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DARMON CYCLES AND THE KOHNEN-SHINTANI LIFTING

GUHAN VENKAT

Abstract. Let f(q) be a Coleman family of cusp forms of tame level N . Let
k0 be the classical weight at which the specialization of f(q) is new. By the
Kohnen-Shintani correspondence, we associate to every even classical weight k,
a half-integral weight form (for k �= k0) gk =

∑
D>0

c(D, k)qD ∈ S k+1
2

(Γ0(4N))

and gk0
=

∑
D>0

c(D, k)qD ∈ S k+1
2

(Γ0(4Np)).

We first prove that the Fourier coefficients c(D, k) for k ∈ 2Z>0 can be
interpolated by a p-adic analytic function c̃(D, κ) with κ varying in a neigh-
bourhood of k0 in the p-adic weight space. For discriminants D such that
c̃(D, k0) = 0, which we call Type II, we show that d

dκ
[c̃(D, κ)]k=k0

is related
to certain algebraic cycles associated to the motive Mk0

attached to the space
of cusp forms of weight Sk0

(Γ0(Np)). These algebraic cycles appear in the
theory of Darmon cycles.

1. Introduction

One of the major themes in the study of automorphic forms is Langlands’ princi-
ple of functoriality, which describes the existence of correspondence between auto-
morphic forms on different reductive groups. The Shimura and Shintani correspon-
dences between integral weight modular forms (automorphic forms on GL2(Q)) and
half integral weight modular forms (automorphic forms on the metaplectic cover
of SL2(Q)) is one of the earliest examples of Langlands’ functoriality. Shimura
initiated the study of half integral weight modular forms in [44], in which he de-
fined suitable Hecke operators and constructed a Hecke-equivariant correspondence
between integral weight and half integral weight modular forms. Later, in [47],
Shintani constructed the inverse correspondence using theta lifts. He showed the
existence of a Hecke-equivariant C-linear isomorphism

θk : Sk(Γ0(N)) → S k+1
2
(Γ0(4N))

for k ≥ 2 even.
When N is odd square free, W. Kohnen showed the existence of a Hecke equi-

variant isomorphism (denoted as D-th Shintani liftings) in [25]:

θN,k : Sk(Γ0(N))new → Snew
k+1
2

(Γ0(4N))+,
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where + denotes the Kohnen plus space of newforms of weight k+1
2 ; i.e., if g =

θD,k(f)∈Snew
k+1
2

(Γ0(4N))+, then g(z) admits a Fourier expansion g(z)=
∑
D>0

c(D)qD,

where c(D) = 0 unless D∗ := (−1)k/2D ≡ 0, 1(mod 4). The plus space was first
introduced by W. Kohnen in [26]. We will be particularly interested in the Fourier
coefficients c(D) when D∗ ≡ 1(mod 4).

The arithmetic significance of the Kohnen-Shintani lifting is given by the follow-
ing Waldspurger type formula (see Theorem 1 of [49] and Corollary 1 of [25]).

Let D be a fundamental discriminant such that (D,N) = 1. Then

c(D)2 = λgD
k−1
2 L(f,D∗, k/2) if

(
D∗

�

)
= wl ∀ l|N

where
• L(f,D∗, s) :=

∑
n
a(n)χD∗(n)n−s is the twisted L-function attached to f(z) =∑

a(n)qn and the Dirichlet character χD∗(n) :=
(
D∗

n

)
.

• λg is a non-zero complex number which depends only on the choice of g.
• wl ∈ (±1) are the eigenvalues of the Atkin-Lehner involution Wl acting on f .
The twisted L-function admits a functional equation relating the values at s and

k − s. The sign that appears in this functional equation is given by

w(f,D∗) := (−1)k/2χD∗(−N)wN ,

where wN :=
∏
�|N

wl and f ∈ Sk(Γ0(N)).

In particular, the central critical value L(f,D∗, k/2) vanishes when the sign
w(f,D∗) is −1. As a generalization of the Birch and Swinnerton-Dyer conjecture,
the conjectures of Bloch and Beilinson (cf. [33, §4]) predict that the order of
vanishing of the central critical L-value is the same as the rank of the appropriate
Bloch-Kato Selmer group (see Definition 8).

In the weight 2 case, i.e., when f corresponds to a modular elliptic curve E/Q,
Gross and Zagier in [20] describe the Néron-Tate height of a Heegner point P

Q(
√
d) ∈

E(Q(
√
d)) (for d < 0) in terms of the derivative L′(E/Q(

√
d), 1) from which they

conclude that L′(E/Q(
√
d), 1) �= 0 (i.e., when E/Q(

√
d) has analytic rank one)

if and only if P
Q(

√
d) is a Q(

√
d)-rational point of infinite order. Further, Gross,

Kohnen, and Zagier in [21] show that these heights are given by the coefficients
of the weight 3/2 form attached to E under the Shimura-Shintani correspondence.
This has been generalized to the higher weight case by Hui Xue in [50] and Shaul
Zemel in [51] by studying the heights of Heegner cycles in Kuga-Sato varieties of
appropriate dimension.

Our main theorem (Theorem 1) can be viewed as a real quadratic p-adic variant
of the higher weight Gross-Kohnen-Zagier formula since we relate Darmon cycles to
Fourier coefficients of a p-adic modular form. Such a relation was shown by Henri
Darmon and Gonzalo Tornaria in the weight 2 ordinary case [14] using the theory
of Stark-Heegner points.

Let p be an odd prime integer such that p � N . Fix an algebraic closure Q of
Q and embeddings σ∞ : Q → C and σp : Q → Qp. Let U be an open affinoid of
the p-adic weight space X (see Section 4.1). A p-adic analytic family of cuspidal
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eigenforms (Coleman family) over U is a formal q-expansion

f(q) :=
∑
n≥1

anq
n ∈ O(U)[[q]]

such that for all k ∈ U cl := {n ∈ 2Z : n ≥ 0} ∩ U ,

fk(q) =
∑
n≥1

an(k)q
n ∈ Sk(Γ0(Np),Q).

The p-adic valuation of ap(k) is a constant called the slope of f(q). We will assume
that we are in the finite non-ordinary case (i.e., ap(k) �= 0 and vp(ap(k)) > 0) and
also that fk is N -new for all k ∈ U cl. Since the slope of f is constant, there is at
most one k0 ∈ U cl such that fk0

is new for the full level Np. This happens exactly
when ap(k0) = ±pk0/2−1.

For every other k �= k0 ∈ U cl, there is a newform f#
k ∈ Sk(Γ0(N))new such that

fk is the p-stabilization of f#
k , i.e.,

fk(q) = f#
k (q)− pk−1

ap(k)
f#
k (qp).

In particular, the eigenvalues of the Hecke operators, Tl for all l � N , of fk and f#
k

coincide.
The quantity

wN := (−1)k/2wN,k,

where wN,k :=
∏
�|N

w�,k is the product Atkin-Lehner eigenvalues of W� acting on f#
k ,

is independent of k ∈ Ucl. This quantity is called the root number of the Coleman
family.

Let gk =
∑
D>0

c(D, k)qD ∈ S k+1
2
(Γ0(4N)) be the Shintani lift of f#

k for all k �=

k0 ∈ U cl and let gk0
=

∑
D>0

c(D, k0)q
D ∈ S k0+1

2
(Γ0(4Np)) correspond to the lift of

fk0
.
The values of D for which c(D, k) need not necessarily vanish for k �= k0 ∈ U cl

can be classified in two types:
(I) All D > 0 such that wNχD∗(−N) = 1 and χD∗(p) = wp.
(II) All D > 0 such that wNχD∗(−N) = 1 but χD∗(p) = −wp.
Note that for Type II discriminants D, we have w(fk0

, D∗) = −1 and hence
L(fk0

, D∗, k0/2) = 0. This forces the vanishing of c(D, k0). However, since p

divides the level of the newform fk0
but not the level of f#

k for any other classical
k �= k0, the function c(D, k) need not identically vanish in a neighborhood of k0.
In fact, by making a suitable normalization of the Fourier coefficients c(D, k), we
show that (see Proposition 4) the function k → c(D, k) extends to a non-zero rigid
analytic function c̃(D,κ) in a neighbourhood of k0. This motivates the study of the
p-adic derivative of c̃(D, k) at k = k0.

For D2 a Type II discriminant and D1 a Type I discriminant such that c(D1, k0)

�= 0, let D := D∗
1 .D

∗
2 and let K be the real quadratic field Q(

√
D) (note that

D > 0).
Let Mk be the motive over Q associated to Sk(Γ0(Np)) constructed in [40]. For

L any number field, let CH
k/2
0 (Mk⊗L) be the Chow group of algebraic cycles of co-

dimension k/2 on Mk base change to L that are homologous to the null cycle. Let
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V Np be the p-adic étale realization of Mk viewed as a p-adic Galois representation
of Gal(Q̄/Q) and let V Np

p denote the restriction of V Np to a decomposition group
at p. We have a global p-adic Abel-Jacobi map

cl
k/2
0,L : CH

k/2
0 (Mk ⊗ L) → Selst(L, V

Np
p (k/2)).

See Sections 1 - 4 of [33] for a detailed discussion on the global Abel-Jacobi map.
The main theorem we prove is

Theorem 1. There exist a global cycle

d
χD∗

2

k0
∈ CH

k0/2
0 (Mk0

⊗Q(
√
D∗

2))
χD∗

2 ⊂ (Mk0
⊗Q(

√
D∗

2 ,
√
D∗

1))

and a constant sf ∈ K×
fk0

such that

d

dk
[c̃(D2, k)]k=k0

=
|D2|

k0−2
4

|D1|
k0−2

4

.sf .logBK(resp(cl
k0/2

0,H+
K

(d
χD∗

2

k0
)))(φk0

),

where CH
k0/2
0 (Mk0

⊗Q(
√
D∗

2))
χD∗

2 denotes the χD∗
2
-eigenspace of

CH
k0/2
0 (Mk0

⊗Q(
√
D∗

2)), φk0

is the modular symbol attached to fk0
, logBK is the Bloch-Kato logarithm map, and

resp : Selst(H
+
K , V Np

p (k0/2)) → H1
st(Kp, V

Np
p (k0/2)) is the restriction at p.

