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EXTREME POSITIVE TERNARY SEXTICS

AARON KUNERT AND CLAUS SCHEIDERER

Abstract. We study nonnegative (psd) real sextic forms q(x0, x1, x2) that
are not sums of squares (sos). Such a form has at most ten real zeros. We give
a complete and explicit characterization of all sets S ⊆ P2(R) with |S| = 9 for
which there is a psd non-sos sextic vanishing in S. Roughly, on every plane
cubic X with only real nodes there is a certain natural divisor class τX of
degree 9, and S is the real zero set of some psd non-sos sextic if and only if
there is a unique cubic X through S and S represents the class τX on X. If
this is the case, there is a unique extreme ray R+qS of psd non-sos sextics
through S, and we show how to find qS explicitly. The sextic qS has a tenth
real zero which for generic S does not lie in S, but which may degenerate into
a higher singularity contained in S. We also show that for any eight points in
P2(R) in general position there exists a psd sextic that is not a sum of squares
and vanishes in the given points.

Introduction

In a famous and influential paper, Hilbert [6] proved in 1888 that a polynomial
with real coefficients that takes only nonnegative values can usually not be written
as a sum of squares of real polynomials. More precisely, there exist nonnegative
ternary forms of any even degree ≥ 6 that are not sums of squares. For forms in four
or more variables, the same is true for even degrees ≥ 4. Hilbert could well have
used his own arguments to construct concrete examples of such forms. However,
he didn’t do so, and it took almost 80 more years before first explicit examples
appeared in print.

It has become common use to say that a real form is psd (positive semidefinite)
if it has nonnegative values and that it is sos (sum of squares) if it is a sum of
squares of forms. The first examples of psd forms that are not sos were found in
the 1960s by Motzkin, Ellison, and Robinson, and have been verified in ad hoc ways.
In the 1970s, Choi, Lam, and later Reznick started to explore the phenomenon in
more systematic ways. In particular, they studied extreme psd forms, which are
psd forms that are not squares and cannot be written as a sum of psd forms in a
nontrivial way. (Closely related is the study of the possible real zero sets of psd
non-sos forms.) On the other hand they constructed a variety of new examples.
See Reznick’s paper [9] for a detailed account with precise references of work done
up until around the year 2000. In [10], Reznick formalized the arguments from
Hilbert’s proof, thereby showing in the case of ternary sextics that whenever two
plane cubics intersect in nine different R-points, there exists a psd non-sos sextic
through any eight of them.
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In this paper we focus entirely on ternary sextics. A psd sextic that is not
sos has at most ten real zeros. Our main contribution is a complete and explicit
characterization of all sets of nine points in P2(R) on which some psd non-sos sextic
vanishes. To describe the result let X be a reduced plane cubic, and let S be a
set of 9 nonsingular R-points on X. We say that S is admissible if the class of the
Weil divisor

∑
P∈S P on X is a nontrivial half of [OX(6)] and if this class satisfies

a certain definiteness condition (2.9). For every admissible S there exists a psd
non-sos sextic that vanishes in S. In fact, up to positive scaling there is a unique
such sextic, denoted qS , that is extreme. Conversely, for every psd non-sos sextic
with a set S of nine real zeros, there is a unique cubic X through S, and S is
admissible in the sense before (4.7).

As for the cubics that arise in this construction, we show that a cubic X contains
an admissible set if and only if X has at most real nodes (with real tangents) as
singularities. Moreover, the divisor class in question is unique in this case (2.8).

Our characterization is explicit enough to make it easy, for any given set S,
to check effectively whether S is admissible, and in the positive case, to write
down concretely a psd non-sos sextic through S, or even the extreme sextic qS .
In this way we obtain an explicit parametrization of the extreme psd sextics with
at least nine real zeros. Note that these sextics are dense inside the set of all
extreme psd sextics. Since generically an extreme psd sextic has ten real zeros, our
parametrization happens in a 10:1 fashion. Recently, Blekherman et al. showed [1]
that the extreme psd sextics form a Zariski dense subset of the Severi variety of
all rational sextics. In particular, they form a family of (projective) dimension 17.
Our approach gives a new and very clear approach to these facts. We apply our
result to prove that any 8 points of the plane are the real zero set of a psd non-sos
sextic, unless 4 of them are on a line or 7 are on a conic (4.13). Before, this was
known only under additional assumptions.

The paper is organized as follows. In Section 2 we discuss Picard groups of real
(possibly singular) curves. We define definite 2-torsion classes in the Picard group
and determine these classes in the case of plane cubics. In Section 3 we show that
every set of nine real zeros of a psd non-sos sextic is admissible. The converse is
proved in Section 4, where we also state a number of complements to the main
result. Section 5 contains a series of examples illustrating various aspects of our
construction.

1. Preliminaries and notation

We work with ternary forms only. Let d ≥ 0. By P2d (resp., Σ2d) we denote
the set of all psd (positive semidefinite) forms f ∈ R[x0, x1, x2] with deg(f) = 2d
(resp., its subset of all sos forms, i.e., forms that can be written as a finite sum of
squares of forms). It is well known that Σ2d ⊆ P2d are closed convex cones and
that the inclusion is proper if and only if 2d ≥ 6.

If C is any convex cone with C ∩ (−C) = {0}, the extreme rays of C are the
one-dimensional faces of C. In the case of the psd cone P2d we reserve the term for
forms that are not sums of squares. Thus, we will say that a psd form q ∈ P2d is
extreme if q /∈ Σ2d, and if q = q1 + q2 with q1, q2 ∈ P2d implies q1, q2 ∈ R+q.

All varieties X (usually curves) are defined over R and are considered as R-
schemes. As usual, Xsing, resp., Xreg, denotes the singular, resp., the nonsingular,
locus of X, and X(R) (resp., X(C)) is the set of R-rational (resp., C-rational)
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points of X. For a form f ∈ R[x0, x1, x2], V (f) is the curve f = 0 in P2, and VR(f)
denotes the set of its real points. When f, g ∈ R[x0, x1, x2] are forms without
common irreducible component and P ∈ P2(R), the local intersection number of f
and g at P is written iP (f, g).

Let X be a curve over R. A scheme point x ∈ X is called a node (resp., an
acnode) of X if x has residue field R and has multiplicity 2 with two different
tangent directions, where the tangents are real, resp., complex conjugate. Thus x

is a node iff ÔX,x
∼= R[[u, v]]/(uv) and is an acnode iff ÔX,x

∼= R[[u, v]]/(u2 + v2).
The real curve X(R) has two branches intersecting transversally at x when x is a
node and has an isolated point at x when x is an acnode.

For S ⊆ P2(R) a finite set, we denote by Id(mS) the space of degree d forms in
R[x0, x1, x2] that have multiplicity ≥ m at every point P ∈ S.

2. Picard groups of real curves

We need to work with groups of divisor classes not only on nonsingular (plane)
curves, but also on singular and even reducible curves. Therefore we need to discuss
Picard groups in this generality.

