Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On tensor products of positive representations of split real quantum Borel subalgebra $ \mathcal{U}_{q\widetilde{q}}(\mathfrak{b}_\mathbb{R})$


Author: Ivan C. H. Ip
Journal: Trans. Amer. Math. Soc. 370 (2018), 4177-4200
MSC (2010): Primary 81R50, 22D25
DOI: https://doi.org/10.1090/tran/7110
Published electronically: December 27, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the positive representations $ \mathcal {P}_\lambda $ of split real quantum groups $ \mathcal {U}_{q\widetilde {q}}(\mathfrak{g}_\mathbb{R})$ restricted to the Borel subalgebra $ \mathcal {U}_{q\widetilde {q}}(\mathfrak{b}_\mathbb{R})$. We prove that the restriction is independent of the parameter $ \lambda $. Furthermore, we prove that it can be constructed from the GNS-representation of the multiplier Hopf algebra $ \mathcal {U}_{q\widetilde {q}}^{C^*}(\mathfrak{b}_\mathbb{R})$ defined earlier, which allows us to decompose their tensor product using the theory of the ``multiplicative unitary''. In particular, the quantum mutation operator can be constructed from the multiplicity module, which will be an essential ingredient in the construction of quantum higher Teichmüller theory from the perspective of representation theory, generalizing earlier work by Frenkel-Kim.


