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GLEASON PARTS AND POINT DERIVATIONS

FOR UNIFORM ALGEBRAS WITH

DENSE INVERTIBLE GROUP
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Dedicated to Andrew Browder

Abstract. It is shown that there exists a compact set X in CN (N ≥ 2) such

that ̂X \X is nonempty and the uniform algebra P (X) has a dense set of in-
vertible elements, a large Gleason part, and an abundance of nonzero bounded
point derivations. The existence of a Swiss cheese X such that R(X) has a
Gleason part of full planar measure and a nonzero bounded point derivation at
almost every point is established. An analogous result in CN is presented. The
analogue for rational hulls of a result of Duval and Levenberg on polynomial
hulls containing no analytic discs is established. The results presented address
questions raised by Dales and Feinstein.

1. Introduction

It was once conjectured that whenever the polynomially convex hull X̂ of a com-

pact set X in CN is strictly larger than X, the complementary set X̂ \ X must
contain an analytic disc. This conjecture was disproved by Gabriel Stolzenberg
[18]. Given Stolzenberg’s result, it is natural to ask whether weaker semblances of
analyticity, such as nontrivial Gleason parts or nonzero bounded point derivations,

must be present in X̂ \X. Garth Dales and Joel Feinstein [7] strengthened Stolzen-

berg’s result by constructing a compact set X in C2 with X̂ \X nonempty and such
that P (X) has a dense set of invertible elements. (As noted in [7] the condition that
P (X) has a dense set of invertible elements is strictly stronger than the condition

that X̂ contains no analytic disc.) In the paper [5] of Brian Cole, Swarup Ghosh,
and Alexander Izzo, an example is given in C3 with the additional properties that
P (X) has no nontrivial Gleason parts and no nonzero bounded point derivations.
The main purpose of the present paper is to show that in contrast to that ex-
ample, there are also examples having a large Gleason part and an abundance of
nonzero bounded point derivations. In particular we will establish the following
result. Here ∂B denotes the boundary of the open unit ball B = {z : ‖z‖ < 1} in
CN , and following Dales and Feinstein, we will say that a uniform algebra A has
dense invertibles if the invertible elements of A are dense in A.
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Theorem 1.1. For each integer N ≥ 2, there exists a compact set X ⊂ ∂B ⊂ CN

such that

(i) X̂ \X has positive 2N-dimensional measure,
(ii) P (X) has dense invertibles,

(iii) there is a set P ⊂ X̂ \ X of positive 2-dimensional Hausdorff measure
contained in a single Gleason part for P (X),

(iv) at each point of P there is a nonzero bounded point derivation for P (X).

In the case N ≥ 3 we can obtain a larger Gleason part and more bounded point

derivations, but at the expense of giving up assurance that X̂ \ X has positive
2N -dimensional measure.

Theorem 1.2. For each integer N ≥ 3, there exists a compact set X ⊂ ∂B ⊂ CN

such that

(i) P (X) has dense invertibles,

(ii) there is a set P ⊂ X̂ \ X of positive 2(N − 1)-dimensional Hausdorff
measure contained in a single Gleason part for P (X),

(iii) at each point of P the space of bounded point derivations for P (X) has
dimension at least N − 1.

One can also consider questions of analyticity for the rationally convex hull
hr(X) of a compact set X. In fact, Theorem 1.2 will be obtained as an immediate
consequence of the next result, which concerns rationally convex hulls.

Theorem 1.3. For each integer N ≥ 2, there exists a compact set X ⊂ ∂B ⊂ CN

such that

(i) R(X) has dense invertibles,
(ii) there is a set P ⊂ hr(X)\X of positive 2N-dimensional measure contained

in a single Gleason part for R(X),
(iii) at each point of P the space of bounded point derivations for R(X) has

dimension N .

The proofs of Theorems 1.1 and 1.2 show that the set X in those theorems

satisfies X̂ = hr(X). We have not stated this in the theorems because this condition
actually follows from the condition that P (X) has dense invertibles. This was
explicitly noted by Dales and Feinstein [7] and is also implicit in the paper [18],
in which Stolzenberg gave the first example of a hull containing no analytic discs.

(The proof of [18, 4.2] shows that if X̂ �= hr(X), then P (X) fails to contain a dense
set of functions whose spectra have empty interior. It then follows that P (X) fails
to have a dense set of invertibles, as shown in [9] and [6, Corollary 1.10].)

It is surprising that little attention has been given in the literature to the ex-
istence of nontrivial Gleason parts in hulls without analytic discs because early
efforts to prove the existence of analytic discs focused on the use of Gleason parts.
John Wermer [20] proved that every nontrivial Gleason part for a Dirichlet algebra
is an analytic disc, and this was extended to uniform algebras with uniqueness of
representing measures by Gunter Lumer [13]. However, once it was proven that
analytic discs do not always exist, it seems that almost no further work was done
on Gleason parts in hulls except for a result of Richard Basener [2] that there ex-
ists a compact set in C2 whose rationally convex hull contains no analytic discs
but contains a Gleason part of positive 4-dimensional measure. Theorem 1.3 above
strengthens this result. Our method of proof is quite different from Basener’s.
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In connection with their result mentioned above, Dales and Feinstein asked what
can be said about the existence of nonzero point derivations [7, Section 4, Ques-
tion 1]. Although they asked specifically about the algebra P (Y ) for the set Y
that they constructed, the spirit of their question is what can be said about point
derivations on uniform algebras of the form P (X) (X ⊂ CN compact) at points of

the set X̂ \X when X is such that X̂ \X is nonempty while P (X) has dense invert-
ibles. In fact, the question of existence of point derivations in hulls without analytic
discs seems not to have been addressed in the literature at all until very recently.
Taken together, Theorem 1.1 above and [5, Theorem 1.4] answer this question in
the case of bounded point derivations: there exist such uniform algebras both with,
and without, bounded point derivations.

Dales and Feinstein [7, Section 4, Question 2] also raised the question of whether
the set of exponentials expA can be dense in a uniform algebra A with proper

Shilov boundary (so in particular in a P (X) with X̂ \ X �= ∅). They also raised
the question of whether expA can ever be dense in a nontrivial uniform algebra
A. In connection with these questions, they remarked that “it is conceivable (but
unlikely)” that expA is dense in the algebra A with A = P (Y ) where Y is the set
they constructed. We will establish the following.

Theorem 1.4. The examples in Theorems 1.1–1.3 can be taken to have the ad-
ditional property that expA is not dense in A where A = P (X) in Theorems 1.1
and 1.2 and A = R(X) in Theorem 1.3.

This, of course, leaves unsettled the question of whether there exist nontrivial
uniform algebras for which the exponentials are dense.

It is also of interest to consider Gleason parts and point derivations in algebras
with dense invertibles without the requirement that the hull be nontrivial. For
uniform algebras on planar sets some results on this have long been known. For
a compact set X ⊂ C, it follows from Lavrentiev’s theorem [4, Theorem 3.4.15]
that if P (X) has dense invertibles, then P (X) = C(X) and consequently has no
nonzero point derivations [4, pp. 64–65] and no nontrivial Gleason parts. With
regard to R(X), interesting examples concerning point derivations have been given
using Swiss cheeses. The definition of a Swiss cheese we shall use is as follows: A
Swiss cheese is a compact set X obtained from the closed unit disc D by deleting
a sequence of open discs {Dj}∞j=1 with radii {rj}∞j=1 and contained in D such

that the closures of the Dj are disjoint,
∑∞

j=1 rj < ∞, and the resulting set

X = D\(
⋃∞

j=1Dj) has no interior. (Sometimes in the literature a more general
definition of Swiss cheese is used and Swiss cheeses as we have defined them are
referred to as classical Swiss cheeses .) It is well known that every Swiss cheese
has positive 2-dimensional measure and satisfies R(X) �= C(X). Andrew Browder
constructed a Swiss cheese X such that R(X) has a nonzero bounded point deriva-
tion at almost every point with respect to 2-dimensional measure (see [21]), and
Wermer constructed a Swiss cheese X such that R(X) has no nonzero bounded
point derivations [21]. We will prove the following result which deals with both
bounded point derivations and Gleason parts.

Theorem 1.5. There exists a Swiss cheese X such that the set of nonpeak points
for R(X) is a single Gleason part of full 2-dimensional measure in X, and R(X)
has a nonzero bounded point derivation at almost every point.
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The question of whether there exists a Swiss cheese X for which R(X) is an-
tisymmetric was raised by Feinstein (private communication). One might expect
that every Swiss cheese would have this property, but a counterexample was con-
structed by Lynn Steen [17]. We will show that the Swiss cheese of Theorem 1.5
provides an affirmative answer to Feinstein’s question.

We extend Theorem 1.5 to N dimensions as follows.

Theorem 1.6. There exists a compact rationally convex set X ⊂ CN (N ≥ 1)
of positive 2N-dimensional measure such that R(X) has dense invertibles, there
is a Gleason part for R(X) of full 2N-dimensional measure in X, and at almost
every point (with respect to 2N-dimensional measure) the space of bounded point
derivations for R(X) has dimension N .

