variables. The theory based on
this construction was developed by Huneke and Ulrich in the last thirty years and
has reached fruitful results. For detailed information of generic linkage, we refer to
[HU85], [HU87], [HU88b], and [HU88a]. The paper [Niu14] also contains the most
useful details and backgrounds related to this paper.

Definition 3.1. Let Xk be a codimension c subvariety of a nonsingular affine
variety Ak = SpecRk. A generic link of Xk is defined as follows. Fix a generating
set (f1, . . . , ft) of the defining ideal IXk

of Xk. Let (Uij), 1 ≤ i ≤ c, 1 ≤ j ≤ t, be a
c× t matrix of variables. Set R = Rk[Uij ] and IX = IXk

R and define A = SpecR
and X = SpecR/IX . Notice that IX is generated by (f1, . . . , ft) in R. We define a
complete intersection V in A by the ideal

IV = (α1, . . . , αc) = (Ui,j) · (f1, . . . , ft)T ;
that is,

αi = Ui,1f1 + Ui,2f2 + · · ·+ Ui,tft, for 1 ≤ i ≤ c.

Then a generic link of Xk via V is a subscheme Y of A defined by the ideal IY =
(IV : IX).

Remark 3.2.
(1) The generic link Y is a subvariety (reduced and irreducible) of A [HU85,

Proposition 2.6]. Furthermore, X and Y are actually geometrically linked, i.e., the
complete intersection V has only X and Y as its irreducible components.

(2) Clearly, the natural morphism X −→ Xk is smooth. Many singularities are
preserved under smooth morphisms, such as rational singularities and log canonical
singularities of pairs. MJ-singularities are also preserved by [Niu15, Corollary 2.8].
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We start with proving the MJ-log canonical case, which is a direct application
of the Inversion of Adjunction plus the results of [Niu14].

Theorem 3.3. Let Xk be a subvariety of a nonsingular affine variety Ak. Let Y
be a generic link of Xk. Assume that Xk has MJ-log canonical singularities. Then
Y also has MJ-log canonical singularities.

Proof. Applying Proposition 2.7, we see that the pair (Ak, I
c
Xk

) is log canonical.
Then apply [Niu14, Corollary 3.10]; we deduce that the pair (A, IcY ) is log canonical.
Finally, using Proposition 2.7 again, we conclude that Y is MJ-log canonical. �

In the rest of this section, we focus ourselves on the case of MJ-canonical singu-
larities. The essential point in our approach is to analyze the intersection divisor
Z = X ∩ Y . Since X and Y are linked by a complete intersection V , it is easy to
see that Z is purely codimension one in X and Y .

Theorem 3.4. Let Xk be a subvariety of a nonsingular affine variety Ak. Let Y
be a generic link of Xk. Assume that Xk has MJ-canonical singularities. Then:

(1) Y has MJ-canonical singularities.
(2) The intersection Z = X ∩ Y has disjoint irreducible components, and each

of them is a normal subvariety of codimension one in X. Furthermore,
let W be an irreducible component of Z. Then there exists an effective
Q-divisor DW on W such that (W,DW ) is Kawamata log terminal (klt).

Proof. Let ϕk : Ak −→ Ak be a factorizing resolution of singularities (for the
definition, see for example [Niu14, Definition 2.6, Remark 2.7]) of Xk inside Ak so
that

IXk
· OAk

= IXk
· OAk

(−Gk),

where Xk is the strict transform of Xk, Gk is an effective divisor supported on the
exceptional locus of ϕk, and furthermore Xk and the exceptional locus of ϕk are
simple normal crossings. The morphism ϕk can be assumed to be an isomorphism
over the open set Ak\Xk. Next, we blow up Ak along Xk to get

μk : Ãk = BlXk
Ak −→ Ak

such that IXk
· O

˜Ak
= O

˜Ak
(−Tk), where Tk is an exceptional divisor of μ and it is

a prime divisor since Xk is nonsingular. Denote the composition φk ◦ μk by

ψk = (φk ◦ μk) : Ãk
μk−→ Ak

ϕk−→ Ak.

Notice that ψk is a log resolution of the pair (Ak, IXk
) and that IXk

· Ãk =
O

˜Ak
(−Tk − μ∗

kGk).

