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QUANTITATIVE VOLUME SPACE FORM RIGIDITY

UNDER LOWER RICCI CURVATURE BOUND II

LINA CHEN, XIAOCHUN RONG, AND SHICHENG XU

Abstract. This is the second paper of two in a series under the same title;
both study the quantitative volume space form rigidity conjecture: a closed
n-manifold of Ricci curvature at least (n− 1)H, H = ±1 or 0 is diffeomorphic
to an H-space form if for every ball of definite size on M , the lifting ball on the
Riemannian universal covering space of the ball achieves an almost maximal
volume, provided the diameter of M is bounded for H �= 1.

In the first paper, we verified the conjecture for the case that the Riemann-
ian universal covering space M̃ is not collapsed. In the present paper, we will
verify this conjecture for the case that Ricci curvature is also bounded above,
while the above non-collapsing condition on M̃ is not required.

Introduction

This is the second paper of two in a series under the same title, concerning the
quantitative version of the following volume space form rigidity.

Let M be a compact n-manifold of Ricci curvature bounded below by (n−1)H, a

constant. For p ∈ M and r > 0, the volume of the r-ball at p, vol(Br(p)) ≤ vol(BH
r ),

and “=” if and only if the open ball Br(p) is isometric to BH
r (Bishop volume

comparison), which denotes the r-ball in the n-dimensional simply connected H-
space form.

The following statement is a consequence of the Bishop volume comparison.

Theorem 0.1 (Volume space form rigidity). Let ρ > 0. If a compact n-manifold
M satisfies

RicM ≥ (n− 1)H,
vol(Bρ(x

∗))

vol(BH
ρ )

= 1 ∀x ∈ M,

then M is isometric to a space form of constant curvature H, where π∗ : (B̃ρ(x), x
∗)

→ (Bρ(x), x) is the (incomplete) Riemannian universal covering space.

All H-space forms satisfy the local volume condition in Theorem 0.1. On the
other hand, given any ρ, ε > 0 and H = ±1 or 0, there is an H-space form which
contains a point x such that vol(Bρ(x)) < ε, i.e., Bρ(x) is collapsed.

In [CRX], we proposed the following quantitative version of Theorem 0.1.
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Conjecture 0.2 (Quantitative volume space form rigidity). Given n, ρ, d > 0 and
H = ±1 or 0, there exists a constant ε(n, ρ, d) > 0 such that for any 0 < ε <
ε(n, ρ, d), if a compact n-manifold M satisfies

RicM ≥ (n− 1)H, d ≥ diam(M),
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε ∀x ∈ M,

then M is diffeomorphic and Ψ(ε|n, ρ, d)-close in the Gromov-Hausdorff topology to
a space form of constant curvature H, where d = π or 1 when H = 1 or 0 respec-
tively, where Ψ(ε|n, ρ, d) denotes a non-negative function such that Ψ(ε|n, ρ, d) → 0
as ε → 0 while n, ρ and d are fixed.

Note that Conjecture 0.2 for H �= 1 does not hold if one removes a bound on
diameter (see [CRX]). Furthermore, for H �= −1, M in Conjecture 0.2 may have
arbitrarily small volume, i.e., M is collapsed.

Conjecture 0.2 implies the Riemannian universal cover is not collapsed; for H =
−1, because any compact hyperbolic n-manifold has a definite positive volume (cf.
[He]), by the volume convergence ([Col97]), Conjecture 0.2 implies that M is not
collapsed. Observe that a collapsed ball on an H-space form (H �= −1) has a torus
bundle structure (cf. [CFG92]), again by the volume convergence one sees that
Conjecture 0.2 implies the following:

Conjecture 0.3 (Non-collapsing on Riemannian universal cover). Given n, ρ, d >
0, H = ±1 or 0, there exist constants, ε(n, ρ, d), v(n, ρ, d) > 0, such that if a
compact n-manifold M satisfies

RicM ≥ (n− 1)H, d ≥ diam(M),
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε(n, ρ, d), ∀x ∈ M,

then for some q̃ in the Riemannian universal cover M̃ , vol(B1(q̃)) ≥ v(n, ρ, d) > 0.

In [CRX], among other things we proved that Conjecture 0.3 implies Conjec-
ture 0.2. Precisely, the following theorem is a combination of Theorem A, B and C
in [CRX] (corresponding to H = 1,−1 and 0).

Theorem 0.4. Given n, ρ, d, v > 0 and H = ±1 or 0, there exists a constant
ε(n, ρ, d, v) > 0 such that for any 0 < ε < ε(n, ρ, d, v), if a compact n-manifold M

satisfies (for some q̃ ∈ M̃),

RicM ≥ (n− 1)H, d ≥ diam(M), vol(B1(q̃)) ≥ v,
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε ∀x ∈ M,

then M is diffeomorphic and Ψ(ε|n, ρ, d, v)-close to a space form of constant cur-
vature H.

For H = 1, Theorem 0.4 generalizes the differential sphere theorem in [CC97]
(cf. [Pe], [Col96]; see Remark 0.7 in [CRX]), and for H = −1, Theorem 0.4 is
equivalent to a quantitative version of the maximal volume entropy rigidity in [LW]
(see Theorem D, Corollary 0.6 in [CRX]).