In fact, the proof will show that X can be taken to be a subset of the ball
B such that the complement of X in B has 2N -dimensional measure less than
any prescribed ε > 0. The theorem can be translated into a statement about
polynomially convex sets in CN+1 by a standard device recalled in the next section.
This is left to the reader.

The proof of Theorem 1.1 is based on the approach to constructing hulls without
analytic discs due to Julien Duval and Norman Levenberg [8]. Their result is as
follows, except that here we make the additional observation that the polynomial
hull and rational hull of the set constructed coincide.

Theorem 1.7. If K is a compact polynomially convex subset of B ⊂ CN (N ≥ 2),

then there is a compact subset X of ∂B such that X̂ = hr(X) ⊃ K and the set

X̂ \K contains no analytic disc.

Theorem 1.1 will be proven by using the method of Duval and Levenberg to
construct a compact set X ⊂ ∂B whose polynomial hull contains a graph over a

Swiss cheese. The presence of this subset in X̂ gives the existence of the desired
Gleason part and bounded point derivations. To prove Theorem 1.3, a different
construction that enables us to put a specified rationally convex set into a rational
hull is needed. This leads us to prove the following analogue of the result of Duval
and Levenberg with polynomial convexity replaced by rational convexity.

Theorem 1.8. If K is a compact rationally convex subset of B ⊂ CN (N ≥ 2),
then there is a compact subset X of ∂B such that hr(X) ⊃ K and the set hr(X)\K
contains no analytic disc.

In the next section we recall some definitions and notation already used above.
Section 3 is devoted to the theorem of Duval and Levenberg and its analogue for
rational convexity. The hulls with dense invertibles and large Gleason parts and
nonzero bounded point derivations (Theorems 1.1–1.4) are constructed in Section 4.
The Swiss cheese of Theorem 1.5 is constructed in Section 5, and the N -dimensional
extension given by Theorem 1.6 is presented in Section 6. Some of the proofs in
Section 4 rely on Theorem 6.1 of Section 6. The proof of Theorem 6.1 is independent
of the material in Section 4, so no circular reasoning occurs. The paper concludes
with some open questions in Section 7.
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2. Preliminaries

For X a compact (Hausdorff) space, we denote by C(X) the algebra of all contin-
uous complex-valued functions on X with the supremum norm ‖f‖X = sup{|f(x)| :
x ∈ X}. A uniform algebra on X is a closed subalgebra of C(X) that contains the
constant functions and separates the points of X.

For a compact set X in CN , we denote by P (X) the uniform closure on X of
the polynomials in the complex coordinate functions z1, . . . , zN , and we denote by
R(X) the uniform closure of the rational functions holomorphic on (a neighborhood
of) X. It is well known that the maximal ideal space of P (X) can be naturally

identified with the polynomially convex hull X̂ of X defined by

X̂ = {z ∈ CN : |p(z)| ≤ max
x∈X

|p(x)| for all polynomials p},

and the maximal ideal space of R(X) can be naturally identified with the rationally
convex hull hr(X) of X defined by

hr(X) = {z ∈ CN : p(z) ∈ p(X) for all polynomials p}.
An equivalent formulation of the definition of hr(X) is that hr(X) consists precisely
of those points z ∈ CN such that every polynomial that vanishes at z also has a
zero on X.

For E a subset of CN = R2N , by m(E) we will denote the 2N -dimensional
Lebesgue measure of E. The real part of a complex number (or function) z will be
denoted by �z. In Sections 5 and 6 the following notation will be used in which
we assume that X is a compact set in CN and that Ω is an open set in CN each of
which contains the origin:

B(X) denotes the set of rational functions f holomorphic on a neighborhood of
X such that ‖f‖X ≤ 1,

B0(X) denotes the set of functions in B(X) that vanish at the origin,
B(Ω) denotes the set of functions f holomorphic on Ω such that ‖f‖Ω ≤ 1, and
B0(Ω) denotes the set of functions in B(Ω) that vanish at the origin.

Let A be a uniform algebra on a compact space X. A point x ∈ X is said to
be a peak point for A if there exists f ∈ A with f(x) = 1 and |f(y)| < 1 for all
y ∈ X \ {x}. The Gleason parts for the uniform algebra A are the equivalence
classes in the maximal ideal space of A under the equivalence relation ϕ ∼ ψ if
‖ϕ− ψ‖ < 2 in the norm on the dual space A∗. (That this really is an equivalence
relation is well known but not obvious!) We say that a Gleason part is nontrivial
if it contains more than one point. For φ a multiplicative linear functional on A, a
point derivation on A at φ is a linear functional ψ on A satisfying the identity

ψ(fg) = ψ(f)φ(g) + φ(f)ψ(g) for all f, g ∈ A.

A point derivation is said to be bounded if it is bounded (continuous) as a linear
functional. It is well known that every peak point is a one-point Gleason part and
that at a peak point there are no nonzero point derivations. (See for instance [4].)

An analytic disc in the maximal ideal space MA of a uniform algebra A is, by
definition, an injective map σ of the open unit disc D ⊂ C into MA such that the
function f ◦ σ is analytic on D for every f in A. It is immediate that the presence
of an analytic disc implies the existence of a nontrivial Gleason part and nonzero
bounded point derivations.
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We will make repeated use of the following standard lemma. (For a proof see
[4, Lemma 2.6.1].)

Lemma 2.1. Two multiplicative linear functionals φ and ψ on a uniform algebra
A lie in the same Gleason part if and only if

sup{|ψ(f)| : f ∈ A, ‖f‖ ≤ 1, φ(f) = 0} < 1.

We will also need the following theorem of Wilken [23] (or see [4, Theorem 3.3.7]).

Theorem 2.2. If X is a compact set in the plane and x ∈ X is not a peak point
for R(X), then the Gleason part of x has positive planar measure.

It follows from Wilken’s theorem that R(X) (X ⊂ C) has a Gleason part of
positive planar measure whenever R(X) �= C(X), for the condition that R(X) �=
C(X) implies that some point of X must be a nonpeak point by a well-known
theorem of Errett Bishop [3] (or see [4, Theorem 3.3.3]).

We will also need an elementary observation about bounded point derivations.
Let X ⊂ CN be compact. Each bounded point derivation on R(X) is of course
determined by its restriction to R0(X), the space of rational functions holomorphic
on a neighborhood of X. It is not difficult to show that each point derivation on
R0(X) is determined by its action on the functions z1, . . . , zN and hence is a linear
combination of ∂/∂z1, . . . , ∂/∂zN . We conclude that the complex vector space of
bounded point derivations on R(X) at a particular point x ∈ X has dimension
at most N and that the dimension is exactly N if and only if there is a number
M < ∞ such that

|∂f/∂zν(x)| ≤ M for every f ∈ B(X) and ν = 1, . . . , N.

Finally we recall the standard method for translating statements about rational
hulls in CN into statements about polynomial hulls in CN+1. A theorem, due
to Kenneth Hoffman and Errett Bishop in case N = 1 and Hugo Rossi [16] in
general, asserts that for X a compact set in CN , there is a function g such that the
functions z1, . . . , zN , g generate R(X) as a uniform algebra. Furthermore, as noted
by Basener [2], the function g can be taken to be C∞ on CN . Let τ : CN → CN+1

be given by τ (z) =
(
z, g(z)

)
. Then P (τ (X)) is isomorphic as a uniform algebra

to R(X). Consequently, τ̂ (X) = τ (hr(X)), provided we choose g, as of course we
may, so that the restriction of g to hr(X) lies in R(hr(X)).

3. The theorem of Duval and Levenberg

and its analogue for rational convexity

In this section we prove Theorem 1.8, the analogue for rational convexity of the
result of Duval and Levenberg [8] on polynomially convex hulls without analytic
discs. We also partially re-prove the result of Duval and Levenberg. We do this for
several reasons: (i) to be able to explain clearly how these two proofs are related
to each other and how they are both related to an earlier argument of Wermer;
(ii) to make available a key lemma from the argument of Duval and Levenberg, as
it is this lemma rather than the theorem itself that will be needed in the proof of
Theorem 1.1; (iii) to establish that the set X constructed by Duval and Levenberg

satisfies X̂ = hr(X) as claimed in the introduction (Theorem 1.7); and (iv) to
give a simplification of a part of the argument that is also needed in the proof of
Theorem 1.8.
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Throughout this section it is to be understood that B is the open unit ball in
CN with N ≥ 2.

The proof of the following lemma is an easy exercise.

Lemma 3.1. Let X be a polynomially convex set in CN , let Y be a polynomially
convex set in the plane, and let f be a polynomial on CN . Then f−1(Y ) ∩ X is
polynomially convex in CN . �

The next lemma is really the foundation for the proof of Duval and Levenberg.