Now we tensor k[Uij ] to the construction above and make the base change for all
the objects involved, including morphisms, varieties, and divisors. We keep using
the same letters without the subscript k to represent the corresponding objects
after base change. For instance, A = Ak ⊗k Spec k[Uij ], X = Xk ⊗k Spec k[Uij ],
G = Gk⊗kSpec k[Uij ], T = Tk⊗kSpec k[Uij ], etc. Therefore, we obtain a factorizing
resolution of singularities of X inside A as

ϕ : A −→ A

such that

IX · OA = IX · OA(−G),
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where the nonsingular variety X is the strict transform of X, G is an effective
divisor supported on the exceptional locus of ϕ, and X and the exceptional locus
of ϕ are simple normal crossings. The composition

ψ : Ã
μ−→ A

ϕ−→ A

is a log resolution of the pair (A, IX), where μ : Ã −→ A is the blowup of A along
X with an exceptional divisor T , such that

IX · Ã = O
˜A(−T − μ∗G).

We make the following claim. Note that partial results of the claim have been
proved in detail in [Niu14, Claim 3.1.1, Claim 3.1.2]. However, in order to keep the
consistence of notation, we still include them here.

Claim 3.4.1. We have the following statements:

(1) There is a decomposition

(3.4.2) IV · OA = IV · OA(−G),

where IV is an ideal sheaf on A and defines a complete intersection V of A.

(2) Write Y to be the strict transform of Y under the birational morphism ϕ.
Then Y is linked to X via V . More precisely, there is an affine open cover
of Ak such that on each open set of the cover, Y is a generic link of Xk via
V in the sense of Definition 3.1.

(3) There is a decomposition

(3.4.3) IV · O
˜A = I

˜Y · O
˜A(−T ),

where I
˜Y is an ideal on Ã and defines a nonsingular variety Ỹ as the strict

transform of Y under the birational morphism ψ.

(4) The nonsingular variety Ỹ meets the strata of the divisors supported in
exc(ψ) as normal crossings. Precisely, for arbitrary r(≥ 0) prime divisors

E1, . . . , Er supported in exc(ψ), the intersection Ỹ ∩E1 ∩ · · · ∩Er is either
empty or a nonsingular subscheme of the expected dimension. In particular,

Ỹ ∩ T is a nonsingular divisor in Ỹ .

Proof of Claim 3.4.1. The question is local. Let Uk = SpecRk be an affine open set
of Ak such that the effective divisor Gk is defined by an equation g ∈ Rk. By the
construction that Ak is a factoring resolution of Xk in Ak, we have a decomposition
IXk

·Rk = IXk
· (g) on Uk. Notice that IXk

·Rk = (f1, . . . , ft) ·Rk so we can write

fi = f ig for some f i ∈ Rk for i = 1, . . . , t, and therefore IXk
= (f1, . . . , f t).

By base change, we set R = Rk[Ui,j ] so that U = SpecR is an affine open set

of A. Notice that on U the ideal IX = IXk
· R and the effective divisor G is

still defined by the equation g. Recall that the ideal IV = (α1, . . . , αc), where
αi = Ui,1f1 + Ui,2f2 + · · ·+ Ui,tft. Thus if we write

αi = Ui,1f1 + Ui,2f2 + · · ·+ Ui,tf t, for i = 1, . . . , c

and set IV = (α1, . . . , αc), then IV is a complete intersection on U . It is then clear

that we have the desired decomposition IV ·R = IV · (g) on U as in statement (1).
Notice that ϕ is an isomorphism outside X and then (2) is a direct consequence of
the local construction above.



4022 WENBO NIU

For statement (3), we continue to work locally. We blow up Uk along IXk
and

then use base change to obtain the blowup U along the ideal IX . Take a canonical

affine cover of the blowup BlXk
Uk and then proceed on each open set of this cover.

Without loss of generality, we set

(3.4.4) S = Rk[f2/f1, . . . , f t/f1],

and then Ũk = SpecS is an open set of the cover such that the exceptional divisor

T is given by the element f1 on Ũk. Accordingly, Ũ = SpecS[Ui,j ] is an open set

of BlX U . Write

(3.4.5) α̃i = Ui,1 + Ui,2f2/f1 + · · ·+ Ui,tf t/f1, for i = 1, . . . , c,

and set I
˜Y = (α̃1, . . . , α̃c). Then on the open set Ũ we have IV ·O

˜U = I
˜Y · (f1) and

I
˜Y defines an irreducible nonsingular variety Ỹ on Ũ since

Ỹ = SpecS[Ui,j ]/(α̃1, . . . , α̃c)

and each α̃i is essentially defined by a variable. Since ψ is an isomorphism outside

X, Ỹ is clearly the strict transform of Y by our construction.
For statement (4), by the construction, exc(ϕ) is the base change of exc(ϕk).