In the present paper, we will verify Conjecture 0.2 under an additional assump-
tion: Ricci curvature is also bounded above (Theorem D). This regularity condition
allows us to find a nearby metric of almost constant sectional curvature (Theorem B)
by the smoothing method ([DWY]) via renormalized Ricci flows in the sense of
[TW]. As an application we verify Conjecture 0.3 in this case (Theorem C).
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We now begin to state the main results in this paper.
The first result says that under bounded Ricci curvature, the almost maximality

of volume on local coverings measures how far the metric is from being an H-
Einstein metric (compare to Remark 0.5).

Theorem A. Given n, ρ,Λ > 0, H = ±1 and 0, there exists a constant, ε(n, ρ,Λ) >
0, such that for 0 < ε < ε(n, ρ,Λ), if a compact Riemannian n-manifold (M, g)
satisfies

Λ ≥ Ric(g) ≥ (n− 1)H,
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε ∀x ∈ M,

then g is almost Einstein in the Lp-sense for any p ≥ 1, i.e.,

−
∫
M

|Ric(g)− (n− 1)Hg|p < Ψ(ε|n, ρ,Λ, p).

The additional upper bound on Ricci curvature implies a uniform C1,α-harmonic
radius on B ρ

2
(x∗) (Lemma 1.3), and a local version of Theorem A on B ρ

2
(x∗)

(Lemma 1.4). By a packing argument via relative volume comparison, we obtain
Theorem A.

Consider the Ricci flow on (M, g); following [DWY] we see that bounded Ricci
curvature and a uniform C1,α-harmonic radius on B ρ

2
(x∗) (independent of x) imply

that the Ricci flow on M exists for a definite time (Theorem 1.5), and that the
renormalized Ricci flow ([TW]) preserves the almost Einstein property in the Lp-
sense (Lemma 1.7). Using the two properties, we will prove the following strong
smoothing result.

Theorem B (Smoothing to almost constant curvature). Given n, ρ,Λ, δ > 0 and
H = ±1 or 0, there exists a constant, ε(n, ρ,Λ, δ) > 0, such that for any 0 < ε <
ε(n, ρ,Λ, δ), if a compact n-manifold (M, g) satisfies

Λ ≥ Ric(g) ≥ (n− 1)H,
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε ∀x ∈ M,

then M admits a metric g′ such that |g′ − g| < δ and for any 0 ≤ k < ∞,

|Rm(g′)|Ck,M ≤ C(n, ρ,Λ, δ, k), | secg′ −H| < Ψ(δ, ε|n, ρ,Λ).

Using the existence of a nearby metric of almost constant sectional curvature,
we are able to verify Conjecture 0.3 for the case of bounded Ricci curvature.

Theorem C. Given n, ρ, d,Λ > 0 and H = ±1 or 0, there exist positive constants,
ε(n, ρ, d,Λ), v(n, ρ, d,Λ) > 0, such that if a compact n-manifold M satisfies

Λ ≥ RicM ≥ (n− 1)H, d ≥ diam(M),
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε(n, ρ, d,Λ) ∀x ∈ M,

then M̃ is not collapsed, i.e., vol(B1(p̃)) ≥ v(n, ρ, d,Λ) for any p̃ ∈ M̃ , where d = π
or ∞ when H = 1 or −1.

By Theorem C, we can apply Theorem 0.4 to conclude Conjecture 0.2 in this
case.



4512 LINA CHEN, XIAOCHUN RONG, AND SHICHENG XU

Theorem D. Given n, ρ, d,Λ > 0 and H = ±1 or 0, there exists a constant
ε(n, ρ, d,Λ) > 0 such that for any 0 < ε < ε(n, ρ, d,Λ), if a compact n-manifold M
satisfies

Λ ≥ RicM ≥ (n− 1)H, d ≥ diam(M),
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε ∀x ∈ M,

then M is diffeomorphic and Ψ(ε|n, ρ, d,Λ)-close to a space form of constant cur-
vature H, where d = π or 1 when H = 1 or 0 respectively.

As mentioned in the above, there is a uniform lower bound on C1,α-harmonic
radius on B ρ

2
(x∗) (see Lemma 1.3). Together with the above theorem and Theorem

2.1 in [CRX], we obtain the following C1,α-compactness result.

Theorem E. Given n, ρ, d,Λ, v > 0, there exist ε = ε(n, ρ, d,Λ, v) such that the
collection of compact n-manifolds satisfying

Λ ≥ RicM ≥ (n− 1)H, d ≥ diam(M), vol(M) ≥ v,
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε ∀x ∈ M

is compact in the C1,α-topology, where the condition, “ vol(M) ≥ v” can be removed
when H = −1.

A few remarks are in order:

Remark 0.5. In the proof of Theorem A, we actually proved that g is almost Ein-
stein on any B ρ

8
(x), x ∈ M (see (2.1.2)); compare to Problem 2.4. Roughly, one

may interpret this as under bounded Ricci curvature, a ball with almost maximal
‘rewinding volume’ is an almost ‘Einstein ball’.

Remark 0.6. The existence of a nearby metric of almost constant curvature in
Theorem B is crucial to our proof of Theorem C (and Theorem D). Indeed, we do
not know, even assuming a higher regularity on the original metric, how to prove
Theorem C without using a nearby metric of almost constant sectional curvature.

Remark 0.7. In Theorem C, there is no restriction on diameter for H = −1. For
H = 0, the condition on bounded diameter cannot be removed. Here is a coun-
terexample: for each i, let S3

i denote a round 3-sphere of radius i, and let gi be a
collapsed Berger’s metric such that vol(B1(p, gi)) < i−1 and i−5 < sec(gi) < 4i−2

(p. 81, [Pet]). It is easy to see that
vol(B1(p

∗,g∗
i ))

vol(B0
1)

→ 1, as i → ∞.

