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AN OBATA SINGULAR THEOREM FOR STRATIFIED SPACES

ILARIA MONDELLO

Abstract. Consider a stratified space with a positive Ricci lower bound on
the regular set and no cone angle larger than 2π. For such stratified space we
know that the first non-zero eigenvalue of the Laplacian is larger than or equal
to the dimension. We prove here an Obata rigidity result when the equality
is attained: the lower bound of the spectrum is attained if and only if the
stratified space is isometric to a spherical suspension. Moreover, we show that
the diameter is at most equal to π, and it is equivalent for the diameter to be
equal to π and for the first non-zero eigenvalue of the Laplacian to be equal
to the dimension. We finally give a consequence of these results related to the
Yamabe problem. Consider an Einstein stratified space without cone angles
larger than 2π: if there is a metric conformal to the Einstein metric and with
constant scalar curvature, then it is an Einstein metric as well. Furthermore, if
its conformal factor is not a constant, then the space is isometric to a spherical
suspension.

Introduction

The interest in the geometric study of singular metric spaces has been constantly
increasing in recent years. Singular metric spaces appear easily as quotients or
Gromov-Hausdorff limits of smooth manifolds. Thanks to the works of D. Bakry
and M. Émery, or K.T. Sturm, J. Lott, and C. Villani, and many others, there are
various ways of defining the notions of curvature and dimension in a more general
setting than the one of Riemannian manifolds. Some of the possible questions in
this wide domain of mathematics can be collected in the following: which classical
results of Riemannian geometry hold in the more general setting of singular metric
spaces?

In this paper we are interested in a particular class of singular metric spaces,
which are called stratified spaces, and generalize the notion of conical singularity.
In fact, a compact stratified space X can be decomposed into a regular dense set
Ω, which is a smooth manifold of dimension n, and in a singular set with different
components Σj of possibly different dimensions j smaller than n, called singular
strata, with a local “cone-like” structure. What we mean is that the neighbourhood
of a point in a singular stratum Σj is the product of a Euclidean ball of dimension
j and a cone over a link. This latter can be a compact manifold (in which case we
have a manifold with simple edges) or a compact stratified space. Singular strata
of codimension one are not admitted in the definition. The easiest examples of
stratified space are manifolds with isolated conical singularities; in order to fix the
ideas, one can also imagine constructing singularities along a curve, in which case
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the neighbourhood of a singular point is the product between an interval and a
cone of the appropriate dimension. We observe that the link of a singular stratum
of codimension two Σn−2 is a circle S1, and a cone over a circle has an angle α: if α
is smaller than 2π, then the cone has positive curvature in the sense of Alexandrov,
negative otherwise. We refer to α as the cone angle of the stratum Σn−2. On a
stratified space we can consider an iterate edge metric, as defined in [3] or [1], which
is a smooth Riemannian metric on the regular set Ω, and define the usual tools of
geometric analysis.

In [16] we introduced a class of stratified spaces, admissible stratified spaces,
which have, roughly speaking, a positive Ricci lower bound. What we mean is
that the Ricci tensor is bounded below by a positive constant in the regular set and
there is an additional condition on the stratum of codimension two, in order to avoid
the situation of a cone angle larger than 2π, which would introduce in some sense
negative curvature. The question is whether we can find geometric results on this
class of stratified spaces which recover classical theorems for compact Riemannian
manifolds with a positive Ricci lower bound. In [16] we already proved a singular
version of the Lichnerowicz theorem: the first non-zero eigenvalue of the Laplacian
is larger than or equal to the dimension of the space. Moreover, this allows one to
deduce a Sobolev inequality with explicit constants depending only on the volume
and on the dimension of the space. The main goal of this paper is to prove the
following rigidity result for admissible stratified spaces:

Theorem (Singular Obata). Let (Xn, g) be an admissible stratified space. The first
non-zero eigenvalue of the Laplacian λ1(X) is equal to the dimension n if and only

if there exists an admissible stratified space (X̂n−1, ĝ) such that (Xn, g) is isometric

to the spherical suspension of X̂, that is:(
X̂ ×

[
−π

2
,
π

2

]
, dt2 + cos2(t)ĝ

)
.

When (Xn, g) is a compact smooth manifold, the spherical suspension is simply
a sphere of dimension n with the canonical metric, and thus our theorem recovers
the known result of M. Obata for compact smooth manifolds. Before proving the
previous theorem, we recall a result due to Bakry and Ledoux ([4], Theorem 4) to
deduce an upper bound on the diameter of an admissible stratified space: diam(X)
is less than or equal to π. The proof by Bakry and Ledoux relies on a spectral gap
and on a Sobolev inequality as did the ones we proved in [16]; therefore it is easily
adaptable to our setting. Furthermore Theorem 4 [4] shows that if the upper bound
for the diameter is attained, then the first non-zero eigenvalue of the Laplacian is
equal to n, and we know an explicit eigenfunction depending on the distance from
a point. We prove that, in turns, if λ1(X) is equal to the dimension, then the
diameter is equal to π. We have then the following theorem:

Theorem (Singular Myers). Let (X, g) be an admissible stratified space of dimen-
sion n. Then the following statements are equivalent:

(i) The first non-zero eigenvalue of the Laplacian Δg is equal to n.
(ii) The diameter of X is equal to π.
(iii) There exist extremal functions for the Sobolev inequality.

These results, together with a study of minimizing geodesics and tangent cones
in an admissible stratified space, give us the main ingredients to prove the theorem
“à la” Obata.
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We finally discuss an application of the rigidity result to the Yamabe problem,
which consists of looking for a metric of constant scalar curvature among the con-
formal class of a given metric. We refer to [14] for a description of the Yamabe
problem on compact smooth manifolds and to [1] for the same in the setting of
stratified spaces. The Yamabe problem has a variational formulation depending
on a conformal invariant, called the Yamabe constant: this latter is defined as the
infimum of the integral of the scalar curvature among conformal metrics of volume
one. If there exists a conformal metric attaining the Yamabe constant, it has con-
stant scalar curvature and is called a Yamabe metric. A metric of constant scalar
curvature is not necessarily a Yamabe metric, but we have shown in [16] that an
Einstein metric on an admissible stratified space is a Yamabe metric. Here we give
another proof of this result, under the assumption that a Yamabe minimizer exists.
Moreover we show the following:

Theorem. Let (Xn, g) be an admissible stratified space with Einstein metric. If
there exists g̃ in the conformal class of g, not homothetic to g, with constant scalar
curvature, then g̃ is an Einstein metric as well, and (Xn, g) is isometric to the

spherical suspension of an admissible stratified space (X̂n−1, ĝ) with Einstein met-
ric.

This is also true for compact smooth manifolds due to another theorem of Obata.
We notice that a Myers theorem has been proven by C. Ketterer in [12] for metric

measure spaces which satisfy a curvature-dimension condition RCD(K,n). More-
over, if the upper bound is attained, then the metric measure space is isometric to
a spherical suspension. His proof relies on a splitting theorem of N. Gigli [10]. As a
consequence, the author also proved an Obata rigidity theorem in [13]. Our analo-
gous result clearly applies in a less general setting, but the advantage if its proof is
that it is based on simple tools coming from Riemannian geometry and essentially
on the study of an equation for the Hessian of a function. It remains an inter-
esting question whether admissible stratified spaces satisfy a curvature-dimension
condition in the sense of Bakry-Émery, Sturm-Lott-Villani, or RCD(K,n), since
they could give new concrete examples of metric measure spaces belonging to this
setting.

1. Preliminaries

We introduce here a detailed definition of a stratified space. For this purpose,
we specify that for a truncated cone C(Z) over a compact metric space Z we mean
the product Z × [0, 1] with the equivalence relation (z1, 0) ∼ (z2, 0) for all z1, z2
in Z: we identify all the points in Z × {0} to a unique point, called the vertex of
the cone. We say that a truncated cone is of size δ if we consider the interval [0, δ]
instead of [0, 1]. If Z is a compact manifold endowed with the Riemannian metric
k, then a conic metric on C(Z) has the form dr2 + r2k.

Definition 1.1. Let (X, d) be a compact metric space. We say thatX is a stratified
space if it admits a decomposition of the form

X = Ω � Σ,

where Ω is an open smooth manifold of dimension n dense inX, and Σ is the disjoint
union of a finite number N of components Σj , j = 1, . . . N , called singular strata,
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which are smooth manifolds of dimension j. The stratum of dimension (n − 1) is
empty.

For each Σj there exist a neighbourhood Uj of Σj , a retraction πj , a radial
function ρj :

πj : Uj → Σj , ρj : Uj → [0, 1],

and a stratified space Zj such that πj is a cone bundle whose fibre is a truncated
cone over Zj . The stratified space Zj is called the link of the stratum Σj .

In the following we will refer to Ω and Σ respectively as the regular and the
singular set of X. We can reformulate the condition on the strata Σj by saying
that for each point x in Σj there exist a neighbourhood Wx, a positive radius δx,
and a homeomorphism ϕx between Wx and a product between a Euclidean ball
B(δx) and a truncated cone Cδx(Zj) of size δx over the link Zj :

ϕx : Wx → B(δx)× Cδx(Zj).

Moreover, ϕx is a diffeomorphism between the regular part of Wx and (B(δx) ×
Cδx(Z

reg
j )) \ (B(δx)× {0}). In the rest of the paper we will treat ϕx as an identifi-

cation between Wx and the product Bj(δx)× Cδx(Zj).
One can define an admissible metric on a stratified space: for a precise discussion

we refer to section 3 of [3] and section 2.1 of [1]. For the purposes of this paper,
the reader only needs to know that an admissible metric g is a smooth Riemannian
metric on the regular set Ω and near the stratum Σj it is a perturbation of the
model metric g0 = ξj + dr2 + r2kj , where ξj is the Euclidean metric on Rj and kj
is an iterated edge metric on the link Zj . More precisely, if x belongs to Σj and
Wx, δx, and ϕx are defined as above, we have for any r < δx:

|ϕ∗
xg − g0| ≤ Λrα on B

j(r)× Cr(Zj),

where Λ is a positive constant and α > 0 does not depend on j.
In the following we will consider minimizing geodesics that in this context are

Lipschitz curves which minimize the distance between two points. We will need
to use the uniqueness of a minimizing geodesic starting from a regular point with
fixed speed: for this to be true, the metric must be C2. We then assume that near
each stratum Σj the perturbation of the model metric ϕ∗

xg − g0 has coefficients in
C2 and that the same is true for the metric kj on the links.