Hence each Ei is the base change of an exceptional divisor Ei,k on Ãk. Consider
an irreducible component B of the intersection E1 ∩ · · · ∩Er. It is clear that B can
be obtained by base change of a corresponding irreducible component Bk of the
intersection E1,k ∩ · · · ∩ Er,k. Hence, we can assume that B is defined by

IB = IBk
[Ui,j ].

Then the structure sheaf of Ỹ ∩B is

S[Ui,j ]/(I˜Y + IB) = OBk
[Ui,j ]/(α̃

′
1, . . . , α̃

′
c),

where α̃′
i = Ui,1 + Ui,2s̃2 + · · · + Ui,ts̃t and s̃j is the image of f j/f1 in the ring

OBk
. Because Bk is a regular subscheme of expected dimension and the α̃′

j ’s are

all variables, this local computation shows that Ỹ ∩ B is a nonsingular subscheme
of the expected dimension. This finishes the proof of Claim 3.4.1.

We blow up Ã along Ỹ to get ν : A′ = BlỸ Ã −→ Ã with an exceptional divisor
EY . The composition ρ = ν ◦ ψ : A′ −→ A is a log resolution of IV · IX such that

IV · OA′ = OA′(−EY − EX − P ) and IX · OA′ = OA′(−EX − P ),

where EX = ν∗(T ) and P = (ν ◦ μ)∗(G) and EY ∪ EX ∪ P ∪ exc(ρ) has a simple
normal crossing support. Since Xk is MJ-canonical, the variety X is also MJ-
canonical [Niu15, Corollary 2.8]. By Proposition 2.8, X is the unique log canonical
center for the pair (A, IcX). Furthermore, by the Inversion of Adjunction, the pair
(A, IcX) is log canonical and therefore (A, IcV ) is log canonical ([Niu14]). A direct
computation shows that the discrepancy

a(EY ;A, IcV ) = a(EX ;A, IcV ) = −1.

For any other exceptional divisor E on A′, the discrepancy a(E;A, IcV ) ≥ 0. Thus
if F is a prime divisor over A with a(F ;A, IcV ) = −1, then we have either F ∈
{EX , EY } or the center of F on A′ is an irreducible component of EX ∩EY .

Denote by IZ = IX + IY the ideal of Z = X ∩ Y . Since both Y and X are
log canonical centers for (A, IcV ), every irreducible component of Z is also a log
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canonical center for (A, IcV ). We take a log resolution of IV · IX · IZ as f : A′′ −→ A
satisfying the following conditions:

(i) It factors through ρ, i.e,

A′′ ��

f ���
��

��
��

� A′

ρ
����
��
��
��

A

(ii) For each irreducible componentW of Z, there exists a prime divisor F ⊂ A′′

such that a(F ;A, IcV ) = −1 and CA(F ) = W .

We choose a number a ∈ Q satisfying the condition that if F ⊂ A′′ is a prime
divisor such that a(F ;A, IcV ) = −1 and CA(F ) ⊆ Z, then we have the inequality

ordF IV < a ordF IZ .

After fixing such number a, we further choose a rational number 0 < ε  1 such
that for all prime divisors F on A′′ with a(F ;A, IcV ) > −1 and CA(F ) ⊆ Z, we
have

a(F ;A, IcV ) + ε(ordF IV − a ordF IZ) > −1.

Notice that by the construction, for any prime divisor F ⊂ A′′, the discrepancy

a(F ;A, (c− ε)V + εaZ) = a(F ;A, IcV ) + ε(ordF IV − a ordF IZ).