Remark 0.8. Note that Theorem E and the C1,α-compactness theorem in [And90]
may have only a ‘small’ overlap. This is because the local volume condition in
Theorem E and the injectivity radius condition in [And90] are somewhat ‘paral-
lel’: a lower bound on injectivity radius may not imply the volume condition in
Theorem E, and vice versa the volume conditions may not imply a lower bound
on injectivity radius. (Note that for H = −1, in Theorem E a priori M could be
collapsed.)

The rest of the paper is organized as follows:
In Section 1, we will supply notions and basic properties that will be used

throughout the rest of the paper.
In Section 2, we will prove Theorems A-E. At the end, we will ask a few questions

relating to the approach in this paper.
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1. Preliminaries

The purpose of this section is to supply notions and basic properties that will
be used throughout the rest of the paper; we refer readers to [And90], [CC96] and
[DWY] for details.

a. Almost maximal volume ball is an almost space form ball. Let N be a
Riemannian (n− 1)-manifold, let k : (a, b) → R be a smooth positive function and
let (a, b)×k N be the k-warped product whose Riemannian tensor is

g = dr2 + k2(r)gN .

The Riemannian distance |(r1, x1)(r2, x2)| (x1 �= x2) equals the infimum of the
length ∫ l

0

√
(c′1(t))

2 + k2(c1(t))dt

for any smooth curve c(t) = (c1(t), c2(t)) such that c(0) = (r1, x1), c(l) = (r2, x2)
and |c′2| ≡ 1, and |(r1, x)(r2, x)| = |r2 − r1|. Thus given a, b, k, there is a function
(e.g., the law of cosine on space forms)

ρa,b,k(r1, r2, |x1x2|) = |(r1, x2)(r2, x2)|.
Using the same formula for |(r1, x2)(r2, x2)|, one can extend the k-warped product
(a, b)×k Y to any metric space Y (not necessarily a length space); see [CC96].

The following theorem in [CC96] asserts that an almost volume annulus (see
(1.1.1) below) is an almost metric annulus (see (1.1.2)).

Theorem 1.1 ([CC96]). Let M be a Riemannian manifold, let r be a distance
function to a compact subset in M , let Aa,b = r−1((a, b)), let

V(u) = inf

{
vol(Bu(q))

vol(Aa,b)

∣∣∣∣ for all q ∈ Aa,b with Bu(q) ⊂ Aa,b

}
,

and let 0 < α′ < α,α− α′ > ξ > 0. If

RicM ≥ −(n− 1)
k′′(a)

k(a)
(on r−1(a)),

Δr ≤ (n− 1)
k′(a)

k(a)
(on r−1(a)),

(1.1.1)
vol(Aa,b)

vol(r−1(a))
≥ (1− ε)

∫ b

a
kn−1(r)dr

kn−1(a)
.

Then there exists a length metric space Y , with at most #(a, b, k,V) components
Yi, satisfying

diam(Yi) ≤ D(a, b, k,V),
such that the Gromov-Hausdorff distance,

(1.1.2) dGH(Aa+α,b−α, (a+ α, b− α)×k Y ) ≤ Ψ(ε|n, k, a, b, α′, ξ,V)

with respect to the two metrics dα
′,α and d

¯
α′,α, where dα

′,α (resp. d
¯
α′,α) denotes

the restriction of the intrinsic metric of Aa+α′,b−α′ on Aa+α,b−α (resp. (a+α′, b−
α′)×k Y ) on (a+ α, b− α)×k Y ).



4514 LINA CHEN, XIAOCHUN RONG, AND SHICHENG XU

Let

snH(r) =

⎧⎪⎨
⎪⎩

sin
√
Hr√

H
, H > 0,

r, H = 0,
sinh

√
−Hr√

−H
, H < 0.

Applying Theorem 1.1 to k = snH(r) with r(x) = d(p, x) : M → R, we conclude
the following result that is used in the proof of Theorems A-E.

Theorem 1.2. For n, ρ, ε > 0, if a complete n-manifold M containing a point p
satisfies

RicM ≥ (n− 1)H,
vol(Bρ(p))

vol(BH
ρ )

≥ 1− ε,

then dGH(B ρ
2
(p), BH

ρ
2
) < Ψ(ε|n, ρ,H).

Note that
vol(Bρ(p))

vol(BH
ρ )

≥ 1− ε implies (1.1.1), as a → 0. Since the almost maximal

volume condition holds at all points near p (which contains regular points), by a
simple blow up argument one concludes that Y is isometric to Sn−1

1 .

b. Almost maximal volume and C1,α-harmonic radius estimate. In this
and the next subsections, we will always assume bounded Ricci curvature: Λ ≥
Ric ≥ (n− 1)H, H = ±1 or 0.

Let M be a complete n-manifold. For p ∈ M , k ≥ 0, 0 < α < 1 and Q ≥ 1, the
Ck,α-harmonic radius at p with respect to Q is the largest radius rh(p) of the ball at
p such that there are harmonic coordinates on Brh(p) and rk+α|gij |Ck,α,Brh

(p) ≤ Q.

The harmonic radius of a subset is the infimum of the harmonic radii of points in
the subset.

Lemma 1.3. For n, ρ,Λ > 0, Q > 1 and 0 < α < 1, there are constants,
ε(n, ρ,Λ), rh(n, ρ,Λ, Q, α) > 0, such that if a compact Riemannian n-manifold
(M, g) satisfies

Λ ≥ Ric(g) ≥ (n− 1)H,
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε(n, ρ,Λ) ∀x ∈ M,

the C1,α-harmonic radius on B ρ
2
(x∗) with respect to Q is at least rh(n, ρ,Λ, Q, α).