2.1. Let X be a reduced projective curve over R, always considered as a scheme over
R. We allow X to be reducible. By XC we denote the base field extension XC =
X×Spec(R)Spec(C). The ring of rational functions onX is R(X) = H0(X,KX), and

similarly C(X) = H0(XC,KXC
). The group of Cartier divisors on X is Div(X) =

H0(X,K∗
X/O∗

X) and the linear equivalence of divisors on X is denoted by ∼. The
Picard group Pic(X) is (isomorphic to) the group of divisors on X modulo linear
equivalence, i.e., the natural sequence

1 → O(X)∗ → R(X)∗ → Div(X) → Pic(X) → 0

is exact.
For U ⊆ X open there is a natural map Div(U) → Div(X), the extension by

zero. If U is dense in X, then this map is surjective up to linear equivalence. In
particular, this applies to U = Xreg, the nonsingular locus of X. Since Cartier
divisors on Xreg can be identified with Weil divisors (zero cycles) on Xreg, we will
often tacitly represent divisor classes on X by Weil divisors on Xreg.

2.2. Assume from now on that X is geometrically connected and that the set X(R)
of R-rational points is Zariski dense in X. The Galois group G = Gal(C/R) acts on

Pic(XC), and the Hochschild–Serre sequence Hi(G, Hj
ét(XC,Gm)) ⇒ Hi+j

ét (X,Gm)
implies that the natural map Pic(X) → Pic(XC)

G is an isomorphism.
Let X1, . . . , Xm be the irreducible components of X, and let J be the generalized

Jacobian of X. Then J is a connected algebraic group over R, and we have the
exact sequence

0 → J(C) → Pic(XC) → Zm → 0,

where the last map is given by the partial degrees [2]. The Galois action on this
sequence gives the exact sequence

0 → J(R) → Pic(X) → Zm → 0
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(the last map is surjective since every component Xi contains a nonsingular R-point
of X) and the isomorphism

H1(R, J)
∼→ H1(G, Pic(XC))

(writing H1(R, J) := H1(G, J(C)) as usual).

Given an abelian group M , we denote by nM = ker(M
n−→ M) the n-torsion

subgroup of M , for n ∈ N. For any G-module M there is a natural map 2M
G →

H1(G,M). We consider the following map for M = Pic(XC).

Proposition 2.3. The natural map 2 Pic(X) → H1(G, Pic(XC)) is surjective.

Proof. The map 2J(R) → H1(R, J) is surjective; see [13, proof of Lemma 2.3(b)].
So the assertion follows from the commutative diagram

2J(R) ��

��

H1(R, J)

��
2 Pic(X) �� H1(G, Pic(XC))

in which the right hand vertical arrow is surjective; see above. �
2.4. Let C(X) denote the set of connected components of X(R), and let the finite
abelian group AX be defined by the exact sequence

1 → {±1} → {±1}C(X) → AX → 1,

where the first map is the diagonal embedding. We define a homomorphism

ψ : H1(G, Pic(XC)) → AX

as follows (cf. [13, 2.2]). Given a Weil divisorD onXC with nonsingular support and
with D+D ∼ 0, there is a rational function g ∈ C(X)∗ with div(g) = D+D, and g
can be chosen to lie in R(X)∗. Therefore g has even order in every point of Xreg(R)

and is invertible around Xsing(R). So there exists a sign tuple ε ∈ {±1}C(X) such
that ε(ξ)g(ξ) ≥ 0 for every ξ ∈ X(R), where g is defined. Since g depends on D
only up to a factor in O(X)∗ = R∗, this gives a well-defined element of AX , which
does not change if D gets replaced by an equivalent Weil divisor on (XC)reg. So
the map ψ that sends the class of D to ±ε ∈ AX is a well-defined homomorphism.

Proposition 2.5. The map ψ : H1(G, Pic(XC)) → AX is surjective.

Proof. Let a sign distribution ε ∈ {±1}C(X) be given. ByWeierstraß approximation
there exists a rational function f ∈ R(X)∗ without real zeros or poles that is
invertible around every singular point of X and such that ε(ξ)f(ξ) ≥ 0 holds for
every ξ ∈ X(R). The divisor div(f) of f on XC is a G-invariant Weil divisor
on (XC)reg without real points. Hence it can be written div(f) = D + D with
D ∈ Div(XC). The class defined by D in H1(G, Pic(XC)) maps to ±ε under ψ. �

When X is nonsingular, the map ψ in Proposition 2.5 is even bijective, see
[13, Remark 2.2].

Corollary 2.6. The map σ : 2 Pic(X) → AX which is the composite of the map in
Proposition 2.3 and of ψ (see section 2.4) is surjective. �
Definition 2.7. A 2-torsion class τ ∈ 2 Pic(X) will be called definite if it lies in
the kernel of the natural map σ : 2 Pic(X) → AX (see Corollary 2.6).
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So if D is a Weil divisor on X with nonsingular support and with 2D ∼ 0,
the class [D] is definite if and only if there exists a rational function g ∈ R(X)∗,
invertible around Xsing, with div(g) = 2D and with g ≥ 0 on X(R) (where g is
defined).

For plane cubics we determine the definite 2-torsion classes explicitly.

Proposition 2.8. Let X be a reduced plane cubic curve with X(R) Zariski dense
in X. If every singularity of X is a node, there exists a unique nonzero class in

2 Pic(X) that is definite. Otherwise the only definite class in 2 Pic(X) is zero.

Proof. When X is nonsingular, the assertion says | ker(σ)| = 2 and it is a particular
case of [13, Lemma 2.3(c)]. (The map σ considered here is identified with the map

φ̄ studied in loc. cit., via the natural isomorphism H1(R, J)
∼→ AX observed in

[13, Remark 2.2].)
For singular X the claim is proved by computing the group J(R) = Pic0(X) and

using Corollary 2.6. In more detail (compare [2, 9.2] for computation of the Picard
groups) we have the following.

When X is irreducible, Pic0(X) = J(R) is isomorphic to R, R∗, or C∗/R∗,
depending on whether X has a cusp, a node, or an acnode, respectively. Note that
|AX | = 1 in the first two cases and |AX | = 2 in the third. When X is the union of
a conic Q and a line L, we have Pic0(X) ∼= R∗, R, or C∗/R∗, depending on whether
|Q(R) ∩ L(R)| = 2, 1, or 0. Again we have |AX | = 1 in the first two cases and
|AX | = 2 in the last. When X is the union of three lines, Pic0(X) ∼= R or R∗,
according to whether the lines meet in a common point or not, and |AX | = 1 in
either case. Since σ is surjective by Corollary 2.6, this implies the assertion in each
case. �

Notation 2.9. Let X be a reduced plane cubic with X(R) Zariski dense in X whose
only singularities are nodes, and let τ be the unique definite nonzero 2-torsion class
in Pic(X) (see Proposition 2.8). We write

τX := τ + [OX(3)] ∈ Pic(X).

3. Nine real zeros

Let S ⊆ P2(R) be any set of nine points. There is at least one cubic X passing
through S, i.e., dim I3(S) ≥ 1. If there exists a psd and non-sos sextic through S,
we show in this section that X is unique and that S gives rise to the divisor class
τX on X (see Notation 2.9). In the next section we will prove the converse.