Now we observe that if F ⊂ A′′ is a prime divisor, then a(F ;A, (c−ε)V +εaZ) ≤ −1
if and only if a(F ;A, IcV ) ≤ −1 and CA(F ) ⊆ Z. Furthermore, its center CA′(F )
must be an irreducible component of EX∩EY . Applying the connectedness theorem
to the pair (X, (c− ε)V + εaZ) yields that the induced map

ρ : EX ∩ EY −→ Z

is dominant and has connected fibers. But EX ∩ EY is nonsingular so that its
irreducible components are all disjoint. This implies that each component of Z
must be dominated by only one component of EX ∩ EY and that the components
of Z are disjoint. Therefore, X, Y , and the irreducible components of Z are the
only log canonical centers of the pair (A, IcV ). It follows that Y and the irreducible
components of Z are the only possible log canonical centers of the pair (A, IcY ).

Now since X is MJ-canonical, it has rational singularities. By [Niu14], Y is
normal and therefore is nonsingular at the generic points of Z. Thus any irreducible
component of Z cannot be a log canonical center of the pair (A, IcY ). Hence Y is
the only log canonical center of (A, IcY ). Finally, by the Inversion of Adjunction,
we deduce that Y is MJ-canonical.

For statement (2), we take two general effective divisors D1 and D2 such that
ID1

⊂ I2V and ID2
⊂ I2Z . Set D′

1 = 1
2D1 and D′

2 = 1
2D2. Since each irreducible

component of Z is a minimal log canonical center of (A, (c − ε)V + εaZ), by the
general choice of D′

1 and D′
2, we see that each irreducible component of Z is also a

minimal log canonical center of (A, (c− ε)D′
1+ εaD′

2). The result then follows from
the Local Subadjunction Formula in [FG12, Theorem 7.2]. �

Remark 3.5. In the proof above, we show that every irreducible component of the
intersection Z is a minimal log canonical center of (A, cV ), provided that X is MJ-
canonical. Unfortunately, our proof cannot show Z itself is irreducible, which seems
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very natural. To get a better understanding of this issue, we quote the following
result of Johnson–Ulrich about the intersection divisor Z.

Proposition 3.6 ([JU15]). Let Xk be a subvariety of a nonsingular affine variety
Ak. Let Y be a generic link of Xk and let Z = X ∩ Y be the intersection defined
by IX + IY . The following are equivalent:

(1) Z is integral.
(2) Z is reduced.
(3) X is a complete intersection locally in codimension one.

Now from this proposition, the intersection divisor Z in Theorem 3.4 is irre-
ducible. So we conclude the following corollary.

Corollary 3.7. Let Xk be a subvariety of a nonsingular affine variety Ak such
that Xk has MJ-canonical singularities. Let Y be a generic link of Xk. Then the
intersection Z = X ∩ Y defined by the ideal IX + IY is an irreducible codimension
one subvariety of X and there exists an effective Q-divisor DZ on Z such that the
pair (Z,DZ) is klt.

Remark 3.8. In many applications, one starts with a variety X of codimension c in
a nonsingular ambient space A and constructs a sequence of varieties

X = X0 ∼ X1 ∼ X2 ∼ · · · ,
in whichXi+1 is a generic link ofXi. Two varieties connected by such a sequence are
called in the same linkage class. Hence properties that are preserved under linkage
will be particularly interesting. For singularities, the situation is complicated. For
instance, rational singularities, which in some sense are simple, cannot be preserved
under linkage. The conditions imposed to preserve rational singularities are fairly
strong [Niu14]. But log canonical singularities of pairs (essentially the same as MJ-
log canonical singularities) are preserved [Niu14]; i.e., if (A, cX) is log canonical,
then in the linkage sequence above (A, cXi) is always log canonical. However,
roughly speaking, log canonical singularities are still too broad. The theorem we
just proved provides a new type of singularity, MJ-canonical singularities, which
are stronger than rational singularities but can be preserved under linkage. It
would be interesting to investigate further linkage classes containing MJ-canonical
singularities.

4. Variants and conjectures

Let Xk be a codimension c subvariety in a nonsingular ambient variety Ak. Let Y
be a generic link of X via a complete intersection V , as in Definition 3.1. Write
Z = X ∩ Y . It has been shown in [Niu14] that for log canonical thresholds (lct),

lct(A,X) = lct(A, V ) ≤ lct(A, Y ).

The way to establish this result is to first show the equality lct(A,X) = lct(A, V )
and then the second inequality follows immediately as IV ⊆ IY . Turning to another
important invariant of singularities, namely minimal log discrepancy, it is expected
that one could establish a similar result

mld(Z;A, cX) = mld(Z;A, cV ) ≤ mld(Z;A, cY ),

from which Theorem 1.1 would follow immediately by the Inversion of Adjunction.
Unfortunately, the situation for mld is more complicated than lct and the above
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ideal equality “mld(Z;A, cX) = mld(Z;A, cV )” does not hold, as shown in the
following example.

