
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 6, June 2018, Pages 3803–3831
http://dx.doi.org/10.1090/tran/7069
Article electronically published on December 27, 2017

THE REGULARITY OF DIOPHANTINE QUADRUPLES

YASUTSUGU FUJITA AND TAKAFUMI MIYAZAKI

Abstract. A set of positive integers is called a Diophantine tuple if the prod-
uct of any two elements in the set increased by the unity is a perfect square.
A conjecture on the regularity of Diophantine quadruples asserts that any
Diophantine triple can be uniquely extended to a Diophantine quadruple by
joining an element exceeding the maximal element of the triple. The problem
is reduced to studying an equation expressed as the coincidence of two linear
recurrence sequences with initial terms composed of the fundamental solutions
of some Pellian equations. In this paper, we determine the values of those ini-
tial terms completely and obtain finiteness results on the number of solutions
of the equation. As one of the applications to the problem on the regularity
of Diophantine quadruples, we show in general that the number of ways of
extending any given Diophantine triple is at most 11.

1. Introduction

Diophantus of Alexandria posed the problem of finding four numbers with the
property that the product of any two of them increased by the unity is a perfect
square. While he also gave an answer {1/16, 33/16, 17/4, 105/16} composed of
rational numbers, we shall be concerned with sets of positive integers. The first
set {1, 3, 8, 120} of four positive integers having the above property was found by
Fermat. A set of positive integers is called a Diophantine tuple if the product of
any two elements in the set increased by the unity is a perfect square.

Any Diophantine pair {a, b} can be extended to a Diophantine triple {a, b, c}.
For example, Euler found that {a, b, a + b + 2r} is a Diophantine triple, where
r =

√
ab+ 1. Such a triple is called a regular Diophantine triple, and the largest

element is known to be minimal among the c’s such that {a, b, c} is a Diophantine
triple with c > max{a, b}.

Euler further extended a regular Diophantine triple to the Diophantine quadruple
{a, b, a+b+2r, 4r(a+r)(b+r)}, which is specialized to Fermat’s quadruple by putting
a = 1 and b = 3. A more general construction of Diophantine quadruples was
established by Arkin, Hoggatt, and Strauss ([1]), and by Gibbs ([24]) independently.
They observed that for a Diophantine triple {a, b, c} with r =

√
ab+ 1, s =

√
ac+ 1,

t =
√
bc+ 1, the set {a, b, c, d+} with d+ = a+b+c+2abc+2rst forms a Diophantine

quadruple. Indeed,

ad+ + 1 = (at+ rs)2, bd+ + 1 = (bs+ rt)2, cd+ + 1 = (cr + st)2.
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Such a quadruple is called a regular Diophantine quadruple, and the largest element
d+ is known to be minimal among the d’s such that {a, b, c, d} is a Diophantine
quadruple with a < b < c < d. In case c > a + b + 2r, a Diophantine triple
{a, b, c} has an extension to another regular Diophantine quadruple {a, b, c, d−},
where d− = a+ b+ c+ 2abc− 2rst. Indeed,

ad− + 1 = (at− rs)2, bd− + 1 = (bs− rt)2, cd− + 1 = (cr − st)2.

Note that 0 ≤ d− < c in general and that d− > 0 if and only if c > a+ b+ 2r.
Arkin, Hoggatt, and Strauss (and independently Gibbs) also raised the following

problem (cf. [1, 17, 24]).

Conjecture 1.1. Any Diophantine quadruple is regular.

All the Diophantine quadruples that have been so far known are regular, includ-
ing the quadruples found by Euler. The first non-trivial result supporting Conjec-
ture 1.1 was given by Baker and Davenport ([2]), which asserts that if {1, 3, 8, d}
is a Diophantine quadruple, then d = 120(= d+). Since this work was published,
active research on Diophantine tuples has been carried out by several researchers,
including Dujella, and the result above is generalized to show the validity of Conjec-
ture 1.1 for the quadruples {a, b, c, d} with a < b < c < d containing the following
triples {a, b, c} or pairs {a, b}:

(i) {k − 1, k + 1, 4k} with an integer k ≥ 2 ([12]);
(ii) {1, 3} ([17]);
(iii) {k − 1, k + 1} ([5, 21]);
(iv) {k,A2k+2A, (A+1)2k+2(A+1)} with positive integers k and A satisfying

A ≤ 10 or A ≥ 52330 ([25–27]);
(v) {a, b} with b < a+ 4

√
a ([20]).

Recently, Cipu, Mignotte, and the first author showed that any Diophantine quadru-
ple containing the regular Diophantine triple {k,A2k + 2A, (A+ 1)2k + 2(A+ 1)}
with any positive integers k and A, which appears in (iv), is always regular ([9]).

Conjecture 1.1 immediately implies that there exists no Diophantine quintuple,
which is a folklore conjecture in this field. While the finiteness of irregular Diophan-
tine quadruples has not been shown yet, it is known that there exist only finitely
many Diophantine quintuples by Dujella in [14], where he also proved that there
exists no Diophantine sextuple. More explicitly, he ([15]) gave the upper bound
101930 for the number of Diophantine quintuples. This bound was first reduced to
10276 in [23] by showing the following:

Any fixed Diophantine triple can only be extended to
a Diophantine quintuple in at most four ways by joining fourth
and fifth elements exceeding the maximal element in the triple,

the proof of which relies largely on Okazaki’s lemma (see [4, Lemma 2.2] or Lemma
7.1) asserting that there are “large” gaps between solutions to a system of Pellian
equations. The record of the bound has been updated to be 1031 by Cipu ([6]), and
2.4 · 1029 by Trudgian ([33]). Very recently, Cipu and Trudgian together set a new
record of 5.441 · 1026 ([11]). A pertinent overview and a great deal of references on
Diophantine tuples can be found on the web page [16].

The primary purpose of the present paper is to give an absolute upper bound for
the number of Diophantine quadruples {a, b, c, d} with d > max{a, b, c} for a fixed
Diophantine triple {a, b, c}.
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Theorem 1.2. Any fixed Diophantine triple can only be extended to a Diophantine
quadruple in at most 11 ways by joining a fourth element exceeding the maximal
element in the triple.

For a fixed Diophantine triple {a, b, c}, one can find a fourth element d such that
{a, b, c, d} is a Diophantine quadruple by solving the following system of Pellian
equations: {

az2 − cx2 = a− c,

bz2 − cy2 = b− c.
(1.1)

It is well-known that there exist only finitely many fundamental solutions (z0, x0)
and (z1, y1) of the Pellian equations above, using which one can express any solution
to the system as z = vm = wn with non-negative integers m and n, where {vm}m≥0

and {wn}n≥0 are recurrence sequences defined by

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,

w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn

(see Section 2). Dujella determined the initial terms of sequences {vm} and {wn}
almost explicitly ([14, Lemma 8]), where there is some ambiguity in the case where
both m and n are even. What we first have to do for the proof of Theorem 1.2
is to disambiguate the statement, which, in itself, is one of the motivations of this
paper.

Theorem 1.3. Suppose that {a, b, c, d} is a Diophantine quadruple with a < b <
c < d and that z = vm = wn has a solution for some integers m and n. Then, one
of the following four cases holds:

(1) Both m and n are even with z0 = z1 and |z0| ∈ {1, cr − st}.
(2) m is odd and n is even with |z0| = t, |z1| = cr − st, and z0z1 < 0.
(3) m is even and n is odd with |z0| = cr − st, |z1| = s, and z0z1 < 0.
(4) Both m and n are odd with |z0| = t, |z1| = s, and z0z1 > 0.
Moreover, if d > d+, then case (2) cannot occur.

Thanks to Theorem 1.3, we are left with ten equations of form (1.1) to be
studied. In order to obtain finiteness results on the number of solutions to each
of such equations, we will rely on the methods used in the study of the following
system of Pellian equations:

(1.2)

{
X2 −AZ2 = 1,

Y 2 −BZ2 = 1,

where A and B are given distinct positive integers. The number of solutions to
system (1.2) has been actively studied by several authors in the literature. We
only refer to the papers [3, 4, 10, 30, 34] and the references given therein. The final
achievement on the number of solutions to (1.2) is due to Bennett, Cipu, Mignotte,
and Okazaki ([4]), who showed that system (1.2) has at most two solutions (X,Y, Z)
in positive integers. Similarly to our situation, solving (1.2) is reduced to examining
when certain two linear recurrence sequences coincide, where the initial terms of
the sequences are uniquely determined (as the constant terms are 1). Although the
initial terms of {vm′} and {wn′} (i.e., the fundamental solutions to system (1.1))
have not been uniquely determined, we may apply Okazaki’s lemma, [4, Lemma 2.2],
to system (1.1) in view of Theorem 1.3, as well as [23, Theorem 1.2] mentioned above
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(note that the fundamental solutions corresponding to Diophantine quintuples have
already been determined completely; see [23, Lemma 2.2]). As a result, we obtain
the following.

Theorem 1.4. Let N(z0, z1) be the number of positive integers d with d > d+ such
that {a, b, c, d} forms a Diophantine quadruple and d corresponds to a fundamental
solution (z0, z1). Then N(z0, z1) ≤ 2. Moreover, if

(z0, z1) ∈ {(st− cr, st− cr), (st− cr, s), (t, s)},

then N(z0, z1) ≤ 1.

Theorem 1.2 now follows from Theorem 1.4 together with a simple but thorough
investigation (Lemma 2.8) on the bound for the second largest element c in the
quadruple (see Section 5).