3.1. For T ⊆ P2(R) a finite set, recall that Id(mT ) ⊆ R[x0, x1, x2] is the space of
forms of degree d that have multiplicity ≥ m at every point of T . The psd forms
of degree 2d that vanish in T form a face of the cone P2d denoted

P2d(T ) = {p ∈ P2d : p|T = 0},

and we put Σ2d(T ) = Σ2d ∩ P2d(T ). The forms in Σ2d(T ) are the sums of squares
of forms in Id(T ).

The following facts are certainly well known and are recorded for reference.
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Proposition 3.2. Let T ⊆ P2(R) be any set of 8 points, no 4 on a line and no 7
on a conic.

(a) dim I3(T ) = 2, and almost every cubic in I3(T ) is nonsingular.
(b) dim I6(2T ) = 4 and dim I3(T )

2 = 3.
(c) Every psd sextic in I3(T )

2 is a sum of two squares of cubics. In particular,
Σ6(T ) = I3(T )

2 ∩ P6(T ).

Here and in the sequel, I3(T )
2 denotes the space of sextic forms spanned by the

products f1f2 with f1, f2 ∈ I3(T ).

Proof. (a) is classical; see, e.g., [5, V.4.4]. (b) Let I3(T ) = span(f, f ′) with f
nonsingular. Then I3(T )

2 = span(f2, ff ′, f ′2) has dimension 3 since f, f ′ are
algebraically independent. Being singular in the points of T imposes 8 · 3 = 24
linear conditions on a sextic, showing dim I6(2T ) ≥ 4. For the reverse inequality
consider the divisor D =

∑
P∈T P on X = V (f), and let M ∈ X(R) be the point

with divX(f ′) = D + M . If g ∈ I6(2T ) is prime to f and satisfies divX(g) ≥
2D + M , then divX(g) = 2(D + M), implying that g ∈ I3(T )

2. This shows that
I3(T )

2 has codimension ≤ 1 in I6(2T ). (c) Let g ∈ I3(T )
2 be a psd sextic form.

Then g = q(f, f ′) is a quadratic form in f and f ′, and the binary quadratic form
q(t0, t1) is necessarily positive definite, as can be seen locally around any transversal
intersection point of f and f ′. Hence q is a sum of two squares from I3(S). �

3.3. Let g ∈ R[x0, x1, x2] = R[x] be a form of degree 6 that is psd. If g is reducible
over R, then g is sos, since every ternary psd form of degree ≤ 4 is sos (Hilbert [6]).
Moreover |VR(g)| ≤ 5 or |VR(g)| = ∞ in this case. Now assume that g is irreducible
over R. Since every real zero of g is a singular point of the curve V (g), there can
be at most 10 real zeros (and at most 9 when g is reducible over C). We assume
that g has at least 9 real zeros, and we fix a set S ⊆ VR(g) with |S| = 9.

Lemma 3.4. Let g ∈ R[x] be a psd sextic form with |VR(g)| < ∞, and let S ⊆ VR(g)
with |S| = 9. Any cubic through S is reduced with Zariski dense R-points and is
nonsingular in the points of S. Moreover:

(a) if dim I3(S) = 2, then g is a sum of two squares of cubic forms, hence
reducible over C,

(b) otherwise dim I3(S) = 1, and g is absolutely irreducible and not a sum of
squares in R[x].

Proof. g is irreducible, so S contains no 4 points on a line and no 7 points on a
conic. By Proposition 3.2(a) we have dim I3(S) ∈ {1, 2}.

Let X = V (f) be a cubic through S. It is clear that X is reduced and X(R)
is Zariski dense in X. Moreover S cannot contain a singular point of X, since
otherwise the intersection product of X and Y = V (g) would satisfy X .Y > 2 ·9 =
18, contradicting the fact that Y is irreducible.

If dim I3(S) = 2 and I3(S) is spanned by f and f ′, then f, f ′ are relatively prime
and S is the set of their common zeros. It follows that g is a quadratic form in
f, f ′, and by Proposition 3.2(c), g is a sum of two squares from I3(S).

On the other hand, when X = V (f) is the unique cubic through S, the only sos
sextics vanishing in S are multiples of f2. So g is not a sum of squares in this case
and is therefore irreducible over C. �
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3.5. Assume now that the psd sextic g is not a sum of squares and has at least 9
real zeros. Fix a subset S ⊆ VR(g) with |S| = 9. By Lemma 3.4 there is a unique
cubic X = V (f) through S, and X is reduced with X(R) Zariski dense in X and
S ⊆ Xreg(R). However, X may be singular or even reducible. The Weil divisor
D =

∑
P∈S P on Xreg defines a class in Pic(X). Let L ∈ Div(X) be the divisor of

a line section of X.

Proposition 3.6. The divisor class [D−3L] in Pic(X) is a nonzero 2-torsion class
and is definite (see section 2.4).

So [D] = τX ; see Notation 2.9.

Proof. From divX(g) ∼ 6L and divX(g) = 2D it follows that 2(D− 3L) ∼ 0 on X.
AssumingD ∼ 3L there would exist a cubic form f ′, prime to f , with divX(f ′) = D,
contradicting I3(S) = Rf (3.4). Since 2(D − 3L) is the divisor of the psd rational
function g/l6 on X, it is clear that τ is definite; see Definition 2.7. �

For a convenient way of speaking we introduce the following terminology.

Definition 3.7. A set S ⊆ P2(R) will be said to be admissible if |S| = 9 and if
there exists a reduced plane cubic X with S ⊆ Xreg(R) for which

∑
P∈S [P ] = τX

in Pic(X).

We have therefore proved the following.

Corollary 3.8. Let g be a psd sextic that is not a sum of squares. Then any set
S ⊆ VR(g) with |S| = 9 is admissible. �

Next we discuss properties of admissible sets.

Proposition 3.9. Let S ⊆ P2(R) be an admissible set, let f �= 0 be a cubic form
vanishing on S, and let X = V (f).

(a) I3(S) = Rf , so X is uniquely determined by S.
(b) X is reduced, S ⊆ Xreg(R), and X(R) is Zariski dense in X.
(c) For every irreducible component X ′ of X we have |S ∩X ′(R)| = 3d′, where

d′ = deg(X ′).

In view of (a), we call X = V (f) the cubic associated to S.

Proof. Since S is admissible, there exists a reduced cubic as in Definition 3.7. In
view of (a), it suffices to prove (a)–(c) for this cubic. So we may assume that X =
V (f) is reduced with S ⊆ Xreg(R) and that [OX(3)]−

∑
P∈S [P ] is a 2-torsion class

in Pic(X). LetX ′ ⊆ X be an irreducible component, and letD′ =
∑

P∈S∩X′(R) P ∈
Div(X ′). Then 2[D′] = [OX′(6)] in Pic(X ′), which implies (c). In particular, every
irreducible component of X contains a nonsingular R-point. Hence X(R) is Zariski
dense in X. It remains to prove (a). Let h ∈ I3(S), and assume h /∈ Rf . Writing
g = gcd(f, h) and f = f ′g, h = h′g, the degree d′ := deg(f ′) = deg(h′) satisfies
d′ ≥ 1. Put X ′ = V (f ′) and S′ = S ∩ X ′(R). Each point of S lies on a single
irreducible component of X, therefore h′ vanishes on S′. Therefore by (c), h′ has
at least 3d′ different zeros on X ′. On the other hand the number of zeros of h′ on
X ′ is d′2 by Bézout’s theorem, since gcd(f ′, h′) = 1. It follows that d′ = 3, and
so gcd(f, h) = 1. Hence D = divX(h), which implies [D] = [OX(3)], contradicting
[D] = τX . So the assumption was false, proving (a). �
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Remark 3.10. Let X be the cubic associated to the admissible set S. According
to Proposition 2.8, there are four possibilities for X: Either X is nonsingular, or
else irreducible with a node, or else the union of a line and a conic intersecting
transversally in two R-points, or else a triangle (union of three lines without a
common point).