2. The Kohnen-Shintani lifting

Fix f ∈ Sk(Γ0(N)), a cusp form of weight k on Γ0(N). Let Q(x, y) = ax2+bxy+
cy2 be a primitive integral binary quadratic form with a square-free discriminant.
The group SL2(Z) acts on the right on the space of integral quadratic forms by

(Q | ε)(x, y) := Q(δx− γy,−βx+ αy)

for ε =

(
α β
γ δ

)
. Let D > 0 be an integer such that D∗ := (−1)k/2D is congruent

to 0, 1(mod 4) and D∗ divides Δ = b2− 4ac, the discriminant of Q(x, y). Let D′ be
the integer such that Δ = D∗D′∗. Note that D′∗ is also congruent to 0, 1(mod 4)
as Δ is always congruent to 0, 1(mod 4).

Define

ωD∗,D′∗(Q) :=

⎧⎨⎩
(

D′∗

Q(m,n)

)
when gcd(D′∗, Q(m,n)) = 1,(

D∗

Q(m,n)

)
when gcd(D∗, Q(m,n)) = 1.

For any other pair of integers (r, s) ∈ Z such that (D∗, Q(r, s)) = 1, we have( D∗

Q(r, s)

)
=

( D∗

Q(m,n)

)
.

Hence ωD∗,D′∗ is well-defined. Genus theory shows that ωD∗,D′∗ is a quadratic
character of the class group of integral binary quadratic forms of discriminant Δ.
This character cuts out the bi-quadratic extension Q(

√
D∗,

√
D′∗).

Let δ be a positive integer such that δ2 ≡ Δ(mod : 4N). We will call a primitive
binary quadratic form Q(x, y) = ax2 + bxy + cy2 a Heegner form of level N if

N | a and b ≡ δ(modN).
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Denote the set of Heegner forms of discriminant Δ by FΔ. Assume Δ is square
free and let r + s

√
Δ be the totally positive (i.e., r, s > 0) fundamental unit in the

order OΔ := Z[Δ+
√
Δ

2 ]. Let

γQ :=

(
r + sb 2cs
−2as r − sb

)
∈ Γ0(N)

be the generator of the cyclic subgroup ΓQ, the stabilizer of Q in Γ0(N). For any
point τ ∈ H, let CQ be the image in Γ0(N)/H of the geodesic in H of complex
numbers z = x+ iy such that

a|z|2 + bx+ c = 0.

Let τ ∈ H be any base point. In our case (i.e., Δ is not a perfect square), CQ is
equivalent to the geodesic joining τ and γQτ . To each Q ∈ FΔ, we associate the
Shintani period given by

r(f,Q) :=

∫
CQ

f(z)Q(z, 1)
k−2
2 dz.

Let Δ = D∗.D′∗ be the factorization such thatD,D′>0 andD∗, D′∗=(−1)k/2Di ≡
0, 1(mod 4) for i = 1, 2. Consider the liner combination

rk,N (f,D∗, D′∗) =
∑

Q∈FΔ/Γ0(N)

ωD∗,D′∗(Q)r(f,Q).

Let μ(n) denote the Mobius function which is defined as the sum of the primitive
n-th roots of unity. Then μ(n) ∈ {−1, 0, 1}. Let S+

k+1
2

(Γ0(4N)) denote the Kohnen

‘+’ space of half integral weight cusp forms, i.e., forms that have a Fourier expansion
of the form

g(τ ) =
∑
D≥1

D∗≡0,1(mod 4)

c(D)qD ∈ Sk+1/2(Γ0(4N)).

The ‘+’ space was defined by Kohnen in [26]. For m a fundamental discriminant
such that m∗ = (−1)k/2m > 0, the m-th Shintani lifting of f ∈ Sk(Γ0(N)) is
defined as

Θk,N,m(f)(q) :=
∑
D≥1

D∗≡0,1(mod 4)

(∑
t|N

μ(t)
(m
t

)
t
k−1
2 rk,Nt(f,m, (−1)k/2Dt2)

)
qD.

Theorem 2. For every m as above, Θk,N,m : Sk(Γ0(N)) → S+
k+1
2

(Γ0(4N)) is an

isomorphism. Further if N is odd square free, then Θk,N,m maps Snew
k (Γ0(N))

isomorphically onto S+,new
k+1
2

(Γ0(4N)).

Proof. See Theorem 2 of [25]. �
We will now recall a formula of Kohnen which relates the Fourier coefficients of

a Shintani lifting to the Shintani periods.
For any m as above, let the Fourier expansion of Θk,N,m(f)(z) be∑

D≥1
D∗≡0,1(mod 4)

c(D)qD,

i.e., c(D) =
∑
t|N

μ(t)
(

m
t

)
t
k−1
2 rk,Nt(f,m, (−1)k/2Dt2)).
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Theorem 3. Then we have

c(D1)c(D2)

〈g, g〉 =
(−2i)k/22ν(N)

〈f, f〉 rk,N (f,D∗
1 , D

∗
2),

where ν(N) is the number of distinct prime divisors of N .

Proof. See Theorem 3 of [27]. �
Remark 1. rk,N (f,D∗

1 , D
∗
2) is defined through a sum of oriented optimal embeddings

in [37] as compared to non-oriented optimal embeddings in [27]. This difference in
definition of rk,N (f,D∗

1 , D
∗
2) contributes an extra factor of 2ν(N) in the constant

term between the above statement and Theorem 3 of [27].

Let D > 0 be an integer such that D∗ ≡ 0, 1 (mod 4). Recall the twisted L-series
of f :

L(f,D∗, s) :=
∑
n≥1

(D∗

n

)
a(n)n−s; Re(s) � 0,

where f(z) =
∑
n≥1

a(n)qn ∈ Sk(Γ0(N)) and
(

D∗

.

)
is the quadratic Dirichlet charac-

ter. This twisted L-function admits a holomorphic continuation to C given by

Λ(f,D∗, s) = (2π)−s(ND∗,2)s/2Γ(s)L(f,D∗, s)

and admits a functional equation

Λ(f,D∗, s) = (−1)k/2
( D∗

−N

)
wNΛ(f,D∗, k − s),

where wN :=
∏
�|N

w� ∈ {±1} is the product of the Atkin-Lehner eigenvalues indexed

by the primes dividing the level.
The following result follows from Theorem 3 above.

Corollary 1. We have

|c(|D|)|2
〈g, g〉 = 2ν(N) (k/2− 1)!

πk/2
|D|

k−1
2

L(f,D∗, k/2)

〈f, f〉
with ν(N) being the number of distinct prime divisors of N .

Proof. See Corollary 1 of [25]. �
Remark 2. By the above lemma, we know that the vanishing of c(D) is equivalent
to the vanishing of L(f,D∗, k/2).

3. Darmon cycles

In this section, we will briefly recall the theory of Darmon cycles developed by
Marco Seveso and Victor Rotger in [38]. All the results discussed in this section
can be found in [38], [19], and [41].

Let p be an odd prime and let N be an odd square free integer such that p � N .
We fix a real quadratic extension K/Q such that

• all primes dividing N are split in K,
• p is inert in K.
Let DK be the discriminant of K. Recall from the Introduction the fixed em-

beddings
σ∞ : Q → C, σp : Q → Cp.
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Let Γ0 := Γ0(Np) and Γ := Γ0(N) be the congruence subgroups of level Np and

N respectively. Let Γ̃ := Γ[ 1p ] and W := Q2
p − (0, 0). For any field E, denote by

Pk−2(E) the set of homogeneous polynomials of degree k − 2 in two variables over
E. Let Vk−2(E) be the E-dual of Pk−2(E). The group GL2(E) acts on the left on
Pk−2(E) naturally by the rule

(γ.P )(X,Y ) := P (aX + cY, bX + dY ),

where γ =

(
a b
c d

)
. Consequently, this induces the right dual action of GL2(E) on

Vk−2(E).
Let T denote the Bruhat-Tits tree of Qp whose vertices are given by homothety

classes of Zp-lattices in Q2
p. We denote the set of vertices (resp. edges) of T by V

(resp. E). We will denote a vertex v by [L], where [L] stands for the homothety
class of lattices equivalent to some lattice L ⊂ Q2

p. There is an edge e between two

vertices v1 and v2 ∈ V if for some lattices L1, L2 ⊂ Q2
p such that v1 = [L1] and

v2 = [L2],

L1 ⊃ L2 ⊃ pL1.

T is a tree with each vertex v ∈ V having degree p + 1 (see Proposition 1.3.2 of
[15]). We have a natural left GL2(Qp)-action on T as follows: for γ ∈ GL2(Qp)
and [L] ∈ T such that L is generated by the Zp-span of 〈v1, v2〉, define

γ.[L] := [γL],

where γL denotes the lattice generated by the Zp-span of 〈γv1, γv2〉. Denote the
distinguished vertex v∗ := [L∗], where L∗ := Z2

p, and by V+ (respectively V−) the
set of vertices at even (respectively odd) distance from v∗.

We can define an orientation on T as follows: for every e ∈ E(T ), denote by s(e)
the source vertex of e and by t(e) the target vertex of e. This assigns a direction to
each edge, thus making T into a directed graph. Denote by ē the edge such that
s(ē) = t(e) and t(ē) = s(e).

Definition 1. The p-adic upper half plane Hp is the rigid analytic variety over
Qp whose E-rational points, for E a finite extension of Qp, are given by Hp(E) :=
P1(E)− P1(Qp).

We will denote Hur
p for Hp(Qur

p ) = P1(Qur
p ) − P1(Qp). Hur

p has a natural left
action of GL2(Qp) via fractional linear transformation. There exists a unique
GL2(Qp)-equivariant reduction map (see Proposition 5.1 of [13])

redp : Hur
p −→ T .

Let Hp,± := r−1(V±) and Hp,v := r−1(v) for v ∈ V .