Proof. We argue by contradiction, and the proof follows the same argument as in the
proof of Main Lemma 2.2 in [And90]; where the almost maximal volume condition
is replaced with a lower bound on injectivity radius which guarantees that any blow

up limit is Rn. We claim that a contradicting sequence,
vol(Bρ(x

∗
i ))

vol(BH
ρ )

≥ 1 − εi → 1,

also satisfies that any blow up limit is Rn. Hence, the same proof in [And90] goes
through here to derive a contradiction.

To see the claim, for any y∗i ∈ B ρ
2
(x∗

i ), R > 0 and ri → ∞, by Bishop-Gromov

relative volume comparison and the volume convergence in [Col97] we derive

vol(BR(y
∗
i , r

2
i g

∗
i ))

vol(B
r−2
i H

R )
=

vol(Br−1
i R(y

∗
i ))

vol(BH
r−1
i R

)
≥

vol(B ρ
8
(y∗i ))

vol(BH
ρ
8
)

≥ 1−Ψ(εi|n, ρ,Λ).

Since r−2
i H → 0, by Theorem 1.2 we conclude that

dGH(BR(y
∗
i , r

2
i g

∗
i ), B

0
R) → 0.

Since R is arbitrarily chosen, the desired claim follows. �
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As an application of Lemma 1.3, we will prove a non-collapsed local version of
Theorem A.

Lemma 1.4. Given n, ρ,Λ > 0 and H = ±1 and 0, there is ε(n, ρ,Λ) > 0 such
that for 0 < ε < ε(n, ρ,Λ), if a complete n-manifold (M, g, x) satisfies

Λ ≥ Ric(g) ≥ (n− 1)H,
vol(Bρ(x))

vol(BH
ρ )

≥ 1− ε,

then for all p ≥ 1,

−
∫
B ρ

2
(x)

|Ric(g)− (n− 1)Hg|p ≤ Ψ(ε|n, ρ,Λ, p).

Proof. Arguing by contradiction, assume a contradicting sequence, (Mi, gi, xi), sat-
isfying

Λ ≥ RicMi
≥ (n− 1)H,

vol(Bρ(xi))

vol(BH
ρ )

≥ 1− εi → 1,

but −
∫
B ρ

2
(xi)

|Ric(gi)− (n− 1)Hgi|p0 ≥ δ0 > 0, for some p0 ≥ 1.

By Theorem 1.2, we may assume that B ρ
2
(xi)

GH−−→ BH
ρ
2
. By [CC97], we may

assume that for i large, B ρ
2
(xi) are diffeomorphic to BH

ρ
2
. From the expression of

Ricci curvature in a harmonic coordinate, a bound on Ricci curvature implies that
gi → g

¯H
in L2,p-norm for all p ≥ 1. Consequently, hi = Ric(gi) − (n − 1)Hgi →

h = Ric(g)− (n− 1)Hg ≡ 0 on BH
ρ
2
in Lp-norm, a contradiction. �

c. Almost maximal volume and Ricci flows. The main reference for this
subsection is [DWY].

Let (M, g) be a compact Riemannian manifold. The Ricci flow was introduced
by Hamilton as the solution of the following degenerate parabolic PDE:

∂

∂t
g(t) = −2Ric(g(t)), g(0) = g.

The solution always exists for a short time t > 0, and if the maximal flow time
Tmax < ∞, then max |Rm(g(t))| → +∞ as t → Tmax ([Ha]).

A basic property of Ricci flow is that it improves the regularity of the initial
metric ([Sh1, Sh2]). However, the regularity depends on the flow time. For our
purpose, a uniform definite flow time is important. We have

Theorem 1.5. For n, ρ,Λ > 0 and H = ±1 or 0, there are positive constants,
ε(n, ρ,Λ), T (n, ρ,Λ), such that if a compact Riemannian n-manifold (M, g) satisfies

Λ ≥ Ric(g) ≥ (n− 1)H,
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε(n, ρ,Λ) ∀x ∈ M,

then the Ricci flow,
∂

∂t
g(t) = −2Ric(g(t)), g(0) = g,

exists for t ∈ [0, T (n, ρ,Λ)] and

|g(t)− g| < 4t, |Rm(g(t))|Ck ≤ C, Λ + ct
1
2 ≥ Ric(g(t)) ≥ (n− 1)H − ct

1
2 ,

where C = C(n, ρ,Λ, k, t) and c = c(n, ρ,Λ).
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Note that Theorem 1.5 is similar to Theorem 1.1 in [DWY], where the volume
condition on local covering is replaced by a positive lower bound on conjugate
radius. Note that the condition on conjugate radius is solely used to show an L2,p-
harmonic radius lower bound on a local covering space for all p ≥ 1 (see Remark 1
in [DWY]), which is required to apply Moser’s weak maximum principle (Theorem
2.1 in [DWY]). Because a lower bound on the L2,p-harmonic radius follows from
Lemma 1.3 and bounded Ricci curvature condition, the same proof in [DWY] will
give a proof of Theorem 1.5 with the obvious modification (cf. [Sh1,Sh2]).

Let (M, g) be as in Theorem 1.5. Inspired by [DWY] we will show that if g is
almost H-Einstein in the Lp-sense, then the renormalized Ricci flow solution g(t)
in (1.6.1) below is again almost H-Einstein in the Lp-sense (Lemma 1.7).