An outline of the proof of Theorem 1.4 goes as follows. Now that the possible
fundamental solutions are explicitly described in Theorem 1.3, Okazaki’s lemma
(Lemma 7.1) on gaps between solutions, together with an upper bound for solutions
obtained by Baker’s method on linear forms in three logarithms, shows the first part
of Theorem 1.4, where Lemma 7.1 is in fact applied to the case where there exist
three solutions d = d0, d1, d2 with d+ < d0 < d1 < d2 coming from the same
fundamental solution. Combining this with Theorem 1.2, one can deduce that the
number of possible extensions of a fixed Diophantine triple {a, b, c} (a < b < c) to
a Diophantine quadruple {a, b, c, d} with d > c is at most 13. In order to lessen
the number of extensions, we have to apply Lemma 7.1 to the case where d0 = d+,
and we therefore need a better upper bound for solutions. To do this, we consider
the difference Γ := Λ2 − Λ1 between linear forms Λ1 and Λ2 in three logarithms
corresponding respectively to the solutions d1 and d2, which is a linear form in
two logarithms. Then, Baker’s method on linear forms in two logarithms can work
well if d1 and d2 are not so far apart, which is ensured by application of Rickert’s
theorem ([32]) on simultaneous rational approximation of irrationals, as is the case
with [3, Corollary 3.3]. In the cases of (z0, z1) ∈ {(st−cr, st−cr), (st−cr, s), (t, s)},
where d = d+ can be attained, we thus obtain a contradiction.

As another application of Theorem 1.3, one may increase lower bounds for so-
lutions (compare Lemma 3.1 with Lemma 4.1). Such bounds, combined with a
version (Theorem 3.3) of Rickert’s theorem, show the following, which generalizes
and improves [19, Theorem 1.2] in view of b > 4000 (see Lemma 2.1).

Theorem 1.5. Let {a, b, c, d} be a Diophantine quadruple with a < b < c < d. If
b < 2a and c ≥ 9.864b4, 2a ≤ b ≤ 12a and c ≥ 4.321b4, or b > 12a and c ≥ 721.8b4,
then d = d+.

It is known by [22, Theorem 2] that if {a, b, c, d, e} is a Diophantine quintuple
with a < b < c < d < e, then d = d+. Since, then, any of {a, b, d, e}, {a, c, d, e},
and {b, c, d, e} is irregular, the following theorem generalizes [22, Theorem 2].

Theorem 1.6. Suppose that {a, b, c, d} is a Diophantine quadruple with a < b <
c < d+ < d. Then, any Diophantine quadruple {e, a, b, c} with e < c must be
regular.

Note that taking contraposition of the statement of Theorem 1.6 we see that
if {a, b, c, d} is a Diophantine quadruple with a < b < c < d+ < d, then any
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Diophantine quadruple {a1, a2, d, e} with {a1, a2} ⊂ {a, b, c} and d < e must be
regular.

Consider now the regular Diophantine triple {a, b, c} with c = a + b + 2r. By
[28, Theorem 8], if d > d+, then only case (1) in Theorem 1.3 can occur with
|z0| = 1. Since the relation cr − st = 1 holds, the following is an immediate
consequence of Theorem 1.4.

Corollary 1.7. Any fixed regular Diophantine triple can only be extended to a
Diophantine quadruple in at most 4 ways by joining a fourth element exceeding the
maximal element in the triple.

The organization of this paper is as follows. In Section 2, we recall several known
facts ameliorated by using Lemma 2.1. In particular, the bound for c attached to
each pair of possible values of |z0|, |z1| is precisely examined in Lemma 2.8. In
Section 3, we give lower bounds for solutions and prove Theorem 1.3 using the
lower bounds with a version of Rickert’s theorem. Section 4 is devoted to proving
Theorems 1.5 and 1.6. In Section 5, it is shown that Theorem 1.2 is a consequence of
Theorem 1.4 with the help of Theorem 1.3 and Lemma 2.8. The proof of Theorem
1.4 will be the goal of Sections 6 through 10. In Section 6, we give an upper bound
for solutions using Matveev’s theorem ([31]) on linear forms in three logarithms.
In Section 7, we give a “large” gap between the solutions using Okazaki’s lemma
(Lemma 7.1), which together with the result obtained in the preceding section
shows an absolute upper bound for c, on the assumption that the relevant Pellian
equations have three solutions belonging to the same class of solutions. In Section
8, another type of application of Rickert’s theorem shows that there is a “small”
gap between the solutions (Proposition 8.4). In Section 9, we transform the two
linear forms in three logarithms corresponding to two solutions into a linear form
in two logarithms and apply the theorem ([29, Theorem 2]) of Laurent on Baker’s
method. In Section 10, we complete the proof of Theorem 1.4. Finally in Section
11, we conclude this paper with some remarks on further progress.

2. Preliminary lemmas

Let {a, b, c} be a Diophantine triple with a < b < c such that

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2,

where r, s, t are positive integers. Suppose that {a, b, c, d} is a Diophantine quadru-
ple with c < d. Then there exist integers x, y, z such that

ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2,

from which, eliminating d, we obtain the following system of Pellian equations:

az2 − cx2 = a− c,(2.1)

bz2 − cy2 = b− c.(2.2)

Throughout this paper, the following lemma, which is a product of the reduction
method (cf. [2, Lemma], [17, Lemma 5]) and a computer, will be frequently used
without referring to it in order to reduce the amount of computation in the proofs.
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Lemma 2.1 ([7, Lemma 3.4]). Suppose that {a, b, c, d} is a Diophantine quadruple
with a < b < c < d+ < d.

(1) If b < 2a, then b > 21000.
(2) If 2a ≤ b ≤ 12a, then b > 130000.
(3) If b > 12a, then b > 4000.

In the rest of this section, we will assume that d > d+, unless otherwise specified.

Lemma 2.2. Let (z, x), (z, y) be positive solutions of (2.1), (2.2), respectively.
Then there exist solutions (z0, x0) of (2.1) and (z1, y1) of (2.2) in the ranges

1 ≤ x0 <

√
s+ 1

2
< 0.7128 4

√
ac,

1 ≤ |z0| <

√
c
√
c

2
√
a
< 0.089c,

1 ≤ y1 <

√
t+ 1

2
< 0.7072

4
√
bc,

1 ≤ |z1| <

√
c
√
c

2
√
b
< 0.0112c

such that

z
√
a+ x

√
c = (z0

√
a+ x0

√
c)(s+

√
ac)m,(2.3)

z
√
b+ y

√
c = (z1

√
b+ y1

√
c)(t+

√
bc)n(2.4)

for some non-negative integers m and n.

Proof. This can be shown by applying [14, Lemma 1] with b > 4000 obtained from
Lemma 2.1. �

By (2.3) and (2.4), we may write z = vm = wn, where

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,

w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn.

Lemma 2.3. We have the following:
(1) If z ≥ w4 (resp. w5, w6), then d > 20b2.5c3.5 (resp. 81b3.5c4.5, 327b4.5c5.5).
(2) If z ≥ v6, then d > 256a4.5c5.5.

Proof. The proof proceeds along the same lines as those of [22, Lemma 15] or
[14, Proposition 1] (note that Lemma 2.2 implies w1 > 0.5655b−1/4c3/4 and v1 >
0.5205a−1/4c3/4). �

Lemma 2.4. Assume that z = vm = wn has a solution for some integers m and
n. If c > b3.5 (resp. b4, b5.5), then

m ≤ 9

7
n+

5

7

(
resp.

5

4
n+

3

4
,
13

11
n+

9

11

)
.

Proof. This can be shown in the same way as [14, Lemma 4]. �

Lemma 2.5. If z = vm = wn has a solution for some integers m and n, then
min{m,n} ≥ 4.
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Proof. The assertion follows from [22, Lemmas 7–11] (note that we are assuming
a < b < c < d+ < d). �

Lemma 2.6. Assume that c ≤ 20a2.5b3.5. If z = vm = wn has a solution for
some even integers m and n, then d > 256a4.5c5.5. Moreover, if b < 2a, then
d > 327b4.5c5.5.

Proof. The assumption c ≤ 20a2.5b3.5, together with Lemma 2.3, leads us to show
v4 �= w4 in the same way as [22, Lemma 13]. It follows from Lemma 2.5 with
m, n even that max{m,n} ≥ 6, which together with Lemma 2.3 implies the first
assertion.

If b < 2a, then one can show that vm′ �= w4 for all even integers m′, following
the argument in the proof of [22, Lemma 14(1)]. Hence we obtain z ≥ w6 and
d > 327b4.5c5.5 by Lemma 2.3. �

Lemma 2.7. If z = vm = wn has a solution for some even integers m and n with
|z0| �∈ {1, cr − st}, then |z0| < 0.653b−5/14c9/14.

Proof. One can prove this lemma in a similar fashion to [22, Lemma 18] (or [14,
Lemma 8(1)]). Indeed, putting d0 = (z20 − 1)/c, we have the irregular Diophantine
quadruple {a, b, d0, c} with d0 < c, and Lemma 2.3, together with n ≥ 4 by Lemma
2.5, implies that c > 20d3.50 b2.5. Hence, we see from b > 4000 that d0 > 0.999z20/c
and |z0| < 0.653b−5/14c9/14. �

Lemma 2.8. Set

τ =

√
ab

r

(
1− a+ b+ 1/c

c

)
(< 1).

Then we have

(i) If |z0| = cr − st, then c < 4τ−4ab2.
(ii) If |z1| = cr − st, then c < 4τ−4a2b.
(iii) If |z0| = t, then c > 4ab2.
(iv) If |z1| = s, then c > 4a2b.

Moreover, (ii) and (iii) cannot occur simultaneously.