Example 4.1. Consider Xk in k[x, y] defined by the equation x. We construct
a generic link of Xk as follows: X is still defined by x in k[x, y, u], the complete
intersection V is defined by xu, and a generic link Y is then defined by u. Now
X and Y are two coordinate planes in A3. The intersection Z = X ∩ Y is a line
defined by the ideal (x, u). Then we see

mld(Z;A3, V ) = 0 and mld(Z;A3, X) = 1.

Hence the equality mld(Z;A, cX) = mld(Z;A, cV ) is not true in general.

This example shows that we cannot directly use the complete intersection V as
a bridge to compare the minimal log discrepancies of X and Y . However, based
on what we have established in the preceding section, we are still able to prove the
following theorem which reveals the behavior of minimal log discrepancies under
generic linkage.

Theorem 4.2. Let Y be a generic link of a variety Xk in a nonsingular affine
space Ak. Let Z = X ∩ Y and let c = codimA X. Then one has

mld(Z;A, cV ) ≤ mld(Z;A, cX) ≤ mld(Z;A, cY ).

Proof. Notice that the minimal log discrepancies involved in the theorem are either
nonnegative integers or −∞. The first inequality, mld(Z;A, cV ) ≤ mld(Z;A, cX),
is obvious because IV ⊆ IX . In the sequel, we shall prove the second inequality,

(4.2.1) mld(Z;A, cX) ≤ mld(Z;A, cY ).

If mld(Z;A, cX) = −∞, then inequality (4.2.1) is obvious. So we may assume
that mld(Z;A, cX) ≥ 0. Thus the pair (A, cX) is log canonical in a neighborhood
U ⊂ A of Z. Using the construction in the proof of Theorem 3.4, we consider the
restriction of the resolutions of singularities ϕ and ψ over the open set U . Following
the same argument, we can show that the pair (A, cV ) is log canonical on U and
therefore (A, cY ) is log canonical on U (see also [Niu14] for a proof in this case).
Thus mld(Z;A, cY ) ≥ 0. This means particularly that if mld(Z;A, cX) = 0, then
inequality (4.2.1) holds.

Next we assume that mld(Z;A, cX) ≥ 1. Thus the pair (A, cX) has no log
canonical centers contained in Z. By removing the log canonical centers that are
properly contained in X, we may assume that on the open set U , the pair (A, cX)
is log canonical and has a unique log canonical center X. Following the proof of
Theorem 3.4 again by restricting ϕ and ψ over the open set U , we conclude that on
the open set U , (A, cY ) has a unique log canonical center Y and the intersection
Z is normal and of codimension one in X. By the Inversion of Adjunction, we
deduce that on the open set U , both X and Y are MJ-canonical and therefore
are normal and nonsingular at the generic point of Z. Consequently, we obtain
mld(Z,A, cX) = mld(Z,A, cY ) = 1. Hence inequality (4.2.1) still holds. �

Using the Inversion of Adjunction, we immediately have the following corollary
concerning minimal MJ-log discrepancies under linkage.

Corollary 4.3. Let Y be a generic link of a variety Xk in a nonsingular affine
space Ak and let Z = X ∩ Y . Then one has

mldMJ(Z;X,OX) ≤ mldMJ(Z;Y,OY ).
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The intersection divisor Z contains the singular locus of Y and therefore governs
the singularities of Y . Besides, it also plays a central role when we try to use
the induction method for a generic link. For instance, in [CU02], Chardin–Ulrich
studied the singularities of Z and then proceeded by induction on dimensions to
obtain a bound for Castelnuovo–Mumford regularity. Motivated by Theorem 3.4(2),
we propose the following conjecture.

Conjecture 4.4. Let Y be a generic link of a variety X in a nonsingular affine
space A. Assume that X is MJ-canonical. Then the intersection Z = X ∩Y is also
MJ-canonical.

Remark 4.5. Under the assumption of the conjecture, it seems reasonable to show
first a weaker result that the pair (A, (c+1)Z) is log canonical, where c = codimAX.
Note that by Corollary 2.9, the pair (A, cZ) is already canonical and IZ =
I (A, (c+ 1)Z), which is very close to the pair (A, (c+ 1)Z) being log canonical.

