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EXTRAPOLATION AND INTERPOLATION

IN GENERALIZED ORLICZ SPACES

DAVID CRUZ-URIBE AND PETER HÄSTÖ

Abstract. We prove versions of the Rubio de Francia extrapolation theorem
in generalized Orlicz spaces. As a consequence, we obtain boundedness results
for several classical operators as well as a Sobolev inequality in this setting.
We also study complex interpolation in the same setting and use it to derive
a compact embedding theorem. Our results include as special cases classical
Lebesgue and Sobolev space estimates and their variable exponent and double
phase growth analogs.

1. Introduction

Generalized Orlicz spaces, also known as Musielak–Orlicz spaces and Nakano
spaces, are a class of Banach spaces that include a number of spaces of interest in
harmonic analysis and PDEs as special cases. They were introduced by Nakano [45,
46] and others, following Orlicz [48]. We refer to the monograph of Musielak [44] for
a comprehensive synthesis of this earlier work. Intuitively, given a function ϕ(·) :
Ω × [0,∞) → [0,∞], the generalized Orlicz space Lϕ(·) consists of all measurable
functions f such that ˆ

Rn

ϕ(x, |f(x)|) dx < ∞.

If ϕ(x, t) = tp, 1 � p < ∞, then we get the classical Lebesgue spaces Lp. If
ϕ(x, t) = tpw(x), we get the weighted Lebesgue spaces Lp(w). If ϕ(x, t) = Φ(t),
where Φ is a Young function, then we get the classical Orlicz spaces [38,50]. When
ϕ(x, t) = tp(x) we get the variable Lebesgue spaces which have been extensively
studied in the past 25 years [18, 24, 33], and when ϕ(x, t) = tp + a(x)tq, p < q, we
get the double phase functional recently studied in [5, 6, 13].

The generalized Orlicz spaces are of interest not only as the natural generalization
of these important examples but also in their own right. They have appeared
in many problems in PDEs and the calculus of variations [4–6, 13, 27] and have
applications to image processing [10, 32, 37] and fluid dynamics [53].

The operators of classical harmonic analysis (e.g., convolution operators, max-
imal operators, fractional and singular integrals) and generalized Sobolev spaces
in the variable exponent setting have been studied for many years. Subsequently,
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results were proved in specific generalized Orlicz spaces: for instance, ϕ(x, t) =
tp(x) log(e+ t)q(x) [17, 36, 40]. Recently, however, attention has shifted to studying
these problems in more generality; see [41,42,47]. The second author and his collab-
orators [30,31,34,35] have systematically studied these questions and established a
very broad theory that unites and extends previous work.

The goal of this paper is to develop harmonic analysis on generalized Orlicz
spaces by extending the theory of Rubio de Francia extrapolation to this setting.
Extrapolation is a powerful tool in the study of weighted norm inequalities: roughly,
it shows that if an operator T is bounded on the weighted spaces L2(w), where the
weights belong to the Muckenhoupt class A2, then for all p, 1 < p < ∞, the operator
T is bounded on Lp(w) when w ∈ Ap. Extrapolation was originally discovered by
Rubio de Francia [51]; for more information on the history of extrapolation and an
extensive bibliography, see [20].

The power of extrapolation is that it can be used to prove norm inequalities on
Banach spaces, provided that the maximal operator is bounded on the dual space
(or, more precisely, the associate space). This approach was first explored in [19],
where extrapolation was used to prove norm inequalities on variable Lebesgue
spaces. (See also [18, 20, 22].)

The main results of this paper are the following three extrapolation theorems,
which show that weighted norm inequalities for operators imply norm inequalities
on generalized Orlicz spaces. For the definition of the notation used, please see
Sections 2 and 4 below. Our first result is the natural generalization of Rubio
de Francia extrapolation to generalized Orlicz spaces. In the variable Lesbesgue
spaces, i.e., when ϕ(x, t) = tp(x), Theorem 1.1 was proved in [19].

Theorem 1.1 (Extrapolation). Given an operator T , suppose that for some p,
1 � p < ∞, and all w ∈ A1,

‖Tf‖Lp(w) � C(T, n, p, [w]A1
)‖f‖Lp(w).