Lemma 3.2. Let p be a polynomial on CN and let X = {�p ≤ 0} ∩ ∂B. Then

X̂ = hr(X) = {�p ≤ 0} ∩B.

Proof. For every real number α, the sets {�p ≤ α} ∩ B and {�p ≥ α} ∩ B are
polynomially convex by the preceding lemma. Therefore,

hr(X) ⊂ X̂ ⊂ {�p ≤ 0} ∩B.

To see that the reverse inclusions hold, suppose z0 is a point of B such that z0 /∈
hr(X). Then there is a polynomial q such that q(z0) = 0 and q has no zeros on X.
Thus �p > 0 everywhere on the set {q = 0} ∩ ∂B. Hence there is an α > 0 such
that {q = 0} ∩ ∂B ⊂ {�p ≥ α} ∩ ∂B. Now the maximum principle applied to the
irreducible component of {q = 0} through z0 gives that z0 lies in the polynomial
hull of {�p ≥ α}∩∂B and hence lies in {�p ≥ α}∩B. Thus z0 /∈ {�p ≤ 0}∩B. �

The key construction of Duval and Levenberg is contained in the next lemma.

Lemma 3.3. If K ⊂ B is a compact polynomially convex set, and if {pj}∞j=1 is

a sequence of polynomials such that each of the sets Zj = B ∩ p−1
j (0) is disjoint

from K, then there is a compact subset X of ∂B such that X̂ = hr(X) ⊃ K and

X̂ ∩ Zj = ∅ for every j.

Proof. One constructs a sequence of polynomials {fj}∞j=1 such that for each j we
have �fj < 0 on K and �fj > 0 on Zj and such that the sets

Xj = {�fj ≤ 0} ∩ ∂B

form a decreasing sequence. The set X =
⋂∞

j=1 Xj then has the required properties

by the preceding lemma. We refer the reader to the original paper [8] or to [19,
Lemma 1.7.5] for the construction of the fj . �

Finally we offer the following simplification of the remainder of the proof of Duval
and Levenberg.

Proof of Theorem 1.7. The collection of all polynomials on CN having no zeros on
K, viewed as a subset of P (B), has a countable dense subset. Choosing such a
subset {pj} and applying Lemma 3.3 yield a compact subset X of ∂B such that

X̂ = hr(X) ⊃ K and each pj is zero-free on X̂. Assume to get a contradiction that

X̂ \K contains an analytic disc σ : D → X̂ \K. Since K is polynomially convex,
and hence rationally convex, there is a polynomial p such that p(σ(0)) = 0 and p
has no zeros on K. Because σ is injective, we may assume, by adding to p a small
multiple of a suitable first degree polynomial if necessary, that

(
∂(p◦σ)/∂z

)
(0) �= 0.

Then Rouche’s theorem shows that every polynomial that is uniformly close to p

on σ(D) also has a zero on σ(D). But then some pj must have a zero on σ(D) ⊂ X̂,
a contradiction. �
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Duval and Levenberg refer to their construction as a modification of the con-
struction of Stolzenberg. However, the present author sees their construction as
being more closely related to the construction of a rationally convex hull with no
analytic discs due to Wermer [22] (or see [1, Chapter 24]). In both the construc-
tion of Duval and Levenberg and the construction of Wermer, the set having hull
without analytic discs is obtained from the boundary of a domain by removing a
sequence of subsets, and the presence of nontrivial hull arises because a point lies
in the rational hull of the set that remains if it does not lie in the polynomial hull
of the set removed. (Compare the proofs of Lemma 3.2 above and [1, Claim 2,
p. 207].) The principal difference between the proofs is that in Wermer’s argument,
the sets removed are inverse images of discs, while in Duval and Levenberg, they are
inverse images of half-planes. This difference is what accounts for the polynomial
hull, and not only the rational hull, having no analytic discs in the construction of
Duval and Levenberg. Another difference between the constructions is that in the
case of Duval and Levenberg, to get the example, one must consider general polyno-
mials, whereas in the construction of Wermer, it suffices to remove inverse images
of discs under only the functions z1 and z2. These observations motivate our proof
of Theorem 1.8, the analogue for rational convexity of the Duval and Levenberg
result. In fact, our proof is, roughly, a generalization of Wermer’s argument with
z1 and z2 replaced by a sequence of polynomials. In connection with this, note that
the construction of Dales and Feinstein [7] is a generalization of the construction
of Stolzenberg also involving replacing z1 and z2 by a sequence of polynomials.

For the proof of Theorem 1.8 we need lemmas analogous to those above.

Lemma 3.4. Suppose {pj} is a sequence of polynomials and {rj} is a sequence of
strictly positive numbers. Define

X = ∂B \
∞⋃
j=1

{z ∈ ∂B : |pj(z)| < rj},

and for each j,
Hj = {z ∈ ∂B : |pj(z)| < rj}.

For z0 ∈ B, if z0 /∈ hr(X), then for some n, we have z0 ∈ [
⋃n

j=1 Hj ]̂ .

Proof. We follow the argument of Wermer given in [1, pp. 207–208]. Suppose
z0 /∈ hr(X). Then there is a polynomial q such that q(z0) = 0 and q has no zeros
on X. Then {z ∈ ∂B : q(z) = 0} ⊂

⋃∞
j=1 Hj . Since {z ∈ ∂B : q(z) = 0} is compact,

there is an n such that {z ∈ ∂B : q(z) = 0} ⊂
⋃n

j=1Hj .
Let V be the irreducible component of the zero set of q containing z0. Then

V ∩ ∂B ⊂
⋃n

j=1Hj . The maximum principle applied to V gives that for every
polynomial p,

|p(z0)| ≤ max
V ∩∂B

|p| ≤ max⋃n
1 Hj

|p|.

Hence z0 ∈ [
⋃n

j=1 Hj ]̂ , as asserted. �

Lemma 3.5. If K ⊂ B is a rationally convex set, and if {pj} is a sequence of

polynomials such that all the sets Zj = B ∩ p−1
j (0) are disjoint from K, then there

is a compact subset X of ∂B such that hr(X) ⊃ K and hr(X) ∩ Zj = ∅ for all j.

Note that the assertion that hr(X) ∩ Zj = ∅ is equivalent to the statement that
each pj is zero-free on X.
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Proof. We will show that for a suitable choice of strictly positive numbers r1, r2, . . . ,
the set X defined as in Lemma 3.4 satisfies hr(X) ⊃ K. Since it is obvious that
each pj is zero-free on X, this will prove the lemma.

We will choose the rj inductively so that the following statement holds: for each
n = 1, 2, . . . , there exists a polynomial qn so that, with Hj defined as in Lemma 3.4,

(1) sup
z∈

⋃n
1 Hj

|qn(z)| < inf
z∈K

|qn(z)|.

Then hr(X) ⊃ K by Lemma 3.4.
Since p1 has no zeros on K, there is an r1 > 0 such that |p1| > r1 on K. Set

q1 = p1. Then (1) holds with n = 1. Now assume that strictly positive numbers
r1, . . . , rn and polynomials q1, . . . , qn have been found so that (1) holds. Note that
by multiplying qn by a suitable constant, we may assume that

inf
z∈K

|qn(z)| = 1.

Since then sup⋃n
1 Hj

|qn| < 1 and infK |pn+1| > 0, choosing k large enough, we get(
sup

⋃n
1 Hj

|qkn|
)(

sup
⋃n

1 Hj

|pn+1|
)

< inf
K

|pn+1|.

Choose rn+1 > 0 small enough that, with Hn+1 defined as in Lemma 3.4,(
sup
Hn+1

|qkn|
)
rn+1 < inf

K
|pn+1|.

Now define the polynomial qn+1 by qn+1 = qkn ·pn+1. Then (1) holds with n replaced
by n+ 1. This completes the induction and the proof. �

Proof of Theorem 1.8. This follows from Lemma 3.5 by exactly the same argu-
ment that was used above to obtain Theorem 1.7 of Duval and Levenberg from
Lemma 3.3. �

4. Hulls with dense invertibles

In this section we prove Theorems 1.1–1.4. We begin by noting the following
general result (a modification of the result of Duval and Levenberg) giving hulls
with dense invertibles.

Theorem 4.1. If K ⊂ B ⊂ CN (N ≥ 2) is a compact polynomially convex set,
and if the set of polynomials that are zero-free on K is dense in P (B), then there

is a compact subset X of ∂B such that X̂ = hr(X) ⊃ K and P (X) has dense
invertibles.

Proof. The hypotheses enable us to choose a countable dense subset {pj} of P (B)
consisting of polynomials each of which is zero-free on K. The result then follows
immediately from Lemma 3.3. �

Lemma 4.2. Let {pj} be a sequence of polynomials on CN , and let B̃ be a closed

ball in CN . There exists a compact polynomially convex set E ⊂ B̃ of positive
2N-dimensional measure such that each pj is zero-free on E.
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Proof. For each j, the set p−1
j ({z ∈ C : �z = 0}) is a real-analytic variety in CN

and hence has 2N -dimensional measure zero. Consequently,

m
(
p−1
j ({z ∈ C : |�z| < ε}) ∩ B̃

)
→ 0 as ε → 0.