Proof. We use Lemma 2.2. Thus

|z0| <

√
c
√
c

2
√
a
, |z1| <

√
c
√
c

2
√
b
.

(i), (ii) Observe that

cr − st =
c2 − ac− bc− 1

cr + st
=

c

2
√
ab

2
√
ab c

cr + st

(
1− a+ b+ 1/c

c

)
>

c

2
√
ab

τ.

If |z0| = cr − st, then

c

2
√
ab

τ <

√
c
√
c

2
√
a
.

Raising this to the fourth power yields c < 4τ−4ab2. Similarly, the inequality

c

2
√
ab

τ <

√
c
√
c

2
√
b

implies c < 4τ−4a2b.
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(iii), (iv) If |z0| = t, then

√
bc < t <

√
c
√
c

2
√
a
.

Raising this to the fourth power yields c > 4ab2. Similarly, the inequality

s <

√
c
√
c

2
√
b

implies c > 4a2b.
The last assertion follows from the following stronger one:

if c > 4ab2, then b > τ−4a.(2.5)

Indeed,

1− τ < 1−
√
ab

r
+

a+ b+ 1/c

c
<

1

2ab
+

a+ b+ 1/(4ab2)

4ab2
<

1

ab
.

It follows from b > 4000 that τ > 1− 1/4000 > 0.99. Hence we obtain

τ−4 = 1 + τ−1(τ−2 + 1)(τ−1 + 1)(1− τ ) < 1 +
4.2

ab
<

b

a
.

�

3. Proof of Theorem 1.3

Lemma 3.1. Assume that c > 20a2b3.5. Suppose that z = vm = wn has a solution
for some integers m and n with n ≥ 4. Then, m ≡ n (mod 2) and the following
hold:

(1) In the case where both m and n are even, if b ≥ 2a, then n > 2b−9/28c5/28;
otherwise

n > min
{
1.999a−1/2b−1/8c1/8, 1.298b−11/28c3/28

}
.

(2) In the case where both m and n are odd, we have n > 1.39b−3/4c1/4.

In any case, we have n ≥ 6 and d > 327b4.5c5.5.

Proof. The first assertion follows from [14, Lemma 8] with Lemma 2.8(i), (ii).
(1) By [14, Lemma 8] and Lemma 2.7 we have z0 = z1 and either |z0| ∈ {1, cr−st}

or |z0| < 0.653b−5/14c9/14.
If |z0| = 1, then the argument in the proof of [6, Lemma 2.4] is still valid, and

we have m > b−1/2c1/2, which, noting Lemma 2.4, satisfies the desired inequality.
If |z0| = cr− st, then we will arrive at a contradiction in the same way as the proof
of [14, Lemma 10 (case (1.2))].

Assume that |z0| �∈ {1, cr − st}, that is, |z0| < 0.653b−5/14c9/14. Since (z0, x0)
and (z1, y1) are solutions to (2.1) and (2.2), respectively, we see from b > 4000 that

x0 < 0.683a1/2b−5/14c1/7 and y1 < 0.654b1/7c1/7.

Considering vm ≡ wn (mod 8c2), we have

az0m
2 − bz0n

2 ≡ 2ty1n− 2sx0m (mod 16c)(3.1)

(see [13, Lemma 4]).
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Suppose now that n ≤ 2b−9/28c5/28. Since a|z0|m2 < 14c, b|z0|n2 < 14c, ty1n <
c, and sx0m < c, congruence (3.1) is in fact an equality:

az0m
2 + 2sx0m = bz0n

2 + 2ty1n.(3.2)

In the case where b ≥ 2a, we see from z20 ≥ max{c+ 1, 3c/a} that

0 ≤ sx0

a|z0|
− 1 < 0.1669, 0 ≤ ty1

b|z0|
− 1 < 0.0418,

which are exactly the same as the inequalities in the proof (p. 199) of [14, Lemma
10]. If z0 > 1, then am(m + 2.3338) ≥ bn(n + 2), which together with b ≥ 2a
and Lemma 2.4 yields 17n2 − 41.0294n − 106.683 < 0, and hence n < 3.99, which
contradicts n ≥ 4. If z0 < −1, then am(m− 1) ≥ bn(n− 2.0836). In case b ≥ 3a,
similarly to the above we have 264n2−1081.1568n+180 < 0, which gives n < 3.94,
a contradiction. In case 2a ≤ b < 3a, we have

2n(n− 2.0836) < m(m− 2).(3.3)

Then, since c > 20a2b3.5 > 20 · 3−2b5.5 > b5.5, Lemma 2.4 implies that 292n2 −
1808.9248n+ 468 < 0. Hence, n < 5.94 and we obtain n = 4 and m = 4. However,
then inequality (3.3) implies 8 > 8(4−2.0836) > 8, a contradiction. This has shown
the assertion for b ≥ 2a.

In the case where b < 2a, squaring both sides of (3.1) gives

(am2 − bn2)2 ≡ 4x2
0m

2 + 4y21n
2 − 8stx0y1mn (mod 16c),

which, multiplied by s and by t respectively, shows that

Cs ≡ −8tx0y1mn, Ct ≡ −8sx0y1mn (mod 16c),(3.4)

where C = (am2 − bn2)2 − 4(x2
0m

2 + y21n
2). Suppose that

n ≤ min{1.999a−1/2b−1/8c1/8, 1.299b−11/28c3/28}.
Then, we have equation (3.2). Since x2

0 < y21 < 0.427b2/7c2/7 and m ≤ 61n/44 by
Lemma 2.4 with c > b5.5 and n ≥ 4, we have

|Cs| < |Ct| < max{a2n4
√
bc+ 1, 4.9908b2/7c2/7n2

√
bc+ 1} < 16c,

8tx0y1mn < 8ty21 ·
61

44
n2

< 4.736b11/14c11/14 min{1.9992a−1b−1/4c1/4, 1.2992b−11/14c3/14}
< 8c.(3.5)

Hence, from (3.4) we obtain either Cs = −8tx0y1mn, Ct = −8sx0y1mn or Cs =
16c − 8tx0y1mn, Ct = 16c − 8sx0y1mn. The former case cannot happen because
of t > s, while the latter implies 2c = (t + s)x0y1mn, which contradicts (3.5).
Therefore, the assertion for b < 2a holds.

(2) By [14, Lemma 8] and [13, Lemma 4], we have

±st{a(m2 − 1)− b(n2 − 1)} ≡ 2r(n−m) (mod 8c).

Multiplying both sides by s and by t respectively, we obtain

±t{a(m2 − 1)− b(n2 − 1)} ≡ 2rs(n−m) (mod 8c),(3.6)

±s{a(m2 − 1)− b(n2 − 1)} ≡ 2rt(n−m) (mod 8c).(3.7)
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Suppose that n ≤ 1.39b−3/4c1/4. Then, by Lemma 2.4 with c > b3.5 and n ≥ 5 we
have

at(m2 − 1) < (10/7)2
√
1 + 1/(bc)ab1/2c1/2n2 < 4c,

bt(n2 − 1) <
√
1 + 1/(bc)b3/2c1/2n2 < 4c,

2rtm < 2
√
1 + 1/(ab)

√
1 + 1/(bc)a1/2bc1/2n < 4c,

which mean that (3.6) and (3.7) are in fact equalities. Hence we obtain m = n and
a(m2 − 1) = b(n2 − 1), which contradict a < b and m > 0.

Now it is not difficult to show the last assertion. In the case where both m and
n are even, if b ≥ 2a, then n > 2 · 205/28b17/56 > 42; if b < 2a, then b > 21000 and

n > min{1.999 · 201/8a−1/4b5/16, 1.298 · 203/28a3/14b−1/56}
> min{1.999 · 201/8b1/16, 1.298 · 203/28 · 2−3/14b11/56} > 5.4.

Hence, n ≥ 6. In the case where both m and n are odd, we have n > 1.39 ·
201/4b1/8 > 8.2, which yields n ≥ 9. It follows that n ≥ 6 and from Lemma 2.3(1)
that d > 327b4.5c5.5. This completes the proof of Lemma 3.1. �

Lemma 3.2. Assume that c > b4. If z = vm = wn has a solution for some integers
m and n with n ≥ 4, then log z > n log(4bc).

Proof. One can show this lemma along the same lines as the proof of [22, Lemma
25]. �

Theorem 3.3 ([8, Theorem 2.2]). Let a, b, and N be integers with 0 < a ≤ b− 5,
b > 2000, and N ≥ 3.706a′b2(b− a)2, where a′ = max{b− a, a}. Assume that N is

divisible by ab. Then the numbers θ1 =
√
1 + b/N and θ2 =

√
1 + a/N satisfy

max

{∣∣∣∣θ1 − p1
q

∣∣∣∣ ,
∣∣∣∣θ2 − p2

q

∣∣∣∣
}

>

(
1.413 · 1028a′bN

a

)−1

q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(10a−1a′bN)

log(2.699a−1b−1(b− a)−2N2)
< 2.

Lemma 3.4. Assume that c ≥ 3.706b4. If z = vm = wn has a solution for some
integers m and n with n ≥ 4, then n < 8ϕ(a, b, c), where

ϕ(a, b, c) =
log(8.406 · 1013a1/2(a′)1/2b2c) log(1.643a1/2b1/2(b− a)−1c)

log(4bc) log(0.2699a(a′)−1b−1(b− a)−2c)
.