On a stratified space it is possible to define the usual analytic tools of geometric
analysis. We are mostly interested in the Sobolev space W 1,2(X) and in the Lapla-
cian operator. The first one is defined as the closure of the Lipschitz function on
X with respect to the usual norm:

‖f‖21,2 = ‖f‖22 + ‖df‖22 .

Thanks to the assumption that the codimension one stratum does not exist, the
smooth functions with compact support in the regular set Ω are dense in W 1,2(X).
A standard proof of this can be found in [17]. In [1], the usual Sobolev embeddings
which hold on compact Riemannian manifolds are proven in the setting of stratified
spaces as well. In particular we have the following Sobolev inequality: there exist
positive constants A and B such that for any u in W 1,2(X),

‖u‖22n
n−2

≤ A ‖du‖22 +B ‖u‖22 .
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The Laplacian operator Δg is the positive self-adjoint operator defined as the
Friedrichs extension of the semi-bounded Dirichlet quadratic form E :

E(u) =
∫
X

|du|2dvg ,

defined for u in C∞
0 (Ω).

Tangent cones and geodesic balls. It will be useful to introduce another de-
scription for a neighbourhood of a singular point which relies on the notion of
tangent sphere. First, for each point in a stratified space, the pointed Gromov-
Hausdorff limit of (X,λd, x) as λ tends to infinity exists, it is unique, and it carries
an exact cone metric. We refer to this limit as the tangent cone at x. When x is a
point in Ω, the tangent cone is simply the Euclidean space Rn. If x belongs to Σj ,
the tangent cone is a cone over the following stratified space:

Sx =
[
0,

π

2

]
× S

j−1 × Zj

endowed with the metric hx = dθ2 + cos2 θgSj−1 + sin2 θkj . We refer to Sx as the
(j−1)-fold spherical suspension of the link Zj and more often as the tangent sphere
at x.

In [2], the authors showed that for each singular point x there exist a sufficiently
small radius εx, a constant κ, and an open neighbourhood Ωx of x such that the
geodesic ball centred at x is included in Ωx, Ωx is homeomorphic to the cone
Cκεx(Sx), and moreover in B(x, εx) the metric g differs from the exact cone metric
dr2 + r2hx for

|g − (dr2 + r2hx)| ≤ Λεαx .

For a more detailed description of the above, we refer to section 2.2 in [2] and to
the first chapter of [17].

Admissible stratified spaces. Most of the results of this paper are stated for a
class of stratified spaces called admissible and introduced in [16]. We recall their
definition:

Definition 1.2. A stratified space (Xn, g) is an admissible stratified space if it
satisfies the following two conditions:

(i) The Ricci tensor on Ω is such that Ricg ≥ (n− 1)g.
(ii) The stratum Σn−2 of codimension two, if it is not empty, has angle α strictly

less than 2π.

The second condition is to exclude the situation of a cone of angle α > 2π,
which in some sense would introduce negative curvature, thus an obstruction to
extend results holding on smooth manifolds with a positive Ricci lower bound. For
admissible stratified spaces, we proved in [16] a singular version of the Lichnerowicz
theorem:

Theorem 1.1 (Singular Lichnerowicz). Let (Xn, g) be an admissible stratified
space. Then the first non-zero eigenvalue λ1(X) of the Laplacian Δg is larger
than or equal to the dimension n.

The proof of this theorem is by iteration on the dimension of the stratified
space, and it consists of using the Bochner-Lichnerowicz formula on the regular
set and getting the suitable regularity on the eigenfunctions ϕ. Then by using
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the appropriate cut-off functions ρε, vanishing in a tubular neighbourhood of the
singular set and being equal to one elsewhere, we obtain that for any eigenfunction
ϕ of the Laplacian associated to the eigenvalue λ the following holds:(

1− (n− 1)

λ
− 1

n

) ∫
X

ρε(Δgϕ)
2dvg ≥

(
1− (n− 1)

λ

) ∫
X

ρε(Δgϕ)
2dvg

−
∫
X

ρε|∇dϕ|2dvg ≥ 0.

(1)

Passing to the limit as ε goes to zero, this implies the desired inequality. Further-
more, the singular Lichnerowicz theorem has consequences on the regularity of the
non-negative solutions to a Schrödinger equation of the form Δgu = F (u), where
F is locally Lipschitz. In particular, for an eigenfunction ϕ we have that ϕ belongs
to W 2,2(X) and its gradient is bounded on X (see Claim in the proof of Theorem
2.1 in [16] and Corollary 2.12 in [17]).

We observe that if there exists an eigenfunction ϕ associated to the eigenvalue
n, then the inequality (1) implies that its Hessian must satisfy |∇dϕ|2 = (Δgϕ)

2/n
on the regular set. Therefore we are in the case of equality in the Cauchy-Schwarz
inequality and we get that the Hessian of ϕ is proportional to the metric g in the
regular set of X:

(2) ∇dϕ = −ϕg on Ω.

If the Hessian of a scalar function ϕ satisfies an equation of the form ∇dϕ = ρg
for some function ρ, then ϕ is called in the literature a concircular scalar field. Its
gradient X = dϕ is a conformal vector field, which means that the Lie derivative
of the metric along X is proportional to g. The existence of a concircular scalar
field or of a conformal vector field on a compact, or complete, smooth manifold can
lead to various consequences. For example, Y. Tashiro in [22] classified complete
manifolds possessing a concircular scalar field. See also sections 2 and 3 of [18] for
a brief but complete presentation of some known results about the subject.

In the setting of admissible stratified spaces as well, the equation (2) is a key
point in proving a rigidity result, as will be clear in the proofs of Theorems 2.1 and
3.1.

Remark 1.2. If (Xn, g) is an admissible stratified space, then each of its links
Zj and the tangent sphere at each point Sx are admissible stratified spaces as well
(see Lemma 1.1 in [16]). As a consequence of this and of the singular Lichnerowicz
theorem, the first non-zero eigenvalue of the Laplacian on each tangent sphere is
larger than (n− 1).

As we recalled in the introduction, the singular Lichnerowicz theorem allows one
to prove that a Sobolev inequality with explicit constants holds on an admissible
stratified space:

Theorem 1.3 (Sobolev inequality). Let X be an admissible stratified space of
dimension n. Then for any 1 < p ≤ 2n/(n−2), a Sobolev inequality of the following
form holds:

(3) V 1− 2
p ‖f‖2p ≤ ‖f‖22 +

p− 2

n
‖df‖22 ,

where V is the volume of X with respect to the metric g.
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A Sobolev inequality of the previous form was proven by S. Ilias in [11] for
compact smooth manifolds with Ricci tensor bounded below by a positive constant,
and by Bakry in [5] for a much more general setting. Our proof is inspired by the
argument due to Bakry.

We now dispose of all the necessary tools to prove the upper bound on the
diameter of an admissible stratified space.

2. A Myers singular theorem

A classical result holding for smooth Riemannian manifolds is the Myers theo-
rem: if (Mn, g) is complete, connected, and its Ricci tensor is bounded below by
(n−1)g, then the diameter of M is less than or equal to π. In [4], the authors have
proven that this kind of lower bound can be shown in great generality on a proba-
bility measure space with a Markov generator which satisfies a curvature-dimension
condition. Moreover, the proof relies only on analytical tools, in particular on the
existence of a Sobolev inequality of the form (3) and on the choice of the appropri-
ate test functions (see section 2 in [4] for the details). The previous theorem gives
us the Sobolev inequality needed to apply Bakry and Ledoux’s proof. As a con-
sequence, the Myers theorem holds on admissible stratified spaces in the following
sense:

Theorem 2.1 (Singular Myers theorem). Let (X, g) be an admissible stratified
space. Let us define its Lipschitz diameter as

diamL(X) = sup
{
||f̃ ||L∞(X×X); f ∈ Lip1(X)

}
,

where f̃(x, y) = f(x) − f(y) and Lip1(X) is the set of Lipschitz functions with
Lipschitz constant less than or equal to one. Then diamL(X) is less than or equal
to π.

Observe that on a smooth Riemannian manifold, what we called Lipschitz diam-
eter coincides with the usual diameter associated to the Riemannian metric. We
remark that it is possible to prove the following lemma:

Lemma 2.2. Let (X, g) be a stratified space of dimension n and let γ : [0, 1] → X
be a Lipschitz curve in X. Let Lg(γ) denote its length. For any ε > 0 there
exists a curve γε such that γε((0, 1)) is contained in the regular set Ω and Lg(γε) ≤
(1 + ε)Lg(γ).

This implies two facts: first, a function u in C1(Ω) ∩ C0(X) whose gradient
is bounded in L∞(X) by a constant c is a Lipschitz function on the whole of X,
with Lipschitz constant less than or equal to c. Moreover, the Lipschitz diameter
coincides with the diameter associated to the metric g, and we can avoid any
distinction between the two.

We are going to show that an admissible stratified space has diameter equal
to π if and only if the first non-zero eigenvalue of the Laplacian is equal to the
dimension of the space. Thanks to Theorem 4 in [4] this is in turn equivalent to the
existence of extremal functions for the Sobolev inequality (3) which depend only
on the distance from a point.
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Theorem 2.3. Let (X, g) be an admissible stratified space of dimension n. Then
the following statements are equivalent:

(i) The first non-zero eigenvalue of the Laplacian Δg is equal to n.
(ii) The diameter of X is equal to π.
(iii) There exist extremal functions for the Sobolev inequality.