Remarks 3.11. The admissibility condition can be characterized in more elementary
geometric terms, as follows. Let X = V (f) be a plane cubic curve, and assume for
simplicity that X is irreducible.

1. Let S ⊆ Xreg(R) be a set with |S| = 9. Choose a point P ∈ S (it does not
matter which one), and let X ′ = V (f ′) be a cubic through S′ = S � {P}, different
from X. Let M be the 9th point of intersection of X and X ′, a nonsingular point of
X, and let tM , resp., tP , be the tangent of X at M , resp., P . Then S is admissible
if and only if M �= P , the tangents tM and tP meet in a point of X, and the product
tM tP is semidefinite on X(R).

Indeed, by Proposition 3.9(a), S is admissible if and only if X and S satisfy
the property in Definition 3.7. Consider the divisors D =

∑
Q∈S Q and D′ =

M +
∑

Q∈S′ Q on X, and let L = div(l) ∈ Div(X) be the divisor of a linear form l

with l � f . Then D′ ∼ 3L, so D − 3L �∼ 0 means M �= P . On the other hand,
2(D − 3L) ∼ 0 means 2M ∼ 2P on X, which says that tM and tP meet on X.
Assuming this condition, tP

tM
is a rational function on X whose divisor is 2(P −M).

So the rational function
f ′2

l6
· tP
tM

on X has divisor 2(D− 3L), proving the characterization of the definiteness condi-
tion claimed above.

2. Let X be an irreducible plane cubic and let T ⊆ Xreg(R) be a set with |T | = 8.
There can be at most one point Q ∈ X(R) for which the set T ∪ {Q} is admissible.
In fact, such a Q exists if and only if X is nonsingular or has a node, and if the
unique point Q ∈ Xreg(R) with [Q +

∑
P∈T P ] = τX satisfies Q /∈ T . In this case,

T ∪ {Q} is admissible.
The previous remark shows how to construct Q geometrically. Indeed, let M

be as before, and let N be the third intersection point of tM with X. When X
is nonsingular or has a node, there is a unique tangent t �= tM to X that passes
through N for which tM t is semidefinite on X(R). This tangent t touches X in Q.

4. Constructing nonnegative sextics with nine real zeros

In this section we prove the converse of Corollary 3.8. As before we work in the
projective plane P2 over R and write x = (x0, x1, x2).

We start with two technical lemmas.

Lemma 4.1. Let X = V (f) be a reduced plane cubic, and let T ⊆ Xreg(R) be a set
with |T | = 8 or 9. If |T | = 9, assume that I3(T ) = Rf . Let g be a sextic form with
gcd(f, g) = 1 such that iP (f, g) ≥ 2 for every P ∈ T . Then there exists a cubic
form p such that the sextic g + pf is singular in every point of T .

Proof. The sextic g shows that no 4 points of T are on a line and no 7 on a conic.
Therefore dim I3(T ) = 2 in the case |T | = 8 (3.2). Let fxi

:= ∂f/∂xi (i = 0, 1, 2)
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denote the partial derivatives. From the assumptions it follows that

rk

(
fx0

fx1
fx2

gx0
gx1

gx2

)
(P ) = 1

at every point P ∈ T . Hence there exists a unique section λ ∈ Γ(T,O(3)) such that
gxi

−λfxi
vanishes on T (i = 0, 1, 2). The natural map Γ(P2,O(3)) → Γ(T,O(3)) is

surjective since its kernel I3(T ) has dimension 10− |T |. Hence there exists a cubic
form p which restricts to λ on S. The sextic q − pf is singular in the points of
T . �

Lemma 4.2. Let X = V (f) be a plane curve of degree d, let g be a form of degree
2d, and let P ∈ Xreg(R). Suppose that g is singular at P and iP (f, g) = 2. If g ≥ 0
locally around P on X(R), there exists t > 0 such that g + tf2 ≥ 0 locally around
P in the plane.

Proof. Given the other assumptions, the condition iP (f, g) = 2 means that the
tangent of X = V (f) at P is not a tangent of the curve V (g) at P . Therefore, for
sufficiently large t > 0, g + tf2 has positive definite Hessian at P in local affine
coordinates, proving the lemma. �

In the following always let S ⊆ P2(R) be an admissible set (Definition 3.7)
and let X = V (f) be the cubic associated to S; see Proposition 3.9. Writing
D =

∑
P∈S P ∈ Div(X) we have [D] = τX .

Lemma 4.3. There exists a sextic form q with gcd(f, q) = 1 that is singular in the
points of S.

Proof. Since 2[D] = [OX(6)], there exists a sextic form g with gcd(f, q) = 1 such
that divX(q) = 2D. We can apply Lemma 4.1 since I3(S) = Rf holds by Proposi-
tion 3.9(a). This proves the lemma. �

Lemma 4.4. Let q be a sextic as in Lemma 4.3. There exists a real number t > 0
and a choice of sign ± such that tf2 ± q is psd (on P2(R)).

Proof. The sextic q has divX(q) = 2D. Let l be a linear form not dividing f , and
let L = div(l) ∈ Div(X). Since the class [D − 3L] = τX ∈ 2 Pic(X) is definite
by assumption, the rational function q/l6 on X is semidefinite on X(R). After
replacing q with −q if necessary, we can assume that q ≥ 0 on X(R). For any
point P ∈ S the local intersection number iP (f, q) = 2, so by Lemma 4.2 there
exists t > 0 such that tf2 + q is psd around P . Now the assertion follows from the
following Lemma 4.5, which is an easy compactness argument. �

Lemma 4.5. Let p, q ∈ R[x] be forms of the same even degree. Assume that p is
psd and that for every real zero P of p there is a real number t such that q + tp is
nonnegative in a neighborhood of P . Then there exists t ∈ R such that the form
q + tp is psd.

Proof. Since P2(R) is compact, there exist finitely many open sets Ui ⊆ P2(R) and
real numbers ti (i = 1, . . . , r) such that P2(R) is covered by the Ui and q + tip ≥ 0
on Ui for every i. It suffices to take t = max{t1, . . . , tr}. �

The next result completes and summarizes the discussion.
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Theorem 4.6. Let S ⊆ P2(R) be an admissible set with associated cubic X = V (f)
(see Proposition 3.9). The space I6(2S) of sextics singular in S has dimension 2.
The psd sextics vanishing in S form a 2-dimensional cone P6(S) in I6(2S), while
Σ6(S) = R+f

2 has dimension 1. There exists a unique (up to positive scaling)
sextic in P6(S)� Σ6(S) that is extreme in the psd cone.