Let c = m(B̃)/2. For each j, choose εj > 0 such that

m
(
p−1
j ({z ∈ C : |�z| < εj}) ∩ B̃

)
< c/2j .

Then

m
( ∞⋃
j=1

p−1
j ({z ∈ C : |�z| < εj}) ∩ B̃

)
<

∞∑
j=1

c/2j = c.

Thus setting E = B̃ \
⋃∞

j=1 p
−1
j ({z ∈ C : |�z| < εj}) we have m(E) > c. Also E is

compact and each pj is zero-free on E.

For each j, choose a closed disc Dj containing pj(B̃). Then

E =
∞⋂
j=1

(
p−1
j ({z ∈ Dj : |�z| ≥ εj}) ∩ B̃

)
.

Each set {z ∈ Dj : |�z| ≥ εj} is polynomially convex since it has connected

complement in the plane. Hence p−1
j ({z ∈ Dj : |�z| ≥ εj}) ∩ B̃ is polynomially

convex by Lemma 3.1. Consequently, E is polynomially convex. �

The proof of the next lemma is an easy application of the inverse function the-
orem together with Sard’s theorem.

Lemma 4.3. Let f : RN → RN be a smooth map, and let E ⊂ RN be a closed set
with empty interior. Then f(E) has empty interior in RN . �
Proof of Theorem 1.1. Choose a Swiss cheese L such that R(L) has a bounded
point derivation at almost every point. (One can use the Swiss cheese of Browder
given in [21] or the Swiss cheese of Theorem 1.5 of the present paper.) By rescaling,
we may assume that L is contained in the open unit disc. As discussed in Section 2,
there is a C∞ function g on the plane such that the functions z and g generate
R(L) as a uniform algebra. Let τ : C → CN be defined by τ (z) =

(
z, g(z), 0, . . . , 0

)
,

and let K = τ (L). By rescaling g, we may assume that K is contained in B. Note
that K is polynomially convex (see Section 2). For every polynomial p on CN , the
map p ◦ τ : C → C is C∞, and hence p(K) = (p ◦ τ )(L) has empty interior in the
plane by Lemma 4.3. Consequently, the collection of polynomials with no zeros on
K is dense in P (B) and hence contains a countable subcollection {pj} that is also

dense in P (B).
Fix a nonconstant polynomial q. Because q(K) is compact while q(B) is open

in C, there is a closed disc DK that contains q(K) but does not contain q(B).

Consequently, there is a closed ball B̃ contained in B such that q(B̃) is contained

in a closed disc DB̃ disjoint from DK . By Lemma 4.2, contained in B̃ there is a
compact polynomially convex set E of positive 2N -dimensional measure such that
each pj is zero-free on E. Because q(K) and q(E) are contained in the disjoint
discs DK and DB̃ , their polynomially convex hulls are disjoint. Therefore, K ∪ E
is polynomially convex by Kallin’s lemma [12] (or see [19, Theorem 1.6.19]). Also
each pj is zero-free on K ∪ E. Theorem 4.1 now yields the existence of a compact

subset X of ∂B such that X̂ = hr(X) ⊃ K ∪ E and P (X) has dense invertibles.
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Recall (see Section 2) that R(L) must have a Gleason part of positive 2-dimen-
sional measure, which we will denote by QL. Furthermore, by our choice of L, there
is a nonzero bounded point derivation for R(L) at every point of some subset PL

of full measure in QL. Let Q = τ (QL), and let P = τ (PL). Then Q, and hence
P , is contained in a single Gleason part for P (X). Furthermore, P has positive
2-dimensional Hausdorff measure (since z1(P ) = PL).

Note that if p is a polynomial on CN , then p ◦ τ is in R(L). Consequently, if
f is a function in P (X), and we denote the Gelfand transform of f (regarded as

a function on X̂) by f̂ , then f̂ ◦ τ is in R(L). The map P (X) → R(L) given by

f �→ f̂ ◦ τ is clearly a norm-decreasing homomorphism with dense range. It follows
that if ψL is a nonzero bounded point derivation on R(L) at a point z0, then the
formula

ψ(f) = ψL(f̂ ◦ τ )
defines a nonzero bounded point derivation on P (X) at τ (z0). Consequently, there
is a nonzero bounded point derivation for P (X) at every point of P . �
Remark 4.4. As pointed out by Dales, using the Swiss cheese constructed by An-
thony O’Farrell in [15] in place of the one used above, we obtain a set X ⊂ CN

with nontrivial polynomial hull such that P (X) has dense invertibles and a bounded
point derivation of infinite order.

We now turn to rational hulls. For the proof of Theorem 1.3 we will need, in
place of the Swiss cheese used in the proof of Theorem 1.1, a set constructed in
Section 6 where Theorem 1.6 is proved.

We begin with the analogue of Theorem 4.1.

Theorem 4.5. If K ⊂ B ⊂ CN (N ≥ 2) is a compact rationally convex set,
and if the set of polynomials that are zero-free on K is dense in P (B), then there
is a compact subset X of ∂B such that hr(X) ⊃ K, such that R(X) has dense
invertibles, and such that there is a dense subset of P (X) consisting of polynomials
each of which is zero-free on X.

Proof. The proof is similar to the proof of Theorem 4.1. The hypotheses enable us
to choose a countable dense subset {pj} of P (B) consisting of polynomials each of
which is zero-free on K. The result then follows immediately from Lemma 3.5 and
the following lemma. �
Lemma 4.6. Let X ⊂ CN be compact. Suppose there is a dense subset of P (X)
consisting of polynomials each of which is zero-free on X. Then R(X) has dense
invertibles.

Proof. Consider an arbitrary rational function r = p/q with q zero-free on X.
Choose a sequence of polynomials (pj) with no zeros on X such that pj → p in
P (X). Then pj/q → p/q in R(X). Since each function pj/q is zero-free on X, this
proves the theorem. �
Proof of Theorem 1.3. Let K denote the set X whose existence is given by Theo-
rem 6.1, and let P be as in that theorem. (The proof of Theorem 6.1 does not use
Theorem 1.3.) Then take X to be the set given by Theorem 4.5. That conditions
(i) and (ii) hold is clear.

To verify condition (iii), let T : R(hr(X)) → R(K) be the map sending each
function in R(hr(X)) to its restriction to K. This map is clearly a norm-decreasing
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homomorphism. We claim that T has dense range. To see this, consider a rational
function r = p/q with p and q polynomials and q zero-free on K. By Theorem 4.5,
we are given that q can be approximated uniformly on X by polynomials that
are zero-free on X. Since K is contained in hr(X), the approximation will also
hold on K. Consequently, r can be approximated uniformly on K by rational
functions that are holomorphic on X. Therefore, the restriction map T does indeed
have dense range. Consequently, the adjoint map T ∗ : R(K)∗ → R(hr(X))∗ is
injective. Furthermore, T ∗ sends point derivations to point derivations. Condition
(iii) follows. �

Proof of Theorem 1.2. This follows immediately from Theorem 1.3 using the
method discussed in the last paragraph of Section 2. �

The proof of Theorem 1.4, with which we conclude this section, essentially con-
sists of showing that we can embed nontrivial loops in the relevant hulls. In con-
nection with this, we point out that by the Arens-Royden theorem [10, Corol-
lary III.7.4], the quotient group invA/expA is the first Čech cohomology group
H1(MA,Z) . (Here invA denotes the set of invertible elements of the uniform
algebra A, and MA denotes the maximal ideal space of A.)

Proof of Theorem 1.4. The set invA \ expA is open in any commutative Banach
algebra. Thus it suffices to show that the algebras in question can be chosen so
that expA � invA.

Consider a circle {a + reiθ : 0 ≤ θ ≤ 2π} contained in the Swiss cheese L used
in the proof of Theorem 1.1. We can choose the collection of polynomials {pj} to
contain the function z1−a. Then z1−a is invertible in P (X) but has no continuous
logarithm on X.

To handle the algebra in Theorem 1.3, let C be the circle {( 12 +
1
4e

iθ, 0, . . . , 0) ∈
CN : 0 ≤ θ ≤ 2π}. Since the image of C ∪ {0} under any polynomial has empty
interior in the plane, the set of polynomials with no zeros on C ∪ {0} is dense in
P (B). Thus we can choose the collection {pj} in the proof of Theorem 6.1 to consist
of polynomials that have no zeros on C ∪ {0} and to contain the function z1 − 1

2 .
Then the rj in the proof of Theorem 6.1 can be chosen so that C is contained in the
rationally convex set constructed there. The set C is then in the set X obtained in
the proof of Theorem 1.3, and the function z1 − 1

2 is in invR(X) \ expR(X).
The assertion about the algebra in Theorem 1.2 follows immediately from the

case of Theorem 1.3 since the two algebras in question are isomorphic. �

5. A Swiss cheese with a Gleason part of full measure

This section is devoted to the proof of Theorem 1.5.
Recall that we denote the open unit disc in the plane by D. The open disc of

radius r with center a will be denoted by D(a, r), and the corresponding closed
disc will be denoted by D(a, r). The discs D(0, r) and D(0, r) will be denoted by
rD and rD respectively. Also recall the notations B(X), B0(X), B(Ω), and B0(Ω)
introduced in Section 2.