Proof. If the diameter of X is equal to π, then its Lipschitz diameter is equal to
π, and then Theorem 4 in [4] implies both the existence of functions attaining the
equality in Sobolev inequality and of an eigenfunction associated to the eigenvalue
n. In particular, if P is a point in X with an antipodal point N , dg(P,N) = π,
then the function ϕ(x) = cos(dg(P, x)) is such that Δgϕ = nϕ.

As a consequence, we have to prove that if the first non-zero eigenvalue of the
Laplacian is equal to the dimension of the space, then its diameter is equal to
π. If we find a Lipschitz function f which takes values in an interval of length π
and whose Lipschitz constant is smaller than or equal to one, then we have that
diamL(X) = π, and thanks to the previous lemma we get the desired value for the
diameter.

Consider ϕ an eigenfunction associated to the eigenvalue n: as we recalled above,
its gradient belongs to W 1,2(X) and it is bounded. Moreover, its Hessian is pro-
portional to the metric g on the regular set Ω, since ϕ satisfies the equation (2).
As a consequence, we can show that the quantity |∇ϕ|2 + ϕ2 is a constant on the
regular set Ω. In fact we have

d(|∇ϕ|2 + ϕ2) = 2ϕdϕ+ 2∇dϕ(·,∇ϕ) = 2ϕdϕ− 2ϕdϕ = 0.

Then, up to multiplying by a constant, we can assume without loss of generality
that

(4) |∇ϕ|2 + ϕ2 = 1 on Ω.

This equality tells us that ϕ takes values between −1 and 1. Let us consider the
function f defined as follows:

f = arcsin(ϕ).

Its gradient is bounded on the regular set Ω, because the gradient of ϕ belongs to
L∞(X), and then f belongs to Lip(X) as well. Moreover, by definition ∇f has
norm equal to one at each regular point: thanks to Lemma 2.2 this implies that
the Lipschitz constant of f on the whole X is less than or equal to one. In order to
conclude, we need to show that the image of X by f is equal to [−π/2, π/2]. This
is clearly equivalent to proving that ϕ has the closed interval [−1, 1] as image.

Let us define U+ as the set on which ϕ is strictly positive. Observe that Ω ∩ U+

is not empty, since ϕ changes sign on X and Ω is dense in X. Moreover Ω ∩ U+ is
dense in U+, since Ω is dense and U+ is an open set in X.

Consider the following problem with Dirichlet condition at the boundary:{
Δgf = λf in U+,

f = 0 on ∂U+.

This problem has a variational formulation: we can define the first non-zero
Dirichlet eigenvalue on U+ as the infimum of the Dirichlet energy on functions
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in W 1,2
0 (U+), that is:

λ1(U+) = inf

{
E(ψ) = ‖dψ‖22

‖ψ‖22
, ψ ∈ W 1,2

0 (U+)

}
.

Assume by contradiction that the maximum of ϕ is equal to M strictly smaller
than 1. We state that this implies the existence of a function u : [0,M ] → R+ such
that u(0) = 0 and

Δg(u ◦ ϕ) = nϕu′(ϕ)− (1− ϕ2)u′′(ϕ) > n(u ◦ ϕ), on Ω ∩ U+.

This means that we can find a function u which vanishes at 0, is positive on (0,M ],
and satisfies the following differential inequality on (0,M ]:

(5) −u′′(t)(1− t2) + ntu′(t) > nu(t).

Let α > 1, to be chosen later, and consider uα(t) = t − tα. By replacing in the
differential inequality, we reformulate (5) in the following way:

α(α− 1)tα−2(1− t2) + nt(1− αtα−1) > n(t− tα),

α(α− 1)tα−2 − α(α− 1)tα − nαtα + ntα > 0,

α(α− 1)tα−2 − (α− 1)tα(α+ n) > 0.

Now by multiplying by (α− 1)t2−α > 0 we get

α− t2(α+ n) > 0.

Therefore the question becomes finding an α > 1 such that the previous inequality
is satisfied. The second degree polynomial appearing in the left-hand side of the
previous inequality has a solution in [0, 1] at t0(α) =

√
α(α+ n)−1, and it is positive

between 0 and t0(α). Since this last quantity tends to one as α goes to infinity, and
since M is strictly smaller than one, we can choose α large enough so that t0(α) is
strictly larger than M . For such α the function uα satisfies the desired differential
inequality, it is positive in (0,M ], and it vanishes at 0. From now on we denote uα

simply by u, and u ◦ ϕ by φ.
Let ε be a positive real number and define uε = u+ε: then uε is strictly positive

and, if we consider φε = uε ◦ϕ, the Laplacian of φε satisfies Δgφε > nφ on Ω∩U+.

For any non-negative function ψ belonging to W 1,2
0 (U+), ψ not identically equal

to zero, we can define v = ψ/φε, which still belongs to W 1,2
0 (U+). By integration

by parts and using that Ω ∩ U+ is dense in U+ we obtain∫
U+

|dψ|2dvg =

∫
U+

|d(vφε)|2dvg =

∫
U+

(v2|dφε|2 + 2vφε(dv, dφε)g + φ2
ε|dv|2)dvg

≥
∫
U+

(v2|dφε|2 + 2vφε(dv, dφε)g)dvg =

∫
U+

(d(v2φε), dφε)gdvg

=

∫
U+

φεv
2Δgφεdvg =

∫
U+∩Ω

φεv
2Δgφεdvg.

Now, by using that Δgφε > nφ on U+∩Ω in the last integral, and since by definition
v = ψ/φε we get∫

U+

|dψ|2dvg > n

∫
U+∩Ω

φεφv
2dvg = n

∫
U+∩Ω

ψ2 φ

φε
dvg = n

∫
U+

ψ2 φ

φε
dvg .
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Now observe that φ/φε is smaller than one, it converges to one almost everywhere
when ε goes to zero, and when we pass to the limit, by the dominated convergence
theorem, we get ∫

U+

|dψ|2dvg ≥ n

∫
U+

ψ2dvg.

This shows that λ1(U+) is larger than or equal to n.
The eigenfunction ϕ associated to n is a positive function on U+ belonging to

W 1,2
0 (U+), and therefore λ1(U+) is equal to n. Moreover, we can apply the same

calculations as above with ψ = ϕ. We can write ϕ as vφ, where v is strictly positive
on U+ and it is defined by v = (1 − ϕα−1)−1, since by definition φ = ϕ − ϕα. We
can easily deduce that v must be a positive constant. In fact we have

n

∫
U+

ϕ2dvg =

∫
U+

|dϕ|2dvg =

∫
U+

(φ2|dv|2 + φv2Δgφ)dvg

>

∫
U+

φ2|dv|2dvg + n

∫
U+

ϕ2dvg.

This means that dv = 0, v must be equal to a constant c, and φ is a multiple of
ϕ, therefore an eigenfunction relative to n. This is a contradiction, since we have
shown that Δgφ is strictly larger than nφ on Ω ∩ U+. Therefore, the maximum of
φ on U+ must be equal to one.

Remark that, in particular, we have proven that the Dirichlet problem on U+

has a unique positive solution up to multiplication factors.
Analogously, the minimum of ϕ is equal to −1: therefore the image of X via

ϕ is [−1, 1], and via f is [−π/2, π/2]. Thanks to Theorem 2.1 we know that the
Lipschitz diameter is less than or equal to π, and then we get the equality, as we
wished. �

3. Obata singular theorem

In this section we are going to prove a rigidity result for an admissible stratified
space such that the first non-zero eigenvalue of the Laplacian is equal to the di-
mension. This theorem recovers the one proved by Obata [19] for compact smooth
manifolds (Mn, g) with Ricci tensor bounded below by (n− 1)g. For an alternative
discussion of the proof in the case of Riemannian manifolds we refer to Theorem
D.I.6 in [6].

Theorem 3.1 (Singular Obata theorem). Let (X, g) be an admissible stratified
space of dimension n. The first eigenvalue of the Laplacian Δg is equal to n if and

only if there exists an admissible stratified space (X̂, ĝ) of dimension (n − 1) such

that (X, g) is isometric to the spherical suspension of X̂:

(6) S(X̂) =
[
−π

2
,
π

2

]
× X̂,

endowed with the metric dt2 + cos2(t)ĝ.
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This theorem has an immediate consequence for cones over admissible stratified
spaces whose diameter is equal to π, which is going to play a role in the proof. We
are first going to prove the following:

Corollary 3.2 (Splitting). Let (Xn, g) be an admissible stratified space of diameter
equal to π. Then the cone C(X) splits into the product R × C(Y ), where (Y, k) is
an admissible stratified space.

Proof. It is an easy fact that a cone over a stratified space (Xn, g) splits a factor
R if and only if (Xn, g) is a spherical suspension over a stratified space (Y, k). In
fact, consider the metric dr2 + ds2 + s2k on R×C(Y ), with r ∈ R and s ∈ R+. We
define the change of variables:

r = ρ sin(θ), s = ρ cos(θ) for θ ∈
(
−π

2
,
π

2

)
.

Then replacing in the product metric we get

dρ2 + ρ2(dθ2 + cos2(θ)k)

on the cone over the spherical suspension of (Y, k).
Theorem 3.1 states that an admissible stratified space (Xn, g) of diameter π is

isometric to a spherical suspension over (X̂, ĝ), and therefore the cone over (Xn, g)
splits a factor R. �

Remark 3.3. In the previous corollary, if (Y, k) has diameter equal to π, we can
iterate this argument until we get the splitting Rm × C(Y0) for m ≥ 1 and an
admissible stratified space (Y0, k0) of diameter strictly less than π.