Proof. By Lemma 4.4 there exists a psd sextic q with (f, q) = 1 that vanishes in
S. Such a q cannot be a sum of squares since q =

∑
i q

2
i implies qi ∈ I3(S) and

since I3(S) = Rf by Proposition 3.9(a). So it only remains to show that I6(2S) is
spanned by q and f2. The argument is slightly technical since X may be reducible.
Let 0 �= h ∈ I6(2S), let f1 = gcd(f, h), and write f = f1f2 and h = f1h2. Let
di = deg(fi) (i = 1, 2); then we have d1 + d2 = 3 and deg(h2) = 6 − d1 = 3 + d2.
Let X2 := V (f2) and S2 := S ∩ X2(R). Then |S2| = 3d2 by Proposition 3.9(c).
Since gcd(f2, h2) = 1, the form h2 has precisely (6− d1)d2 zeros on X2 by Bézout.
On the other hand, h2 has multiplicity ≥ 2 at each point of S2, and so h2 has at
least 2|S2| = 6d2 zeros on X2. It follows that d1 = 0 or d2 = 0. If d1 = 0, then
gcd(f, h) = 1, and we conclude divX(h) = 2D = divX(q), so h = cq + ff ′ (mod f)
with some c ∈ R∗ and some cubic form f ′. Necessarily f ′ ∈ I3(S), so h ∈ Rq+Rf2.
On the other hand, if d2 = 0, then h = ff ′ with some cubic form f ′, and again
using the argument just given we conclude h ∈ Rf2. �

Corollary 4.7. A set S ⊆ P2(R) with |S| = 9 is admissible if and only if there
exists a psd sextic vanishing in S that is not a sum of squares.

Proof. Follows from Corollary 3.8 and Theorem 4.6. �

Notation 4.8. Let S ⊆ P2(R) be an admissible set. We denote the unique (up to
scaling) extreme psd form in P6(S) by qS , bearing in mind the ambiguity by a
scalar factor.

Remark 4.9. In the situation of Theorem 4.6, fix any q ∈ I6(2S) with q /∈ Rf2.
Replacing q with −q if necessary we can assume q ≥ 0 on X(R). Then there exists
a minimal real number s for which the form qs := q+sf2 is psd, by Lemma 4.4 and
since the psd cone is closed. We have qs = qS , and the cone P6(S) is generated by
f2 and qS . The number s, resp., the extreme form qS , can be found numerically by
solving a semidefinite program, since qt is psd if and only if there exists a quadratic
form p �= 0 for which pqt is a sum of squares (Hilbert [7]). Other ways of finding
qS are discussed below (Remark 4.11, Corollary 4.19, and Remark 4.20).

Proposition 4.10. Let S be admissible with associated cubic X = V (f), and let
I6(2S) = span(f2, q) with q ≥ 0 on X(R). Write qt := q + tf2 for t ∈ R, and let
s ∈ R be the minimal number for which qs is psd (so qs = qS).

(a) For each point P ∈ S there exists a unique number t(P ) ∈ R for which P
is neither a node nor an acnode of the sextic qt(P ) = 0.

(b) s ≥ max{t(P ) : P ∈ S}.
(c) For a generic choice of S on X the inequality (b) is strict, and the extreme

psd sextic qS has a tenth real zero P with P /∈ X(R).
(d) The sextic qS = 0 is a (geometrically) rational curve.

Proof. (a) Let x, y be local affine coordinates centered at P such thatX = V (f) has
tangent x = 0 at P . Fix a linear form l with l(P ) �= 0 such that f/l3 = x+(higher
order terms) at P . Then q/l6 = ax2 + bxy + cy2 + (higher order terms) at P with
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suitable a, b, c ∈ R, and c > 0 since f and q have no common tangent at P and
q ≥ 0 on X(R). Therefore t(P ) is determined by the condition b2−4c(a+t(P )) = 0.
The singularity P of qt is a node for t < t(P ) and an acnode for t > t(P ). Therefore
qt is indefinite for t < t(P ), proving (a) and (b). Generically, P will be a cusp of
the sextic qt(P ), and thus qt(P ) will be indefinite, showing s > max{t(P ) : P ∈ S}.
Therefore qs = qS must have an additional tenth real zero in this case, proving (c).
In the nongeneric case |VR(qS)| = 9, one of the points P ∈ S is an A3-singularity
(with complex conjugate branches) of qS . In either case it is clear that qS is a
rational curve. �

Note that assertion (d) was already known from results in [1], see item 2 in
Remark 4.16 below.

Remark 4.11. Let S be an admissible set. We describe an effective algorithm to
(precisely) compute the extreme sextic qS , and possibly its 10th zero. Consider the
assumptions of Proposition 4.10. For almost all values of t ∈ C, the sextic qt has
a complex node at each point of S, and no other singularities. Let E be the finite
set of numbers t ∈ C for which qt has a higher singularity at some point of S or
a singularity outside S. The set E can be found explicitly via elimination theory,
e.g., using a computer algebra system. Clearly, E contains the numbers s and t(P )
from Proposition 4.10. In fact, it is easy to see that s is precisely the largest real
number in E. Indeed, this follows from Proposition 4.10(b), since for real t > s the
sextic qt is irreducible and cannot have an additional singularity P /∈ S (necessarily
P would have to be real).

Remark 4.12. “Hilbert’s method” for constructing psd non-sos sextics, as formalized
in [10], starts with a set T ⊆ P2(R) of 8 points such that the pencil I3(T ) has a
9th base point E /∈ T . Choose a basis f1, f2 of I3(T ) and a sextic g ∈ I6(2T ) with
g /∈ I3(T )

2, i.e., g(E) �= 0 (cf. Proposition 3.2). Then for large t > 0, the sextic
q = g + t(f2

1 + f2
2 ) is psd and not sos. Generically, q has a 9th real zero P , but

there is no control of P , and q is usually not extreme, not even when t is chosen
minimally.

We now consider collections of 8 points in the plane.

Theorem 4.13. Let T ⊆ P2(R) be any set with |T | = 8 and no 4 points on a line
no 7 on a conic. Then there exists a psd non-sos sextic that vanishes in T .

This extends results by Reznick. He used Hilbert’s construction to prove the
assertion when T is “copacetic” (meaning that the 9th base point of I3(T ) lies
outside T ), and derive from this the unconditional assertion for |T | = 7. See
[10, Corollaries 4.2 and 4.4]. Our proof doesn’t use these results.

Proof. Let I3(T ) be spanned by the nonsingular cubics f and f ′, and let E be their
9th intersection point (which may lie in T ). All divisors will be formed on the curve
X = V (f). Let Q ∈ X(R) be the unique point with [Q +

∑
P∈T P ] = τX . When

Q /∈ T then T ∪ {Q} is admissible; see item 2 in Remark 3.11. Hence, in this case,
there exists a psd non-sos sextic vanishing even in T ∪ {Q}.