The proof of Theorem 1.5 will use several lemmas.

Lemma 5.1. Suppose K is a compact set containing the origin and contained in
an open set Ω ⊂ CN . Then there exists an R with 0 < R < 1 such that ‖f‖K ≤ R
for all f ∈ B0(Ω).
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Proof. This is proven by a normal families argument left to the reader. �

Lemma 5.2. Suppose K is a compact set contained in an open set Ω ⊂ CN .
Then there exists an M < ∞ such that ‖∂f/∂zν‖K ≤ M for all f ∈ B(Ω) and
ν = 1, . . . , N .

Proof. This follows from Cauchy’s estimates. �

Lemma 5.3. Let K be a compact set containing the origin and contained in an
open set Ω ⊂ C, let a ∈ Ω \ K, and let ε > 0 be given. Let 0 < R < 1, and
suppose that ‖f‖K ≤ R for all f ∈ B0(Ω). Then there exists an r > 0 such that
D(a, r) ⊂ Ω \K and ‖f‖K ≤ R + ε for all f ∈ B0(Ω \D(a, r)).

Proof. Assume to get a contradiction that no such r > 0 exists. Let J be a positive
integer large enough that D(a, 1/J) ⊂ Ω \K. Then for each n = J, J +1, . . ., there
exists a function fn ∈ B0(Ω \D(a, 1/n)) such that ‖fn‖K > R + ε. For each m =
J, J+1, . . ., the set {fn : n ≥ m} is a normal family on Ω\D(a, 1/m). Thus there is
a subsequence of (fn) that converges uniformly on compact subsets of Ω\D(a, 1/J).
We may then choose a further subsequence that converges uniformly on compact
subsets of Ω \D

(
a, 1/(J + 1)

)
. Continuing in this manner taking subsequences of

subsequences and then applying the usual diagonalization argument, we arrive at
a subsequence (fnk

) of (fn) such that for each compact subset L of Ω \ {a}, the
sequence (fnk

) converges uniformly on L. Note that given L, there may be a finite
number of terms of the sequence (fnk

) that are not defined on L, but this does
not matter. Thus there is a well-defined limit function f that is holomorphic on
Ω \ {a}. Since ‖f‖Ω\{a} ≤ 1, the singularity at a is removable, so we may regard f
as defined on Ω. Then f is in B0(Ω). Thus by hypothesis, ‖f‖K ≤ R. But since
fnk

→ f uniformly on K, and ‖fn‖K > R+ ε for all n, this is a contradiction. �

Lemma 5.4. Let K be a compact set contained in an open set Ω ⊂ C, let a ∈ Ω\K,
and let ε > 0 be given. Let 0 < M < ∞, and suppose that ‖f ′‖K ≤ M for all
f ∈ B(Ω). Then there exists an r > 0 such that D(a, r) ⊂ Ω\K and ‖f ′‖K ≤ M+ε
for all f ∈ B(Ω \D(a, r)).

Proof. This is proven by a normal families argument similar to the one just pre-
sented and hence is left to the reader. �

Lemma 5.5. Let {aj} be a sequence in D, and let {rj} and {uj} be sequences of
real numbers such that 0 < rj < uj for every j, and

∑
uj < ∞. Set

X = D \
∞⋃
j=1

D(aj , rj)

and

Kn =
(
1− 1

n+1

)
D \

⎛⎝⎡⎣n−1⋃
j=1

D(aj , (1 +
1
n )rj)

⎤⎦ ∪

⎡⎣ ∞⋃
j=n

D(aj , uj)

⎤⎦⎞⎠ .

Then
⋃∞

n=1 Kn ⊂ X and m(X \
⋃∞

n=1 Kn) = 0.



4312 ALEXANDER J. IZZO

Proof. The asserted inclusion is obvious. Now note that for each k = 1, 2, . . . ,

X \
∞⋃

n=1

Kn ⊂ X \Kk

⊂
(
D \

(
1− 1

k+1

)
D
)
∪

⎛⎝k−1⋃
j=1

[
D(aj , (1 +

1
k )rj) \D(aj , rj)

]⎞⎠
∪

⎛⎝ ∞⋃
j=k

D(aj , uj)

⎞⎠ .

Thus

m(X \
∞⋃

n=1

Kn) ≤ π(1− (1− 1
k+1 )

2) +

k−1∑
j=1

π((1 + 1
k )

2 − 1)r2j +

∞∑
j=k

πu2
j .

Since the right hand side goes to zero as k → ∞, the left hand side must be zero,
as desired. �

It might be tempting to imagine that X \
⋃∞

n=1 Kn = ∂D ∪ (
⋃∞

n=1 ∂D(aj , rj)).
However, this is not in general the case, as X \

⋃∞
n=1 Kn is a Gδ-set while ∂D ∪

(
⋃∞

n=1 ∂D(aj , rj)) need not be.

Proof of Theorem 1.5. We will choose a sequence {aj} in D and sequences {rj} and
{uj} of real numbers such that 0 < rj < uj for every j, and

∑
uj < ∞ such that

the set X = D \ ∪D(aj , rj) is a Swiss cheese that contains the origin and for each
set Kn defined as in Lemma 5.5, there are constants 0 < Cn < 1 and 0 < C ′

n < ∞
such that for every z ∈ Kn we have

(2) sup
f∈B0(X)

|f(z)| ≤ Cn

and

(3) sup
f∈B(X)

|f ′(z)| ≤ C ′
n.

Then by facts about Gleason parts and bounded point derivations discussed in
Section 2, (2) gives that every point of each Kn lies in the Gleason part of the
origin for R(X), and (3) gives that there is a bounded point derivation on R(X)
at each point of each Kn. Theorem 1.5 then follows by Lemma 5.5 in view of the
theorem of Wilken mentioned in Section 2.

First choose a sequence of points {αj} dense in D. Set a1 = α1, and choose

0 < u1 < 1/2 small enough that D(a1, u1) ⊂ D and 0 /∈ D(a1, u1). Set

K1
1 = (1/2)D \D(a1, u1).

By Lemmas 5.1 and 5.2 there exist 0 < R1 < 1 and 0 < M1 < ∞ such that

‖f‖K1
1
≤ R1 for all f ∈ B0(D)

and

‖f ′‖K1
1
≤ M1 for all f ∈ B(D).

Now Lemmas 5.3 and 5.4 give that there exists 0 < r1 < u1 such that

‖f‖K1
1
≤ R1 +

1
4 (1−R1) for all f ∈ B0(D \D(a1, r1))
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and

‖f ′‖K1
1
≤ (1 + 1

2 )M1 for all f ∈ B(D \D(a1, r1)).

Of course we can choose r1 so that ∂D(a1, r1) is disjoint from the set {αj}.
Next set a2 = αv where v is the smallest positive integer such that αv /∈ D(a1, r1).

Choose 0 < u2 < 1/22 small enough that D(a2, u2) ⊂ D \ D(a1, r1) and 0 /∈
D(a2, u2). Set

K2
1 = K1

1 \D(a2, u2) = (1/2)D \ [D(a1, u1) ∪D(a2, u2)]

and

K2
2 = (2/3)D \ [D(a1,

3
2r1) ∪D(a2, u2)].

Note that each of K2
1 and K2

2 is contained in D \D(a1, r1) and neither contains the
point a2. Lemmas 5.1 and 5.2 yield numbers 0 < R2 < 1 and 0 < M2 < ∞ such
that

‖f‖K2
2
≤ R2 for all f ∈ B0(D \D(a1, r1))

and

‖f ′‖K2
2
≤ M2 for all f ∈ B(D \D(a1, r1)).

Lemmas 5.3 and 5.4 now yield the existence of 0 < r2 < u2 such that

‖f‖K2
1
≤ R1 + ( 14 + 1

8 )(1−R1) for all f ∈ B0(D \ [D(a1, r1) ∪D(a2, r2)]),

‖f‖K2
2
≤ R2 +

1
4 (1−R2) for all f ∈ B0(D \ [D(a1, r1) ∪D(a2, r2)]),

‖f ′‖K2
1
≤ (1 + 1

2 + 1
4 )M1 for all f ∈ B(D \ [D(a1, r1) ∪D(a2, r2)]),

and

‖f ′‖K2
2
≤ (1 + 1

2 )M2 for all f ∈ B(D \ [D(a1, r1) ∪D(a2, r2)]).