Proof. This can be shown by Lemma 3.2 and Theorem 3.3 in exactly the same way
as [8, Lemma 3.3]. �

Proposition 3.5. Suppose that {a, b, c, d} is a Diophantine quadruple with a <
b < c < d and that z = vm = wn has a solution for some integers m and n. If
either b ≥ 2a and c > max{20a2b3.5, b5} or b < 2a and c > b10, then d = d+.

Proof. Suppose that d > d+. By Lemma 3.4 we have

n < 8ϕ(a, b, c).(3.8)

We may assume by Lemma 3.1 that z = vm = wn with m ≡ n (mod 2).
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(1) Consider first the case where both m and n are even. Assume that b ≥ 2a and
c > max{20a2b3.5, b5}. By Lemma 3.1 and (3.8) we have b−9/28c5/28 < 4ϕ(a, b, c).

From a1/2(b− a)1/2 ≤ b/2 and a1/2b1/2(b− a)−1 ≤
√
2, we see that

ϕ(a, b, c) <
log(4.203 · 1013b3c) log(2.324c)

log(4bc) log(0.2699b−4c)
.

Since the right-hand side is a decreasing function of c, the assumption c > b5 shows
that

b4/7 <
4 log(4.203 · 1013b8) log(2.324b5)

log(4b6) log(0.2699b)
<

80 log(50.46b) log(1.184b)

3 log(1.259b) log(0.2699b)
.

Therefore we obtain b < 1000, which contradicts b > 4000.
Assume that b < 2a and c > b10. By Lemmas 2.5 and 3.1, we have either

n > 1.999b−5/8c1/8 or n > 1.298b−11/28c3/28. If n > 1.999b−5/8c1/8, then by (3.8)
we have 1.999b−5/8c1/8 < 8ϕ(a, b, c). Since a1/2(b−a)−1 < 0.5 (by [8, Lemma 3.5])
and b(b− a)2 < b3/4, we find that

ϕ(a, b, c) <
log(8.406 · 1013b3c) log(0.8215b1/2c)

log(4bc) log(1.0796b−3c)
,

which together with c > b10 implies that

1.999b5/8 <
8 log(8.406 · 1013b13) log(0.8215b10.5)

log(4b11) log(1.0796b7)

<
156 log(11.78b) log(0.982b)

11 log(1.134b) log(1.011b)
<

156 log(11.78b)

11 log(1.134b)
.

It follows that b < 50, which contradicts Lemma 2.1. If n > 1.298b−11/28c3/28, then
(3.8) and c > b10 together imply that

1.298b19/28 <
156 log(11.78b)

11 log(1.134b)
,

which yields b < 70, a contradiction.
(2) Consider secondly the case where both m and n are odd. If b ≥ 2a and

c > max{20a2b3.5, b5}, then Lemma 3.1 and (3.8) together imply

1.39b1/2 <
80 log(50.46b) log(1.184b)

3 log(1.259b) log(0.2699b)
,

which yields b < 1300, a contradiction. If b < 2a and c > b10, then we similarly
have

1.39b7/4 <
78 log(11.78b)

11 log(1.134b)
,

which yields b < 10, a contradiction. This completes the proof of Proposition
3.5. �

Proof of Theorem 1.3. Assume first that d = d+. If n ≥ 3, then by [14, (17), p. 188]
we have

z ≥ w3 >
c

3.132 4
√
bc

(2t− 1)2 > b3/4c7/4 > 4c
√
ab,

which contradicts z = cr + st < 2cr < 3c
√
ab. Hence n ≤ 2. Then, the proof

of [14, Lemma 5] shows that (m,n) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. More precisely,
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if (m,n) = (1, 1), (1, 2), (2, 1), (2, 2), then (z0, z1) = (t, s), (t, st − cr), (st − cr, s),
(st− cr, st− cr), respectively.

Assume secondly that d > d+. The second assertion immediately follows from
the last one in Lemma 2.8. Note that if c = a+b+2r, then |z1| = 1 by [28, Theorem
8], together with [22, Lemma 6] (see also [14, Lemma 8]). Since parts (2) to (4)
have already been proven in [14, Lemma 8], we only have to show that if vm = wn

for some even integers m and n, then |z0| ∈ {1, cr− st}. Suppose, on the contrary,
that |z0| �∈ {1, cr−st}. Putting d0 = (z20−1)/c, we obtain the irregular Diophantine
quadruple {a, b, d0, c} with d0 < c. Let {a1, a2, a3} = {a, b, d0} with a1 < a2 < a3.

If a3 ≤ 20a2.51 a3.52 , then Lemma 2.6 implies that c > 327a4.52 a5.53 ≥ 327a4.5b5.5 >
14b10 if b < 2a and that c > 256a4.51 a5.53 ≥ 256b5.5 if b ≥ 2a. Thus, in any case,
Proposition 3.5 shows that d = d+, which contradicts the assumption.

Suppose now that a3 > 20a 2.5
1 a 3.5

2 . If b = a2, then we see from Lemmas 2.3 and
2.5 that

c > 20a 2.5
2 a 3.5

3 > 20b2.5(20b3.5)3.5 > 7 · 105b14.75,
which together with Proposition 3.5 (or even [22, Proposition 16]) yields d = d+,
a contradiction. If b = a3, then b > 20a 2.5

1 a 3.5
2 , and Lemma 3.1 shows that c >

327a4.5b5.5, which again contradicts Proposition 3.5. �

4. Proofs of Theorems 1.5 and 1.6

Lemma 4.1. Assume that c > b4. Suppose that z = vm = wn has a solution for
some integers m and n. Then, m ≡ n (mod 2) and n > 2.778b−3/4c1/4.

Proof. The first assertion follows from [14, Lemma 8] with Lemma 2.8(i), (ii).
In case both m and n are even, by Theorem 1.3 we have |z0| ∈ {1, cr − st}, and

it is easy to see from Lemma 2.8(i) with c > b4 that |z0| = cr − st cannot happen.
Hence |z0| = 1, which together with the argument in the proof of [6, Lemma 2.4]
implies thatm > b−1/2c1/2. It follows from Lemma 2.4 that n > 0.8b−1/2c1/2−0.3 >
2.778b−3/4c1/4.

In case both m and n are odd, we have congruences (3.6) and (3.7). Suppose
that n ≤ 2.778b−3/4c1/4. Since Lemma 2.4 with c > b4 and n ≥ 5 shows that

t|a(m2 − 1)− b(n2 − 1)| ≤ btn2 < 1.0001b3/2c1/2n2 < 7.719c,

2rt(m− n) < 0.8001b3/2c1/2n < 0.28c,

(3.6) and (3.7) are in fact equalities. Hence we obtain a contradiction as in the
proof of Lemma 3.1(2). This completes the proof of Lemma 4.1. �

Proof of Theorem 1.5. We will derive a contradiction assuming d > d+. Suppose
first that b < 2a and c ≥ 9.864b4. Since a1/2(b− a)−1 < 0.5 and b(b− a)2 < b3/4,
by Lemmas 3.4 and 4.1 we have

4.9231b1/4 < n <
8 log(8.1931 · 1014b7) log(8.1033b4.5)

log(39.456b5) log(10.649b)
.

Then, we obtain b < 21000, which contradicts Lemma 2.1.
Suppose secondly that 2a ≤ b ≤ 12a and c ≥ 4.321b4. Since a1/2(b−a)1/2 ≤ b/2,

a1/2b1/2(b− a)−1 ≤
√
2, and ab−1(b− a)−3 ≥ 122/(11b)3, we have

4.0052b1/4 < n <
8 log(1.8162 · 1014b7) log(10.04b4)

log(17.284b5) log(0.12617b)
,
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which contradicts b > 130000 by Lemma 2.1.
Suppose finally that b > 12a and c ≥ 721.8b4. Since a1/2(b − a)1/2 ≤

√
11b/12

and a1/2b1/2(b− a)−1 ≤
√
12/11, we have

14.399b1/4 < n <
8 log(1.677 · 1016b7) log(373.47b4)

log(2887.2b5) log(194.81)
,

which contradicts b > 4000. This completes the proof of Theorem 1.5. �

Lemma 4.2. If {a, b, c, d} is a Diophantine quadruple with a < b < c < d+ < d,
then d > min{81b3.5c4.5, 256a4.5c5.5}.

Proof. Since we know by Theorem 1.3 that if vm = wn with m ≡ n ≡ 0 (mod 2),
then |z0| ∈ {1, cr−st}, the proof of [22, Lemma 13] implies that v4 �= w4. It follows
from Lemma 2.5 and [22, Lemma 9] that either m ≥ 6 or n ≥ 5. Therefore, the
assertion is obtained from Lemma 2.3. �

Proof of Theorem 1.6. If {e, a, b, c} is an irregular Diophantine quadruple with e <
c, then Lemma 4.2 shows that c > 81b4.5, which contradicts Theorem 1.5. �

5. Preparations for Theorem 1.2

Let {a, b, c} be a fixed Diophantine triple with a < b < c. Suppose that d is a
positive integer such that {a, b, c, d} forms a Diophantine quadruple. By Theorem
1.3, any fundamental solution (z0, z1) of simultaneous Pellian equations (2.1) and
(2.2) satisfies

(z0, z1) ∈ {(st− cr, st− cr), (t, st− cr), (st− cr, s), (t, s)}(5.1)

or

(z0, z1) ∈ {(1, 1), (−1,−1), (cr − st, cr − st), (−t, cr − st), (cr − st,−s), (−t,−s)}.