So we assume Q ∈ T and write T ′ = T � {Q}. Note that Q �= E. Let D =∑
P∈T ′ P ∈ Div(X). We have div(f ′) = D + Q + E and [D + 2Q] = τX . There

exists a sextic form g, prime to f , with div(g) = 2(D + 2Q) = 2D + 4Q, and we
have g ≥ 0 on X(R) by the definiteness condition on τX . By Lemma 4.1 there
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exists a cubic form h such that g + fh is singular in every point of T . Replacing g
with g + fh we can assume g ∈ I6(2T ). The divisor div(g) shows that g /∈ I3(T )

2.
In particular, adding to g a form in I3(T )

2 cannot turn g into a sum of squares.
Since f and g have local intersection index 2 at every point of T ′ = T � {Q},

there exists c > 0 such that g′ := g+ cf2 is locally psd around every point of T ′, by
Lemma 4.2. For the form g′′ := g′ + f ′2, the intersection index with f at the point
Q drops to 2. Now we can apply Lemma 4.2 at the point Q, and then apply Lemma
4.5, to conclude that the sextic g′′ + tf2 is psd for sufficiently large t > 0. �
Corollary 4.14. Let T ⊆ P2(R) be any set with |T | = 8, having no 4 points on a
line and no 7 on a conic. The cone P6(T ) in I6(2T ) has full dimension four, while
Σ6(T ) = P6(T ) ∩ I3(T )

2 has dimension three. �
Proof. Follows from Theorem 4.13 and Proposition 3.2(c). �
Remark 4.15. For most sets T ⊆ P2(R) of 8 points (no 4 on a line and no 7 on a
conic) we have seen that there exists a non-sos psd sextic q that vanishes on T plus
an extra point outside T . It is clear that such a q exists if and only if T has the
following property: There exists a nonsingular cubic X through T for which the
(unique) point QX ∈ X(R) with [QX +

∑
P∈T P ] = τX satisfies QX /∈ T . We do

not know if there exists a set T for which this property fails.

Remarks 4.16.

1. The psd sextic g is said to be exposed if any g′ ∈ P6 with VR(g) ⊆ VR(g
′)

satisfies g′ ∈ R+g. Clearly such g spans an extreme ray of P6. The converse is not
true in general; however, Straszewicz’s theorem (e.g., [12, Theorem 18.6]) shows
that every extreme form is the limit of a sequence of exposed forms. It is easy
to see that a form g ∈ P6 � Σ6 is exposed if and only if |VR(g)| = 10. Indeed,
when |VR(g)| ≤ 9 there is a cubic p through VR(g), so p2 is another psd sextic
vanishing on VR(g). Conversely, if |VR(g)| = 10 and if g′ is another psd sextic
with VR(g) ⊆ VR(g

′), then g, g′ have intersection number ≥ 10 · 22 = 40, implying
g′ ∈ R+g since g is irreducible (see [10, Theorem 7.2] for this argument).

2. Since an absolutely irreducible plane sextic can have at most 10 singular points,
the preceding remark shows that any exposed and non-sos psd sextic defines a
rational curve. Therefore, and by Straszewicz’s theorem, every extreme form in P6�
Σ6 defines a rational sextic. This argument was used in [1] to show that the Zariski
closure in |OP2(6)| of the extreme curves in P6�Σ6 is contained in the Severi variety
S6,0 of plane rational sextics. In fact, the authors proved (loc. cit. Theorem 2)
that the Zariski closure is equal to S6,0 by observing that S6,0 is irreducible of
dimension 17 and by producing a 17-dimensional local family of extreme forms in
P3,6 � Σ3,6, based on an analysis from [10]. See also Remark 4.17 below.

3. Proposition 4.10 shows that for a generically chosen admissible set S, the
extreme sextic qS has a tenth real zero and is therefore exposed. Conversely, it
follows from Corollary 3.8 that every exposed sextic q is covered by the construction
in Theorem 4.6. Actually this happens in ten different ways, since there are ten
ways of choosing nine points out of ten.

Remark 4.17. Corollary 4.7 gives a very explicit argument for the fact that the set
of extreme forms in P3,6�Σ3,6 has (projective) dimension 17. Indeed, fixing a plane
cubic curve X with at most nodes as singularities, there is an 8-parameter family
of admissible subsets S of Xreg(R). Adding the 9 parameters for choosing X, this
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together shows that the admissible sets form a 17-dimensional family. The map
assigning to each admissible S the extreme psd sextic qS is an explicit parametriza-
tion of the extreme sextics in P6 � Σ6 with at least 9 real zeros. Generically, this
parametrization is a 10:1-map.

We finally discuss a geometric way to find the 10th zero of the extreme psd sextic
qS , for S ⊆ P2(R) admissible. The following construction is extracted from Coble’s
remarkable paper [4]. We work over C in the next proposition.

Proposition 4.18 (Coble). Let T ⊆ P2 be a set with |T | = 8, no 4 points on a
line, and no 7 on a conic. Choose cubic forms f, f ′ with I3(T ) = span(f, f ′) and a
sextic form g with I6(2T ) = span(f2, ff ′, f ′2, g) (cf. Proposition 3.2). Let M be
the 9th point of intersection of f and f ′, and let j = detJ(f, f ′, g), the Jacobian
determinant.

(a) The curve NT = V (j) has degree 9 and depends only on T .
(b) Every point of T is a triple point of NT .
(c) Assume that the cubic X = V (f) is nonsingular. Then for Q ∈ X, Q /∈

T ∪ {M} we have

dim I6(2T + 2Q) > 1 ⇔ 2Q ∼ 2M on X ⇔ Q ∈ NT .

Moreover M /∈ NT except when M ∈ T .

Note that for X = V (f) nonsingular, (c) gives 27 intersection points of X and
NT , at least in the generic case M /∈ T , namely the three points Q �= M with
2Q ∼ 2M , together with the eight points in T where the intersection index is 3.

Proof. (a) follows from elementary properties of Jacobians, and (b) is readily seen
in local coordinates. For (c) assume that X = V (f) is nonsingular, and let Q ∈ X,
Q /∈ T ∪ {M}. When h is a sextic that is singular in T ∪ {Q} and not a multiple
of f2, then gcd(f, h) = 1 and divX(h) = 2Q+ 2

∑
P∈T P = 2(Q−M) + divX(f ′),

hence 2Q ∼ 2M on X. On the other hand, 2Q ∼ 2M implies the existence of a
sextic h ∈ I6(2T ) with gcd(f, h) = 1 and iQ(f, h) ≥ 2, hence J(f, f ′, h) is singular
at Q. Conversely let j(Q) = 0. Since f ′(Q) �= 0, this means that iQ(f, g) ≥ 2, and
arguing as in Lemma 4.1 we find a cubic p such that g+ pf is singular in T ∪ {Q},
showing dim I6(2T + 2Q) > 1. When M /∈ T then f and f ′ meet transversally at
M , so j(M) �= 0. �
Corollary 4.19. Let S ⊆ P2(R) be an admissible set of nine points, let P ∈ S,
and put T = S � {P}. Then P lies on the nonic curve NT (Proposition 4.18).

Proof. There exists a sextic g ∈ I6(2T ) � I3(T )
2 that is singular in P ; for ex-

ample, the extreme psd sextic qS (Notation 4.8). Since NT has equation j =
detJ(f, f ′, g) = 0 where I3(T ) = span(f, f ′), it is clear that j(P ) = 0. �
Remark 4.20. Let S ⊆ P2(R) be an admissible set, and assume that the extreme psd
sextic qS has a 10th real zero Q /∈ S. (Generically this is the case; see Proposition
4.10.) Corollary 4.19 offers a way of finding Q (and therefore qS), at least up to a
finite choice. Indeed, Q lies on the intersection NS�{P} ∩NS�{P ′}, for any choice
of two points P �= P ′ in S. See Example 5.5 for an illustration.