Of course we can choose r2 so that ∂D(a2, r2) is disjoint from the set {αj}.
We then continue by induction. Suppose that for some k ≥ 2, we have chosen

a1, . . . , ak, u1, . . . , uk, and r1, . . . , rk, and for 1 ≤ n ≤ m ≤ k we have set

(4) Km
n =

(
1− 1

n+1

)
D \

⎛⎝⎡⎣n−1⋃
j=1

D(aj , (1 +
1
n )rj)

⎤⎦ ∪

⎡⎣ m⋃
j=n

D(aj , uj)

⎤⎦⎞⎠ ,

and for all 1 ≤ l ≤ k and all 1 ≤ n ≤ m ≤ k the following conditions hold:

(i) al is the first αv such that αv /∈ D(a1, r1) ∪ · · · ∪D(al−1, rl−1),
(ii) 0 < rl < ul < 1/2l,
(iii) 0 /∈ D(al, ul) ⊂ D \ [D(a1, r1) ∪ · · · ∪D(al−1, rl−1)],
(iv) ∂D(al, rl) is disjoint from the set {αj},
(v) there exists 0 < Rn < 1 such that

‖f‖Km
n

≤ Rn + ( 14 + 1
8 + · · ·+ 1

2m−n+2 )(1−Rn) for all f ∈ B0(D \
m⋃
j=1

D(aj , rj)),

(vi) there exists Mn < ∞ such that

‖f ′‖Km
n

≤ (1 + 1
2 + · · ·+ 1

2m−n+1 )Mn for all f ∈ B(D \
m⋃
j=1

D(aj , rj)).
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Choose ak+1 to be the first αv such that αv /∈ D(a1, r1) ∪ · · · ∪D(ak, rk). Choose

0 < uk+1 < 1/2k+1 small enough that 0 /∈ D(ak+1, uk+1) ⊂ D \
⋃k

j=1D(aj , rj).

For n = 1, . . . , k+1, define Kk+1
n so that (4) continues to hold with m replaced by

k + 1. Note then that for n = 1, . . . , k, we have

Kk+1
n = Kk

n \D(ak+1, uk+1).

Note also that each of Kk+1
1 , . . . ,Kk+1

k+1 is contained in D \
⋃k

j=1 D(aj , rj) and none
contains the point ak+1.

Lemmas 5.1 and 5.2 yield numbers 0 < Rk+1 < 1 and 0 < Mk+1 < ∞ such that

‖f‖Kk+1
k+1

≤ Rk+1 for all f ∈ B0(D \
k⋃

j=1

D(aj , rj))

and

‖f ′‖Kk+1
k+1

≤ Mk+1 for all f ∈ B(D \
k⋃

j=1

D(aj , rj)).

Lemmas 5.3 and 5.4, together with conditions (v) and (vi) of the induction hypoth-
esis, now yield the existence of 0 < rk+1 < uk+1 such that conditions (v) and (vi)
continue to hold when in the restriction 1 ≤ n ≤ m ≤ k we replace k by k + 1.
Of course we can choose rk+1 so that ∂D(ak+1, rk+1) is disjoint from the set {αj}.
Thus the induction can proceed.

We conclude that we can obtain sequences {aj}, {rj}, and {uj} such that with
Km

n defined by (4) for all 1 ≤ n ≤ m, we have for all 1 ≤ l and all 1 ≤ n ≤ m that
conditions (i)–(vi) hold. Note that the sets Kn defined as in Lemma 5.5 satisfy
Kn =

⋂∞
m=n K

m
n .

Finally consider an arbitrary point z ∈ Kn. Given g ∈ B0(X), there is some
m ≥ n such that g ∈ B0(D \

⋃m
j=1 D(aj , rj)). Since z ∈ Km

n , condition (v) above
gives that

|g(z)| ≤ Rn + ( 14 + 1
8 + · · ·+ 1

2m−n+2 )(1−Rn).

Therefore,

sup
f∈B0(X)

|f(z)| ≤ Rn + 1
2 (1−Rn) < 1,

so (2) holds with Cn = Rn + 1
2 (1−Rn). Similarly, using condition (vi) we get that

sup
f∈B(X)

|f ′(z)| ≤ 2Mn < ∞,

so (3) holds with C ′
n = 2Mn. This completes the proof. �

Remark 5.6. As mentioned in the introduction, R(X) is antisymmetric for the
Swiss cheese X just constructed. This is immediate from the easy proposition
below because the Gleason part of the origin is dense in X. The denseness of the
Gleason part of the origin is easily seen from the construction above. However, it is
in fact easily shown that for any Swiss cheese, every subset of full measure is dense,
as we now demonstrate. Given a Swiss cheese K, let μ be the measure that is dz
on the boundary of the unit disc and −dz on the boundary of each removed disc.
Given an arbitrary open set U of the plane, let h be a nonnegative smooth function
on C with compact support contained in U . Then, letting μ̂ denote the Cauchy
transform of μ, the measure h dμ − (1/π)(∂h/∂z)μ̂ dm is a nonzero measure with
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support in U that annihilates R(K ∩ U). (See [10, Section II.10].) The Hartogs-
Rosenthal theorem thus implies that no (relatively) open subset of K can have
planar measure zero.

Proposition 5.7. Suppose A is a uniform algebra on a compact space X and f is
a real-valued function in A. Then f is constant on each Gleason part for A.

Proof. Suppose x and y are points such that f(x) �= f(y). Let g : R → [−1, 1] be a
continuous function such that g

(
f(x)

)
= 1 and g

(
f(y)

)
= −1. By the Weierstrass

approximation theorem g can be approximated uniformly on f(X) by polynomials.
Hence the function g◦f is in A. Since (g◦f)(x) = 1, (g◦f)(y) = −1, and ‖g◦f‖ = 1,
we conclude that x and y lie in different Gleason parts. �

6. Proof of Theorem 1.6

This section is devoted to the proof of Theorem 1.6.
Recall that D denotes the open unit disc in the plane and rD denotes the disc

of radius r centered at the origin. More generally, given any subset Y of CN , we
will denote by rY the set {ry : y ∈ Y }. Recall also the notations B(X), B0(X),
B(Ω), and B0(Ω) introduced in Section 2.

We will obtain Theorem 1.6 by proving the following ostensibly stronger result,
which was used earlier in the proof of Theorem 1.3. (The proof of the next result
will not make use of Theorem 1.3.)

Theorem 6.1. There exists a compact rationally convex set X ⊂ B ⊂ CN (N ≥ 1)
of positive 2N-dimensional measure such that the collection of polynomials zero-free
on X is dense in P (B) and such that there is a set P ⊂ X of full 2N-dimensional
measure in X such that P is contained in a single Gleason part for R(X) and at
every point of P the space of bounded point derivations for R(X) has dimension N .

Proof of Theorem 1.6. This is immediate from Theorem 6.1 and Lemma 4.6. �

The basic idea and overall structure of the proof of Theorem 6.1 is the same as
the proof of Theorem 1.5 although there are differences in the details. First we give
modifications of some lemmas from Section 5.

Lemma 6.2. Let K be a compact set containing the origin and contained in an
open set Ω ⊂ CN , let p be a polynomial on CN with no zeros on K, and let ε > 0
be given. Let 0 < R < 1, and suppose that ‖f‖K ≤ R for all f ∈ B0(Ω). Then
there exists an r > 0 such that p−1(rD) ∩ K = ∅ and ‖f‖K ≤ R + ε for all
f ∈ B0(Ω \ p−1(rD)).

Proof. This is proved by a normal families argument similar to the proof of the
next lemma and hence is left to the reader. �

Lemma 6.3. Let K be a compact set contained in an open set Ω ⊂ CN , let p be a
polynomial on CN with no zeros on K, and let ε > 0 be given. Let 0 < M < ∞,
and suppose that ‖∂f/∂zν‖K ≤ M for all f ∈ B(Ω) and ν = 1, . . . , N . Then
there exists an r > 0 such that p−1(rD) ∩K = ∅ and ‖∂f/∂zν‖K ≤ M + ε for all
f ∈ B(Ω \ p−1(rD)) and ν = 1, . . . , N .
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Proof. Of course it suffices to show that for each fixed ν = 1, . . . , N , there exists
an rν > 0 such that p−1(rνD) ∩ K = ∅ and ‖∂f/∂zν‖K ≤ M + ε for all f ∈
B(Ω \ p−1(rνD)), so let ν be fixed and assume to get a contradiction that no such
rν exists.