Definition 2. Let ([L1], [L2], . . . , [Li], . . .) be an infinite, non-retracing sequence
of adjacent vertices in T . By non-retracing, we mean that �n ∈ N such that
[Li] = [Li+n] for all i ∈ N. We interpret such a sequence as a ray starting from the
vertex v = [L1] and heading off to ∞. We introduce an equivalence relation on the
set of all such sequences given by

([L1], [L2], . . . , [Li], . . .) ∼ ([L′
1], [L

′
2], . . . , [L

′
i], . . .)

if there exists a fixed m ∈ Z such that [Ln] = [L′
n+m] for all n ∈ N. We call such

an equivalence class an end in T .
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The compact open subsets of P1(Qp) are in one-one correspondence with the
ends in E (see Theorem 5.9 of [13, Chapter 5]). For e ∈ E , we denote by Ue the
compact open subset under this correspondence.

3.1. p-adic Abel-Jacobi maps: Darmon’s setting. Let us denote by Kp the
completion of the image of the embedding σp : K ↪→ Cp. By the hypothesis that p is
inert inK, we know thatKp is isomorphic to the unramified quadratic extensionQp2

ofQp. For ∗ either empty, ±, or v ∈ V , denote Δ∗ := (Div(Hur
p,∗))

GKur
p /Kp and Δ0

∗ :=

(Div0(Hur
p,∗))

GKur
p /Kp , where GKur

p /Kp
= Gal(Kur

p /Kp) and Div(Hur
p,∗) (respectively

Div0(Hur
p,∗)) denotes the set of divisors (respectively set of zero divisors) on Hur

p,∗.

We can consider Δ∗(Pk−2) := Δ∗ ⊗Z Pk−2 and Δ0
∗(Pk−2) := Δ0

∗ ⊗Z Pk−2 as left
GL2(Qp)-modules (resp. left GL(L)-modules) when ∗ is empty (resp. ∗ = v = [L])
via the usual tensor product action. We have the following exact sequence:

(1) 0 → Δ0
∗(Pk−2) → Δ∗(Pk−2)

deg−−→ Pk−2 → 0.

Recall the set of vertices V and edges E of the Bruhat-Tits tree T . Denote by
C(E , Vk−2) the set of all maps c : E → Vk−2.

Definition 3. A harmonic cocycle is an element in C(E , Vk−2) such that c(ē) =
−c(e) for all e ∈ E and

∑
s(e)=v

c(e) = 0 for every v ∈ V . The space of harmonic

cocycles is denoted by Char(E , Vk−2) ⊆ C(E , Vk−2).

For W := Q2
p − (0, 0), let A(W )k−2 be the space of Kp-valued locally ana-

lytic functions on W that are homogeneous of degree k − 2. Let D(W )k−2 be the
continuous Kp-dual of A(W )k−2 equipped with the strong topology. Note that
Pk−2(Kp) ⊂ A(W )k−2. Further, denote by D(W )0k−2 the subspace of distributions
that are zero on Pk−2(Kp). Consider

θτ2−τ1,P
� : W → Cp, θτ2−τ1,P

� (x, y) := �

(
y + τ2x

y + τ1x

)
P (x, y),

where � = log〈.〉 is the Iwasawa logarithm (see §4.4.11 of [8]) or ordp, τ1, τ2 ∈ Hur
p,∗,

and P ∈ Pk−2(Kp). Since any d ∈ Δ0
∗ is a linear combination of divisors of the

form τ2 − τ1, we can extend by linearity to define θd,Pl for any d ∈ Δ0
∗. For every

t ∈ Q×
p , θ

d,P
l (t(x, y)) = tk−2θd,Pl (x, y), and hence we have θd,Pl ∈ A(W )k−2.

Lemma 1 ([19], Lemma 6.1). The pairing

I0l : D(W )0k−2 ×Δ0
∗(Pk−2) → Kp,

where I0l (μ, d⊗ P ) := μ(θd,Pl ), is invariant for the GL2(Qp)-action (resp. GL(L)-
action) when ∗ is empty (resp. ∗ = v = [L]).

Let π : W → P1(Qp) be the projection π(x, y) := y/x. Note that π is well-defined
since x and y cannot both be simultaneously 0.

Lemma 2. The image of the GL2(Qp)-equivariant map

R : D(W )0k−2 → C(E , Vk−2)

given by R(μ)(e)(P ) := μ(P.χWe
) is contained in Char(E , Vk−2).
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Proof. Note that W = We ∪ Wē. Hence we can write P (x, y) = P.χWe
+ P.χWē

.
Since μ ∈ D(W )0k−2, we have μ(P (x, y)) = 0 and hence R(μ)(ē)(P ) = −R(μ)(e)(P ).
Now, for every v ∈ V we have

⋃
s(e)=v We = W . We write P (x, y) =

∑
s(e)=v

P.χWe

and hence μ(
∑

s(e)=v

P.χWe
) = 0, which implies that

∑
s(e)=v

R(μ)(e) = 0. Hence

R(μ) ∈ Char(E , Vk−2). �
For e ∈ E , denote by ρe : Char(E , Vk−2) → Vk−2 the evaluation map. By Lemma

2, we have

Re : D(W )0k−2
R−→ Char(E , Vk−2)

ρe−→ Vk−2.

The action of GL2(Qp) on the vertices V(T ) induces an action on the edges E(T ).

Definition 4. We say that a distribution μ ∈ D(W )0k−2 is h-admissible if for all
j → ∞, i ≥ 0, and all a ∈ Zp, we have

|μ((x− a)i|, a+ pjZp)| = o(pj(h−i)),

for all i = 0, 1, . . . , h− 1.

Denote by D(W )0,hk−2 ⊂ D(W )0k−2 the set of such h-admissible distributions. The

definition of H1(Γ0(Np), Vk−2)
p−new, the p-new part of the cohomology of Γ0(Np)

with coefficients in Vk−2, is given in Definition 2.7 of [38].

Let ê ∈ E be an edge such that Uê = Zp and the stabilizer of ê in Γ̃ is Γ0(Np).

Lemma 3 ([19, Lemma 6.2]). The map Rê induces on cohomology groups an iso-
morphism

Rê : H
1
(
Γ̃,D(W )0,hk−2

)
∼= H1(Γ0(Np), Vk−2)

p−new.

Denote by Tp
Np the Hecke algebra over Qp generated by the Hecke operators T�

for � � Np and U� for � | Np.

Definition 5. A module M over the Hecke algebra Tp
Np admits an Eisenstein/

cuspidal decomposition if we can write M = Me ⊕ Mc and there exists a Hecke
operator Tl for l � Np such that tl := Tl − lk−1 − 1 is nilpotent on Me and is
invertible on Mc. We call Me (resp. Mc) the Eisenstein (resp. cuspidal) part of M .

Let V be a Γ0(Np)-module and denote by Γ0,c the stabilizer in Γ0(Np) for c a
Γ0(Np)-equivalence class of cusps. We can then define the parabolic cohomology
group to be

H1
par(Γ0(Np), V ) := ker

(
H1(Γ0(Np), V )

res−−→
⊕

cusps c

H1(Γ0,c, V )
)
.

See the Appendix in [22] for the definition and properties of parabolic cohomology.
The Hecke module H1(Γ0(Np), Vk−2)

p−new admits an Eisenstein/cuspidal de-
composition with the cuspidal part given by H1

par(Γ0(Np), Vk−2)
p−new, which for

brevity we denote by Hk.

Remark 3. By the Eichler-Shimura isomorphism, the space

H1(Γ0(Np), Vk−2(C))
p−new

is isomorphic as Hecke modules to the space of modular forms, Mk(Γ0(Np),C),
which admits an Eisenstein/cuspidal decomposition with the Eisenstein part (resp.
cuspidal part) given by the subspace of Eisenstein series of weight k (resp. the
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subspace of cusp forms of weight k). This induces the Eisenstein/cuspidal decom-
position of H1(Γ0(Np), Vk−2)

p−new. See §2.4 of [38].

The isomorphism of Lemma 3 induces

Rê,c : H
1
(
Γ̃,D(W )0,hk−2

)
c

∼= Hk.

By taking the Γ̃-homology of (1), we get

. . . → H2(Γ̃, Pk−2)
δ−→ H1(Γ̃,Δ

0(Pk−2))
i−→ H1(Γ̃,Δ(Pk−2)) → H1(Γ̃, Pk−2) → . . . .

We know that H1(Γ̃, Pk−2) = 0 by Lemma 3.10 of [38] and hence we have the
isomorphism

ī : H1(Γ̃,Δ
0(Pk−2))/im(δ) ∼= H1(Γ̃,Δ(Pk−2)).

Consider the cap product

H1(Γ̃,Δ
0(Pk−2))×H1(Γ̃,D(W )0,hk−2) → H0

(
Γ̃,Δ0(Pk−2)⊗D(W )0,hk−2

)
.

We know that H0

(
Γ̃,Δ0(Pk−2) ⊗ D(W )0,hk−2

)
= (Δ0(Pk−2) ⊗ D(W )0,hk−2)Γ̃ (the set

of Γ̃ co-invariants), which is obtained from Δ0(Pk−2) ⊗ D(W )0,hk−2 by introducing
the relations

γ.(τ ⊗ P (x, y))⊗ μ = (τ ⊗ P (x, y))⊗ μ.γ

for τ ∈ Δ0, P (x, y) ∈ Pk−2 and μ ∈ D(W )0,hk−2. By Lemma 1, the pairing I0l is in

particular Γ̃-invariant and hence it extends to a pairing on the cap product; i.e., we
have

Ĩ0l : H1(Γ̃,Δ
0(Pk−2))×H1(Γ̃,D(W )0,hk−2) → Kp.

We now define

AJ0l : H1(Γ̃,Δ
0(Pk−2))

Ĩ0
l−→ H1

(
Γ̃,D(W )0,hk−2

)∨ prc◦R−1
ê−−−−−→ H±,∨

k ,

where prc denotes the projection onto the cuspidal part, H±
k denotes the direct

summand of Hk on whichW∞ =

(
−1 0
0 1

)
acts with eigenvalue ±1, and ‘∨’ denotes

Kp-dual.

By the isomorphism of Lemma 3, H1
(
Γ̃,D(W )0,hk−2

)
inherits an action of Tp

Np.