Consider the renormalized Ricci flow in the sense of [TW]:

(1.6.1)
∂

∂t
g = −Ric(g) + (n− 1)Hg,

and let

ḡ(s) =

{
(1− 2(n− 1)Hs) · g

(
ln(1−2(n−1)Hs)

−(n−1)H

)
, H = ±1,

g(2s), H = 0.

Then ḡ(s) satisfies ḡ(0) = g(0) and

(1.6.2)
∂

∂s
ḡ = −2Ric(ḡ(s)).

Let g∗(t) (resp. ḡ∗(s)) be the lifting of g(t) (resp. ḡ(s)) on Bρ(x
∗). Then

R̄∗
ijkl(s) =

{
(1− 2(n− 1)Hs) ·R∗

ijkl

(
ln(1−2(n−1)Hs)

−(n−1)H

)
, H = ±1,

R∗
ijkl(2s), H = 0.

Let

(1.6.3) h∗
ij = R∗

ij − (n− 1)Hg∗ij .

Then
∂

∂t
h∗
ij =

1

2
Δh∗

ij +R∗
pijqh

∗
pq − h∗

iph
∗
pj .

To get rid of the 1
2 -factor, we make a change of variable t = 2t′ (for simple notation,

switch to t′ = t). Then the above implies

(1.6.4)
∂

∂t
|h∗| ≤ Δ|h∗|+ 2|Rm∗||h∗|.

By applying Moser’s weak maximum principle, we conclude the following:

Lemma 1.7. Let the assumptions be as in Theorem 1.5, let h∗
ij(t) be defined in the

above, and

T̄ (n, ρ,Λ) =

{
ln(1−2(n−1)H·T (n,ρ,Λ))

−(n−1)H , H = ±1,

T (n, ρ,Λ), H = 0.

Then for t ∈ (0, T̄ (n, ρ,Λ)],

max
x∈M

|h∗(t)|p,B ρ
4
(x∗,g) ≤ max

x∈M
|h∗(0)|p,B ρ

2
(x∗,g) ·

1

1− c(n, ρ,Λ)t
.

Proof. Given Lemma 1.3, by (1.6.4) the rest of the proof is an imitation of the proof
of Lemma 3.3 in [DWY]. �
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2. Proof of Theorems A-E

Proof of Theorem A. Because Ricci curvature is bounded in absolute value, it suf-
fices to prove Theorem A for p = 1. For any x ∈ M , by Lemma 1.4 we have

(2.1.1) −
∫
B ρ

2
(x∗)

|Ric(g∗)− (n− 1)Hg∗| ≤ Ψ1(ε|n, ρ,Λ).

We claim that for

Ψ2(ε|n, ρ,Λ) = Ψ1(ε|n, ρ,Λ) ·
vol(BH

ρ
2
)

vol(BH
ρ
8
)
,

the following holds:

(2.1.2) −
∫
B ρ

8
(x)

|Ric(g)− (n− 1)Hg| ≤ Ψ2(ε|n, ρ,Λ).

Let A = {xi} denote an ρ
8 -net on M . Then B ρ

16
(xi) ∩ B ρ

16
(xj) = ∅ (i �= j) and

M ⊆
⋃

xi∈A B ρ
8
(xi). Assuming (2.1.2), we derive

−
∫
M

|Ric(g)− (n− 1)Hg| ≤ 1

vol(M)

∑
xi∈A

∫
B ρ

8
(xi)

|Ric(g)− (n− 1)Hg|

(1)

=
1

vol(M)

∑
xi

vol(B ρ
8
(xi))−

∫
B ρ

8
(xi)

|Ric(g)− (n− 1)Hg|(2)

≤ 1

vol(M)

∑
xi∈A

vol(B ρ
8
(xi)) ·Ψ2(ε|n, ρ,Λ)(3)

≤ 1

vol(M)

∑
xi∈A

vol(B ρ
16
(xi)) ·

vol(BH
ρ
8
)

vol(BH
ρ
16
)
·Ψ2(ε|n, ρ,Λ)(4)

≤ Ψ(ε|n, ρ,Λ).(5)

We now verify (2.1.2). Let D denote the Dirichlet fundamental domain at x∗ ∈
B̃ρ(x), and let Γ(ρ4 ) = {γ ∈ π1(Bρ(x)), |x∗γ(x∗)| ≤ ρ

4}. Then

B ρ
8
(x∗) ⊂

⋃
γ∈Γ( ρ

4 )

γ(B ρ
8
(x∗) ∩D) ⊂ B ρ

2
(x∗).

We claim that there is a γ ∈ Γ(ρ4 ) such that

−
∫
γ(B ρ

8
(x∗)∩D)

|Ric(g∗)− (n− 1)Hg∗| ≤ Ψ2(ε|n, ρ,Λ),

i.e.,

−
∫
B ρ

8
(x)

|Ric(g)− (n− 1)Hg| ≤ Ψ2(ε|n, ρ,Λ).