Remark 3.4. Under the assumption of the previous corollary, let P and N be
two points in X at distance π, which in the coordinates given by the spherical
suspension correspond to {−π/2} × Y and {π/2} × Y respectively. Consider the
geodesic γ0 in C(X) relying on the vertex 0 of the cone with P and N . Since C(X)
is isometric to R × C(Y ) endowed with the metric dρ2 + ρ2(dθ2 + cos2(θ)k), the
geodesic γ0 is defined on the whole R: it is the radius connecting 0 and N on R+,
and the one connecting 0 and P on R−. We claim that the first coordinate r in
the metric corresponds to the opposite of the Busemann function of the geodesic
γ0. Indeed, let x be a point in C(X) = R×C(Y ) of coordinates (r(x), S(x), y) and
γ0(t) = (t, 0, 0) a point of the geodesic γ0. The Busemann function associated to
γ0 is defined as

Bγ0
(x) = lim

t→+∞
(dC(X)(γ0(t), x)− t),

and by using the formula for the distance in C(X) = R× C(Y ) we get

Bγ0
(x) = lim

t→+∞
(
√
|t− r(x)|2 + s(x)2 − t)

= lim
t→+∞

−2r(x)t+ r(x)2 + s(x)2√
|t− r(x)|2 + s(x)2 + t

= −r(x),

as we claimed above. Observe also that the Busemann function of γ0 is onto on R,
since for any point γ0(s) of the geodesic we have Bγ0

(γ0(s)) = −s.

For the purposes of the proof of Theorem 3.1, we need some information about
minimizing geodesics on an admissible stratified space. For a minimizing geodesic
we mean a Lipschitz curve γ : I → X such that for any t1, t2 in the interval
I we have dg(γ(t1), γ(t2)) = |t2 − t1|. We point out here that little is known
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about minimizing geodesics on general stratified spaces, their regularity, and the
uniqueness of a minimizing geodesic between two points, in particular when one or
both of them belong to the singular set.

Lemma 3.5. Let X be an admissible stratified space, let x be in X, and let γ :
[0, 1] → X be a Lipschitz minimizing geodesic starting from x. Then γ̇(0) is well-
defined and unique.

Proof. We know that if X is an admissible stratified space, the diameter of X is
smaller than or equal to π and, moreover, thanks to Remark 1.2, that each tangent
sphere is an admissible stratified space. Therefore, the diameter of each tangent
sphere is less than or equal to π. As a consequence, if we consider the tangent cone
C(Sx) the distance between two points (t, y) and (s, z) is given by

(7) dC((t, y), (s, z)) =
√
t2 + s2 − 2rs cos dSx

(y, z).

Recall that for t small enough, a neighbourhood B(x, t) of a point x in X is included
in an open neighbourhood Ωx of x which is homeomorphic to a truncated cone of
size kt, for a positive constant k, over the tangent sphere Sx at x. Moreover, the
metric g on B(x, t) and the conic metric on C[0,kt](Sx) differ for an error which is
proportional to tα for α > 0. If we consider this estimate in terms of the distances
associated to g and to the conic metric, we get the following: for any y in B(x, t)
with coordinates (r, z) in C[0,kt)(Sx) we have

(8) |dg(x, y)− dC(0, (r, z))| ≤ Λt1+α,

where Λ is a positive constant independent of x.
For a sufficiently small time t, the point γ(t) belongs to Ωx, and we can associate

to γ(t) coordinates in the cone C[0,kt](Sx), which we denote (r(t), θ(t)), with θ(t)
in Sx. We aim to show that these coordinates in the tangent cone admit a unique
limit γ̇(0) = (0, θ(0)) as t tends to zero.

For what concerns the radial coordinate r the situation is simpler. Thanks to
the inequality (8) we have

|dg(x, γ(t))− dC(0, θ(0)), (r(t), θ(t))| ≤ Λt1+α.

Since γ is a minimizing geodesic and by using the expression (7) for the distance
in the cone, we get

|t− r(t)| ≤ Λt1+α,

which means that the radial coordinate satisfies r(t) = t + O(t1+α). As a conse-
quence, r(t) easily converges to zero as t goes to zero. For simplicity, from now on
in the proof we will replace r(t) by t: we leave to the reader the straightforward
computation with t+O(t1+α).

It remains to show that θ(t) converges to a unique point θ(0) in Sx. Since
Sx is compact, we know that for any sequence tj going to zero, there exists a
subsequence such that θ(tj) converges to a point in Sx. We want to prove that for
any two sequences tj , sj tending to zero, such point is the same.

Consider t, s > 0 sufficiently small. Then γ(t) and γ(s) belong to a ball centred
at x of radius equal to the maximum between t and s. As we recalled above, such
ball is included in an open neighbourhood of x homeomorphic to a truncated cone
over Sx. The estimate for the metrics together with the fact that γ is minimizing
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leads to the following:
(9)

|dg(γ(t), γ(s))−
√
t2 + s2 − 2st cos dSx

(θ(t), θ(s))| ≤ Λmax {t, s}α dg(γ(t), γ(s)),

which can be rewritten as

(10)

∣∣∣∣∣1−
√
1 + 4

st

|t− s|2 sin2
(
dSx

(θ(t), θ(s))

2

)∣∣∣∣∣ ≤ Λmax{t, s}α.

Consider the sequence tj = 2−j : first, we are going to show that the sequence θ(tj)
converges to a point z0 in Sx without passing to a subsequence. This is done by
proving that θ(tj) is a Cauchy sequence. Then, we are going to prove that for any
other sequence sj tending to zero as j goes to infinity, θ(sj) converges to z0 as well.

In the inequality (10) replace t = tj and s = tj+1. We then obtain∣∣∣∣∣1−
√
1 + 8 sin2

(
dSx

(θ(tj), θ(tj+1))

2

)∣∣∣∣∣ ≤ 2Λ

(
1

2α

)j

.

This implies that the distance between θ(tj) and θ(tj+1) converges to zero as j
tends to infinity. More precisely, by multiplying by the conjugate quantity and by
using the Taylor expansion of sine at zero, we can state that there exists a positive
constant C such that

dSx
(θ(tj), θ(tj+1)) ≤ C

(
1

2α

)j

.

The sequence 2−αj is such that its series converge and therefore θ(tj) is a Cauchy
sequence. Then it converges to a point z0 in Sx without passing to any subsequence.
Now consider a sequence si going to zero as i tends to infinity. We need to prove
that θ(si) converges to z0. For any i, choose ji in N such that 2−ji−1 ≤ si < 2−ji .
Then by the triangular inequality we have

dSx
(θ(si), z0) ≤ dSx

(θ(si), θ(tji)) + dSx
(θ(tji), z0).

We know that the second term in the right-hand side tends to zero as ji goes to
infinity. As for the first term consider the inequality (10) with t = tji and s = si.
We multiply and divide the left-hand side of (10) by the conjugate quantity

(11)

4ts
|t−s|2 sin

2
(
dSx (θ(t),θ(s))

2

)
1 +

√
1 + 4ts

|t−s|2 sin
2
(
dSx (θ(t),θ(s))

2

) ≤ max{s, t}α = 2−αji .

Denote by ρ the numerator of this expression and rewrite the previous as

f(ρ) =
ρ

1 +
√
1 + ρ

≤ 2−αji .

For ji sufficiently large, the right-hand side of this inequality is smaller than one.
Since the function f is increasing and f(3) = 1, we get that ρ belongs to the interval
(0, 3). Then again by using the previous inequality we obtain

ρ ≤ 2−αji(1 +
√
1 + ρ) ≤ 3 · 2−αji .

Getting back to (11), we have obtained

sin2
(
dSx

(θ(t), θ(s))

2

)
< 3 · 2−αji

|t− s|2
4ts

.
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Now, thanks to our choice of t and s we have the following bounds:

2−2ji−1 ≤ ts < 2−2ji , |t− s| < 2−ji−1,

which imply that for some positive constant C1 we have

sin2
(
dSx

(θ(t), θ(s))

2

)
≤ C12

−αji .

We have then shown that the distance in Sx between θ(si) and θ(tji) must tend to
zero as i tends to infinity. Therefore θ(si) converges to z0, and this is true for any
sequence {si} tending to zero. This proves that θ(0) in Sx, and then γ̇(0) in C(Sx),
are well-defined and unique, as we wished. �

Lemma 3.6. Let (X, g) be an admissible stratified space, let γ : [−ε, ε] → X be a
minimizing geodesic, and let x be the point γ(0). Then the diameter of the tangent
sphere Sx is equal to π.

Proof. As we recalled above, for each point x of X the tangent sphere Sx is an
admissible stratified space, and then by the singular Myers theorem we know that
its diameter is less than or equal to π. As a consequence, it suffices to find two
points in Sx at distance π. As we did in the previous proof, for a time t small
enough, we can associate to γ(t) the coordinates (r(t), θ(t)) in C(Sx). Observe that
r(t) belongs to R+, and since we are considering negative values for t, if we repeat
the same argument as above for the variable r(t) we get r(t) = |t|+ O(t1+α).

We claim that the two points at distance π in Sx are given by

θ+ = lim
t→0+

θ(t), θ− = lim
t→0−

θ(t).

Both of the limits exist in Sx thanks to the previous lemma.
Fix t > 0, and consider θ(t) and θ(−t). By using (9) and again for simplicity by

replacing r(t) by |t|, we have the following:∣∣∣2t− √
2t2 − 2t2 cos dSx

(θ(t), θ(−t))
∣∣∣ ≤ 2Λt1+α.

Then we can divide both sides of the inequality by 2t and get∣∣∣∣1− sin

(
dSx

(θ(t), θ(−t))

2

)∣∣∣∣ =
∣∣∣∣∣1−

√
1− cos(dSx

(θ(t), θ(−t)))

2

∣∣∣∣∣ ≤ Λtα.

As a consequence, when t tends to zero, the distance in Sx between θ(t) and θ(−t)
must tend to π, and we get dSx

(θ+, θ−) = π. Then the tangent sphere has diameter
equal to π. �

Lemma 3.7. Let (Xn, g) be an admissible stratified space of diameter equal to π.
Let P be a point in X such that there exists N in X at distance π from P . For any
point x0, distinct from P , if γ1, γ2 are respectively minimizing geodesics from P to
x0 and from x0 to N , then the product of γ1 and γ2 is a minimizing geodesic from
P to N .