We have

Theorem 4 ([38, Corollary 3.13]). There exists a unique L ∈ Tp
Np such that Ĩ0log −

LĨ0ord annihilates im(δ).

Remark 4. The unique element L ∈ Tp
Np is called the L-invariant associated to

Sk(Γ0(Np)), the space of weight k cusp forms on Γ0(Np).

Let log AJ0 := AJ0log − LAJ0ord. By the above theorem, we know that log AJ0

factors through H1(Γ̃,Δ
0(Pk−2))/im(δ). We then define the cohomological Abel-

Jacobi map to be

log AJ : H1(Γ̃,Δ(Pk−2))
ī−1

−−→ H1(Γ̃,Δ
0(Pk−2))/im(δ)

log AJ0

−−−−−→ H±,∨
k .
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3.2. Darmon cycles. We can view K as a sub-field of both R and Cp via the fixed
embeddings σ and σp respectively. For τ ∈ K, we denote by τ the image of the
non-trivial automorphism γ ∈ Gal(K/Q). We can view the positive square root√
DK as an element in Kp. Consider the set of all Q-algebra embeddings of K into

M2(Q), denoted by Emb := Emb(K,M2(Q)). Let R be the Z[ 1p ]-order in M2(Q)

which consists of matrices that are upper triangular modulo N . Note that Γ̃ = R×
1

(the set of invertible matrices of R with determinant 1). For O a Z[ 1p ]-order of

conductor c such that (c,DKNp) = 1, denote by

Emb(O,R) := {ψ : O ↪→ R ∈ Emb : ψ(K) ∩R = ψ(O)}

the set of Z[ 1p ]-embeddings of O into R. We can attach the following data to every

ψ ∈ Emb(O,R):
• the fixed points τψ and τψ ∈ Hp for the action of ψ(K×) ⊆ M2(Q) on Hp(K)

by fractional linear transformation;
• the fixed vertex vψ ∈ V in the Bruhat-Tits tree for the action of ψ(K×) on V ;
• the unique quadratic form

Pψ(x, y) := cx2 + (d− a)xy + by2 ∈ P2(K),

where
(
a b
c d

)
= ψ(

√
DK). In fact, the points τψ and τψ are the roots of Pψ(z, 1);

• for u ∈ O×, the fundamental unit (i.e., σ(u) > 1) of K, let γψ := ψ(u) and let

Γψ be the cyclic group generated by γψ which is also the stabilizer of ψ in Γ̃. In

particular Γψ also fixes Pψ(x, y). Note that Γψ = ψ(K×) ∩ Γ̃.
We say that τ ∈ Hp has positive orientation if redp(τ ) ∈ V+. Denote by H+

p the
set of elements of Hp with positive orientation. Say ψ ∈ Emb(O,R) has positive
orientation if τψ, τψ ∈ H+

p . Since V = V+ � V−, we have

Emb(O,R) = Emb+(O,R) � Emb−(O,R).

The group Γ̃ acts on Emb(O,R) by conjugation. Since Γψ is infinite cyclic, we have

H1(Γψ,Δ(Pk−2)) = H0(Γψ,Δ(Pk−2)) := (Δ(Pk−2))
Γψ

(see Example 1, Chapter 3, page 58 of [7]). Since Γψ acts trivially on τψ ⊗
D

k−2
4

K P
k−2
2

ψ (x, y), we have

Dψ,k := ψ(u)⊗ (τψ ⊗D
k−2
4

K P
k−2
2

ψ (x, y)) ∈ H1(Γψ,Δ(Pk−2)).

The inclusion Γψ ⊂ Γ̃ induces a co-restriction

H1(Γψ,Δ(Pk−2)) → H1(Γ̃,Δ(Pk−2)).

Hence, we can consider Dψ,k as an element in H1(Γ̃,Δ(Pk−2)).

Lemma 4. The cycle Dψ,k does not depend on the representative of the conjugacy
class of ψ ∈ Emb(O,R). Hence we have a well-defined map

Dk : Γ̃ \ Emb(O,R) → H1(Γ̃,Δ(Pk−2))

given by Dk([ψ]) := Dk,[ψ], where [ψ] denotes the conjugacy class of ψ.

Proof. See Lemma 2.19 of [41]. �
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Definition 6. The Darmon cycle associated to the Γ̃-conjugacy class [ψ] is the
element

Dk,[ψ] := ψ(u)⊗ (τψ ⊗D
k
4

KP
k−2
2

ψ (x, y)) ∈ H1(Γ̃,Δ(Pk−2)).

Given an embedding ψ ∈ Emb(O,R), we define ψ to be the embedding given by
ψ(τ ) := ψ(τ) for τ ∈ K.

Lemma 5. We have

(τψ, Pψ, γψ) = (τψ,−Pψ, γ
−1
ψ ).

Proof. By the definition of ψ, we have τψ = τψ. Now ψ(
√
DK) = ψ(−

√
DK).

Hence ψ(
√
DK) =

(−a −b
−c −d

)
and we get that Pψ(x, y) = −Pψ(x, y). Now since u is

a fundamental unit, we have that u = u−1. Thus γψ = ψ(u) = ψ(u−1) = γ−1
ψ . �

Recall the cohomological Abel-Jacobi map we defined earlier:

log AJ : H1(Γ̃,Δ(Pk−2)) → H±,∨
k .

Definition 7. The Darmon cohomology class associated to [ψ] ∈ Γ̃/Emb(O,R) is

[jψ] := log AJ(Dk,[ψ]) ∈ H±,∨
k .

Denote by Pic+(O) the narrow Picard group of strict equivalence class of frac-
tional O-ideals. By class field theory (see Theorem 4.2 of [34]), we have the reci-
procity isomorphism

rec : Pic+(O) ∼= Gal(H+
O/K),

where H+
O is the narrow ring class field of K associated to the order O.

Proposition 1 ([12, Proposition 5.8]). The sets Γ̃/Emb(O,R) and Pic+(O) are
in bijection.

To each narrow ideal class c ∈ Pic+(O), let us denote by Ψc ∈ Γ̃/Emb(O,R) the
class of embedding associated to it by the bijection of Proposition 1. We have a

left action of Pic+(O) on Γ̃/Emb(O,R) as follows:

c′.Ψc := Ψc.c′ ,

where Ψc.c′ is the Γ̃-equivalent class of embedding associated to the product c.c′ ∈
Pic+(O). By the reciprocity isomorphism, we have an action of Gal(H+

O/K) on

Γ̃/Emb(O,R).
Let χ : Gal(H+

O/K) → C× be a character. We will consider the following liner
combination:

Dχ
k :=

∑
σ∈Gal(H+

O/K)

χ−1(σ)Dσ.[ψ],k ∈ H1(Γ̃,Δ(Pk−2))
χ.

3.3. Rationality of Darmon cycles. In this section, we discuss the rationality
conjecture of Darmon cycles. Recall from the Introduction V Np

p , the local p-adic

Galois representation of Gal(Q̄�/Q�).

Proposition 2. The local p-adic Galois representation V Np
p is semistable but not

crystalline.

Proof. This is Corollary 7.5 of [23]. �
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Fontaine and Mazur attach to V Np
p the admissible monodromy module

DFM := Dst(V
Np
p ),

where Dst(V
Np
p ) := (V Np

p ⊗ Bst)
GQp . Here Bst is Fontaine’s semistable ring of

periods defined in [17]. Let

Dk := H±,∨
k ⊕H±,∨

k ,

which is free of rank two over Tp := Tnew
Γ0(Np) ⊗ Qp. We define a filtration FDk

on

Dk as follows:
0 = F k ⊂ F k−1 = · · · = F 1 ⊂ F 0 = Dk,

where F i = {(−LFMx, x) : x ∈ H±,∨
k } for all 1 ≤ i ≤ k− 1 for LFM the L-invariant

of DFM. Dk along with the filtration FDk
is a Tp-monodromy module over Qp.

Theorem 5. We have a Tp-monodromy module isomorphism

DFM ∼= Dk.

Further the isomorphism is stable under base change to Kp, and the following dia-
gram commutes:

H±
k (Kp)

∨ ⊕H±
k (Kp)

∨ −→ DFM ⊗Kp

↓ ↓
H±

k (Kp)
∨ �−→ DFM⊗Kp

Fk/2(DFM⊗Kp)

where the vertical arrow is (x, y) �→ x+ LFMy.

Proof. See Proposition 4.6 and Theorem 4.7 of [38]. �
By composing with the isomorphism of Theorem 5 above, we can consider the

cohomological Abel Jacobi map as

log AJ : H1(Γ̃,Δ(Pk−2)) → H±
k (Kp)

∨ ∼−→ DFM ⊗Kp

F k/2(DFM ⊗Kp)
.

We will also simultaneously refer to the above map as the p-adic Abel-Jacobi map.

Definition 8. Let L be a number field in which p is unramified. For every place v
of L, we define

H1
st(Lv, V

Np
p ) := ker

(
H1(Lv, V

Np
p ) →

{
H1(Lunr

v , V Np
p ) if v � p

H1(Lv, Bst ⊗Qp
V Np
p ) if v | p

)
.

The semistable Selmer group associated to V Np
p is then defined as

Selst(L, V
Np) := ker

(
H1(L, V Np)

∏
resv−−−−→

∏
v

H1(Lv, V
Np
p )

H1
st(Lv, V

Np
p )

)
.

Since the local Galois representation V Np
p is semi-stable, the Bloch-Kato isomor-

phism (see Section 3 of [6]) induces

expBK :
DFM ⊗Qp

Kp

F k/2(DFM ⊗Qp
Kp)

∼=−→ H1
st(Kp, V

Np
p (k/2)).

Composing the p-adic Abel-Jacobi map with the above Bloch-Kato exponential
along with the isomorphism of Theorem 5 we have

AJ : H1(Γ̃,Δ(Pk−2)) → H1
st(Kp, V

Np
p (k/2)),
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where AJ := log AJ ◦ expBK .
We consider the image of Darmon cycles under this map as cohomology classes

sψ ∈ H1
st(Kp, V

Np
p (k/2)), sχ ∈ H1

st(Kp(χ), V
Np
p (k/2)).