If the claim fails, i.e., for all γ ∈ Γ(ρ4 ),

−
∫
γ(B ρ

8
(x∗)∩D)

|Ric(g∗)− (n− 1)Hg∗| > Ψ2(ε|n, ρ,Λ),
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then

−
∫
B ρ

2
(x∗)

|Ric(g∗)− (n− 1)Hg∗|(6)

≥
∑

γ∈Γ( ρ
4 )

vol(γ(B ρ
8
(x∗) ∩D))

vol(B ρ
2
(x∗))

−
∫
γ(B ρ

8
(x∗)∩D)

|Ric(g∗)− (n− 1)Hg∗|(7)

>
Ψ2(ε|n, ρ,Λ)
vol(B ρ

2
(x∗))

∑
γ∈Γ( ρ

4 )

vol(γ(B ρ
8
(x∗) ∩D))(8)

≥
Ψ2(ε|n, ρ,Λ) vol(B ρ

8
(x∗))

vol(B ρ
2
(x∗))

(9)

≥ Ψ1(ε|n, ρ,Λ),(10)

a contradiction to (2.1.1). �

Proof of Theorem B. Arguing by contradiction, assume a contradicting sequence,

(Mi, gi)
GH−−→ X, such that

Λ ≥ Ric(gi) ≥ (n− 1)H,
vol(Bρ(x

∗
i ))

vol(BH
ρ )

≥ 1− εi → 1 ∀xi ∈ Mi,

and Mi admits no nearby metric to gi with almost constant sectional curvature H.
Fixing a small δ ∈ (0, T (n, ρ,Λ)] (Theorem 1.5), let gi(δ) denote the renormalized

Ricci flow in (1.6.1). By Theorem 1.5, for any xi ∈ Mi, passing to a subsequence
we may assume that the lifting metric g∗i (δ) on Bρ(x

∗
i ) satisfies

B ρ
2
(x∗

i , g
∗
i (δ))

Ck

−−→ B ρ
2
(x∗

δ , g
∗
∞(δ)), hi(g

∗
i (δ))

Ck

−−→ h(g∗∞(δ)),

where hi is defined in (1.6.3), and the Ck-convergence can be seen from the Cheeger-
Gromov convergence theorem. Consequently, g∗∞(δ) is a smooth metric and
h(g∗∞(δ)) is a smooth tensor on B ρ

2
(x∗

δ , g
∗
∞(δ)). By Lemma 1.4 and Lemma 1.7, for

any xi ∈ Mi,

|hi(g
∗
i (δ))|p,B ρ

4
(x∗

i )
→ 0.

Consequently, h(g∗∞(δ))|B ρ
4
(x∗

δ ,g
∗
∞(δ)) ≡ 0, i.e., g∗∞(δ)|B ρ

4
(x∗

δ ,g
∗
∞(δ)) is H-Einstein.

Clearly, B ρ
4
(x∗

δ , g
∗
∞(δ))

GH−−→ BH
ρ
4
as δ → 0. Since g∗∞(δ) is H-Einstein for all δ,

B ρ
4
(x∗

δ , g
∗
∞(δ))

Ck

−−→ BH
ρ
4
, for any k ≥ 1 ([CC97]). Consequently, for δ0 sufficiently

small, g∗∞(δ0) has almost constant sectional curvature H. Since B ρ
4
(x∗

i , g
∗
i (δ0))

Ck

−−→
B ρ

4
(x∗

δ0
, g∗∞(δ0)), for i large, g∗i (δ0) has almost constant curvature H. Since xi is

arbitrarily chosen, we conclude that gi(δ0) has almost constant sectional curvature
H, a contradiction. �

Proof of Theorem C. Fixing a small δ > 0, by Theorem B we may assume a nearby
metric g(δ) such that

|g − g(δ)| < δ, H − δ ≤ secg(δ) ≤ H + δ.

Case 1. Assume H = −1. For any p̃ ∈ M̃ , the exponential map, exp
g̃(δ)
p̃ : Tp̃M̃ →

M̃ , is a diffeomorphism such that its differential has a bounded norm on B1(0)
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depending on n, δ. Consequently, vol(B1(p̃, g̃(δ))) has a positive lower bound de-
pending only on n and δ. Since |g̃ − g̃(δ)| < δ, we conclude the desired result.

Case 2. AssumeH = 0. By the splitting theorem of Cheeger-Gromoll, M̃ = Rk×N ,
where N is a simply connected (n−k)-manifold of non-negative Ricci curvature. We
claim that N is a point. Note that diam(N) ≤ c(n, d) (see the proof of Theorem C

in [CRX] where we normalize d = 1). We may assume δ−
1
2 > 4 diam(N). Note

that since secg(δ) < δ, exp
g̃(δ)
p̃ : B 1√

δ
(0) → B 1√

δ
(p̃, g̃(δ)) is a local diffeomorphism.

Note that B 1

2
√

δ
(p̃) can be deformed to 0 × N (p̃ = (0, x)) and thus B 1

2
√

δ
(p̃) is

simply connected. Consequently, the lifting of B 1

2
√

δ
(p̃) via exp

g̃(δ)
p̃ is contained in

the segment domain (i.e. each x̃ ∈ B 1

2
√

δ
(p̃) is connecting to p̃ by a unique minimal

geodesic; if c1 and c2 are two distinct minimal geodesics, then c1 ∗ c−1
2 is a loop

at p̃, and so is the lifting of c1 ∗ c−1
2 a loop at 0. Note that with respect to the

pullback metric on Tp̃M̃ , we obtain two geodesics from 0 to some v; a contradiction).

Therefore, B 1

2
√

δ
(p̃) is contractible in M̃ , a contradiction.

Case 3. Assume H = 1. The classical 1/4-pinched injectivity radius estimate

implies that the pullback metric g̃(δ) on M̃ has injectivity radius > π
2 , and thus

vol(B1(p̃)) has a positive lower bound depending on n. By now the desired result
follows. �

As seen in the introduction, Theorem D follows from Theorem C and Theo-
rem 0.4. Note that the proof of Theorem 0.4 in [CRX] for H = 1 is quite involved
due to the lack of regularity. Using the regularity of the Ricci flow solution in the
proof of Theorem B, we are able to give a simple direct proof.