Put z =
√
cd+ 1. Then, as seen in Section 1, there exist two recurrence sequences

{v}, {w} for which

(5.2) z = vm = wn

holds with some positive integers m,n.
As shown at the beginning of the proof of Theorem 1.3, d = d+ (which is

equivalent to z = cr + st) is attained exactly in each of the four cases of (5.1),
which are expressed in more detail as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(z0, x0; z1, y1) = (st− cr, rs− at; st− cr, rt− bs); (m,n) = (2, 2),

(z0, x0; z1, y1) = (t, r; st− cr, rt− bs); (m,n) = (1, 2),

(z0, x0; z1, y1) = (st− cr, rs− at; s, r); (m,n) = (2, 1),

(z0, x0; z1, y1) = (t, r; s, r); (m,n) = (1, 1).

Note that by the last assertion of Theorem 1.3 any extension of {a, b, c} to a quadru-
ple {a, b, c, d} with d > max{a, b, c} is regular in the case where m is odd and n is
even. The latter part of Theorem 1.4 implies that there exists at most one extension
of {a, b, c} to a quadruple {a, b, c, d} with d > d+ in each of the remaining three
cases in (5.1).

The proof of Theorem 1.4 will be given in Section 10. Before that, we confirm
that Theorem 1.4 together with Theorem 1.3 and Lemma 2.8 implies Theorem 1.2.
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Proof of Theorem 1.2. We denote by N = N(a, b, c) the number of positive integers
d > d+ such that {a, b, c, d} forms a Diophantine quadruple. It suffices to show that
N ≤ 10. Put

Nee = N(1, 1) +N(−1,−1) +N(cr − st, cr − st) +N(st− cr, st− cr),

Noe = N(t, st− cr) +N(−t, cr − st),

Neo = N(st− cr, s) +N(cr − st,−s),

Noo = N(t, s) +N(−t,−s).

Then, we know by Lemma 2.8 that Noe = 0 and by Theorems 1.3 and 1.4 that

Nee ≤ 7, Neo ≤ 3, Noo ≤ 3,

N ≤ Nee +Neo +Noo.

We shall consider several cases separately.
In case c > 4τ−4ab2, by Lemma 2.8 (i), (ii), we have |z0|, |z1| �= cr − st. Then

Neo = 0, Nee = N(1, 1) +N(−1,−1),

and so

N ≤ Nee +Noo ≤ 4 + 3 = 7.

In case 4τ−4ab2 > c > 4ab2(> 4τ−4a2b), Lemma 2.8(ii) shows that |z1| �= cr−st.
Then

Nee = N(1, 1) +N(−1,−1),

and so

N ≤ Nee +Neo +Noo ≤ 4 + 3 + 3 = 10.

In case 4ab2 > c > 4τ−4a2b, by Lemma 2.8 (ii), (iii), we have |z1| �= cr − st and
|z0| �= t. Then

Noo = 0, Nee = N(1, 1) +N(−1,−1),

and so

N ≤ Nee +Neo ≤ 4 + 3 = 7.

In case 4τ−4a2b > c > 4a2b, note that c > 4a2b implies 4ab2 > 4τ−4a2b by (2.5).
By Lemma 2.8 (iii), we have |z0| �= t. Then,

Noo = 0, N ≤ Nee +Neo ≤ 7 + 3 = 10.

In case 4a2b > c, by Lemma 2.8 (iii), (iv), we have |z0| �= t and |z1| �= s. Then,

Neo = Noo = 0, N ≤ Nee ≤ 7.

This completes the proof of Theorem 1.2. �

6. Linear form in three logarithms

An extension of a Diophantine triple {a, b, c} leads us to examine the following
linear form in three logarithms:

Λ = m log ξ − n log η + log μ

with non-negative integers m and n, where

ξ = s+
√
ac, η = t+

√
bc, μ =

√
b (x0

√
c+ z0

√
a )

√
a (y1

√
c+ z1

√
b )

.

In the following lemma, we estimate the value of Λ.
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Lemma 6.1. Let (m,n) be a solution of equation (5.2). Assume that m > 0 and
n > 0. Then we have

0 < Λ < κ ξ−2m,

where we may take κ as

κ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6
√
ac if m ≥ 4,

6 if |z0| = 1,

2.001c/b if z0 = st− cr,

1/(2ab) if z0 = t.

Proof. As shown in [13, Lemma 5], we have

0 < Λ < κ0 ξ
−2m,

where

κ0 =
2(c− a)

(z0
√
a+ x0

√
c )2

=
2(x0

√
c− z0

√
a )2

c− a
.

If m ≥ 4, then d > d+, and from Lemma 2.2 we find that

(0 <) x0

√
c− z0

√
a < 2x0

√
c < 1.5

√
c 4
√
ac.

This together with the fact that c > 4a gives us the first desired upper bound for
κ. If |z0| = 1, then

κ0 ≤ 2(
√
c+

√
a )√

c−√
a

< 2

(
1 +

2
√
a

2
√
a−√

a

)
= 6.

Furthermore, since

(cr − st)
√
a+ (rs− at)

√
c =

c2 − ac− bc− 1

cr + st

√
a+

ab+ ac− a2 + 1

rs+ at

√
c

<
a(c2 − ac− bc− 1)

2st
√
a

+
c(ab+ ac− a2 + 1)

2at
√
c

<
(2ac+ 1)(c− a)

2a
√
bc

=

(
1 +

1

2ac

)
c− a√

b
,

t
√
a+ r

√
c > 2

√
abc,

it follows that κ0 is at most

2(x0
√
c− z0

√
a)2

c− a
<

2.001(c− a)

b
<

2.001c

b
if z0 = st− cr,

2(c− a)

(z0
√
a+ x0

√
c )2

<
2c

4abc
=

1

2ab
if z0 = t.

�
Next, in order to give an upper bound for Λ, we appeal to a result on linear

forms in (three) logarithms due to Matveev [31].
For an algebraic number α of degree d over Q, we define the absolute logarithmic

height of α by the following formula:

h(α) =
1

d

(
log |a0|+

d∑
i=1

logmax
{
1, |α(i)|

})
,

where a0 is the leading coefficient of the minimal polynomial of α over Z and
α(1), α(2), . . . , α(d) are the conjugates of α in the field of complex numbers.
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Proposition 6.2. Let α1, α2, α3 be positive, totally real algebraic numbers such
that they are multiplicatively independent. Let b1, b2, b3 be rational integers with
b3 �= 0. Consider the following linear form Λ in the three logarithms:

Λ = b1 logα1 + b2 logα2 + b3 logα3.

Define real numbers A1, A2, A3 by

Aj = max
{
D · h(αj), | logαj |

}
(j = 1, 2, 3),

where
D = [Q(α1, α2, α3) : Q].

Put

B = max
{
1, max

{
(Aj/A3) |bj | : j = 1, 2, 3

}}
.

Then we have

log |Λ| > −C(D)A1A2A3 log
(
1.5 eD log(eD) ·B

)
with

C(D) = 11796480 e4 D2 log
(
35.5 e20.2 D2 log(eD)

)
.

Proposition 6.3. Let (m,n) be a solution of equation (5.2) with m ≥ 4. Then we
have

m

log
(
38.92B(m)

) < A(c)C(4) log η,

where B(m) = max{1.001m, m+ 1} and

A(c) =

{
8.1 log c if c = a+ b+ 2r,

8.6 log(0.632c) if c > a+ b+ 2r.

Proof. Set
(α1, α2, α3) = (ξ, μ, η), (b1, b2, b3) = (m, 1,−n).

Since none of ab, ac, bc are a square, we have D = 4. Then we easily see that

A1 = 2 log ξ, A3 = 2 log η,(6.1)

and
A1

A3
<

log
(
2.001

√
ac
)

log
(
2
√
bc
) < 1.001.

In order to estimate A2, denote the conjugates of μ by

μ+
+, μ+

−, μ−
+, μ−

−,

where the signs are the ones appearing in the numerator and denominator, respec-
tively; for example,

μ+
− =

√
b (x0

√
c+ |z0|

√
a )

√
a (y1

√
c− |z1|

√
b )

.

Note that μ+
− > max{μ+

+, μ
−
−} and min{μ+

+, μ
−
−} > μ−

+. Since

μ+
+μ

−
− =

b(c− a)

a(c− b)
> 1,

at least one of μ+
+ and μ−

− is greater than one, and hence μ+
− > 1. If μ−

+ > 1, since
the minimal polynomial of μ is

a2(c− b)2T 4+4a2b(c− b)T 3+2ab(3ab−ac− bc− c2)T 2+4ab2(c−a)T + b2(c−a)2
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divided by the greatest common divisor of the coefficients, we have

4h(μ) ≤ log(b2(c− a)2).

If μ−
+ < 1, since

μ+
−μ

+
+ =

b(x0
√
c+ |z0|

√
a )2

a(c− b)
<

4x 2
0 bc

a(c− b)
,

μ+
−μ

−
− =

b(c− a)(y1
√
c+ |z1|

√
b )2

a(c− b)2
<

4y 2
1 b(c− a)

a(c− b)2
,

μ+
−μ

+
+μ

−
− =

b
√
b(c− a)(x0

√
c+ |z0|

√
a )

a
√
a(c− b)(y1

√
c− |z1|

√
b )

<
4x0y1b

3/2c(c− a)

a3/2(c− b)2
,

we have 4h(μ) < log
(
max{4x 2

0 abc
2, 4y 2

1 abc
2, 4x0y1a

1/2b3/2c2}
)
. Hence, we obtain

h(μ) <
1

4
logP2,

where

P2 = max
{
b2c2, 4x 2

0 abc
2, 4y 2

1 abc
2, 4x0y1a

1/2b3/2c2
}
.