Since p is inert in K, it splits completely in the narrow Hilbert class field H+
K .

Hence the embedding σp induces an inclusion σp : H+
K ↪→ Kp. Therefore we have

resp : Selst(H
+
K , V Np

p (k/2)) → H1
st(Kp, V

Np
p (k/2)).

Conjecture 1 ([38, Conjecture 5.7]).

(i) For [ψ] ∈ Γ̃/Emb(O,R), there exists a global cycle Sψ ∈ Selst(H
+
K , V Np

p (k/2))
such that

resp(Sψ) = AJ(D[ψ],k).

As an immediate consequence, we have
(ii) For χ :Gal(H+

K/K)→C× a character, there exists Sχ∈Selst(Hχ, V
Np
p (k/2))χ,

where Hχ ⊆ H+
K is the extension of K cut out by χ, such that

resp(Sχ) = AJ(Dχ
k ).

Remark 5. The conjecture is known to be true when χ is a genus character of K.
See Theorem 13 in Section 5 for the precise formulation.

4. p-adic L-functions

In this section, we will recall the construction and interpolation properties of
certain p-adic L-functions attached to real quadratic fields owing to their relevance
in the proof of the main theorem.

4.1. Overconvergent modular symbols. Let X denote the rigid analytic p-adic
weight space over Qp. For a finite extension E/Qp, the rational points are given
by X (E) = Homcont(Z×

p , E
×). We have a natural inclusion, Z ⊂ X , given by

k → [t �→ tk−2]. We can write every t ∈ Z×
p in the form t = [t]〈t〉 where [t] ∈ (Z/p)×

and 〈t〉 ∈ 1+ pZp. Let U ⊂ X be an open affinoid defined over E. Every κ ∈ U(E)
can be written uniquely in the form

κ(t) = ε(t)χ(t)〈t〉s

for ε, χ : Z×
p → E× characters of order p − 1 and p respectively and s ∈ OE . An

integer k corresponds to the character k(t) = [t]k−2〈t〉k−2. We will restrict to a
neighbourhood U of k0 such that ε(t) = [t]k0−2 and χ = 1 for all κ ∈ U(K). Note
that for all k ∈ U , [t]k−2 = [t]k0−2 =⇒ k ≡ k0 mod (p− 1).

Denote the set of non-zero vectors inQ2
p byW and consider the natural projection

to P1(Qp) which is continuous for the p-adic topology

π : W = Q2
p − (0, 0) → P1(Qp),

π(x, y) :=
x

y
.

Let L ⊂ Q2
p be a Zp-lattice. Denote by L′ := L − pL its set of primitive (not

divisible by p) vectors and denote |L| := pordp(detγ), where γ is any Zp-basis of L
written as a 2 x 2 matrix. As before, let L∗ := Zp ⊕Zp and let L∞ := Zp ⊕ pZp be
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its neighbour in the Bruhat-Tits tree T . Recall that to each edge e ∈ E(T ) we can
associate open compact subsets in W and P1(Qp) as follows:

We := L′
s(e) ∩ L′

t(e) and Ue := π(We).

Let e∞ be the edge between v∗ = [L∗] and v∞ = [L∞]. Further denote by W∞ the
set We∞ .

Let Y be an open compact subset of either W or P1(Qp) and denote by A(Y )
the space of Qp-valued locally analytic functions on Y . Let D(Y ) be the continuous
Qp-dual of A(Y ) which will be called the space of locally analytic distributions on
Y . For μ ∈ D(Y ) and F ∈ A(Y ), we use the measure theoretic definition,

∫
Y

Fdμ,

to denote μ(F ). Further, for any X ⊂ Y compact open, write
∫
X

Fdμ to denote

μ(F.χX), where χX is the characteristic function on X.
Recall from Section 3 the action of GL2(Qp) on the set of Zp-lattices in Q2

p. This
induces an action of GL2(Zp) on L′ for any lattice L. Further let Z∗

p act on the left
on L′ by multiplication (t.(x, y) := (tx, ty)). D(Z∗

p) acts on D(Y ) as follows:

D(Z∗
p)×D(Y ) → D(Y ) (r, μ) �→ rμ,

where rμ is defined as the distribution∫
L′

∗

F (x, y)d(rμ)(x, y) :=

∫
Z
×
p

(∫
L′

∗

F (tx, ty)dμ(x, y)
)
dr(t).

Let k ∈ Z≥0 and let Uk ⊂ X be an affinoid neighbourhood of k. The associated
affinoid algebra A(Uk) has a natural D(Z×

p )-algebra as follows:

μ �→
[
κ �→

∫
Z
×
p

κ(t)dμ(t)

]
.

Hence we can consider the completed tensor product over D(Z×
p ),

DUk
:= A(Uk)

⊗̂
D(Z×

p )
D(L′

∗).

Let Pk−2(E) denote the space of homogeneous polynomials of degree k − 2 in two
variables over a field E. The group SL2(Z) acts on the right on Pk−2(E) by

(P | γ)(x, y) := P ((x, y).γ−1) = P (dx− cy,−bx+ ay)

for γ =

(
a b
c d

)
∈ SL2(Z). The dual space Vk−2(E) := HomE(Pk−2(E), E) is

endowed with the natural dual left action.
Let Δ := Div(P1(Q)) (resp. Δ0 := Div0(P1(Q))) denote the space of divisors

(resp. divisors of degree zero) over P1(Q). Δ and Δ0 are endowed with a natu-
ral left action of SL2(Z) acting via fractional linear transformations. The space
Hom(Δ0, Vk−2) has an induced right action of SL2(Z) given by

φ | γ(D) := φ(γ.D) | γ,
where γ ∈ GL2(Q) and φ : Δ0 → Vk−2. For Γ a congruence subgroup of SL2(Z)
(usually Γ0(N) or Γ1(N)), let SymbΓ(Vk−2) ⊂ Hom(Δ0, Vk−2) be the sub-module
invariant under the action of Γ. We call SymbΓ(Vk−2) the space of modular symbols



4074 GUHAN VENKAT

on Γ. The matrix W∞ :=

(
−1 0
0 1

)
acts as an involution on Vk−2(E) (assuming

2 � char(E)). We will denote by V w∞
k−2 the direct summand of Vk−2 = V +

k−2 ⊕ V −
k−2

on which W∞ acts by w∞ ∈ {±1}.
Consider the GL+

2 (Q)-equivariant map

φ̃ : Sk(Γ0(N),C) → SymbΓ0(N)(Vk−2(C))

φ̃f{x− y}(P ) := 2πi

y∫
x

f(z)P (z, 1)dz ∈ C

for P (x, y) ∈ Pk−2(C). Since Δ0 is generated by divisors of the form {x − y} for
x, y ∈ P1(Q), we extend the map φ by linearity to all of Δ0.

We can write φ̃f = φ̃+
f + φ̃−

f where φ̃f

±
∈ SymbΓ(Vk−2(C)±).

Theorem 6 (Shimura). If f is a newform on Γ0(N), then there exist complex
periods Ω± ∈ C such that

φ±
f :=

φ̃±
f

Ω± ∈ SymbΓ0(N)(Vk−2(Kf )
±).

The periods Ω± can be chosen to satisfy

Ω+Ω− = 〈f, f〉.

Proof. This is Theorem 1(ii) of [45]. �

Recall the Coleman family defined over U :

f(q) =
∑
n≥1

an(κ)q
n ∈ O(U)[[q]]

and the classical forms associated to it:

f#
k ∈ Sk(Γ0(N))new andfk0

∈ Sk0
(Γ0(Np))new.

To each f#
k (resp. fk) (k �= k0) we can attach a modular symbol, φ̃#

k ∈
SymbΓ0(N)(C) (resp. φ̃k ∈ SymbΓ0(Np)(C)) as above. Further, by Theorem 6,

there exist complex Shimura periods Ω#,±
k ∈ C (resp. Ω±

k ∈ C) such that

φ#,±
k :=

φ̃#,±
k

Ω#,±
k

∈ SymbΓ0(N)(Vk−2(Kf#
k
)±)

and

φ±
k :=

φ̃±
k

Ω±
k

∈ SymbΓ0(Np)(Vk0−2(Kfk)
±).

We will choose from now on a sign w∞ ∈ {±1} compatible with the same choice
we made for H±

k and set

φ?
k := φ?,w∞

k ,

where ? ∈ {Ø,#}.
We have the following relation between φk and φ#

k :

(2) φk{r → s}(P ) = φ#
k {r → s}(P )− pk/2−1

ap(k)
φ#
k {r/p → s/p}(P (x, y/p)).
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Definition 9. The space of overconvergent modular symbols for Γ is defined as

the space of modular symbols with coefficients in DU = A(U)
⊗̂

D(Z×
p )D(L′

∗). We

will denote it by SymbΓ(DU ).

For every k ∈ U cl, we have a weight k-specialization map

ρk : SymbΓ0(N)(DU ) → SymbΓ0(Np)(Vk−2(Qp))

ρk(I){r → s}(P ) :=

∫
W∞

P (x, y)dI{r → s}(x, y).

Theorem 7 (G. Stevens). There exists Φ∗ ∈ SymbΓ0(N)(DU ) such that

• for any k ∈ U cl, the weight k-specialization, ρk(Φ∗) = λ(k)φk for some constant

λ(k) ∈ Qp
×
,

• ρk0
(Φ∗) = φk0

.

Proof. See Theorem 6.4.1 of [2]. �

We can define a family of distributions {ΦL} ∈ SymbΓ0(N)(DU ), indexed by

lattices L ⊂ Q2
p, as follows: for all F ∈ A(L′),

ΦL∗ := Φ∗, ΦL{r → s}(F ) := ΦL∗{γr → γs}(F | γ−1),

where γ.L = L∗. This will be used in defining the p-adic L-functions associated to
real quadratic fields (see Section 4.3).

4.2. The Stevens-Mazur-Kitagawa p-adic L-function. In this section, we re-
call the construction and interpolation property of the two variable Stevens-Mazur-
Kitagawa p-adic L-function. The original construction of Mazur and Kitagawa
([24]) was only for the ordinary case (Hida families) and was extended by G. Stevens
to the finite slope case using overconvergent modular symbols in [48].