In the rest of the paper, we will freely use properties of equivariant Gromov-
Hausdorff convergence; see b. of Section 1 in [CRX] for details.

Lemma 2.2. Let Mi be a sequence of compact n-manifolds satisfying

RicMi
≥ (n− 1), |Rm |C1,Mi

≤ C, vol(M̃i) ≥ v > 0,

and the commutative diagram,

(M̃i,Γi)
GH−−−−→ (M̃∞, G)⏐⏐�πi

⏐⏐�π

Mi
GH−−−−→ X,

Then for i large,
(2.2.1) There is an injective homomorphism and εi-GHA (εi → 0), φi : Γi → G,

such that φi(Γi) acts freely on M̃∞.

(2.2.2) There is a Γi-conjugate diffeomorphism, f̃i : (M̃i,Γi) → (M̃∞, φi(Γi)),
which is also an εi-GHA.

Proof. Lemma 2.2 is essentially Theorem 3.5 in [CRX] where condition

|Rm |C1,Mi
≤ C

is replaced with
vol(Bρ(x̃i))

vol(B1
ρ)

≥ 1− εi → 1,



4520 LINA CHEN, XIAOCHUN RONG, AND SHICHENG XU

and the proof of Theorem 3.5 will go through with the following minor modifica-
tions:

(i) There is a uniform lower bound on the injectivity radius of M̃i, and thus

M̃∞ is a Riemannian manifold, and for any ri → ∞, passing to a subsequence
(M̃i, p̃i, r

2
i g̃i) converges to Rn; which guarantees (2.2.1).

(ii) In the proof of Theorem 3.5, the method of center of mass was applied to

modify an εi-equivariant GHA to a conjugate map f̃i, while the main work was
to show that f̃i is a diffeomorphism. Here, by the C1-regularity we automatically
obtain that f̃i is a diffeomorphism ([GK73]). �

Proof of Theorem D for H = 1. Arguing by contradiction, assume a contradicting
sequence, (Mi, gi), such that gi satisfies the conditions of Theorem B for εi → 0
but none of Mi is diffeomorphic to a spherical space form.

For each i, let gi(δ) be as in Theorem B, such that for all 1 ≤ k < ∞,

|Rm(gi(δ))|Ck ≤ C(n, ρ,Λ, δ, k), | secgi(δ) −1| < δ.

Passing to a subsequence we may assume the following commutative diagram:

(M̃i, g̃i(δ),Γi)
GH−−−−→ (M̃∞(δ), g̃∞(δ), G(δ))⏐⏐�πi

⏐⏐�π

(Mi, gi(δ))
GH−−−−→ (X, d∞(δ)),

where Γi denotes the deck transformations. Since M̃i is not collapsed (Theo-

rem C), by Lemma 2.2 there is a Γi-conjugate diffeomorphism, f̃i(δ) : (M̃i, g̃i(δ),Γi)

→ (M̃∞(δ), g̃∞(δ), φi(δ)(Γi)). From the proof of Theorem B, we see that

(M̃∞(δ), g̃∞(δ)) is 1-Einstein. It is clear that (M̃∞(δ), g̃∞(δ), G(δ))
GH−−→ (Sn

1 , g
¯1
, G),

as δ → 0. Consequently, for all k < ∞, (M̃∞(δ), g̃∞(δ), G(δ))
Ck

−−→ (Sn
1 , g

¯1
, G)

([CC97]).
For each δ, we may choose i large such that dGH(φi(δ)(Γi), G(δ)) < δi → 0, i.e.,

(M∞(δ), g̃∞(δ), φi(δ)(Γi))
GH−−→ (Sn

1 , g
¯1
, G). We then apply Lemma 2.2 again to con-

clude that for a fixed small δ, there is φi(δ)(Γi)-conjugate diffeomorphism, f̃∞(δ) :

(M̃∞(δ), φi(δ)(Γi)) → (Sn
1 , ψi(δ) ◦ φi(δ)(Γi)). Then f̃∞(δ) ◦ f̃i(δ) : (M̃i,Γi) →

(Sn
1 , ψi(δ) ◦ φi(δ)(Γi)) is Γi-conjugate diffeomorphism, and thus Mi is diffeomor-

phic to a spherical space form, Sn
1 /(ψi(δ) ◦ φi(δ)(Γi)), a contradiction. �

Remark 2.3. Given Theorem B, the conclusion of Theorem D for H = 0 and H = 1
can also be seen from the work [Gr] and [BS09] respectively.

Proof of Theorem E. It suffices to show that for any Q ≥ 1 and 0 < α < 1, there
is a constant rh = rh(n, ρ, d,Λ, v, α,Q) > 0 such that M has C1,α-harmonic radius
with respect to Q bounded below by rh; because Λ ≥ RicM ≥ (n− 1)H.