In the case where c = a+ b+ 2r, since

c >

⎧⎪⎨
⎪⎩

9b/4 if b < 4a,

25b/16 > 25a/4 if 4a < b < 16a,

25a if b > 16a,

we see from x0 = y1 = 1 (by [28, Theorem 8]) that P2 < c4. In the case where
c > a+ b+ 2r, Lemma 2.2 together with c > 4ab+ b > 20000 implies

4x 2
0 ab < 4 · 0.70972 ·

(√
c

2

)1/2

· c
4
· c1/2 < 0.357c7/4,

4y21ab < 4 · 0.70722 · c
4
·
( c
5

)1/2
· c1/2 < 0.224c2,

4x0y1a
1/2b3/2 < 4 · 0.7097 · 0.7072 ·

( c
4

)3/4
· c
5
· c1/2 < 0.142c9/4,

which yield P2 < 0.142c17/4. Therefore, we obtain

A2 = max
{
4 h(μ), | log μ|

}
<

{
4 log c if c = a+ b+ 2r,

(17/4) log(0.632c) if c > a+ b+ 2r.
(6.2)

Furthermore, since A3 > 2 log(
√
bc ) > (6/5) log c by Theorem 1.5, we have

B = max
{
(A1/A3)m,A2/A3, n

}
≤ max

{
1.001m, 85/24, m+ 1

}
= max

{
1.001m, m+ 1

}
.(6.3)

Now Proposition 6.2 shows that

logΛ > −A1A2A3C(4) log(38.92B),

which together with (6.1), (6.2), (6.3) and Lemma 6.1 gives us the desired inequality.
�
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7. An exponential gap principle

In this section, we consider three solutions of equation (5.2) belonging to the
same class of solutions. We write them as (m0, n0), (m1, n1), (m2, n2) with m0 <
m1 < m2. Assume that

m1 ≥ 4.

For 0 ≤ i ≤ 2, we put

Λi = mi log ξ − ni log η + logμ.

First, we make use of an idea of Okazaki (cf. [4, Lemma 2.2]) to find a very sharp
lower bound for m2 −m1 in terms of m0.

Lemma 7.1. Assume that vm0
is positive. Then we have

m2 −m1 > Λ−1
0 Δ log η,

where

Δ =

∣∣∣∣ n1 − n0 n2 − n1

m1 −m0 m2 −m1

∣∣∣∣ > 0.

In particular, if m0 > 0 and n0 > 0, then

m2 −m1 > κ−1(4ac)m0Δ log η.

Proof. Firstly, we note that the second inequality follows from Lemma 6.1 with the
fact that ξ > 2

√
ac. Although the proof of the first inequality proceeds along similar

lines to that of [23, Lemma 5.1], we give it briefly for the sake of completeness.
The equation vm = wn is expressed as

X+ξ
m −X−ξ

−m

√
a

=
Y+η

n − Y−η
−n

√
b

(> 0),

where X+, X−, Y+, Y− are positive numbers given by

X+ = x0

√
c+ z0

√
a, X− = x0

√
c− z0

√
a,

Y+ = y1
√
c+ z1

√
b, Y− = y1

√
c− z1

√
b.

Now, we consider the curve defined by F = F (p, q) = 0 in two variables p and q,
where

F = Y+ eq −Y− e−q −(X+ ep −X− e−p)

√
b

a
.

Note that the three points (p, q) = (pi, qi) with i = 0, 1, 2 are on the curve, where

(pi, qi) = (mi log ξ, ni log η).

Since
∂F

∂q
= Y+ eq +Y− e−q > 0,

we may implicitly differentiate F (p, q) = 0 to find

(7.1) (Y+ eq +Y− e−q) · dq
dp

= (X+ ep +X− e−p)

√
b

a
,

which yields

dq

dp
=

√
b

a

X+ ep +X− e−p

Y+ eq +Y− e−q
=

√
(X+ ep −X− e−p)2 + 4(c− a)

(X+ ep −X− e−p)2 + 4(c · a/b− a)
> 1.(7.2)
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Moreover, implicitly differentiating (7.1) we have

(Y+ eq +Y− e−q) · d
2q

dp2
+ (Y+ eq −Y− e−q)

(
dq

dp

)2

= (X+ ep −X− e−p)

√
b

a
.

Since Y+e
q − Y−e

−q = 2
√
bwn = 2

√
b vm is positive for m ∈ {m0,m1,m2} by

assumption, (7.1) and (7.2) together imply that

d2q

dp2
=

(
1−
(
dq

dp

)2
)

Y+ eq −Y− e−q

Y+ eq +Y− e−q
< 0.(7.3)

Combining (7.2) with (7.3) shows that

0 <
q1 − q0
p1 − p0

− q2 − q1
p2 − p1

<
q1 − q0
p1 − p0

− 1 <
Λ0

p1 − p0
,

from which the first desired inequality follows. �

We can combine Lemma 7.1 with Proposition 6.3 to show that the d correspond-
ing to the solution (m0, n0) is nothing but d+. In particular, the first assertion of
Theorem 1.4 is proved.

Proposition 7.2. Suppose that there exist three positive solutions (x(i), y(i), z(i))
(i ∈ {0, 1, 2}) to the system of Pellian equations (2.1) and (2.2) with z(0) < z(1) <
z(2) belonging to the same class of solutions. Put z(i) = vmi

= wni
(i ∈ {0, 1, 2}).

(1) m0 ≤ 2.
(2) If m0 = 2 with z0 = st− cr, then c > a+ b+ 2r.

Proof. Suppose m0 > 2. Then, m0 ≥ 4 by Lemma 2.5. Since the left-hand side
of the inequality in Proposition 6.3 is an increasing function of m and η < 2c− 1,
Proposition 6.3 and Lemma 7.1 together imply the following (note that B(m2) =
1.001m2 by m2 > κ−1(4ac)4 log η > 1000):

If c = a+ b+ 2r, then

128
3 a4c4

log(38.96 · 128
3 a4c4 log(2c− 1))

< 8.1C(4) log c,

which yields c < 2100, contradicting Lemma 2.1.
If c > a+ b+ 2r, then

128
3 a3.5c3.5

log(38.96 · 128
3 a3.5c3.5 log(2c− 1))

< 8.6C(4) log(0.632c),

which yields c < 6400, contradicting Lemma 2.1 with c > 5b.
(2) If c = a+ b+ 2r, then in a fashion similar to (1) we find that

128
3 a2c2

log
(
38.96 · 128

3 a2c2 log(2c− 1)
) < 8.1C(4) log c.

Observe that the left-hand side of this inequality is regarded as an increasing func-
tion of c. Thus, we have c < 6.16 · 106. This together with the above inequality
yields ac < 6.16 · 106. Therefore c < 2500, which contradicts c > b > 4000. Then,
one can easily reduce the upper bound M = 1017 for m2 obtained from Proposi-
ton (6.3), using the reduction method (cf. [2, Lemma], [17, Lemma(5a)]), and get
m2 ≤ 7 in each case, which contradicts Lemma (7.1) with m0 = 2. �
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8. A gap principle via Padé approximation

Here, we give a gap principle which ensures that m2 is not too large with respect
to m1. A similar principle appears in [3, Corollary 3.3].

Theorem 8.1. Let a, b, c be integers with 0 < a < b < c and let a1 = a(c−b), a2 =
b(c − a), N = abz2, where z is a solution to the system of Pellian equations (2.1)
and (2.2). Put u = c− b, v = c− a, and w = b− a. Assume that N ≥ 105a2. Then
the numbers

θ1 =
√
1 + a1/N, θ2 =

√
1 + a2/N

satisfy

max

{∣∣∣∣θ1 − p1
q

∣∣∣∣ ,
∣∣∣∣θ2 − p2

q

∣∣∣∣
}

>

(
32.01a′1a2uN

a1

)−1

q−λ

for all integers p1, p2, q with q > 0, where a′1 = max{a1, a2 − a1} and

λ = 1 +
log
(

16a′
1a2uN
a1

)
log
(

1.6874N2

a1a2(a2−a1)uvw

) .
Proof. The proof needs a general lemma stated as follows.

Lemma 8.2 (cf. [3, Lemma 3.1]). Let θ1, θ2 be arbitrary real numbers and θ0 = 1.
Assume that there exist positive real numbers l, p, L, and P with L > 1 such that
for each positive integer k, we can find integers pijk (0 ≤ i, j ≤ 2) with non-zero
determinant,

|pijk| ≤ pP k (0 ≤ i, j ≤ 2)

and ∣∣∣∣∣∣
2∑

j=0

pijkθj

∣∣∣∣∣∣ ≤ lL−k (0 ≤ i ≤ 2).

Then

max

{ ∣∣∣∣θ1 − p1
q

∣∣∣∣ ,
∣∣∣∣θ2 − p2

q

∣∣∣∣
}

> cq−λ

holds for all integers p1, p2, q with q > 0, where

λ = 1 +
logP

logL
and c−1 = 4pP (max{1, 2l})λ−1

.

For 0 ≤ i, j ≤ 2, let pij(x) be the polynomial defined by

pij(x) =
∑
ij

(
k + 1/2

hj

)
(1 + ajx)

k−hjxhj

∏
l �=j

(
−kil
hl

)
(aj − al)

−kil−hl ,

where kil = k + δil with δil the Kronecker delta,
∑

ij denotes the sum over all

non-negative integers h0, h, h2 satisfying h0 + h + h2 = kij − 1, and
∏

l �=j denotes
the product from l = 0 to l = 2 omitting l = j. Then we have

pij(1/N) =
∑
ij

(
k + 1/2

hj

)
C−1

ij

∏
l �=j

(
−kil
hl

)
,

where

Cij =
Nk

(N + aj)k−hj

∏
l �=j

(aj − al)
kil+hl .
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Recall that (a0, a1, a2) = (0, au, bv) and N = abz2. If j = 0, then

|Ci0| =
aki1+h0+h1−kbki2+h0+h2−kuki1+h1vki2+h2Nk

z2k−2h0
.