Proof. Thanks to the Myers singular theorem, Theorem 2.1, we know that the first
non-zero eigenvalue of the Laplacian is equal to the dimension n, and moreover that
the function

ϕ(x) = sin
(
dg(x, P )− π

2

)
= cos(dg(x, P )) : X → [−1, 1]
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is an eigenfunction for the Laplacian associated to n. Let P,N, x0 and γ1, γ2 be as
in the statement. To show that the product γ of γ1 and γ2 is a minimizing geodesic
from P to N , it suffices to prove that the sum of dg(x0, P ) and dg(x0, N) is equal
to π. Let us consider

ϕN (x) = cos(dg(x,N)),

which is again an eigenfunction associated to n. Assume that the distance from x0

to P is less than π/2. Denote

U+ =
{
x ∈ X s.t. d(x, P ) <

π

2

}
= {x ∈ X s.t. ϕ(x) > 0} .

Then the distance between all points in U+ and N is larger than π/2, and ϕN is
negative on U+. We are going to use the same integration by parts as we did in the
proof of Thoerem 2.1. For any ε > 0 define

vε =
ϕP

ε− ϕN
,

which is a positive function on U+ and belongs to W 1,2
0 (U+). Consider vεϕN and

the norm in L2 of its gradient:∫
U+

|d(vεϕN )|2dvg =

∫
U+

(|dvε|2ϕ2
N + 2ϕNvε(dvε, dϕN )g + v2ε |dϕN |2)dvg(12)

≥
∫
U+

(d(v2εϕN ), dϕN )gdvg =

∫
U+

v2εϕNΔgϕNdvg .(13)

Now, ϕN is an eigenfunction of the Laplacian associated to the eigenvalue n, and
then we obtain ∫

U+

|d(vεϕN )|2dvg ≥ n

∫
U+

v2εϕ
2
Ndvg.

When we let ε tend to zero, by the dominated convergence theorem, we get

(14)

∫
U+

|d(ϕP )|2dvg ≥ n

∫
U+

ϕ2
Pdvg .

But thanks to Theorem 2.1 we already know that the equality is attained for ϕP ,
and therefore we have equality in each line of (12). This implies that dv0 vanishes
and v0 is constant on each connected component of U+, and since U+ is connected,
the quotient v0 = −ϕP /ϕN is constant on U+. Both −ϕN and ϕP take values
between 0 and 1 on U+, and as a consequence the constant must be equal to one.
We have shown that for any x in U+ we have

ϕ(x) = cos(dg(x, P )) = − cos(dg(x,N)) = −ϕN (x),

which implies that, in particular, dg(x0, P )+dg(x0, N) = π. If the distance between
x0 and P is larger than π/2 we can repeat the same argument by exchanging the
roles of P and N . It remains to study the case in which x0 is at distance equal to
π/2 from P . Observe that for any x in X we have

dg(x, P ) + dg(x,N) ≥ π,

and since the cosine is a decreasing function on [0, π] we get

ϕN (x) = cos(dg(x,N)) ≤ cos(π − dg(x, P )) = − cos(dg(x, P )) = −ϕP (x).

We have proven in particular that the equality holds in the sets in which ϕN , ϕP do
not vanish. If x0 is such that ϕP (x0) = 0, assume by contradiction that ϕN (x0) < 0.
Thus x0 belongs to the set in which ϕN is strictly negative, and we have shown
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that in this set ϕN coincides with −ϕP . This would imply that ϕ(x0) is strictly
positive, which it is not, and therefore we have proven that ϕP and ϕN vanish in
the same set. This means that if x0 is a distance π/2 from P , then dg(x0, N) is
equal to π/2 as well. This concludes the proof. �

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. One of the two implications is trivial. In fact, if we consider
an admissible stratified space X̂ of dimension (n− 1) and its spherical suspension,
the function ϕ(t) = sin(t) is an eigenfunction with associated eigenvalue n.

Our proof of the other implication is by induction on the dimension of X. If n is
equal to 1, X is a circle with metric a2dθ2 for a ≤ 1, and then the first eigenvalue
of the Laplacian is equal to one if and only if a is equal to one. Assume that we
have proven the statement of the theorem for all dimensions k until (n− 1) and let
Xn be an admissible stratified space of dimension n with diameter equal to π. The
induction hypothesis, together with the previous lemmas, leads to an important
consequence on the tangent cones. Let P and N be two antipodal points. Thanks
to Lemma 3.7, we know that any point x in X, distinct from P and N , belongs to
the interior of a minimizing geodesic from P to N . Then Lemma 3.6 implies that
the tangent sphere Sx at x has diameter equal to π. Therefore by the induction
hypothesis Sx is isometric to the spherical suspension of an admissible stratified
space (Y, k) of dimension (n− 2): we can apply Corollary 3.2 to the tangent cone
C(Sx) in order to deduce that C(Sx) is isometric to the product R×C(Y ). If Y has
diameter equal to π, we can iterate this argument and, as we observed in Remark
3.3, we get that C(Sx) is isometric to Rm ×C(Y0), where m ≥ 1 and (Y0, k0) is an
admissible stratified space of dimension (n−m− 1) with diameter strictly smaller
than π. Observe that since there is no singular stratum of codimension one, m is
either between 1 and (n − 2) and x belongs to the singular set Σ or m = (n − 1)
and C(Y0) is the real line R, and x is a regular point.

Let us denote f(x) = dg(x, P )− π/2. We consider the set of regular points that
are equidistant from P and N :

Γ0 = {x ∈ Ω : dg(x,N) = dg(x, P )} .

Observe that Γ0 also coincides with the subset of the regular set in which ϕ and f
vanish, and thus it is not empty.

Our first goal is to show that any point in Γ0 possesses a neighbourhood which
is isometric to the product of a neighbourhood V in Γ0 with some small interval,
endowed with the appropriate warped product metric. This will show that the
metric g locally has the desired form. Then we aim to prove that the regular set
Ω is isometric to Γ0 × [−π/2, π/2] endowed with a warped product metric. Finally,
we will extend the isometry to the whole of X and show that the closure of Γ0 with
respect to the metric g is in fact a stratified space.

Step 1. Let us denote by ĝ the metric g restricted to Γ0. We show that for any
x in Γ0 there exist a closed neighbourhood W of x in X, a closed neighbourhood V
of x in Γ0, and an interval [0, Tx) such that the metric g on W is isometric to the
warped product metric dt2 + cos2(t)ĝ on V × [0, Tx). The argument that we use is
similar to the one developed in Proposition 5.1 of [8] in order to study the case of
equality in the refined Kato inequality for 1-forms.
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Observe that on the regular set Ω the gradient ∇f(x) is well-defined, has norm
equal to one, and is the unit normal vector field of the level hypersurface f−1(f(x))∩
Ω. Then for each point x ∈ Γ0 there is a compact neighbourhood V of x, closed
in Γ0, and an interval [0, Tx) on which the flow γy(t) of the gradient exists for
any y ∈ V and t ∈ [0, Tx). Since V includes a closed ball centred in x of radius
sufficiently small, we can restrict our study to such a ball, and from now on V is a
closed ball in Γ0 centred at x. Observe that γx is a minimizing geodesic on [0, Tx].

The time Tx is defined as follows. For each y in V we can consider the minimal
time of existence for the flow γy, that is,

T (y) = inf {t > 0 such that γy(t) belongs to Σ} .
Then Tx will be the infimum of all these times over V ,

Tx = inf
y∈V

T (y).

This means that Tx is the smallest time for which the flow of ∇f starting at a
point of V intersects the singular set. The function T (y) is lower semi-continuous,
and therefore it has a minimum on the compact neighbourhood V : this means that
there exists y0 in V such that T (y0) = Tx. Let us denote by x0 the point in Σ such
that γy0

(Tx) = x0.
By a classical result contained in [15] we get the diffeomorphism

E : V × [0, Tx) → f−1([0, Tx)) ∩ Ω

E(x, t) = γx(t).

Then we obtain an isometry if we equip V × [0, Tx) with the pull-back metric E∗g.
We can easily extend this isometry to V × {Tx}. In fact, for any y in V we can
define

E(y, Tx) = lim
t→Tx

E(y, t).

This limit exists since X is compact, thus complete, and the function t 
→ E(x, t)
is Lipschitz with Lipschitz constant equal to one. Moreover, since f is continuous,
we know that for any x in V the point E(y, Tx) belongs to f−1(Tx). Then we have
obtained an isometry E between the product V × [0, Tx] endowed with the metric
E∗g and a closed neighbourhood W of x which is included in f−1([0, Tx]):

E : (V × [0, T ], E∗g) → (W , g).

We claim that the level hypersurfaces V × {t} are umbilical for any t ∈ [0, Tx). In
order to show this observe that E sends V × {t} to a regular subset of the inverse
image of t via f , which we denote Γt = f−1(t) ∩Ω. Recall that, by definition of f ,
Γt is the set of regular points which are at distance equal to (t+ π/2) from P . As
a consequence we have that the function ϕ ◦ E only depends on t:

ϕ(E(x, t)) = cos
(
dg(E(x, t), P ) +

π

2

)
= sin(t).

Moreover, ϕ is an eigenfunction relative to the eigenvalue n, and thus its Hessian
must satisfy the equality ∇dϕ = −ϕg: if we look at this relation in the coordinates
given by the isometry E we get

E∗(∇dϕ) = − sin(t)dt⊗ dt+ cos(t)∇dt = − sin(t)E∗g.

As a consequence we obtain

∇dt = − tan(t)E∗(g|Γt
).
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This shows that the Hessian of the hypersurfaces V × {t} is proportional to the
metric, therefore that V×{t} is umbilical for any t ∈ [0, Tx). As a consequence, there
exists a function η such that the metric E∗g on V × [0, Tx) is equal to dt2 + η(t)2ĝ,
where ĝ is the metric g restricted to Γ0. But thanks to the previous equality on
the Hessian we know that η must satisfy

η′(t)

η(t)
= − tan(t), η(0) = 1.

Therefore we deduce that η(t) = cos(t). We have then proven that, locally, the
metric g is isometric to the warped product metric:

E∗g = dt2 + cos2(t)ĝ.