Remark 4.21. One may wonder about a characterization of the 10-point real zero
sets of psd sextics, or in other words, of the real zero sets of exposed psd sextics.
Such a characterization has been asked for in [3]. Let U ⊆ P2(R) be a set with
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|U | = 10. If a psd sextic q with VR(q) = U exists, then every 9-point subset of U is
admissible. Conversely, assume that U � {P} is admissible for every point P ∈ U .
Does it follow that there exists a psd sextic q with VR(q) = U? This seems likely,
but we haven’t been able to prove it. At any rate, our results permit us to check,
for any given U , whether there is a psd sextic with zeros in U (and to find it in the
positive case): Pick P ∈ U , decide whether S = U � {P} is admissible, and if yes,
proceed to determine the extreme sextic qS . If there exists a psd sextic through U
it has to be qS , so a necessary and sufficient condition is that qS(P ) = 0.

Remark 4.22. Our results have applications to the truncated moment problem. See
Laurent’s survey [8] for general background. Work with inhomogeneous polynomials
in R[x1, x2], and let M6 be the cone of all linear functionals R[x1, x2]≤6 → R that
arise from integration by a measure μ on R2 whose moments of order ≤ 6 exist.
The dual cone of M6 is equal to the cone P6 of psd polynomials of degree ≤ 6. Our
construction parametrizes a dense set of extreme psd, non-sos sextics. Therefore it
gives rise to a family of linear inequalities that define the closure M6.

5. Examples

We are going to illustrate the general construction of admissible sets in the plane
and their associated extreme psd sextics, as well as several phenomena discussed in
the previous sections. For typographical simplicity we sometimes use homogeneous
coordinates (x, y, z) instead of (x0, x1, x2).

5.1. For a first example we work in affine coordinates (x, y). Let X = V (f) be the
elliptic curve with affine equation

f(x, y, 1) = y2 − x3 − x2 − 4.

Let + denote the abelian group law on X(R) with neutral element the point at
infinity. The group X(R) has one connected component, with real 2-torsion point
Q = (−2, 0). Let P = (0, 2), a nontorsion point on X. The nine points S =
{Q, ±P, ±2P, Q±P, Q±2P} on X add up to Q in the group law of X. Therefore
the set S is admissible. Each of the four triples (P, Q + P, Q − 2P ), (−P, Q −
P, Q + 2P ), (Q, 2P, Q − 2P ), (Q,−2P,Q + 2P ) lies on a line, and the six points
(±P, ±2P, Q±P ) lie on a conic. The product is a sextic that is singular in the points
of S, namely q = l1l2l3l4p, where l1 = 3x+y−2, l2 = 3x−y−2, l3 = 2x+y+4, l4 =
2x−y+4, and p = y2−2x2−2x−4. By construction, q has constant (nonnegative)
sign on X(R). The minimal value t ∈ R for which the sextic qt = q+tf2 is psd gives
the extreme sextic qS = qt in P6(S)�Σ6(S). One finds that qS is exposed with the
10th real zero at (α, 0), where α ≈ 4.25925 is the real root of 5x3−15x2−24x−12.
The corresponding value for t is t = 1

49 (165α
2 + 60α+ 1156) ≈ 89.89509.

5.2. For a second example let X = V (x0x1x2), the union of three lines in general
position. Write P0(a) = (0 : a : 1), P1(a) = (1 : 0 : a), and P2(a) = (a : 1 : 0)
for a ∈ R∗. The Picard group of X is an extension 1 → R∗ → Pic(X) → Z3 → 0.
Given ai, a

′
i ∈ R∗ (i = 0, 1, 2) we have

2∑
i=0

Pi(ai) ∼
2∑

i=0

Pi(a
′
i) in Div(X) ⇔ a0a1a2 = a′0a

′
1a

′
2.

So if a0, a1, a2 ∈ R∗, the three points Pi(ai) (i = 0, 1, 2) lie on a line if and only
if a0a1a2 = −1. Therefore, S ⊆ Xreg(R) is admissible if and only if there exist
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ai, bi, ci ∈ R∗ with |{ai, bi, ci}| = 3 (i = 0, 1, 2) such that

S =
{
Pi(ai), Pi(bi), Pi(ci) : i = 0, 1, 2

}
and

a0a1a2 · b0b1b2 · c0c1c2 = 1.

For an explicit example let

S =
{
Pi(±1) : i = 0, 1, 2

}
∪
{
P0

(3
2

)
, P1

(1
3

)
, P2(−2)

}
.

A sextic that is singular in the points of S is

q = (x0 + x1 + x2)(x0 + x1 − x2)(x0 − x1 + x2)(x0 − x1 − x2)(x0 + 2x1 − 3x2)
2.

The extreme psd sextic associated to S is qS = q+t(x0x1x2)
2, where t ≈ 114.68148.

Again, qS is exposed with the 10th real zero (α : β : 1), where α ≈ −0.64185 is the
smallest real root of 27x3 − 111x2 − 59x+15 and β = 9

16 (1−α2)+ 2α ≈ −0.95295.
(The above number t is also a rational expression in α.)

5.3. This is an example of an admissible set S for which the extreme psd sextic qS
has only the nine real zeros in S. Let S consist of the nine points

(0 : 1 : ±1), (1 : 0 : ±1), (1 : ±1 : 0), (3 : 0 : 2), (3 : 2 : 0), (5 : 4 : 4).

One can show that the set S is admissible, the unique cubic X = V (f) through S
being given by

f = 8 (x+ y + z)(2x2 + 3y2 + 3z2 − 5xy − 5xz − 6yz) + 195xyz.

X is an elliptic curve for which X(R) has two connected components. Let l =
2x− 3y − 3z, and let l1, l2, l3, l4 be the four linear forms x ± y ± z. The extreme
psd sextic with zeros in S is

qS = 2496 · l1l2l3l4l2 + (888 f + 273xyz)2.

The sextic qS has no real zero beyond S, rather the point (0 : 1 : −1) ∈ S is an
A3-singularity of qS .

5.4. The Robinson sextic [11] is the unique psd sextic through the 10 points that
arise from permuting the coordinates of (1 : 1 : ±1) and (0 : 1 : ±1). It has the
symmetric equation

R = (x6 + y6 + z6)− (x4y2 + x4z2 + y4x2 + y4z2 + z4x2 + z4y2) + 3x2y2z2.

Let T consist of the eight points (±1 : ±1 : 1), (±1 : 0 : 1), (0 : ±1 : 1). Then
I3(T ) is the pencil generated by f = x3 − xz2 and f ′ = y3 − yz2. Therefore I6(2T )
is spanned by f2, ff ′, f ′2, and R. The nonic NT = det J(f, f ′, R) has equation

j = z(z2 − x2)(z2 − y2)(x2 + xy + y2 − z2)(x2 − xy + y2 − z2).