Let g ∈ Sk(Γ0(N)) be a cusp form and let φg ∈ SymbΓ0(N)(Kg) be the modular

symbol attached to g. For n ∈ Z>0, define

φg,n : Pk−2(Kg)× Z/nZ → Kg

φg,n(P, a) := φg{∞ → a/n}(P ).

Since (
1 1
0 1

)(
1 −a
0 n

)
=

(
1 −a+ n
0 n

)
and φg is invariant under the action of

(
1 1
0 1

)
∈ Γ0(N), φg,n depends only on the

class of a ∈ Z/n.
Let

τ (χ) :=
∑

a∈Z/nZ

χ(a)e2πia/n

be the Gauss sum associated to χ, a primitive Dirichlet character mod n. For

L̃(g, χ, j) :=
(j − 1)!τ (χ)

(−2πi)j−1Ωg
L(g, χ, j)
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the ‘algebraic part’ of L(g, χ, j) and Pj,a :=
(
x − a

ny
)j−1

yk−j−1 ∈ Pk−2(Kg), we

have the following results:

Proposition 3. For every integer 1 ≤ j ≤ k − 1 such that χ(−1) = (−1)j−1w∞,
we have ∑

a∈Z/nZ

χ(a)φg,n(Pj,a, a) = L̃(g, χ, j).

Proof. This is a straightforward calculation relating L-values and modular symbols.
This has been shown in [31, §7]. The relevant calculation for the twisted L-values
is in [31, §8]. �

Remark 6. The proposition shows that L̃(g, χ, j) belongs to Kg(χ). In particular
these quantities are algebraic and hence can be seen as p-adic numbers, thus making
it possible to interpolate them p-adically. In the thesis, we deal with square free
level and quadratic twists, which implies that Kg is a totally real field and that

L̃(g, χ, j) ∈ R.

Let (x, y) ∈ Z×
p × Z×

p and let p � n. Then we have

x− pa

n
y ∈ Z×

p + pZp ⊂ Z×
p .

Hence, for κ ∈ U , we have the locally analytic function

Fs,pa :=
(
x− pa

n
y
)s−1

yκ−s−1 ∈ AU (L
′
∗).

Definition 10. Let f(q) be the Coleman family of tame levelN and let χ : Z/nZ →
C× be a Dirichlet character of conductor n such that p � n. We define the Stevens-
Mazur-Kitagawa p-adic L-function as follows:

LSMK
p (f, χ, κ, s) : U × Zp → Cp

(κ, s) �→ LSMK
p (f, χ, κ, s)

LSMK
p (f, χ, κ, s) :=

∑
a∈Z/nZ

χ(ap)

∫
Z
×
p ×Z

×
p

Fs,padΦ∗{∞ → pa

n
},

where Φ∗ is the big modular symbol from Theorem 7.

Interpolation of special values. We now recall an important result about the
interpolation of classical L-values by the Stevens-Mazur-Kitagawa p-adic L-function
LSMK
p .

Theorem 8. Let k ∈ Ucl be a classical weight and let χ be a primitive character.
For all integers 1 ≤ j ≤ k − 1 such that χ(−1) = (−1)j−1w∞ we have

LSMK
p (f , χ, k, j) = λ(k)

(
1− χ(p)

pj−1

ap(k)

)
L̃(fk, χ, j).

Proof. The interpolation property of the two-variable p-adic L-function follows from
Proposition 3.23 in [4] along with Theorem 7. �
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We will be particularly interested in the specialization of LSMK
p to the central

line j = k/2. Since we are working with the newforms f#
k , the following relation

between the L-values of fk and f#
k will be useful:

(3) L̃(fk, χ, j) =

(
1− χ(p)

pk−j−1

ap(k)

)
L̃(f#

k , χ, j).

Corollary 2. For k �= k0 ∈ Ucl, suppose χ(−1) = (−1)
k−2
2 w∞. Then we have

LSMK
p (f , χ, k, k/2) = λ(k)

(
1− χ(p)

p
k−2
2

ap(k)

)2

L̃(f#
k , χ, k/2).

For k = k0,

LSMK
p (f , χ, k0, k0/2) =

(
1− χ(p)

p
k0−2

2

ap(k)

)
L̃(f#

k0
, χ, k0/2),

where f#
k0

= fk0
.

Proof. This follows from Theorem 7 and equation (3). �
4.3. p-adic L-functions attached to real quadratic fields.

4.3.1. p is inert in K. In this section we will recall the construction and inter-
polation properties of a p-adic L-function attached to real quadratic fields due to
M. Seveso in [41]. Recall that K/Q is a real quadratic field such that

• all the primes dividing N split in K while
• p is inert in K.
Recall the set Emb+(O,R) introduced in Section 3.2. Let Ψ ∈ Emb+(O,R)

have conductor prime to DK and Np (i.e., the order O has conductor prime to DK

and Np). Consider the triple (τΨ, PΨ, γΨ) associated to Ψ and a lattice LΨ ⊂ Q2
p

such that vΨ = [LΨ].

Definition 11. Let s ∈ P1(Q) be an arbitrary base point. For f(q) the Coleman
family and Ψ ∈ Emb+(O,R), we define the partial p-adic L-function
LSev
p (f/K,Ψ,−) : U → Cp as follows:

LSev
p (f/K,Ψ, κ) := |Lψ|−

k0−2
2

∫
L′

Ψ

〈PΨ(x, y)〉
κ−k0

2 P
k0−2

2

Ψ (x, y)dΦLΨ
{s → γΨs}.

For χ : Gal(H+
O/K) → C× a character, we define

LSev
p (f/K, χ, κ) :=

∑
σ∈Gal(H+

O/K)

χ−1(σ)LSev
p (f/K, σΨ, κ).

The p-adic L-function LSev
p (f/K, χ,−) : U → Cp is then defined as

LSev
p (f/K, χ, κ) = LSev

p (f/K, χ, κ)2.

Remark 7. Unlike the Stevens-Mazur-Kitagawa p-adic L-function, the definition

of LSev
p depends on the class of the embedding Ψ ∈ Γ̃/Emb+(O,R). We make a

suitable choice for LΨ as follows: choose γ ∈ Γ̃ such that γvΨ = v∗. This is possible

since Γ̃ acts transitively on V+. Thus v∗ = vγΨγ−1 and L∗ = LγΨγ−1 are associated
to the embedding γΨγ−1 ∈ [Ψ], and the choice of the modular symbols ΦLΨ

can be
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taken to be the big modular symbol Φ∗. This will allow us to compare LSev
p with

the Stevens-Mazur-Kitagawa p-adic L-function.

Definition 12. A genus character of K is a quadratic unramified character χ :
Gal(H+

K/K) → C× which cuts out a bi-quadratic extension Q(
√
D1,

√
D2) of Q

where DK = D = D1.D2 is a factorization into co-prime factors of the discrim-
inant of K = Q(

√
D). In particular, the genus characters of K are in bijection

with the factorization of the D into a product of two relatively prime fundamental
discriminants.

Let χDi
denote the Dirichlet character associated to Q(

√
Di). Then χD =

χD1
.χD2

and since K is real quadratic, we have

1 = χD(−1) = χD1
(−1)χD2

(−1).

Since p is inert in K, DK ∈ Z×
p , and D

k−2
2

K extends to the analytic function on U ,

〈DK〉κ−2
2 . We now state the result about the factorization of LSev(f/K, χ, κ).

Theorem 9. Suppose χ(−1) = (−1)
k0−2

2 w∞. Then

LSev
p (f/K, χ, κ) = D

κ−2
2

K LSMK
p (f , χD1

, κ, κ/2)LSMK
p (f , χD2

, κ, κ/2).

Proof. This is Theorem 5.9 of [41]. �
Interpolation properties of LSev

p . For g ∈ Sk(Γ0(N)) and ψ any character of
the narrow class group of K, let L(g/K, ψ, k/2) denote the central L-value of the
(completed) Rankin L-series attached to πg × πψ where πg (resp. πψ) denotes the
cuspidal automorphic form of GL2(AQ) attached to g (resp. ψ via the Jacquet-
Langlands correspondence).

Let

L∗(g/K, ψ, k/2) :=

(
k−2
2

)
!2
√
DK

(2πi)k−2(Ωg)2
L(g/K, ψ, k/2).

We can now state a result about the interpolation properties of Seveso’s p-adic
L-function.

Theorem 10. For all k �= k0 ∈ Ucl,

LSev
p (f/K,ψ, k) = λ(k)2

(
1− pk−2ap(k)

−2
)2
D

k−2
2

K L∗(f#
k /K,ψ, k/2)

and
LSev
p (f/K,ψ, k0) = 0.

Proof. See Theorem 5.8 of [41]. �
4.3.2. p is split in K. Only in this section we assume that K is a real quadratic
field that satisfies the Heegner hypothesis; i.e., all the primes dividing Np are split
in K. Let us denote by p and p′ the primes above p.

Let Ψ ∈ Emb+(O,R) be as above and let

e1 :=

(
τΨ
1

)
, e2 :=

(
τΨ
1

)
,

where τΨ and τΨ are the fixed points in Hp associated to Ψ. Note that (e1, e2) is
a Zp-basis for LΨ. Let L′′

Ψ ⊂ Q2
p be the set Z×

p e1 ⊕ Z×
p e2. We will now recall the

construction of a p-adic L-function due to Greenberg-Seveso-Shahabi in this setting
(see Section 5.1 of [19]).
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Definition 13. For s ∈ P1(Q) an arbitrary base point and Ψ ∈ Emb+(O,R), we
define the partial p-adic L-function LGSS

p (f/K,Ψ,−) : U → Cp as follows:

LGSS
p (f/K,Ψ, κ) := |Lψ|−

k0−2
2

∫
L′′

Ψ

〈PΨ(x, y)〉
κ−k0

2 P
k0−2

2

Ψ (x, y)dΦLΨ
{s → γΨs}.