Step 2. We aim to show that for any x in Γ0 the time Tx must be equal to
π/2 or, in other words, that for any y ∈ V the geodesic γy(t) cannot intersect
the singular set before getting to a point at distance π from P . This will allow
us to extend the isometry E to the product of Γ0 and the interval [−π

2 ,
π
2 ]. We

suppose by contradiction that Tx is strictly smaller than π/2, and we prove that as
a consequence x0 must belong to the regular set. In order to do that, we are going
to compare the spherical geometry of V × [0, Tx) with the geometry of the tangent
cone at x0.

Observe that if we consider a minimizing geodesic from P to y0 and its product
γ with γy0

, this gives a minimizing geodesic from P to x0, because x0 is exactly
at distance Tx + π/2 from P . Lemma 3.7 ensures that γ can be continued to a
minimizing geodesic from P to N . Moreover, as we stated above, Corollary 3.2,
Lemma 3.6, and the induction assumption imply that the tangent cone at x0 is
isometric to R × C(Y ), where the first coordinate in this decomposition is the
Busemann function associated to a geodesic joining the vertex of the cone with two
antipodal points in Sx0

. If the diameter of Y is equal to π, C(Sx0
) is isometric to

Rm × C(Y0), where Y0 is an admissible stratified space with diameter strictly less
than π and m is between 1 and (n− 2).

The point y0 can belong either to the interior or to the boundary of V . Let us
assume that y0 belongs to the boundary of V : the other case will follow easily. Let
ε and δ be two positive real numbers, sufficiently small, with δ � ε. Let us consider
xδ = γy0

(T − δ). If we consider a ball B(x0, ε) centred at x0 of radius ε, we know
that the truncated tangent cone at x0 is the following pointed Gromov-Hausdorff
limit as ε goes to zero:

C[0,1)(Sx0
) = lim

ε→0
(B(x0, ε), ε

−2g, x0).

Moreover, the ball B(x0, ε) can be seen as the Gromov-Hausdorff limit of the ball
B(xδ, ε) as δ goes to zero. In fact, the Gromov-Hausdorff distance between the
two balls is less than or equal to the distance between xδ and x0, which eventually
tends to zero. We can write

C[0,1)(Sx0
) = lim

ε→0
lim
δ→0

(B(xδ, ε), ε
−2g, x0).

Since xδ belongs to the regular set and we have the isometry E, we know part of the
geometry of the ball B(xδ, ε). More precisely, for δ � ε consider a ball B(y0, ε− δ)
in Γ0 and denote by B+(y0, ε − δ) the part of this ball which intersects V : if ε is
small enough we can parametrize B+(y0, ε− δ) by

([0, ε− δ)× S
n−2
+ , ĝ = dρ2 + ρ2dσ+

n−2 + o(ρ2)),
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where S
n−2
+ is the upper half sphere of dimension (n − 2). The image via E of

the product B+(y0, ε− δ)× (Tx − ε− δ, Tx − δ] is contained in B(xδ, ε), and it is
endowed of the metric

gδ = ds2 + cos2(T − δ + s)ĝ.

Observe that in case y0 belongs to the interior of V one can just consider the whole
ball of radius (ε− δ) around y0, which is included in V for ε and δ small enough.

Our goal is to study the limit as δ goes to zero of the product between
B+(y0, ε − δ) and the interval (Tx − ε − δ, Tx − δ] endowed with the metric gδ.
Then we rescale the metric by a factor ε−2 and pass to the limit as ε goes to zero.
This will give a subset of the tangent cone at x0 and will allow us to deduce further
information on its geometry. If we consider the interval (Tx−ε−δ, Tx−δ] is because
the isometry E is defined until Tx, we therefore have information on the metric only
in the regular part of W , which precedes the point x0.

As δ goes to zero, the metric gδ on [0, ε− δ)×B+
y0

converges in C∞ to the metric

ds2 + cos2(T + s)ĝ on [0, ε)× B
+
y0
. This limit is in particular a Gromov-Hausdorff

limit. If we consider the changes of coordinates s = εr and ρ = ετ for r, τ ∈ [0, 1),
it is easy to see that [0, ε)× B

+
y0

endowed with the rescaled metric ε−2g converges
in the Gromov-Hausdorff sense to

H = [0, 1)× [0, 1)× S
n−2
+ ,

endowed with the metric

dr2 + dτ2 + τ2dσ+
n−2.

As a consequence the tangent cone C[0,1)(Sx0
) includes a subset isometric to H.

Since the convergence is a pointed Gromov-Hausdorff convergence and preserves
the base point x0, a subset H0 isometric to the product R+×R+×S

n−2
+ is included

in C(Sx0
).

Recall that in X the variable r was chosen to be equal to s/ε, where s is the
distance between a point and x0 along the geodesic γy0

. There exists a limit for
γy0

in the tangent cone which is a minimizing geodesic γ0 in C(Sx0
) starting from

the vertex x0. Since γy0
can be continued until N , the minimizing limit geodesic γ0

is defined on the whole R and it connects the vertex x0 with two antipodal points
in Sx0

. As a consequence, in the splitting R × C(Y ) of the tangent cone C(Sx0
),

the first coordinate is the opposite of the Busemann function Bγ0
associated to γ0.

Now, when we look at r in this limit of s/ε as ε tends to zero, it is possible to show
that r on H0 coincides with −Bγ0

, that is:

r(x) = lim
t→+∞

(t− dC(Sx0
)(x, γ0(t))).

Indeed we have the following:

r(·) = lim
ε→0

s(·)
ε

= lim
ε→0

(
−Tx − s(·)− Tx

ε

)

= lim
ε→0

(
−dg(y0, γy0

(Tx − s(·)))− dg(y0, x0)

ε

)
.

Now observe that ε−1dg(y0, x0) tends to infinity and to the distance in the tangent
cone C(Sx0

) from the vertex x0. The geodesic γy0
converges to the limit geodesic

γ0, and therefore we get

r(·) = lim
t→+∞

−
(
dC(Sx0

)(·, γ0(t))− dC(Sx0
)(·, x0)

)
= lim

t→+∞
−

(
dC(Sx0

)(·, γ0(t))− t
)
.
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We have shown that r coincides with minus the Busemann function of the mini-
mizing geodesics γ0, and therefore we can extend it from H0

∼= R+ ×R+ × S
n−2
+ to

the whole tangent cone C(Sx0
). Moreover, recall that Bγ0

is onto on R, and so it
is the extension of r. Therefore, the tangent cone C(Sx0

) includes a subset which
is isometric to R× R+ × S

n−2
+ , which is isometric in turns to R+ × Rn−1 endowed

with the product metric. We also know that C(Sx0
) is isometric to Rm × C(Y0).

Then the previous discussion shows that m must be equal to (n− 1) and C(Y0) is
a stratified space of dimension 1 without boundary. The only possible choice for
C(Y0) is that it is a line R. Therefore we have proven that the tangent cone at x0

is isometric to Rn and that x0 must belong to the regular set of X.
As a consequence, for any point in V the flow of ∇f is defined on the interval

[0, π/2), and since the above discussion is independent of the choice of x in Γ0 we
can define the isometry E on the product Γ0 × [0, π/2):

E :
(
Γ0 ×

[
0,

π

2

)
, E∗g

)
→

(
f−1

([
0,

π

2

))
∩ Ω, g

)
,

E(x, t) = γx(t).

We can also extend E to the closed interval, as we did above, by defining

Ê
(
x,

π

2

)
= lim

t→π
2

E(x, t).

Observe that for each x in Γ0 the endpoint of γx is a point at distance π from P ,
but it is not necessarily the same point for all x in Γ0. But thanks to the fact that
E∗g is a warped product metric, the image of Γ0 × {π/2} via Ê consists of only
one point. In fact, consider a curve γ in Γ0 of length L with respect to g. For any
t ∈ [0, π/2) the length of γ × {t} in Γ0 × [0, π/2] endowed with the metric E∗g is
equal to cos2(t)L, and since E is an isometry we have

Lg(Ê(γ, t)) = cos2(t)Lg(γ) ≤ Lg(γ).

As a consequence, when t is equal to π/2, the length of the image via Ê of γ×{π/2}
is equal to zero, which means that Ê(Γ0, π/2) has diameter equal to zero, and
therefore it consists of only one point at distance π from P . We denote again this
point as N .

We have obtained an isometry Ê:

Ê :
(
Γ0 ×

[
0,

π

2

]
, E∗g

)
→

((
f−1

([
0,

π

2

])
∩ Ω

)
∪ {N}, g

)
.

The same argument can be repeated for negative values of t in order to show
that for any x in Γ0 the geodesic flow of ∇f exists for t ∈

(
−π

2 , 0
]
and does not

intersect the singular set between x and P . Then we have an isometry Ê:

Ê :
(
Γ0 ×

[
−π

2
,
π

2

]
, E∗g = dt2 + cos2(t)ĝ

)
→ (Ω ∪ {P,N}, g).

Step 3. We finally prove that the metric completion of Γ0 with respect to the
metric E∗g = dt2 + cos2(t)ĝ is a stratified space. This is done by studying the
geometry of the tangent cone at P . Consider ε > 0 and a neighbourhood B(P, ε)

of P . The isometry Ê restricts to an isometry between[
−π

2
,−π

2
+ ε

)
× Γ0 → (B(P, ε) ∩ Ω) ∪ {P} = B(p, ε)reg ∪ {P}.

If we consider the pointed Gromov-Hausdorff limit of (B(P, ε)reg∪{P}, P, ε−2g) for
ε going to zero, the definition of the tangent cone and the fact that the convergence
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of the metrics is uniform in the Lipschitz topology ensure that we obtain the cone
(C(Sreg

P ), ds2 + s2hP ), where (SP , hP ) is the tangent sphere at P .
We can consider as well the limit for ε going to zero of

(15)
([

−π

2
,−π

2
+ ε

)
× Γ0, Ê

−1(P ), ε−2(dt2 + cos2(t)ĝ)
)
.

We change the variable t = −π/2 + sε and by taking the Taylor expansion of sine
in 0 we obtain

ε−2(ε2ds2 + sin2(εs)ĝ) → ds2 + s2ĝ as ε → 0.