Since kil + h0 + h1 − k ≤ kil + ki0 − 1− k ≤ k and kil + hl ≤ kil + ki0 − 1 ≤ 2k for
l = 1, 2, we have ak1a

k
2u

kvkNkC−1
i0 = akbku2kv2kNkC−1

i0 ∈ Z. If j = 1, then noting
that

N + a1 = a(bz2 + c− b) = acx2,

we have

|Ci1| =
aki0+h0+h1−kuki0+h0(b− a)ki2+h2cki2+h1+h2−kNk

x2k−2h1
,

which implies that ak1(a2 − a1)
kukwkNkC−1

i1 ∈ Z. Similarly, if j = 2, then

ak2(a2 − a1)
kvkwkNkC−1

i2 ∈ Z. To sum up, we obtain

{a1a2(a2 − a1)uvwN}k C−1
ij ∈ Z

for all i, j. It follows from the proof of [18, Theorem 2.5] that

pijk := 2−1 {4a1a2(a2 − a1)uvwN}k pij(1/N) ∈ Z.

Therefore, as in the proof of [22, Theorem 21], we see from the assumption N ≥
105a2 that

|pijk| < pP k and

∣∣∣∣∣∣
2∑

j=0

pijkθj

∣∣∣∣∣∣ < lL−k,

where

p =
1

2

(
1 +

a′1
2N

)1/2

< 0.5001,

P =
32
(
1 + 3a2−a1

2N

)
a1a2(a2 − a1)

2uN

ζ
<

16a′1a2uN

a1
,

(
ζ =

{
a21(2a2 − a1) if a2 − a1 ≥ a1,

(a2 − a1)
2(a1 + a2) if a2 − a1 < a1

)
,

l =
27

64

(
1− a2

N

)−1

< 0.4219,

L =
1

4a1a2(a2 − a1)uvwN

27

4

(
1− a2

N

)2
N3 >

1.6874N2

a1a2(a2 − a1)uvw
.

Now the assertion follows from Lemma 8.2. �

Lemma 8.3. Let (x(i), y(i), z(i)) be positive solutions to the system of Pellian equa-
tions (2.1) and (2.2) for i ∈ {1, 2}, and let θ1, θ2 be as in Theorem 8.1 with z = z(1).
Then we have

max

{∣∣∣∣θ1 − acy(1)y(2)

abz(1)z(2)

∣∣∣∣ ,
∣∣∣∣θ2 − bcx(1)x(2)

abz(1)z(2)

∣∣∣∣
}

<
c3/2

2a3/2
z−2
(2) .
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Proof.∣∣∣∣
√
1 +

a1
N

− p1
q

∣∣∣∣ = y(1)
√
c

bz(1)z(2)

∣∣∣z(2)√b− y(2)
√
c
∣∣∣ < (c− b)

√
c y(1)

2b
√
b z(1)z

2
(2)

<
c3/2

2b3/2
z−2
(2) ,

∣∣∣∣
√
1 +

a2
N

− p2
q

∣∣∣∣ = x(1)

√
c

az(1)z(2)

∣∣z(2)√a− x(2)

√
c
∣∣ < (c− a)

√
c x(1)

2a
√
a z(1)z

2
(2)

<
c3/2

2a3/2
z−2
(2) .

�

Proposition 8.4. Suppose that {a, b, c, di} for i ∈ {1, 2} are Diophantine quadru-
ples with a < b < c < d1 < d2 and x(i), y(i), z(i) are positive integers such that

adi+1 = x2
(i), bdi+1 = y2(i), cdi+1 = z2(i) for i ∈ {1, 2}. Denote by z(i) = vmi

= wni

the corresponding sequences to z(i) for i ∈ {1, 2}.
(1) If n1 ≥ 8, then

n2 <
(n1 + 1.1)(3.5001n1 + 4.2502)

0.4999n1 − 3.7501
− 1.1 < 148n1.

(2) If n1 = 7 with z1 = s, then n2 ≤ 462(≤ 66n1).

Proof. Taking N = abz2(1), p1 = acy(1)y(2), p2 = bcx(1)x(2), q = abz(1)z(2), we see

from Theorem 8.1 and Lemma 8.3 that

z2−λ
(2) <

c3/2

2a3/2
aλbλzλ(1) · 32.01b3c2z2(1) < 16.005aλ−3/2bλ+3c7/2zλ+2

(1) .(8.1)

(1) From 0.5655b−1/4c3/4 < w1 < 1.4144b1/4c5/4 we know that

0.5655 · 1.99975n1−1bn1/2−3/4cn1/2+1/4 < wn1

< 1.4144 · 2.0001n1−1bn1/2−1/4cn1/2+3/4.

Since z(1) = wn1
,

16a′1a2uN

a1
< 16b3c2z2(1) < 32.01 · 2.00012n1−2bn1+5/2cn1+7/2 < (4.001bc)n1+3.5,

and

1.6874N2

a1a2(a2 − a1)uvw
=

1.6874abz4(1)

c(b− a)2(c− b)2(c− a)2

> 0.172 · 1.999754n1−4b2n1−4c2n1−4 > (3.999bc)2n1−4,

we have

λ < 1 +
(n1 + 3.5) log(4.001bc)

(2n1 − 4) log(3.999bc)
< 1 +

0.5001n1 + 1.7501

n1 − 2
.

It follows from (8.1) that

z0.4999n1−3.7501
(2) < 16.005n1−2a4.7501−0.9999n1b5.0001n1−6.2499c3.5n1−7z3.5001n1−4.2499

(1) .

The lower estimate z(1) = wn1
> 1.99975n1−1.82255(bc)0.5n1−0.25 shows that

16.005n1−2b5.0001n1−6.2499c3.5n1−7 < 16.005n1−2(bc)4.25005n1−6 < z8.5001(1) .

Hence, we obtain

z(2) < zσ(1) with σ =
3.5001n1 + 4.2502

0.4999n1 − 3.7501
.(8.2)
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Note that n1 ≥ 8 implies σ > 1. If n2 ≥ n1σ + 1.1(σ − 1), then

z(2)

zσ(1)
≥
(

2
√
b

y1
√
c+ z1

√
b

)σ−1

(t+
√
bc)n2−n1σ

1−A(t+
√
bc)−2n1σ

(1−A(t+
√
bc)−2n1)σ

,

where A = (y1
√
c − z1

√
b)/(y1

√
c + z1

√
b). Since by Theorem 1.5 and Lemma 2.2

we have(
2
√
b

y1
√
c+ z1

√
b

)σ−1

(t+
√
bc)n2−n1σ

>

(
1

0.7072 · 18.7571/5

)σ−1

· 2n2−n1σ(bc)(n2−n1σ)/2−11(σ−1)/20

≥
(

21.1

0.7072 · 18.7571/5

)σ−1

> 1,

we see that
z(2)

zσ(1)
>

1−A(t+
√
bc)−2n1σ

(1−A(t+
√
bc)−2n1)σ

> 1,

where the last inequality follows from

1−AXσ > (1−AX)σ,

which holds for 0 < X < 1/(A + 1). Therefore, the desired inequality is derived
from (8.2).

(2) Since

w7 = (64b3c3 + 80b2c2 + 24bc+ 1)(cr + st) + 2(16b2c2 + 16bc+ 3)cr

we have

128a1/2b7/2c4 < w7 < 128.02a1/2b7/2c4.

Hence, if z(1) = w7, then

16a′1a2uN

a1
< 2.6223 · 105ab10c10,

1.6874N2

a1a2(a2 − a1)uvw
> 4.5295 · 108a3b13c11,

and

λ < 1 +
log(2.6223 · 105ab10c10)
log(4.5295 · 108a3b13c11) <

21

11
.

It follows from (8.1) that

z(2) < 7.2404 · 10103a26b409/2c421/2,

which together with z(2) = wn2
> 0.5655 · 1.99975n2−1bn2/2−3/4cn2/2+1/4 yields

1.99975n2bn2/2cn2/2 < 2.5604 · 10104b883/4c883/4.

Therefore we obtain n2 < 925/2, that is, n2 ≤ 462(≤ 66n1). �
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9. Linear form in two logarithms

In this section, we consider the following linear form in two logarithms:

Γ = Λ2 − Λ1 = j log ξ − k log η,

where j, k are positive integers given by

j = m2 −m1, k = n2 − n1.

Note that Γ is non-zero as ξ, η are multiplicatively independent. Since, by Lemma
6.1, both linear forms Λ1, Λ2 are in the range (0, κ ξ−2m1), we have

(9.1) 0 < |Γ | < κ ξ−2m1 .

In order to obtain a lower bound for |Γ |, we use the following result due to
Laurent.

Proposition 9.1 ([29, Theorem 2]). Let γ1 and γ2 be multiplicatively independent
algebraic numbers with |γ1| ≥ 1 and |γ2| ≥ 1. Let b1 and b2 be positive integers.
Consider the linear form in two logarithms:

Γ = b2 log γ2 − b1 log γ1,

where log γ1, log γ2 are any determinations of the logarithms of γ1, γ2 respectively.
Let ρ and μ be real numbers with ρ > 1 and 1/3 ≤ μ ≤ 1. Set

σ =
1 + 2μ− μ2

2
, λ = σ log ρ.