Let J be a positive integer large enough that p−1((1/J)D) ∩K = ∅. Then for
each n = J, J + 1, . . ., there exists a function fn ∈ B0(Ω \ p−1((1/J)D)) such that
‖∂fn/∂zν‖K > M + ε. For each m = J, J +1, . . ., the set {fn : n ≥ m} is a normal
family on Ω \ p−1((1/m)D). Thus arguing as in the proof of Theorem 5.3 taking
subsequences of subsequence and applying the usual diagonalization, we can obtain
a subsequence (fnk

) of (fn) such that for each compact subset L of Ω \ p−1(0), the
sequence (fnk

) converges uniformly on L. Note that given L, there may be a finite
number of terms of the sequence (fnk

) that are not defined on L, but this does
not matter. Thus there is a well-defined limit function f that is holomorphic on
Ω \ p−1(0). Since ‖f‖Ω\p−1(0) ≤ 1, the extended Riemann removable singularities
theorem [11, Theorem D2] gives that f has a holomorphic extension to Ω, which we
continue to denote by f . Then f is in B(Ω). Thus by hypothesis, ‖∂f/∂zν‖K ≤ M .
But since ∂fnk

/∂zν → ∂f/∂zν uniformly on K and ‖∂fn/∂zν‖K > M + ε for all
n, this is a contradiction. �

Lemma 6.4. Let {pj} be a sequence of nonconstant polynomials on CN , and let
{rj} and {uj} be sequences of real numbers such that 0 < rj < uj/2 for every j

and such that
∑∞

j=1 m
(
p−1
j (ujD) ∩B

)
< ∞. Set

X = B \
∞⋃
j=1

p−1
j (rjD)

and

Kn =
(
1− 1

n+1

)
B \

⎛⎝⎡⎣n−1⋃
j=1

p−1
j

(
(1 + 1

n )rjD
)⎤⎦ ∪

⎡⎣ ∞⋃
j=n

p−1
j (ujD)

⎤⎦⎞⎠ .

Then
⋃∞

n=1 Kn ⊂ X and m(X \
⋃∞

n=1 Kn) = 0.

Proof. The asserted inclusion is obvious. Now it suffices to show that m(X \Kn) →
0 as n → ∞. Note that

X \Kn ⊂
(
B \ (1− 1

n+1 )B
)
∪

⎛⎝B ∩

⎡⎣n−1⋃
j=1

p−1
j

(
(1 + 1

n )rjD \ rjD
)⎤⎦⎞⎠

∪

⎛⎝B ∩

⎡⎣ ∞⋃
j=n

p−1
j (ujD)

⎤⎦⎞⎠ .

Let

cn,j =

⎧⎪⎨⎪⎩
m
(
B ∩ p−1

j

(
(1 + 1

n )rjD \ rjD
))

for j ≤ n− 1,

m
(
B ∩ p−1

j (ujD)
)

for j ≥ n.

Then

m(X \Kn) ≤
(
1− (1− 1

n+1 )
2N

)
m(B) +

∞∑
j=1

cn,j .(5)
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Note that

B ∩
[ ∞⋂
n=1

p−1
j

(
(1 + 1

n )rjD \ rjD
)]

= B ∩ p−1
j

(
∂(rjD)

)
and

m
(
p−1
j

(
∂(rjD)

))
= 0

since p−1
j

(
∂(rjD) is a real-analytic subvariety of CN of real dimension strictly less

than 2N . Consequently, for each fixed j, we have cn,j → 0 as n → ∞. Thus we
conclude (by the dominated convergence theorem for instance) that

∑∞
j=1 cn,j → 0

as n → ∞. Thus inequality (5) implies that m(X \Kn) → 0, as desired. �

With the lemmas in hand, we proceed to the proof of Theorem 6.1.

Proof of Theorem 6.1. Fix ρ > 1. We will construct a subset X of the closed unit
ball B ⊂ CN such that the collection of polynomials zero-free on X is dense in
P (ρB) and such that, aside from intersecting ∂B, the set X satisfies the conditions
in the statement of the theorem. This is sufficient since then the set (1/ρ)X is
contained in the open unit ball B and satisfies all the requirements of the theorem.

Choose a countable collection {pj} of nonconstant polynomials on CN such that

pj(0) �= 0 for every j and such that the collection {pj} is dense in P (ρB). We will
choose strictly positive numbers r1, r2, . . . such that the set X defined by

X = B \
∞⋃
j=1

p−1
j (rjD)

has the desired properties. Fix ε > 0. We will in fact arrange for m(X) ≥ m(B)−ε.
Some of the properties are automatic. It is obvious thatX is a compact rationally

convex set. Since each pj is zero-free on X, the collection of polynomials zero-free

on X is dense in P (ρB).
We will choose sequences {rj} and {uj} of positive numbers such that the hy-

potheses of Lemma 6.4 are satisfied and so that for each set Kn defined as in
Lemma 6.4, there are constants 0 < Cn < 1 and 0 < C ′

n < ∞ such that for every
z ∈ Kn we have

(6) sup
f∈B0(X)

|f(z)| ≤ Cn

and

(7) sup
f∈B(X)

|(∂f/∂zν)(z)| ≤ C ′
n for all ν = 1, . . . , N.

Then by facts about Gleason parts and bounded point derivations discussed in
Section 2, (6) gives that every point of each Kn lies in the Gleason part of the origin
for R(X), and (7) gives that at each point of each Kn the space of bounded point
derivations on R(X) has dimension N . Theorem 6.1 then follows by Lemma 6.4.

Note that each set p−1
j (0) is an analytic subvariety of CN with no interior and

hence has measure zero. Consequently, m
(
p−1
j (rD) ∩ B

)
→ 0 as r → 0. Also

0 /∈ p−1
j (rD) for r sufficiently small.

Choose u1 > 0 small enough that m
(
p−1
1 (u1D) ∩ B

)
< ε/2 and 0 /∈ p−1

1 (u1D).
Set

K1
1 = (1/2)B \ p−1

1 (u1D).
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By Lemmas 5.1 and 5.2 there exist 0 < R1 < 1 and 0 < M1 < ∞ such that

‖f‖K1
1
≤ R1 for all f ∈ B0(B)

and

‖∂f/∂zν‖K1
1
≤ M1 for all f ∈ B(B) and ν = 1, . . . , N.

Now Lemmas 6.2 and 6.3 give that there exists 0 < r1 < u1/2 such that

‖f‖K1
1
≤ R1 +

1
4 (1−R1) for all f ∈ B0(B \ p−1

1 (r1D))

and

‖∂f/∂zν‖K1
1
≤ (1 + 1

2 )M1 for all f ∈ B0(B \ p−1
1 (r1D)) and ν = 1, . . . , N.

Next choose u2 > 0 small enough that m
(
p−1
2 (u2D) ∩ B

)
< ε/22 and 0 /∈

p−1
2 (u2D). Set

K2
1 = K1

1 \ p−1
2 (u2D) = (1/2)B \ [p−1

1 (u1D) ∪ p−1
2 (u2D)]

and

K2
2 = (2/3)B \ [p−1

1 ( 32r1D) ∪ p−1
2 (u2D)].

Note that each of K2
1 and K2

2 is contained in B \ p−1
1 (r1D). Lemmas 5.1 and 5.2

yield numbers 0 < R2 < 1 and 0 < M2 < ∞ such that

‖f‖K2
2
≤ R2 for all f ∈ B0(B \ p−1

1 (r1D))

and

‖∂f/∂zν‖K2
2
≤ M2 for all f ∈ B(B \ p−1

1 (r1D)) and ν = 1, . . . , N.

Lemmas 6.2 and 6.3 now yield the existence of 0 < r2 < u2/2 such that

‖f‖K2
1
≤ R1 + ( 14 + 1

8 )(1−R1) for all f ∈ B0(B \ [p−1
1 (r1D) ∪ p−1

2 (r2D)]),

‖f‖K2
2
≤ R2 +

1
4 (1−R2) for all f ∈ B0(B \ [p−1

1 (r1D) ∪ p−1
2 (r2D)]),

‖∂f/∂zν‖K2
1
≤ (1 + 1

2 + 1
4 )M1 for all f ∈ B(B \ [p−1

1 (r1D) ∪ p−1
2 (r2D)])

and ν = 1, . . . , N,

and

‖∂f/∂zν‖K2
2
≤ (1 + 1

2 )M2 for all f ∈ B(B \ [p−1
1 (r1D) ∪ p−1

2 (r2D)])

and ν = 1, . . . , N.

We then continue by induction. Suppose that for some k ≥ 2, we have chosen
u1, . . . , uk and r1, . . . , rk, and for 1 ≤ n ≤ m ≤ k we have set

(8) Km
n =

(
1− 1

n+1

)
B \

⎛⎝⎡⎣n−1⋃
j=1

p−1
j

(
(1 + 1

n )rjD
)⎤⎦ ∪

⎡⎣ m⋃
j=n

p−1
j (ujD)

⎤⎦⎞⎠
and for all 1 ≤ l ≤ k and all 1 ≤ n ≤ m ≤ k the following conditions hold:

(i) 0 < rl < ul/2,
(ii) m

(
p−1
l (ulD) ∩B

)
< ε/2l,

(iii) 0 /∈ p−1
l (ulD),
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(iv) there exists 0 < Rn < 1 such that

‖f‖Km
n

≤ Rn + ( 14 + 1
8 + · · ·+ 1

2m−n+2 )(1−Rn) for all f ∈ B0(B \
m⋃
j=1

p−1
1 (r1D)),

(v) there exists Mn < ∞ such that

‖∂f/∂zν‖Km
n

≤ (1 + 1
2 + · · ·+ 1

2m−n+1 )Mn for all f ∈ B(B \
m⋃
j=1

p−1
1 (r1D))

and ν = 1, . . . , N.