Therefore the pointed Gromov-Hausdorff limit of (15) as ε goes to zero is the cone
(C(Γ0), 0, ds

2 + s2ĝ), where we denoted by 0 its vertex. Moreover, the convergence
of the metrics is uniform in C∞ on the regular sets. But we know that the tangent
cone is unique, and therefore the cones C(Γ0) and C(Sreg

P ) with the respective
metrics must be isometric. Moreover, the convergence is in the Gromov-Hausdorff
sense for pointed length spaces and then preserves the base point. Therefore the
isometry must also send the vertex of C(Γ0), which is the limit of Ê−1(P ), to the
one of C(Sreg

P ), which is the limit of P . As a consequence, since both s and r are
the distances from the vertices of the cones, each slice {t}×Γ0 in C(Γ0) is isometric
to the slice {t}×Sreg

P . We have then shown that Γ0 is isometric to the regular part

of the tangent sphere Sreg

P . Hence if we take the metric completion X̂ of Γ0 with

respect to g, X̂ is an admissible stratified space of dimension (n − 1) isometric to

the tangent sphere SP at P . We can extend Ê to X̂ and get

Ê :
[
−π

2
,
π

2

]
× X̂ → X.

The image of Ê is a compact set in X including the regular set Ω without at most
two points. This latter is dense in X; therefore the image of Ê coincides with the
whole X, Ê is surjective, and it is the isometry we were looking for. �

4. A relation with the Yamabe problem

We briefly recall here some of the basic notions about the Yamabe problem.
Given a compact smooth Riemannian manifold (Mn, g) of dimension n ≥ 3, we
define the conformal class of g as

[g] =
{
g̃ = e2ug, u ∈ C∞(M)

}
.

The question posed by H. Yamabe in 1960 was the following: does a metric with
constant scalar curvature exist within the conformal class of a given Riemann-
ian metric? The answer has been proven to be positive thanks to the work of
N. Trudinger, T. Aubin, and R. Schoen.

There is a classical variational formulation for the Yamabe problem. Consider
the Hilbert-Einstein functional:

Q(g̃) =

∫
M

anSg̃dvg̃

Volg̃(M)
n−2
n

, an =
n− 2

4(n− 1)
,

and its infimum, the Yamabe constant:

Y (M, [g]) = inf
g̃∈[g]

Q(g̃).
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If there exists a conformal metric g̃ attaining the Yamabe constant (and thus a
critical point of the Hilbert-Einstein functional in the conformal class), then g̃ has
constant scalar curvature and it is called a Yamabe metric. Observe that a metric
of constant scalar curvature is not necessarily a Yamabe metric, since it is not
necessarily minimizing. Nevertheless, Obata proved in [20] that if Mn carries an
Einstein metric g which satisfies Ricg = (n − 1)g, then g is a Yamabe metric.
Furthermore if there exists another conformal metric g̃ in the conformal class [g],
with constant scalar curvature and not homothetic to g, then g̃ is an Einstein
metric as well, and (Mn, g) is isometric to the canonical sphere. The proof of this
result is based on the existence of a conformal vector field X on (Mn, g). For other
formulations of the proof, see also Theorem IV.2 in [9] and Proposition 1.4 in [21].

In [1] the authors studied the Yamabe problem on stratified spaces with the
same variational approach as above, provided that the scalar curvature satisfies the
appropriate integrability condition. They gave an existence result for a Yamabe
metric which depends on a conformal invariant, called a local Yamabe constant. In
[16] we computed this latter under a geometric assumption on the links. We prove
here a result analogous to the one of [20] for admissible stratified spaces:

Theorem 4.1. Let (Xn, g) be an admissible stratified space with Einstein metric.
Then g is a Yamabe metric. If there exists g̃ in the conformal class of g, not
homothetic to g, with constant scalar curvature, then g̃ is an Einstein metric as
well and (Xn, g) is isometric to the spherical suspension of an Einstein admissible
stratified space of dimension (n− 1).

Observe that we have proven in [16] that the Sobolev inequality (3) implies a
lower bound for the Yamabe constant of an admissible stratified space, which is
attained when the metric is Einstein:

Proposition 4.2. Let (Xn, g) be an admissible stratified space. Then its Yamabe
constant satisfies

Y (X, [g]) ≥ n(n− 2)

4
Volg(X)

2
n ,

with equality if g is an Einstein metric.

In fact, it suffices to compute Q(g) for an Einstein metric to get exactly the
right-hand side in the previous inequality. Therefore, we have already proven the
first part of Theorem 4.1; that is, an Einstein metric on an admissible stratified
space is a Yamabe metric. We give here an alternative proof under the assumption
that a non-trivial Yamabe minimizer exists; that means, there exists a non-trivial
solution u ∈ W 1,2(X) ∩ L∞(X) to the Yamabe equation:

Δgu+ anSgu = anSg̃u
n+2
n−2 , an =

n− 2

4(n− 1)
.

The transformation laws for the scalar curvature under conformal change (see
Chapter 1, section J in [7]) imply that for a solution u to the previous equation, the

metric g̃ = u
4

n−2 g is a Yamabe metric. Observe that assuming the existence of g̃ in
the conformal class of g, not homothetic to g and with constant scalar curvature,
is equivalent to saying that there exists a non-trivial solution u to the Yamabe

equation and that g̃ can be written as u
4

n−2 g. Moreover, we can assume without
loss of generality that the scalar curvature Sg̃ of g̃ is equal to Sg.
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We divide the proof of Theorem 4.1 into two steps: first we prove that if g̃ is a
metric conformal to g, not homothetic to g, with constant scalar curvature, then
g̃ is an Einstein metric. This implies the existence of a conformal vector field on
an admissible stratified space. We partially follow an argument of J. Viaclovsky
(see the proof of Theorem 1.3 in [23]). We then give the alternative proof of the
fact that an Einstein metric is a Yamabe metric: the main interest of the proof is
that it shows the existence of an eigenfunction relative to the eigenvalue n. As a
consequence we can conclude by applying the rigidity result of Theorem 3.1.

Theorem 4.3. Let (X, g) be an admissible Einstein stratified space of dimension
n. Assume that there exists a metric g̃ in the conformal class of g, not homothetic
to g, with constant scalar curvature. Then g̃ is an Einstein metric and there exists
a function φ satisfying

(16) ∇dφ = −Δgφ

n
g.

In particular, the vector field X = dφ is a conformal vector field such that LXg =
−2φg.

Before proving this theorem we recall some results contained in [16] and in [17]
in order to deduce some further regularity on a Yamabe minimizer: we are going
to show that if u solves the Yamabe equation, then it belongs to the Sobolev space
W 2,2(X) and its gradient is bounded.

Proposition 4.4. Let (Xn, g) be a stratified space. Let F be a positive locally
Lipschitz function and u ∈ W 1,2(X) ∩ L∞(X) be a non-negative solution to the
equation Δgu = F (u). Assume that there exists a positive constant c such that

(17) Δg|du| ≤ c|du|.
If for any x in X the first non-zero eigenvalue of the Laplacian on the tangent
sphere λ1(Sx) is larger than or equal to (n − 1), then for any ε > 0 the following
control of the gradient away from an ε-tubular neighbourhood of the singular set Σ
holds:

(18) ‖du‖L∞(X\Σε) ≤ C
√
| ln ε|,

where C is a positive constant not depending on ε.

This proposition is a consequence of Theorem A in [2] and of Moser iteration
technique (see the proof of Proposition 1.15 in [17]). On an admissible stratified
space (Xn, g), the condition (17) is always satisfied thanks to the lower bound
on the Ricci tensor and the Bochner-Lichnerowicz formula (see Proposition 2.3 in
[17]). Furthermore, a Ricci lower bound on (Xn, g) implies an analogous Ricci lower
bound on each tangent sphere (Remark 1.2). Therefore, thanks to the Lichnerow-
icz singular theorem, the assumption on λ1(Sx) holds for any x in an admissible
stratified space. We can then reformulate the previous proposition as follows:

Proposition 4.5. Let (Xn, g) be an admissible stratified space and let u, F be as in
the previous statement. Then for any ε > 0 the estimate (18) holds on the gradient
|∇u|.

Under the assumptions of Theorem 4.3, there exists a metric g̃ = u
4

n−2 g with
constant scalar curvature Sg̃ equal to Sg, where u is a non-negative solution to

Δgu+ anSgu = anSgu
n+2
n−2 .
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Since Sg is equal to a constant, the function

F (x) = (x
4

n−2 − 1)anSgx

is a locally Lipschitz function, and then we can apply Proposition 4.5 to the Yam-
abe minimizer u. Furthermore, we can deduce that the gradient of u belongs
to W 1,2(X) ∩ L∞(X): this is done by means of an appropriate family of cut-off
functions and with an argument that we developed in the proof of the singular
Lichnerowicz theorem.

Lemma 4.6. Let (X, g) be an admissible stratified space of dimension n with Ein-
stein metric. Then the gradient |∇u| of a solution u to the Yamabe equation belongs
to L∞(X) ∩W 1,2(X).

We briefly sketch the key points of the proof. The details can be found in the
proof of Theorem 2.5 in [17]. Let u ∈ W 1,2(X) ∩ L∞(X) be a Yamabe minimizer
and let F be as above. On the regular set the Bochner-Lichnerowicz formula holds,
and therefore we have

∇∗∇du+Ricg(du) = F ′(u)du on Ω.

Since u is bounded and F is locally Lipschitz, there exists a positive constant c such
that |F ′(u)| ≤ c. Moreover, thanks to the fact that Ricg = (n− 1)g there exists a
positive constant c1 such that

1

2
Δg(|∇u|2) = (∇∗∇du, du)− |∇du|2 ≤ c1|∇u|2 − |∇du|2.