Let a1, a2 be real numbers such that

ai ≥ max{ 1, ρ | log γi| − log |γi|+ 2D h(γi) } (i = 1, 2),

a1a2 ≥ λ2,

where

D = [Q(γ1, γ2) : Q] / [R(γ1, γ2) : R] .

Let h be a real number such that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
+ log ρ.

Put

H =
h

λ
, ω = 2 + 2

√
1 +

1

4H2
, θ =

√
1 +

1

4H2
+

1

2H
.

Then we have

log |Γ | ≥ −Ca1a2h
2 −

√
ωθh− log

(
C ′a1a2h

2
)

with C = C0μ/(λ
3σ) and C ′ =

√
C0ωθ/λ6, where

C0 =

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

.

Proposition 9.2. If z = vmi
= wni

(i ∈ {1, 2}) has a solution with m1 < m2, then

2m1

log η
<

Cμ(ρ+ 3)2

λ3σ
h2 +

4
√
ωθh+ 8 log h+ 4 log

(√
Cωθλ−3(ρ+ 3)2

)
log2 16000

+ 1,
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where ρ = 7.9, μ = 0.62,

h = 4 log

(
2j

log η
+ 1

)
+ 4 log

(
λ

ρ+ 3

)
+ 7.06 + log ρ,

C =

⎛
⎝ω

6
+

1

2

√
ω2

9
+

16λω5/4θ1/4

3(ρ+ 3)H1/2 log(16000)
+

16λω

3(ρ+ 3)H log(16000)

⎞
⎠

2

and σ, λ, H, ω, θ are as in Proposition 9.1.

Proof. We apply Proposition 9.1 with

(γ1, γ2) = (η, ξ), (b1, b2) = (k, j).

Set ρ = 7.9 and μ = 0.62. Since Γ is small and D = 4, we may take

a1 = (ρ+ 3) log η, a2 = (ρ+ 3) log ξ,

and

h = 4 log

(
2j

log η
+ 1

)
+ 4 log

(
λ

ρ+ 3

)
+ 7.06 + log ρ.

We easily check that all the inequality assumptions on a1, a2, h hold. Since a1 >
a2 > (ρ+ 3) log(2

√
ac), it follows from Proposition 9.1 that

log |Γ | > − Cμ
λ3σ

(ρ+ 3)2(log ξ)(log η)h2 −
√
ωθh

− log
(√

Cωθλ−3(ρ+ 3)2(log ξ)(log η)h2
)
.

Now the desired inequality can be deduced from this inequality with (9.1). �

10. Proof of Theorem 1.4

Lemma 10.1. Suppose that {a, b, c, d} is a Diophantine quadruple with a < b <
c < d+ < d. Assume that z = vm = wn has a solution with z1 ∈ {s, st− cr}. Then,
m ≥ 7 and n ≥ 7.

Proof. By Lemma 2.5 we have min{m,n} ≥ 4. Note that

vα1
= (16a2c2 + 12ac+ 1)(cr + st) + 4(2ac+ 1)cr(10.1)

for (α1, z0) ∈ {(5, t), (6, st − cr)}. It is easy to see that vα1
> wβ1

for (β1, z1) ∈
{(3, s), (4, st− cr)}, where

wβ1
= (4bc+ 1)(cr + st) + 2cr.

We know from the proof of [22, Lemma 13] that v4 �= w4. Equalities (10.1) and

wβ2
= (16b2c2 + 12bc+ 1)(cr + st) + 4(2bc+ 1)cr

for (β2, z1) ∈ {(5, s), (6, st − cr)} immediately imply that vα1
< wβ2

. Thus, we
obtain m ≥ 7. It is also easy to check from

vα3
= (256a4c4 + 448a3c3 + 240a2c2 + 40ac+ 1)(cr + st)

+ 8(16a3c3 + 24a2c2 + 10ac+ 1)cr

that vα3
> wβ2

for (α3, z0) ∈ {(9, t), (10, st − cr)}. Hence, we only have to prove
that vα2

�= wβ2
for (α2, z0) ∈ {(7, t), (8, st− cr)}, where

vα2
= (64a3c3 + 80a2c2 + 24ac+ 1)(cr + st) + 2(16a2c2 + 16ac+ 3)cr.
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Suppose on the contrary that vα2
= wβ2

. Then, it is clear that b > 2a. Since we
know by Proposition 7.2(2) that c > a + b + 2r, we see from [28, Lemma 4] that
c > 4ab+ b > 20000, which implies that vα2

< 64.01a3c3(cr + st) + 5cr + st, while
wβ2

> 16b2c2(cr + st) + 5cr + st. Hence we obtain

4.001a3c > b2.(10.2)

Considering vα2
≡ wβ2

(mod 4c2) we have 6(b − 2a)st ≡ r (mod 2c); in other
words,

6(b− 2a) ≡ r(st− cr) (mod c).(10.3)

If 6(b − 2a) ≥ c, then c > 4ab shows that (3 − 2a)b > 6a; that is, a = 1, which is
incompatible with (10.2), c ≤ 6b− 12a, and b > 4000. Hence 6(b− 2a) < c. Since

|2r(st− cr)| = 2r(cr − st) <
2rc2

2st
< 2c,

we obtain from (10.3) the equality 6(b − 2a) = c − r(cr − st), where the right-

hand side is at least c − cr/(2
√
ab) > 0.499c. It follows from c > 4ab that a ≤ 3.

Moreover, inequality (10.2) shows that

b <
4.001 · 6a3

0.499
< 1400,

which contradicts b > 4000. This proves vα2
�= wβ2

. �

Proof of Theorem 1.4. As mentioned just before Proposition 7.2, it suffices to show
the second assertion, in other words, N(z0, z1) ≤ 1 for z0 ∈ {t, st − cr}. Suppose
on the contrary that N(z0, z1) ≥ 2 for z0 ∈ {t, st − cr}. We observe that this will
lead to a contradiction. Now, as observed in Section 5, we have three solutions of
equation (5.2), say (mi, ni) (i ∈ {0, 1, 2}), satisfying m0 < m1 < m2, m1 ≥ 7, and
n1 ≥ 7 (by Lemma 10.1), where m0 = 1 or 2 for z0 = t or st− cr, respectively.

Since Δ ≥ 4 by mi ≡ mj (mod 2) and ni ≡ nj (mod 2) for i, j ∈ {0, 1, 2},
Lemmas 6.1 and 7.1 together show that

j

log η
> 7.99a2bc · 4 > 5.2 · 108,(10.4)

where j = m2 −m1. On the other hand, from Proposition 8.4 and Lemma 10.1 we
see that

m2 ≤ 2n2 + 1 ≤ 296n1 − 1 ≤ 296m1 + 295 ≤ 338.2m1,

and so

j = m2 −m1 < 338m1.

It follows from Proposition 9.2 that

j

169logη
<

Cμ(ρ+ 3)2

λ3σ
h2 +

4
√
ωθh+ 8 log h+ 4 log

(√
Cωθλ−3(ρ+ 3)2

)
log2 16000

+ 1.

Therefore we obtain j/ log η < 1.8 · 107, which contradicts (10.4). This completes
the proof of Theorem 1.4. �
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11. Concluding remarks

One of the most possible ways of improving Theorem 1.2 is to show that
N(z0, z1) ≤ 1 for (z0, z1) = (−t,−s), (cr − st,−s), or (cr − st, cr − st), where
d = d− is attained when (m,n) = (1, 1), (0, 1), or (0, 0), respectively. In the latter
two cases, it is hard even to bound b or c from above, since as good an estimate for
the linear form Λ as the one in Lemma 6.1 cannot be obtained because of m = 0.
In case (z0, z1) = (−t,−s), we know m2 ≤ 3n2/2 + 1/2 by a version of Lemma 2.4,
which together with Proposition 8.4 and Lemma 10.1 implies that m2 ≤ 222m1

and j = m2 −m1 ≤ 221m1. Applying Proposition 9.2 yields j/ log η < 1.11 · 107,
whereas Lemmas 6.1 and 7.1 together imply j/ log η > 4ac ·4/(8.1ab) > 7.9ab (note
that one may take κ = 8.1ab in Lemma 6.1). Therefore we obtain ab < 1.41 · 106,
a ≤ 352, and c < 5.62 · 106b. The remaining ranges for a, b, c are so large that we
could not complete the reduction method ([17, Lemma 5a)]) based on [2, Lemma]
by Baker and Davenport.

We may have a similar possibility to show thatN(z0, z1) ≤ 1 for z0 = z1 = ±1. In
the specific triple {a, b, c} with c = a+b+2r, we in fact showed that N(−1,−1) ≤ 1
in Theorem 1.4 (note that st − cr = −1 in this case). Since the initial terms of
sequences attached to the largest element in a Diophantine quintuple are 1 or −1,
the estimate N(z0, z1) ≤ 1 for z0 = z1 = ±1 would improve the current bound for
the number of Diophantine quintuples.

Although Theorem 1.2 may bring us a little closer to settling Conjecture 1.1,
there is still a longer way to do it than to give a solution to the folklore conjecture
asserting that there exists no Diophantine quintuple, in view of the present state
that it has not even been known that there exist only finitely many irregular Dio-
phantine quadruples. The difficulty in proving the finiteness is that the congruence
vm ≡ wn (mod 4c2), used in Lemmas 3.1 and 4.1, does not work well when b and
c are very close to each other to get lower bounds for solutions. Even if we restrict
only to a regular Diophantine triple {a, b, c}, an absolute upper bound for d such
that {a, b, c, d} forms an irregular Diophantine quadruple has not been found yet.
In such cases, it seems we have to search for a strategy other than the congruence
to bound solutions from below.
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