For χ : Gal(H+
O/K) → C× a character, we define

LGSS
p (f/K, χ, κ) :=

∑
σ∈Gal(H+

O/K)

χ−1(σ)LGSS
p (f/K, σΨ, κ).

We then define the p-adic L-function LGSS
p (f/K, χ,−) : U → Cp to be

LGSS
p (f/K, χ, κ) = LGSS

p (f/K, χ, κ)2.

We can now state a result about the interpolation of LGSS
p .

Theorem 11. We have

LGSS
p (f/K,ψ, κ) =

(
1− ψ(p)p

k−2
2

ap(k)

)2(
1− ψ(p′)p

k−2
2

ap(k)

)2

L∗(f#
k /K,ψ, k/2).

Proof. See Theorem 1.6 and Proposition 5.5 of [19]. �

4.4. Derivative of LSev
p and Darmon cycles. For the rest of the thesis, we will

assume that K is a real quadratic field in which p is split, unless otherwise stated.
Recall the cohomological Abel-Jacobi map from Section 3:

log AJ : H1(Γ̃,Δ(Pk−2)) → Hw∞,∨
k .

Let D[Ψ],k be the Darmon cycle associated to the class of the embedding [Ψ]. By
the Eichler-Shimura isomorphism, log AJ(D[Ψ],k) can be considered an element in
SymbΓ0(Np)(Vk−2)

∨. We can consider the derivative of the partial p-adic L-function

along the weight direction, i.e. d
dκ [L

Sev
p (f/K,Ψ, κ)]. We have the following result

of Seveso:

Theorem 12. We have

d

dκ
[LSev

p (f/K,Ψ, κ)]κ=k0

=
1

2
D

k0−2
4

K

(
log : AJ(D[Ψ],k0

)(φk0
) + (−1)k0/2log : AJ(D[Ψ],k0

)(φk0
)
)
.

Let χ : Gal(H+
K/K) → ±1 be the genus character corresponding to a factoriza-

tion D = D1.D2. Since all primes dividing N split in K, we have

1 = χD(N) = χD1
(N)χD2

(N).

Since χD1
(−1) = χD2

(−1), we have χD1
(−N) = χD2

(−N), which we will simply
write as χDi

(−N).

Corollary 3. We have

d

dκ
[LSev

p (f/K, χ, κ)]κ=k0
=

1

2
D

k0−2
4

K

(
1 + (−1)k0/2wNχDi

(−N)
)
log : AJ(Dχ

k0
)(φk0

).

Remark 8. Since p is inert in K, we have that χD(p) = −1. This implies that
χD1

(−p) = −χD2
(−p).
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5. Main theorem

5.1. Rationality of Darmon cycles - II. Recall that in Section 3, we stated the
rationality conjecture of Darmon cycles. Here we will state some known results
towards this conjecture which will be used in the main theorem. We have the global
p-adic Abel-Jacobi map

cl
k0/2
0,L : CH

k0/2
0 (Mk0

⊗ L) → Selst(L, V
Np
p (k0/2))

(see Introduction).
Let χ : Gal(H+

K/K) → C× be the genus character of K corresponding to the
factorization D = D1D2 as above. Note that we have χD∗

1
(−N) = χD∗

2
(−N) while

χD∗
1
(−p) = −χD∗

2
(−p). We now recall a theorem about the rationality of Darmon

cycles:

Theorem 13. Assume (−1)k0/2wNχD∗
i
(−N) = 1 for i ∈ {1, 2}. Then, there exist

a global cycle

d
χD∗

2

k0
∈ CH

k0/2
0 (Mk0

⊗Q(
√
D∗

2))
χD∗

2 ⊂ (Mk0
⊗Q(

√
D∗

2 ,
√
D∗

1))

and a constant sf ∈ K×
fk0

such that

resp(cl
k0/2

0,H+
K

(d
χD∗

2

k0
)) = sfAJ(D

χ
k0
).

Proof. This is Theorem 6.2 of [41]. The notation used here is different from
[41], but it is similar to Theorem 6.11 of [19], which is a generalization of the
above theorem to the quaternionic setting. �

Remark 9. Note that the global algebraic cycle d
χD∗

2

k0
depends only on D2 and not

on D1.

5.2. Normalized Fourier coefficients c̃(D, k). Recall the Coleman family of
cusp forms of tame level Γ0(N) over U :

f(q) =
∑
n≥1

an(κ)q
n ∈ O(U)[[q]]

and the classical cusp forms f#
k , for k ∈ U cl/k0. Note that f#

k ∈ Sk(Γ0(N))new for

k �= k0 while f#
k0

= fk0
∈ Sk0

(Γ0(Np))new.

For all k �= k0 ∈ U cl, let

gk :=
∑
D>0

c(D, k)qD ∈ S+,new
k+1
2

(Γ0(4N))

be the Shintani lifting of f#
k and let

gk0
:=

∑
D>0

c(D, k0)q
D ∈ S+,new

k0+1
2

(Γ0(4Np))

be the Shintani lifting of fk0
= f#

k0
.

Remark 10. Recall that for D a Type II discriminant, L(fk0
, D∗, k0/2) = 0 since

the sign in the function equation w(fk0
, D∗) = −1 and hence c(D, k0) = 0. On the

other hand, by the non-vanishing results for quadratic twists of modular L-functions
due to Waldspurger (see Theorem 1.1 of [32]), there exist infinitely many funda-
mental discriminants D1 of Type I such that L(f, χD∗

1
, k0/2) �= 0 and consequently

c(D1, k0) �= 0.
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We fix a Type I discriminant D1 such that c(D1, k0) �= 0.

Lemma 6. Up to further shrinking of U , c(D1, k) is nonvanishing for all k ∈ Ucl.

Proof. The proof is similar to Lemma 3.2 of [29]. By Corollary 1,

c(D1, k) �= 0 ⇔ L(f#
k , χD∗

1
, k/2) �= 0.

Recall the algebraic part of the central L-value:

L̃(f#
k , χD∗

1
, k/2) :=

(k/2− 1)!τ (χD∗
1
)

(−2πi)k/2−1Ωf#
k

L(f#
k , χ, k/2).

By the fixed embedding Q ↪→ Qp, we can look at L̃(f#
k , χD∗

1
, k/2) as p-adic num-

bers. It suffices to show the non-vanishing of L̃(f#
k , χD∗

1
, k/2) in a neighbourhood

of k0. Fix the choice of w∞ such that χD∗
1
(−1) = (−1)

k0−2
2 w∞. By the interpo-

lation property of the Stevens-Mazur-Kitagawa p-adic L-function attached to f(q),
we have

LSMK
p (f , χD∗

1
, k0, k0/2) =

(
1− χD∗

1
(p)

p
k0−2

2

ap(k0)

)
L̃(f#

k0
, χD∗

1
, k0/2).

Note that ap(k0) = −wpp
k0−2

2 . Since D1 is a Type I discriminant, χD∗
1
(p) = wp.

Hence the Euler-like factor
(
1 − χD∗

1
(p) p

k0−2
2

ap(k0)

)
is non-zero. This establishes the

non-vanishing of LSMK
p at (k0, k0/2). Since the Stevens-Mazur-Kitagawa p-adic

L-function is a non-zero p-adic analytic function, up to shrinking U , we have the
non-vanishing of LSMK

p . Thus the non-vanishing result for c(D1, k) follows. �

Let us also fix a Type II discriminant D2 relatively prime to D1 and let DK :=
D∗

1D
∗
2 . Let K := Q(

√
DK) be the real quadratic field with discriminant DK . We

have a bijection between FDK
/Γ0(N), GDK

, and Gal(H+
K/K), where FDK

is the
set of Heegner forms of level N of discriminant DK , GDK

is the SL2(Z)-equivalence
class of primitive integral binary quadratic forms of discriminant DK , and H+

K is
the narrow Hilbert class field of K.

Let Ψ∗ ∈ Emb+(OK ,R) be the optimal embedding such that vΨ∗ = v∗ = [Z2
p].

Note that

(4) rk,N (f#
k , D∗

1 , D
∗
2) =

∑
Q∈FD/Γ0(N)

ωD∗
1 ,D

∗
2
(Q)r(f#

k , Q),

where ωD∗
1 ,D

∗
2
is the genus character corresponding to the bi-quadratic extension

Q(
√
D∗

1 ,
√
D∗

2) of K. Let χD∗
1 ,D

∗
2
: Gal(H+

K/K) → {±1} be the character obtained

by composing ωD∗
1 ,D

∗
2
with the isomorphism between GDK

and Gal(H+
K/K). Hence

we can re-write (4) as

rk,N (f#
k , D∗

1 , D
∗
2) =

∑
σ∈Gal(H+

K/K)

χD∗
1 ,D

∗
2
(σ)r(f#

k , Pσ.[Ψ∗](x, y)).

Since D is not a perfect square, for all Ψ ∈ Emb+(OK ,R), we have

(5)
(2πi)r(f#

k , PΨ(x, y))

Ω#
k

= φ#
k {r → γΨ.r}(P

k−1
2

Ψ (x, y)).
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Lemma 7. For all k ∈ Ucl and P (x, y) ∈ Pk−2,∫
(Z2

p)
′

P (x, y)dΦ∗{r → s} = λ(k)(1− ap(k)
−2pk−2)φf#

k
{r → s}(P (x, y)).

Proof. See Corollary 4.6 of [41] and Proposition 2.4 of [5]. �

Now since PΨ∗(x, y) ∈ Z×
p for all (x, y) ∈ (Z2

p)
′, we have by Lemma 4.1 of [41]

P
k−2
2

Ψ∗
(x, y) = P

k−k0
2

Ψ∗
(x, y).P

k0−2
2

Ψ∗
(x, y) = 〈PΨ∗(x, y)〉

k−k0
2 P

k0−2
2

Ψ∗
.

Therefore, combining equations (4) and (5) with Lemma 7, we get

(6)
λ(k)(1− ap(k)

−2pk−2)(2πi)rk,N(f#
k , D∗

1 , D
∗
2)

Ω#
k

=
∑

σ∈Gal(H+
K/K)

χD∗
1 ,D

∗
2
(σ)

∫
(Z2

p)
′

〈PΨ∗(x, y)〉
k−k0

2 PΨ∗(x, y)
k0−2

2 dΦ∗{r → γΨ∗ .r}.