Choose uk+1 > 0 small enough that m
(
p−1
k+1(uk+1D) ∩ B

)
< ε/2k+1 and 0 /∈

p−1
k+1(uk+1D). For n = 1, . . . , k+ 1, define Kk+1

n so that (8) continues to hold with
m replaced by k + 1. Note then that for n = 1, . . . , k, we have

Kk+1
n = Kk

n \ p−1
k+1(uk+1D).

Note also that each of Kk+1
1 , . . . ,Kk+1

k+1 is contained in B \
⋃k

j=1 p
−1
j (rjD).

Lemmas 5.1 and 5.2 yield numbers 0 < Rk+1 < 1 and 0 < Mk+1 < ∞ such that

‖f‖Kk+1
k+1

≤ Rk+1 for all f ∈ B0(B \
k⋃

j=1

p−1
j (rjD))

and

‖∂f/∂zν‖Kk+1
k+1

≤ Mk+1 for all f ∈ B(B \
k⋃

j=1

p−1
j (rjD)) and ν = 1, . . . , N.

Lemmas 6.2 and 6.3, together with conditions (iv) and (v) of the induction hypoth-
esis, now yield the existence of 0 < rk+1 < uk+1/2 such that conditions (iv) and
(v) continue to hold when in the restriction 1 ≤ n ≤ m ≤ k we replace k by k + 1.
Thus the induction can proceed.

We conclude that we can obtain sequences {rj} and {uj} such that with Km
n

defined by (8) for all 1 ≤ n ≤ m, we have for all 1 ≤ l and all 1 ≤ n ≤ m that
conditions (i)–(v) hold. Note that the sets Kn defined as in Lemma 6.4 satisfy
Kn =

⋂∞
m=n K

m
n .

Finally consider an arbitrary point z ∈ Kn. Given g ∈ B0(X), there is some
m ≥ n such that g ∈ B0(D \

⋃m
j=1 p

−1
j (rjD)). Since z ∈ Km

n , condition (iv) above
gives that

|g(z)| ≤ Rn + ( 14 + 1
8 + · · ·+ 1

2m−n+2 )(1−Rn).

Therefore,

sup
f∈B0(X)

|f(z)| ≤ Rn + 1
2 (1−Rn) < 1,

so (6) holds with Cn = Rn + 1
2 (1−Rn). Similarly, using condition (v) we get that

sup
f∈B(X)

|(∂f/∂zν)(z)| ≤ 2Mn < ∞ for all ν = 1, . . . , N,

so (7) holds with C ′
n = 2Mn. This completes the proof. �
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7. Open Questions

1. In Theorem 1.1, can P be made to have positive 4-dimensional measure? Can
the space of bounded point derivations be made to have dimension 2 at each point
of P? In the conclusion of Theorem 1.2, can N − 1 be replaced by N?

2. Suppose that X ⊂ CN is a compact set such that X̂ \ X is nonempty but
contains no analytic discs. Can it happen that P (X) has no nonzero bounded point

deriviations, but the Gleason part of some point of X̂ \ X is nontrivial? Can it
happen that P (X) has no nontrivial Gleason parts, but there is a nonzero bounded

point derivation at some point of X̂ \X?
3. In connection with Wermer’s Swiss cheese with no nonzero bounded point

derivations and Theorem 1.5 we make the following conjecture: There exists a
Swiss cheese X such that the set of nonpeak points for R(X) is a single Gleason
part of full 2-dimensional measure in X, and R(X) has no nonzero bounded point
derivations.

4. Does there exist a Swiss cheese with a nonzero bounded point derivation at
every nonpeak point? One might be tempted to speculate that if two points lie in
the same Gleason part and there is a nonzero bounded point derivation at one point,
then there must also be a nonzero bounded point derivation at the other point. It
would then follow at once that the Swiss cheese constructed above has the requested
property. However, such a speculation would be incorrect, as demonstrated by an
example of O’Farrell [14] of a Swiss cheese with a nonzero bounded point derivation
at exactly one point.
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[9] C. M. Falcón Rodŕıguez, The denseness of the group of invertible elements of a uniform
algebra (Spanish, with English summary), Cienc. Mat. (Havana) 9 (1988), no. 2, 11–17.
MR1007646

http://www.ams.org/mathscinet-getitem?mr=1482798
http://www.ams.org/mathscinet-getitem?mr=0379899
http://www.ams.org/mathscinet-getitem?mr=0109305
http://www.ams.org/mathscinet-getitem?mr=0246125
http://www.ams.org/mathscinet-getitem?mr=971887
http://www.ams.org/mathscinet-getitem?mr=2367103
http://www.ams.org/mathscinet-getitem?mr=1477444
http://www.ams.org/mathscinet-getitem?mr=1007646


UNIFORM ALGEBRAS WITH DENSE INVERTIBLE GROUP 4321

[10] Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969.
MR0410387

[11] Robert C. Gunning, Introduction to holomorphic functions of several variables. Vol. I: Func-
tion theory, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole
Advanced Books & Software, Pacific Grove, CA, 1990. MR1052649

[12] Eva Kallin, Polynomial convexity: The three spheres problem, Proc. Conf. Complex Analysis
(Minneapolis, 1964), Springer, Berlin, 1965, pp. 301–304. MR0179383

[13] G. Lumer, Analytic functions and Dirichlet problem, Bull. Amer. Math. Soc. 70 (1964),
98–104, DOI 10.1090/S0002-9904-1964-11036-3. MR0158283

[14] Anthony G. O’Farrell, An isolated bounded point derivation, Proc. Amer. Math. Soc. 39
(1973), 559–562, DOI 10.2307/2039593. MR0315452

[15] Anthony G. O’Farrell, A regular uniform algebra with a continuous point derivation of in-
finite order, Bull. London Math. Soc. 11 (1979), no. 1, 41–44, DOI 10.1112/blms/11.1.41.
MR535795

[16] Hugo Rossi, Holomorphically convex sets in several complex variables, Ann. of Math. (2) 74
(1961), 470–493, DOI 10.2307/1970292. MR0133479

[17] Lynn A. Steen, On uniform approximation by rational functions, Proc. Amer. Math. Soc. 17
(1966), 1007–1011, DOI 10.2307/2036078. MR0199416

[18] Gabriel Stolzenberg, A hull with no analytic structure, J. Math. Mech. 12 (1963), 103–111.
MR0143061

[19] Edgar Lee Stout, Polynomial convexity, Progress in Mathematics, vol. 261, Birkhäuser
Boston, Inc., Boston, MA, 2007. MR2305474

[20] John Wermer, Dirichlet algebras, Duke Math. J. 27 (1960), 373–381. MR0121671
[21] John Wermer, Bounded point derivations on certain Banach algebras, J. Functional Analysis

1 (1967), 28–36. MR0215105
[22] John Wermer, On an example of Stolzenberg, Symposium on Several Complex Variables

(Park City, Utah, 1970), Lecture Notes in Math., Vol. 184, Springer, Berlin, 1971, pp. 79–84.
MR0298428

[23] Donald R. Wilken, Lebesgue measure of parts for R(X), Proc. Amer. Math. Soc. 18 (1967),
508–512, DOI 10.2307/2035488. MR0216297

Department of Mathematics and Statistics, Bowling Green State University, Bowl-

ing Green, Ohio 43403

Email address: aizzo@bgsu.edu

http://www.ams.org/mathscinet-getitem?mr=0410387
http://www.ams.org/mathscinet-getitem?mr=1052649
http://www.ams.org/mathscinet-getitem?mr=0179383
http://www.ams.org/mathscinet-getitem?mr=0158283
http://www.ams.org/mathscinet-getitem?mr=0315452
http://www.ams.org/mathscinet-getitem?mr=535795
http://www.ams.org/mathscinet-getitem?mr=0133479
http://www.ams.org/mathscinet-getitem?mr=0199416
http://www.ams.org/mathscinet-getitem?mr=0143061
http://www.ams.org/mathscinet-getitem?mr=2305474
http://www.ams.org/mathscinet-getitem?mr=0121671
http://www.ams.org/mathscinet-getitem?mr=0215105
http://www.ams.org/mathscinet-getitem?mr=0298428
http://www.ams.org/mathscinet-getitem?mr=0216297

	1. Introduction
	2. Preliminaries
	3. The theorem of Duval and Levenberg  and its analogue for rational convexity
	4. Hulls with dense invertibles
	5. A Swiss cheese with a Gleason part of full measure
	6. Proof of Theorem 1.6
	7. Open Questions
	Acknowledgment
	References