In the proof of the singular Lichnerowicz theorem in [16] we defined a family of cut-
off functions ρε, 0 ≤ ρε ≤ 1, being equal to one outside a tubular neighbourhood
Σ2ε of the singular set, vanishing on Σε. Furthermore, if the estimate (18) holds
for u, then the cut-off functions ρε are constructed in such a way that they satisfy

lim
ε→0

∫
X

(∇u,∇ρε)dvg = 0, lim
ε→0

∫
X

Δg(ρε)|∇u|2dvg = 0.

If we multiply the previous inequality by ρε and integrate by parts we obtain

(19)
1

2

∫
X

(Δgρε)|∇u|2dvg ≤ c1

∫
X

ρε|∇u|2dvg −
∫
X

ρε|∇du|2dvg .

The left-hand side of (19) tends to zero as ε tends to zero: as a consequence, the
norm in L2(X) of ∇du is bounded by the one of |∇u|, which is finite. This means
that ∇|∇u| belongs to L2(X), and |∇u| to W 1,2(X).

We also know that on the regular set Ω the inequality Δg|∇u| ≤ c1|∇u| is
satisfied. One can prove that this implies the weak inequality Δg|∇u| ≤ c1|∇u| on
the whole X, again by integrating by parts and by using the cut-off functions ρε.
Finally, a positive function f in W 1,2(X) satisfying the weak inequality Δgf ≤ c1f
on X belongs to L∞(X), thanks to the Moser iteration technique (see Proposition
1.8 in [1]). Therefore u belongs to W 2,2(X) and its gradient |∇u| is bounded.

We are now in position to prove Theorem 4.3.
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Proof of Theorem 4.3. By assumption, there exists a conformal metric g̃ ∈ [g] with
constant scalar curvature: we can assume without loss of generality that Sg̃ = Sg =
n(n − 1). Since g̃ is not homothetic to g, there exists a function u ∈ W 1,2(X) ∩
L∞(X) solving the Yamabe equation:

Δgu+
n(n− 2)

4
u =

n(n− 2)

4
u

n+2
n−2

and such that g̃ = u
4

n−2 g. In order to simplify the transformation formulas under

conformal change, we can define φ = u− 2
n−2 , so that g̃ = φ−2g. We know from

Theorem 1.12 in [1] that u, and thus φ, is positive and bounded. By the previous
discussion we also have that the gradient of u, and therefore the gradient of φ,
belongs to L∞(X).

Consider the traceless Ricci tensor Eg̃ and recall that g̃ is an Einstein metric if
and only if Eg̃ vanishes; our goal is to show that this is the case. The transformation
law for the traceless Ricci tensor under a conformal change (see for example [7])
gives us the following formula for Eg̃:

Eg̃ = Eg + (n− 2)φ−1
(
∇2φ+

Δgφ

n
g
)
,

where the covariant derivatives are taken with respect to g. Since by assumption g
is an Einstein metric, Eg = 0. Then consider the following integral:

Iε =

∫
X

ρεφ|Eg̃|2gdvg,

where ρε is chosen as in the proof of Lemma 4.6. If we show that Iε tends to zero
as ε goes to zero, then the norm of Eg̃ must vanish: as a consequence we will obtain
that g̃ is an Einstein metric and that its conformal factor φ satisfies (16). Let us
rewrite Iε in the appropriate form:

Iε =

∫
X

ρεφ

(
Eg̃, (n− 2)φ−1

(
∇dφ+

Δgφ

n
g

))
g

dvg

= (n− 2)

∫
X

ρε

(
Eg̃,∇dφ+

Δgφ

n
g

)
g

dvg

= (n− 2)

∫
X

ρε (Eg̃,∇dφ)g dvg.

Then we integrate by parts:∫
X

ρε (Eg̃,∇dφ)g dvg =

∫
X

(Eij
g̃ ∇jρε∇iφ+ ρε∇jE

ij
g̃ ∇iφ)dvg.

Since the scalar curvature of g̃ is constant, by the Bianchi identity (see also [9]),
which holds on the regular set of X, the second term of this integral is equal to
zero. The first one leads to

(20) Iε = (n− 2)2
∫
X

φ−1

(
∇dφ(∇ρε,∇φ) +

Δgφ

n
(∇ρε,∇φ)g

)
dvg.

Observe that φ−1 is positive and bounded, because the solution u to the Yamabe
equation is positive and bounded thanks to Theorem 1.12 in [1]. We claim that the
Laplacian of φ is bounded as well. In fact, if we denote p = − 2

n−2 we have

Δgφ = pup−1

(
Δgu− (p− 1)

|∇u|2
u

)
.
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As we recalled above, the function u is bounded and positive. Then its Laplacian
Δgu is bounded, since it is equal to

Δgu =
n(n− 2)

4
u(u

4
n−2 − 1).

Moreover, by the previous lemma the gradient |∇u| belongs to L∞(X), so that the
same holds for Δgφ. Therefore, if we consider the last term in (20), we know that
ρε is chosen in such a way that the integral of (∇ρε,∇u) goes to zero as ε tends to
zero.

As for the first term in (20), we can integrate by parts and obtain∫
X

∇dφ(∇ρε,∇φ)dvg =
1

2

∫
X

ρεΔg|∇φ|2dvg =
1

2

∫
X

(Δgρε)|∇φ|2dvg .

The cut-off functions ρε are chosen in such a way that this last term tends to zero
as ε goes to zero as well.

As a consequence, we have shown that Iε tends to zero as ε goes to zero. There-
fore we obtain that the norm of the traceless Ricci tensor Eg̃ is equal to zero, the
metric g̃ is an Einstein metric, and the function φ satisfies (16), as we wished. �

A scalar function solving the equation (16) is called in the literature a concircular
scalar field. The existence of a concircular scalar field or of a conformal vector field
on a compact, or complete, smooth manifold can lead to various consequences. For
example, Y. Tashiro in [22] classified complete manifolds possessing a concircular
scalar field. See also sections 2 and 3 of [18] for a brief but complete presentation
of some known results about the subject.

In our case, the previous theorem leads to the following:

Corollary 4.7. Let (X, g) be an admissible Einstein stratified space of dimension
n admitting a Yamabe minimizer

g̃ = φ−2g.

Assume that φ is not a constant function. Then the Einstein metric g attains the
Yamabe constant, which is consequently equal to

Y (X, [g]) =
n(n− 2)

4
Volg(X)

2
n .

Proof. We have proven in the previous theorem that any metric with constant scalar
curvature in the conformal class of g is an Einstein metric and it is determined by
a positive solution of (16). Up to multiplying by a constant, a positive solution of
(16) is given by

φt = (1− t)φ+ t

for some t ∈ [0, 1). Let us denote by

ut = φ
−n−2

2
t

the corresponding solution to the Yamabe equation. The metric gt = φ−2
t g is still

an Einstein metric in the conformal class of g and has the same scalar curvature as
g.

We want to show that the volume of X with respect to the metric gt is constant
in t: this means that it is constant among the metrics with constant scalar curvature



AN OBATA SINGULAR THEOREM FOR STRATIFIED SPACES 4173

equal to n(n− 1). In this way, the ratio

Q(g̃) =

an

∫
X

Scalg̃dVg̃

Volg̃(X)1−
2
n

does not decrease in the set of conformal metrics with constant scalar curvature.
As a consequence, the Yamabe constant of (X, g) will be attained by g and it is
equal to

Y (X, [g]) =
n(n− 2)

4
Volg(X)

2
n .

The volume of X with respect to gt is given by the formula

Volgt(X) =

∫
X

u
2n

n−2

t dvg =

∫
X

dvgt ,

where we denote with dvgt the volume element with respect to gt. If we differentiate
with respect to t we get

(21)
d

dt
Volgt(X) =

2n

n− 2

∫
X

u
n+2
n−2

t u̇tdvg =
2n

n− 2

∫
X

u̇t

ut
dvgt .

We are going to show that this integral is equal to zero. If we set

vh =
ut+h

ut
,

gh = v
4

n−2

h gt = u
4

n−2

t+h g,

then vh satisfies the Yamabe equation with respect to gt:

Δgtvh +
n(n− 2)

4
vh =

n(n− 2)

4
v

n+2
n−2

h .

By deriving this equality with respect to h we obtain

Δgt v̇h +
n(n− 2)

4
v̇h =

n(n+ 2)

4
v

4
n−2

h v̇h,

and when h = 0 we have as a consequence Δgt v̇0 = nv̇0; that is, v0 is an eigenfunc-
tion relative to the first eigenvalue n of Δgt . Any eigenfunction relative to the first
eigenvalue has mean equal to zero over X, so that we have∫

X

v̇0dVgt = 0.

But by definition v̇0 is equal to
u̇t

ut
. Recalling (21) we have obtained that the volume

of X is constant with respect to t: this implies that the Einstein metric g attains
the Yamabe constant, as we wished. �

Corollary 4.8. Let (Xn, g) be an Einstein admissible stratified space. If there ex-
ists g̃ in the conformal class of g, not homothetic to g, with constant scalar curva-
ture, then (Xn, g) is isometric to the spherical suspension of an Einstein admissible
stratified space of dimension (n− 1).

Proof. The proof of the previous corollary shows that for any t ∈ [0, 1) there exists
an eigenfunction v̇0 = u̇t

ut
of Δgt associated to the eigenvalue n. We can use the same

argument by replacing g̃ by g = ψ−2g̃, where ψ = φ−1. Indeed, for any t ∈ [0, 1)
we define ψt = (1 − t)ψ + t and the metric g̃t = ψ−2

t g̃, which is Einstein and has
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the same constant scalar curvature as g̃. Proceeding as above, for any t ∈ [0, 1) we
find an eigenfunction ϕt of Δg̃t associated to the eigenvalue n. In particular, for
t = 0 we have g̃0 = ψ−2g̃ = g, and, as a consequence, there exists an eigenfunction
of Δg associated to the eigenvalue n. Therefore we can apply Theorem 3.1 in order

to deduce that (Xn, g) is isometric to the spherical suspension ([0, π]× X̂n−1, dt2+

sin2(t)ĝ) of an Einstein admissible stratified space (X̂n−1, ĝ). �

If we collect Theorem 4.3 and Corollaries 4.7 and 4.8, we have proven Theorem
4.1.
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