Since ΦLΨ∗ = Φ∗, the integral above is the value of the partial p-adic L-function

LSev
p at k ∈ U cl and (6) simplifies as

(7)
λ(k)(1− ap(k)

−2pk−2)(2πi)rk,N(f#
k , D∗

1 , D
∗
2)

Ω#
k

= LSev
p (f/K, χD∗

1 ,D
∗
2
, k).

We would like to interpolate the Fourier coefficients c(D, k), for k ∈ U cl, by a
p-adic analytic function over U . We now introduce a normalization of the Fourier
coefficients c(D, k) (see Proposition 1.3 of [14] and Proposition 3.3 of [29]). For
D∗ a fundamental discriminant of either type and for every k ∈ U cl, define the
normalized Fourier coefficient as follows:

c̃(D, k) :=

(
1− χD∗(p) p

k−2
2

ap(k)

)
c(D, k)(

1− χD∗
1
(p) p

k−2
2

ap(k)

)
c(D1, k)

.

Proposition 4. Up to shrinking, the normalized coefficients c̃(D, k) extend to a
p-adic analytic function in a neighbourhood of k0.

Proof. The proof is a higher weight analogue of Proposition 3.3 of [29]. We write

c(D, k)

c(D1, k)
=

c(D, k)c(D1, k)

| c(D1, k) |2
.

Assuming D is relatively prime to D1, from Theorem 3 and Corollary 1, we can
interpret the right hand side as

πk/2(−2i)k/22ν(N)rk,N (f#
k , D∗

1 , D
∗)

2ν(N)(k/2− 1)!|D1|
k−1
2 L(f#

k , D∗
1 , k/2)

,

which simplifies as

(−2πi)k/2rk,N (f#
k , D∗

1 , D
∗)

(k/2− 1)!|D1|
k−1
2 L(f#

k , D∗
1 , k/2)

.



DARMON CYCLES AND THE KOHNEN-SHINTANI LIFTING 4083

Expressing the central L-value in terms of its ‘algebraic part’

L(f#
k , χD∗

1
, k/2) =

(−2πi)
k−2
2 Ωf#

k

(k/2− 1)!τ (χD1
)
L̃(f#

k , χD∗
1
, k/2)

we have

c(D, k)

c(D1, k)
=

−τ (χD∗
1
)(2πi)rk,N (f#

k , D∗, D∗
1)

|D1|
k−1
2 L̃(f#

k , D∗
1 , k/2)Ωf#

k

.

Using the interpolation formula for the Stevens-Mazur-Kitagawa p-adic L-function

and that |τ (χD∗
1
)| = D

1/2
1 , we have

c̃(D, k) =
λ(k)(2πi)

(
1− χD∗(p) p

k−2
2

ap(k)

)(
1− χD∗

1
(p) p

k−2
2

ap(k)

)
rk,N (f#

k , D∗, D∗
1)

|D1|
k−2
2 LSMK

p (f , χD∗
1
, k, k/2)Ωf#

k

.

Now, suppose D is of Type II. Then, χD∗(p) = −χD∗
1
(p). Hence(

1− χD∗(p)
p

k−2
2

ap(k)

)
.
(
1− χD∗

1
(p)

p
k−2
2

ap(k)

)
= 1− pk−2

ap(k)2
.

Since the primes dividing N split in the real quadratic field Q(
√
D∗D∗

1) while p is
inert, we have by (7),

λ(k).
(
1− pk−2

ap(k)2

)
.(2πi).rk,N (f#

k , D∗, D∗
1)

Ωf#
k

= LSev
p (f/Q(

√
D∗D∗

1), χD∗D∗
1
, k/2).

Hence

c̃(D, k) =
LSev
p (f/Q(

√
D∗D∗

1), χD∗D∗
1
, k/2)

|D1|
k−2
2 LSMK

p (f , χD∗
1
, k, k/2)

up to some constant. Since c̃(D, k) is the ratio of p-adic analytic functions on some
neighbourhood of k0, we conclude the same about the normalized coefficients.

Now suppose D is also of Type I and (D,D1) = 1. Note that in this case all
the primes dividing Np split in the real quadratic field Q(

√
D∗D∗

1). This is the
Heegner hypothesis. Also(

1− χD∗(p)
p

k−2
2

ap(k)

)
.
(
1− χD∗

1
(p)

p
k−2
2

ap(k)

)
=

(
1− χD∗

1
(p)

pk−2

ap(k)2

)2

.

In this case,

(8)
λ(k).

(
1− χD∗

1
(p) pk−2

ap(k)2

)2
.(2πi)rk,N (f#

k , D∗, D∗
1)

Ωf#
k

= LGSS
p (f/Q(

√
D∗D∗

1), χD∗D∗
1
, k/2).

We have skipped the detailed calculation, which is similar to the case when D is
of Type II. Finally, when (D,D1) �= 1, choose a Type I discriminant D′

1, prime to
both D1 and D, such that c(D′

1, k0) �= 0. Then we can write

c̃(D, k)

c̃(D1, k)
=

( c̃(D, k)

c̃(D′
1, k)

)
.
( c̃(D′

1, k)

c̃(D1, k)

)
and we repeat the same as above for each individual factor in the product. �
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In particular, we have

(9) c̃(D2, κ) =
LSev
p (f/Q(

√
D∗

2D
∗
1), χD∗

2D
∗
1
, κ/2)

|D1|
κ−2
2 LSMK

p (f , χD∗
1
, κ, κ/2)

.

5.3. Proof of the main theorem. We will now compute the derivative of the
analytic function c̃(D2, κ) along the weight direction around a neighbourhood of
k0.

Theorem 14. There exist a global cycle

d
χD∗

2

k0
∈ CH

k0/2
0 (Mk0

⊗Q(
√
D∗

2))
χD∗

2 ⊂ (Mk0
⊗Q(

√
D∗

2 ,
√
D∗

1))

and a constant sf ∈ K×
fk0

such that

d

dk
[c̃(D2, k)]k=k0

=
|D2|

k0−2
4

|D1|
k0−2

4

.sf .logBK(resp(cl
k0/2

0,H+
K

(d
χD∗

2

k0
)))(φk0

).

Proof. Taking the derivative w.r.t. κ on both sides of (9), we have

(10)
d

dκ
c̃(D2, κ) =

|D1|κ/2−1LSMK
p (f , χD∗

1
, κ, κ/2) d

dκ [L
Sev
p (f/K, χD∗

1 ,D
∗
2
, κ)]

|D1|κ−2LSMK
p (f , χD∗

1
, κ, κ/2)2

+
LSev
p (f/K, χD∗

1 ,D
∗
2
, κ) d

dκ [|D1|κ/2−1LSMK
p (f , χD∗

1
, κ, κ/2)]

|D1|κ−2LSMK
p (f , χD∗

1
, κ, κ/2)2

.

At κ = k0, we know that LSev
p (f/K, χD∗

1 ,D
∗
2
, k0) = 0 (see Proposition 5.7 of [41]).

Hence (9) simplifies as

(11)
d

dκ
[c̃(D2, κ)]κ=k0

=
d
dκ [L

Sev
p (f/K, χD∗

1 ,D
∗
2
, κ)]κ=k0

|D1|
k0−2

2 LSMK
p (f , χD∗

1
, k0, k0/2)

.

By Corollary 2, we write (10) as

d

dκ
[c̃(D2, κ)]κ=k0

=
D

k0−2
4 log : AJ(Dχ

k0
)(φk0

)

|D1|
k0−2

2 2L̃(fk0
, χD∗

1
, k0, k0/2)

.

Since D = |D1|.|D2| and 2L̃(fk0
, χD∗

1
, k0/2) ∈ K×

fk0
, the theorem follows from

Theorem 13 on the rationality of Darmon cycles. �

Remark 11. The additional factor of |D2|
|D1|

k0−2
4

is 1 in [14] since k0 = 2 in their case.

Remark 12. In the statement of the main theorem, we have used logBK to denote
the isomorphism:

logBK : H1
st(Kp, V

Np
p (k/2)) −→ DFM ⊗Kp

F k/2(DFM ⊗Kp)
−→ H±

k (Kp)
∨.
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[33] Jan Nekovář, Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math. 107
(1992), no. 1, 99–125, DOI 10.1007/BF01231883. MR1135466

[34] Jürgen Neukirch, Class field theory, Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986.
MR819231

[35] Ken Ono and Christopher Skinner, Fourier coefficients of half-integral weight modular forms
modulo l, Ann. of Math. (2) 147 (1998), no. 2, 453–470, DOI 10.2307/121015. MR1626761

[36] Robert Pollack, Overconvergent modular symbols, Computations with modular forms, Con-
trib. Math. Comput. Sci., vol. 6, Springer, Cham, 2014, pp. 69–105, DOI 10.1007/978-3-319-
03847-6 3. MR3381449

[37] Alexandru A. Popa, Central values of Rankin L-series over real quadratic fields, Compos.
Math. 142 (2006), no. 4, 811–866, DOI 10.1112/S0010437X06002259. MR2249532

[38] Victor Rotger and Marco Adamo Seveso, L-invariants and Darmon cycles attached to modu-
lar forms, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6, 1955–1999, DOI 10.4171/JEMS/352.

MR2984593
[39] P. Schneider and U. Stuhler, The cohomology of p-adic symmetric spaces, Invent. Math. 105

(1991), no. 1, 47–122, DOI 10.1007/BF01232257. MR1109620
[40] A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, 419–430, DOI

10.1007/BF01231194. MR1047142
[41] Marco Adamo Seveso, p-adic L-functions and the rationality of Darmon cycles, Canad. J.

Math. 64 (2012), no. 5, 1122–1181, DOI 10.4153/CJM-2011-076-8. MR2979580
[42] Marco Adamo Seveso, The Teitelbaum conjecture in the indefinite setting, Amer. J. Math.

135 (2013), no. 6, 1525–1557, DOI 10.1353/ajm.2013.0055. MR3145003
[43] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memo-
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