Except for the line z = 0, every irreducible component of NT is contained in some
cubic from the pencil I3(T ). Therefore, every admissible set S = T ∪ {P} has its
ninth point P on the line z = 0.

Conversely fix u ∈ R ∪ {∞}, let Pu = (1 : u : 0) (with P∞ = (0 : 1 : 0)), and
put Su = T ∪{Pu}. Then the set Su is admissible for all u /∈ {0,∞}. Indeed, there
is a unique cubic through Su, namely Xu = V (fu) with fu = u3f − f ′. And the
definiteness condition is satisfied since Xu(R) is connected (resp., Xu is a union of
a line and a conic with two real intersection points for u = ±1). For u = 0, ∞ the
set Su fails to be admissible since Pu is a triple point of Xu.
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Let u �= 0, ∞. To find the extreme sextic qu := qSu
, and possibly its 10th

real zero Qu, we may use the Coble nonic as in Remark 4.20. So we may pick
P ′ = (1 : 1 : −1) (or any other point in T ), put T ′

u = Su� {P ′}, compute the nonic
NT ′

u
, and intersect it with NT . One finds that NT ′

u
intersects the line z = 0 of NT

in the four real points (1 : 0 : 0), (0 : 1 : 0), (u : 1 : 0), and (1 : −u : 0), besides Pu.
The sextics in I6(2Su) through the first three points are indefinite. Therefore we
must have Qu = (1 : −u : 0). The corresponding sextic is

qu = u6(u2+2)(x3−xz2)2−3u4(x2−z2)(y2−z2)(x2+y2−z2)+(2u2+1)(y3−yz2)2,

which must be the exposed psd sextic with ten zeros in T ∪ {(1 : ±u : 0)}. For
u = ±1 we get qu = 3R.

Note that the example of T is special since there exist lines containing three
points of T (and conics containing six points of T ). These lines and conics are
necessarily irreducible components of the nonic NT .

5.5. For every real number u, the symmetric sextic

qu = a
∑

x4
ix

2
j + b

∑
x4
ixjxk + c

∑
x3
ix

3
j + d

∑
x3
ix

2
jxk + e(x0x1x2)

2

with

a = u2, b = −2(u2 − 2), c = 2u2, d = −2(u2 + u+ 2), e = 6(u2 + 4u+ 2)

is singular in the points that arise from

(1 : 0 : 0), (1 : −1 : 0), (1 : 1 : u), (1 : 1 : 1)

by permuting the coordinates. For u �= 1 these are 10 points. The following hold:

(a) qu is psd and not sos for u < −2 or u > 1,
(b) qu is a sum of two squares for u = −2, and a square for u = 1,
(c) qu is indefinite for −2 < u < 1.

Here is a way to see this. Let Su be the set of points obtained by permuting the
coordinates of (1 : 0 : 0), (1 : −1 : 0), and (1 : 1 : u) (so |Su| = 9 for u �= 1). We
need to find the values of u for which Su is admissible. For u = 1 we have |Su| = 7;
for u = −2 the line x0 + x1 + x2 = 0 contains six points of Su. For any u the
symmetric cubic Xu = V (fu) with

fu = 2(u2 + u+ 1) x0x1x2 − u
∑

x2
ixj

passes through Su, and for u /∈ {1,−2} it is the only cubic through Su. For the
singular values u ∈ {−2,− 1

2}, Xu is the union of a line and a conic without real
intersection point, and for u ∈ {−1, 0}, Xu is a triangle whose singularities lie
in Su. Therefore Su is not admissible for u ∈ {−2,−1,− 1

2 , 0, 1}. For all u /∈
{−2, −1, − 1

2 , 0, 1}, the cubic Xu is nonsingular, and X(R) has two connected
components. For any of these values u, the divisor class [OXu

(3)] −
∑

P∈Su
[P ] on

Xu is a nonzero 2-torsion element in Pic(Xu). To find the values u for which this
class is definite (and hence Su is admissible), we follow the geometric approach
in Remark 3.11. Let P = (1 : 0 : 0) ∈ Su and put Tu = Su � {P}. The ninth
intersection point of the pencil I3(Tu) is Mu = (u : 1 : 1) (which happens to lie in
Tu). The tangents to Xu at P and Mu are tP = x1+x2 and tMu

= x0−ux1−ux2,
so they intersect at (0 : 1 : −1) ∈ Tu. A geometric sketch shows that the product
tMu

· tP is indefinite on Xu(R) if and only if −2 < u < 1.
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The discussion shows that the set Su is admissible if and only if u < −2 or u > 1.
For these values of u, there exist psd non-sos sextics through Su, and the unique
extreme one is qu. On the other hand, for −2 < u < 1 the only psd sextic through
Su is f2

u.
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[7] David Hilbert, Über ternäre definite Formen (German), Acta Math. 17 (1893), no. 1, 169–
197, DOI 10.1007/BF02391990. MR1554835

[8] Monique Laurent, Sums of squares, moment matrices and optimization over polynomials,
Emerging applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New
York, 2009, pp. 157–270, DOI 10.1007/978-0-387-09686-5 7. MR2500468

[9] Bruce Reznick, Some concrete aspects of Hilbert’s 17th Problem, Real algebraic geometry and
ordered structures (Baton Rouge, LA, 1996), Contemp. Math., vol. 253, Amer. Math. Soc.,
Providence, RI, 2000, pp. 251–272, DOI 10.1090/conm/253/03936. MR1747589

[10] B. Reznick, On Hilbert’s construction of positive polynomials. Preprint, arxiv:0707.2156.
[11] Raphael M. Robinson, Some definite polynomials which are not sums of squares of real

polynomials, Selected questions of algebra and logic (collection dedicated to the memory of
A. I. Mal′cev) (Russian), Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1973, pp. 264–282.
MR0337878

[12] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton
University Press, Princeton, N.J., 1970. MR0274683

[13] Claus Scheiderer, Sums of squares of regular functions on real algebraic varieties, Trans.
Amer. Math. Soc. 352 (2000), no. 3, 1039–1069, DOI 10.1090/S0002-9947-99-02522-2.
MR1675230

Fachbereich Mathematik und Statistik, Universität Konstanz, Germany

Fachbereich Mathematik und Statistik, Universität Konstanz, Germany

http://www.ams.org/mathscinet-getitem?mr=2999301
http://www.ams.org/mathscinet-getitem?mr=1045822
http://www.ams.org/mathscinet-getitem?mr=566480
http://www.ams.org/mathscinet-getitem?mr=1506391
http://www.ams.org/mathscinet-getitem?mr=0463157
http://www.ams.org/mathscinet-getitem?mr=1510517
http://www.ams.org/mathscinet-getitem?mr=1554835
http://www.ams.org/mathscinet-getitem?mr=2500468
http://www.ams.org/mathscinet-getitem?mr=1747589
http://www.ams.org/mathscinet-getitem?mr=0337878
http://www.ams.org/mathscinet-getitem?mr=0274683
http://www.ams.org/mathscinet-getitem?mr=1675230

	Introduction
	1. Preliminaries and notation
	2. Picard groups of real curves
	3. Nine real zeros
	4. Constructing nonnegative sextics with nine real zeros
	5. Examples
	References