References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors, Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math. (2) 74 (1961), 171-191. MR 0204641, https://doi.org/10.2307/1970309
  • [2] Saad Baaj and Georges Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de $ C^*$-algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, 425-488 (French, with English summary). MR 1235438
  • [3] A. G. Bytsko and J. Teschner, R-operator, co-product and Haar-measure for the modular double of $ U_q(\mathfrak{s}\mathfrak{l}(2,\mathbb{R}))$, Comm. Math. Phys. 240 (2003), no. 1-2, 171-196. MR 2004985, https://doi.org/10.1007/s00220-003-0894-5
  • [4] V. V. Fok and L. O. Chekhov, Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999), no. 3, 511-528 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 120 (1999), no. 3, 1245-1259. MR 1737362, https://doi.org/10.1007/BF02557246
  • [5] V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060-1064 (Russian). MR 802128
  • [6] P. Etingof, V. Ginzburg, N. Guay, D. Hernandez, and Al Savage, Twenty-five years of representation theory of quantum groups, final reports, BIRS, Banff (2011).
  • [7] L. D. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995), no. 3, 249-254. MR 1345554, https://doi.org/10.1007/BF01872779
  • [8] Ludwig Faddeev, Modular double of a quantum group, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 149-156. MR 1805888
  • [9] L. D. Faddeev and R. M. Kashaev, Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), no. 5, 427-434. MR 1264393, https://doi.org/10.1142/S0217732394000447
  • [10] V. V. Fock, Dual Teichmüller spaces, arXiv:dg-ga/9702018 (1997).
  • [11] Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211. MR 2233852, https://doi.org/10.1007/s10240-006-0039-4
  • [12] V. V. Fock and A. B. Goncharov, The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2009), no. 2, 223-286. MR 2470108, https://doi.org/10.1007/s00222-008-0149-3
  • [13] Igor B. Frenkel and Ivan C. H. Ip, Positive representations of split real quantum groups and future perspectives, Int. Math. Res. Not. IMRN 8 (2014), 2126-2164. MR 3194015
  • [14] Igor B. Frenkel and Hyun Kyu Kim, Quantum Teichmüller space from the quantum plane, Duke Math. J. 161 (2012), no. 2, 305-366. MR 2876932, https://doi.org/10.1215/00127094-1507390
  • [15] V. A. Fateev and A. V. Litvinov, Correlation functions in conformal Toda field theory. I, J. High Energy Phys. 11 (2007), 002, 54. MR 2362147, https://doi.org/10.1088/1126-6708/2007/11/002
  • [16] Ivan Chi-Ho Ip, Representation of the quantum plane, its quantum double, and harmonic analysis on $ GL_q^+(2,\mathbb{R})$, Selecta Math. (N.S.) 19 (2013), no. 4, 987-1082. MR 3131494, https://doi.org/10.1007/s00029-012-0112-4
  • [17] Ivan Chi-Ho Ip, Positive representations and harmonic analysis of split real quantum groups, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Yale University, 2012. MR 3068031
  • [18] Ivan C. H. Ip, Positive representations of non-simply-laced split real quantum groups, J. Algebra 425 (2015), 245-276. MR 3295985, https://doi.org/10.1016/j.jalgebra.2014.11.019
  • [19] Ivan Chi-Ho Ip, Positive representations of split real quantum groups: the universal $ R$ operator, Int. Math. Res. Not. IMRN 1 (2015), 240-287. MR 3340301
  • [20] I. Ip, Positive representations, multiplier Hopf algebra, and continuous canonical basis, String theory, integrable systems and representation theory, RIMS Kokyuroku Bessatsu B62 (2017), 71-86.
  • [21] I. Ip, On tensor products of positive representations of split real quantum Borel subalgebra $ \mathcal {U}_{q\widetilde {q}}(\mathfrak{b}_\mathbb{R})$, preprint, arXiv:1405.4786v2 (2014).
  • [22] Michio Jimbo, A $ q$-difference analogue of $ U({\mathfrak{g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63-69. MR 797001, https://doi.org/10.1007/BF00704588
  • [23] R. M. Kashaev, The Heisenberg double and the pentagon relation, Algebra i Analiz 8 (1996), no. 4, 63-74; English transl., St. Petersburg Math. J. 8 (1997), no. 4, 585-592. MR 1418255
  • [24] R. M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998), no. 2, 105-115. MR 1607296, https://doi.org/10.1023/A:1007460128279
  • [25] Johan Kustermans and Stefaan Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 6, 837-934 (English, with English and French summaries). MR 1832993, https://doi.org/10.1016/S0012-9593(00)01055-7
  • [26] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237-249. MR 954661, https://doi.org/10.1016/0001-8708(88)90056-4
  • [27] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498. MR 1035415, https://doi.org/10.2307/1990961
  • [28] I. Nidaiev and J. Teschner, On the relation between the modular double of $ \mathcal {U}_q(\mathfrak{sl}(2,\mathbb{R}))$ and the quantum Teichmüller theory, arXiv:1302.3454 (2013).
  • [29] B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, arXiv: hep-th/9911110 (1999).
  • [30] B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of $ \mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$, Comm. Math. Phys. 224 (2001), no. 3, 613-655. MR 1871903, https://doi.org/10.1007/PL00005590
  • [31] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1-26. MR 1036112
  • [32] N. Reshetikhin and V. G. Turaev, Invariants of $ 3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547-597. MR 1091619, https://doi.org/10.1007/BF01239527
  • [33] Takayuki Oda, An explicit integral representation of Whittaker functions for the representations of the discrete series--the case of $ {\rm SU}(2,2)$, Research into automorphic forms and $ L$ functions (Japanese) (Kyoto, 1992), Sūrikaisekikenkyūsho Kōkyūroku 843 (1993), 45-63. MR 1296709
  • [34] J. Teschner, Quantization of moduli spaces of flat connections and Liouville theory, arXiv:1405.0359
  • [35] Thomas Timmermann, An invitation to quantum groups and duality, From Hopf algebras to multiplicative unitaries and beyond, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2397671
  • [36] A. Van Daele, Multiplier Hopf algebras, Trans. Amer. Math. Soc. 342 (1994), no. 2, 917-932. MR 1220906, https://doi.org/10.2307/2154659
  • [37] Alexandre Yu. Volkov, Noncommutative hypergeometry, Comm. Math. Phys. 258 (2005), no. 2, 257-273. MR 2171695, https://doi.org/10.1007/s00220-005-1342-5
  • [38] Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351-399. MR 990772
  • [39] Niclas Wyllard, $ A_{N-1}$ conformal Toda field theory correlation functions from conformal $ \mathcal{N}=2$ $ {\rm SU}(N)$ quiver gauge theories, J. High Energy Phys. 11 (2009), 002, 22. MR 2628905, https://doi.org/10.1088/1126-6708/2009/11/002

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 81R50, 22D25

Retrieve articles in all journals with MSC (2010): 81R50, 22D25


Additional Information

Ivan C. H. Ip
Affiliation: Center for the Promotion of Interdisciplinary Education and Research Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
Email: ivan.ip@math.kyoto-u.ac.jp

DOI: https://doi.org/10.1090/tran/7110
Keywords: Positive representations, split real quantum groups, modular double, GNS-representation, higher Teichm\"uller theory, quantum dilogarithm
Received by editor(s): May 29, 2014
Received by editor(s) in revised form: February 19, 2016, and October 26, 2016
Published electronically: December 27, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society