Finally, we discuss variant settings of generic linkage in application. The results
we have obtained can be easily established for these settings, so we leave the details
to the reader.

Definition 4.6. Let A = SpecR be an affine nonsingular variety and let X ⊂ A be
a subvariety of codimension c. Fix a set of generators for the ideal IX as f1, . . . , ft.
Define a complete intersection V by the equations

αi = ai,1f1 + · · ·+ ai,tft,

for i = 1, . . . , c, where the ai,j ’s are general scalars in k. Then a general link
Y (or generic link, to be consistent with Definition 3.1) is defined by the ideal
IY = (IV : IX).

Definition 4.7. Let X be a codimension c subvariety in a nonsingular variety A.
Let L be a line bundle on A such that X is cut out by t (≥ c) sections

f1, . . . , ft ∈ H0(A,L).

Choose general c sections from the linear space 〈f1, . . . , ft〉 ⊆ H0(A,L) such that
they cut out a complete intersection V of A. A general link (or generic link, to be
consistent with Definition 3.1) Y of X is defined by the ideal IY = (IV : IX).

Remark 4.8.
(1) Strictly speaking, the meaning of “choose general scalars or general sections”

in the above definitions should depend on certain properties that we want to show
for a general link. When we prove results for these settings of general links, those
properties (such as singularities) should be clear from the context.

(2) Unlike in the algebraic setting of Definition 3.1, the generic link Y in Defini-
tions 4.6 and 4.7 could be empty. This happens if and only if the variety X itself
is already a complete intersection in A.

(3) If X is a projective variety in a projective space A = PN defined by an ideal
sheaf IX , then we can take a number d such that IX(d) is globally generated.
In this case, take L = OPN (d), and the complete intersection V is also cut out by
degree d equations.

(4) If we cover X by affine open sets, we can easily reduce the case of Definition
4.7 to the case of Definition 4.6. A general link in Definition 4.6 is just a general
fiber over Spec k[Ui,j ] of the generic link Y in Definition 3.1. Hence our main
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result can be established for all of those settings, which we state as the following
corollaries.

Corollary 4.9. Let X be a subvariety of a nonsingular variety A and let Y be a
generic link of X (in the sense of Definitions 4.6 and 4.7).

(1) If X is MJ-canonical (resp., MJ-log canonical), then so is Y .
(2) If X is MJ-canonical, then the irreducible components of the intersection

Z = X ∩ Y are disjoint and of codimension one in X. Furthermore, for
such a component W of Z, there exists an effective Q-divisor DW on W
such that the pair (W,DW ) is klt.

Corollary 4.10. Let X be a codimension c subvariety of a nonsingular variety
A and let Y be a generic link of X (in the sense of Definition 4.6 and 4.7). Let
Z = X ∩ Y be the intersection. Then

mld(Z;A, cV ) ≤ mld(Z;A, cX) ≤ mld(Z;A, cY ).

Remark 4.11. Alternatively, one may prove the above corollaries by constructing
appropriate resolutions of singularities for X and V , paralleling to the proof of
Theorem 3.4. We outline this approach here for the convenience of the reader.
Take a factorizing resolution of singularities of X inside A as ϕ : A −→ A such that
IX · OA = IX · OA(−G), where the nonsingular variety X is the strict transform

of X, G is an effective divisor supported on exc(ϕ), and X and exc(ϕ) are simple

normal crossings. Blow up A along X to get μ : Ã = BlX A −→ A with an

exceptional divisor T . Then the composition ψ = ϕ◦μ : Ã −→ A is a log resolution

of IX satisfying the condition that IX · Ã = O
˜A(−T − μ∗G). Since the ideal IV

is generated by c general equations in IX , using Bertini’s theorem we get that

IV · O
˜A = I

˜Y · O
˜A(−T − μ∗G) and Ỹ is a nonsingular variety on Ã resolving the

singularities of Y . Now this construction satisifies all the properties in Claim 3.4.1.
Following the same argument as in the proof of Theorem 3.4, the corollaries above
can easily be proved.

Remark 4.12. Since we do not have a similar Proposition 3.6 of Johnson–Ulrich for
the cases of Definitions 4.6 and 4.7, it is not clear to us whether Z is irreducible
in the above corollaries. In addition, the general link Y might not be irreducible
either.
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