Arguing by contradiction, assume for some Q0 ≥ 1 and 0 < α0 < 1, there is a
contradicting sequence, Mi, satisfying

Λ ≥ RicMi
≥ (n− 1)H, d ≥ diam(Mi),

vol(Bρ(x
∗
i ))

vol(BH
ρ )

≥ 1− εi → 1 ∀xi ∈ Mi,
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and pi ∈ Mi such that the C1,α0 -harmonic radius rh(pi) → 0. Passing to a subse-
quence, we may assume the following commutative diagram:

(B̃ρ(pi), p
∗
i ,Ki)

GH−−−−→ (X∗, p∗,K)⏐⏐�πi

⏐⏐�π

(Bρ(pi), pi)
GH−−−−→ (Bρ(p), p),

where Ki denotes the fundamental group of Bρ(pi). Since

vol(Bρ(p
∗
i ))

vol(BH
ρ )

≥ 1− εi → 1,

by Theorem 1.2 we see that Bρ(p
∗) is local isometric to anH-space form. IfH �= −1,

Ki is discrete because vol(Mi) ≥ v. We claim that K is discrete when H = −1.
Hence, in any case we are able to apply Theorem 2.1 in [CRX] to conclude that K
acts freely on X∗. We may assume that any element in Ki moves any x∗

i in B ρ
2
(p∗i )

at least δ-distance, where δ depends on (X∗,K). By Lemma 1.3, we may assume
that rh(p

∗
i ) ≥ rh(n, ρ,Λ, α0, Q0) > 0, and thus 2rh(pi) ≥ min{δ, rh(p∗i )} > 0, a

contradiction.
To see that K is discrete, note that by Theorem D we conclude that Mi is

Ψ(ε|n, ρ, d,Λ) close to a hyperbolic manifold Hn/Γi. By the Margulis-Heintze
lemma ([He]), Hn/Γi is not collapsed, and by the volume convergence in [Col97] we
then conclude that Mi is not collapsed (so Bρ(xi) is not collapsed), and thus K is
discrete. �

We will conclude this paper with the following questions related to the present
approach to Conjecture 0.3:

Problem 2.4. Does Theorem A hold without an upper bound on Ricci curvature?
Indeed, it seems that it is even not known whether the scalar curvature is almost
constant in the Lp-sense.

Problem 2.5 (Ricci flow time). For n, ρ > 0, andH = ±1 or 0, are there constants,
ε(n, ρ) > 0, T (n, ρ) > 0, such that for any 0 < ε < ε(n, ρ), if a compact n-manifold
(M, g) satisfies

Ric(g) ≥ (n− 1)H,
vol(Bρ(x

∗))

vol(BH
ρ )

≥ 1− ε ∀x ∈ M,

then the Ricci flow from g exists for t ∈ [0, T (n, ρ)]?

In a forth coming paper [HKRX], we will give a positive answer to Problem 2.5.

Problem 2.6 (Ricci flows preserves almost Einstein). Let (M, g) be a compact
n-manifold of RicM ≥ (n− 1)H and

−
∫
B ρ

2
(p∗)

|Ric(g∗)− (n− 1)Hg∗| < ε.

Let g(t) be a renormalized Ricci flow of g (see (1.6.1)). Is

−
∫
B ρ

2
(p∗,g∗(t))

|Ric(g∗(t))− (n− 1)Hg∗(t)| < Ψ(ε|n, ρ, t)?

Note that if there are affirmative answers to Problems 2.4-2.6, then the approach
in the present paper can be extended toward a proof of Conjecture 0.2.



4522 LINA CHEN, XIAOCHUN RONG, AND SHICHENG XU

Acknowledgments

The authors would like to thank Jian Song, Zhenlei Zhang, and Bin Guo for
helpful discussions on Ricci flows.

References

[And90] Michael T. Anderson, Convergence and rigidity of manifolds under Ricci curva-
ture bounds, Invent. Math. 102 (1990), no. 2, 429–445, DOI 10.1007/BF01233434.
MR1074481

[BS09] Simon Brendle and Richard Schoen, Manifolds with 1/4-pinched curvature are space
forms, J. Amer. Math. Soc. 22 (2009), no. 1, 287–307, DOI 10.1090/S0894-0347-08-
00613-9. MR2449060

[CC96] Jeff Cheeger and Tobias H. Colding, Lower bounds on Ricci curvature and the al-
most rigidity of warped products, Ann. of Math. (2) 144 (1996), no. 1, 189–237, DOI

10.2307/2118589. MR1405949
[CC97] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature

bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406–480. MR1484888
[CFG92] Jeff Cheeger, Kenji Fukaya, and Mikhael Gromov, Nilpotent structures and invariant

metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992), no. 2, 327–372, DOI
10.2307/2152771. MR1126118

[Col96] Tobias H. Colding, Large manifolds with positive Ricci curvature, Invent. Math. 124
(1996), no. 1-3, 193–214, DOI 10.1007/s002220050050. MR1369415

[Col97] Tobias H. Colding, Ricci curvature and volume convergence, Ann. of Math. (2) 145
(1997), no. 3, 477–501, DOI 10.2307/2951841. MR1454700

[CRX] L. Chen, X. Rong, and S. Xu, Quantitive volume rigidity of space form under lower
Ricci curvature bound I, to appear in J. Differential Geom.

[DWY] Xianzhe Dai, Guofang Wei, and Rugang Ye, Smoothing Riemannian metrics with Ricci
curvature bounds, Manuscripta Math. 90 (1996), no. 1, 49–61, DOI 10.1007/BF02568293.
MR1387754

[GK73] Karsten Grove and Hermann Karcher, How to conjugate C1-close group actions, Math.
Z. 132 (1973), 11–20. MR0356104

[Ha] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential
Geom. 17 (1982), no. 2, 255–306. MR664497

[Gr] M. Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978), no. 2, 231–241.
MR540942

[He] Ernst Heintze, Mannigfaltigkeiten negativer Krümmung (German), Bonner Mathema-
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