Then, given any weak Φ-function ϕ such that simple functions belong to Lϕ∗
p(·)

and the Hardy–Littlewood maximal operator is bounded on Lϕ∗
p(·), where ϕp(x, t) =

ϕ(x, t1/p), we have that

‖Tf‖Lϕ(·) � C‖f‖Lϕ(·) .

Remark 1.2. In Theorem 1.1 we implicitly assume that T is defined on Lϕ(·) and
that Tf is a measurable function. However, we do not assume that T is linear or
sublinear. We make the analogous assumptions in the next two results.

Our second result generalizes the off-diagonal extrapolation theorem of Har-
boure, Macias, and Segovia [28]. In the variable Lebesgue spaces, this result was
also proved in [19].

Theorem 1.3 (Off-diagonal extrapolation). Given an operator T , suppose that for
some p, q, 1 � p � q < ∞, and all w ∈ A1,

‖Tf‖Lq(w) � C(T, n, p, q, [w]A1
)‖f‖Lp(wp/q).

Let β := 1
p−

1
q . Then, given weak Φ-functions ϕ and ψ with ψ−1(x, t) = t−βϕ−1(x, t)

such that simple functions belong to Lψ∗
q (·) and the Hardy–Littlewood maximal op-

erator is bounded on Lψ∗
q (·), where ψq(x, t) := ψ(x, t1/q), we have that

‖Tf‖Lψ(·) � C‖f‖Lϕ(·) .
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Our final result generalizes the limited range extrapolation theorem of Auscher
and Martell [3]. In the particular case of the variable Lebesgue spaces, this was
proved very recently in [22].

Theorem 1.4 (Limited range extrapolation). Given an operator T , suppose that
for some p, 1 < q− < p < q+ < ∞, and all w ∈ Ap/q− ∩RH(q+/p)′ ,

‖Tf‖Lp(w) � C(T, n, p, [w]Ap/q−
, [w]RH(q+/p)′ )‖f‖Lp(w).

Let α = (q+/p)
′. Then, given any weak Φ-function ϕ such that simple functions

belong to Lϕ∗
p(·) and such that the Hardy–Littlewood maximal operator is bounded

on Lψ(·), where ψ(x, t) = ϕ∗
p(x, t

1/α), we have that

‖Tf‖Lϕ(·) � C‖f‖Lϕ(·) .

One drawback of these results is that they are stated abstractly for generalized
Orlicz spaces that contain the simple functions and where the Hardy–Littlewood
maximal operator is bounded; moreover, these assumptions pertain to generalized
Orlicz spaces that are related to, but not the same as, the spaces on which we
want to prove our norm inequalities. By using the recent work in [31, 34] we can
give sufficient conditions on the Φ-functions ϕ for the hypotheses of each of these
theorems to hold. These conditions are somewhat technical, so we defer their precise
statement: see Corollaries 4.8 and 4.21 below. Here, however, we want to emphasize
that they are easy to check and sufficiently general as to encompass almost all of
the examples of generalized Orlicz spaces discussed above. The one exception is
that our corollaries do not recapture results for weighted Lebesgue spaces: see the
discussion after Theorem 3.3.

As immediate consequences of our extrapolation results, we derive norm inequal-
ities for a number of operators on generalized Orlicz spaces: in particular, for

• the maximal operator,
• Calderón–Zygmund singular integrals and commutators,
• the Riesz potential and fractional maximal operators,
• the spherical maximal operator.

These results are not intended to be exhaustive but to show the versatility of extrap-
olation in proving inequalities with very little additional work. While extrapolation
allows us to obtain easily a vast array of tools, it is worth noting that there is a
small price: since the technique uses the maximal operator in the dual space, it
means that we must assume the Φ-function is doubling. Thus results such as reg-
ularity under exponential growth (e.g., [39]) are out of our reach. Consequently, it
is of interest also to find direct proofs for the above-mentioned operators.

We also use extrapolation to prove a Sobolev embedding theorem. We are
not aware of any method to obtain compact embeddings directly by extrapola-
tion. Therefore, for this purpose we prove a complex interpolation theorem (Theo-
rem 5.1), which combined with the Sobolev embedding theorem allows us to extend
the Rellich–Kondratchov Theorem to generalized Orlicz spaces.

Remark 1.5. As we were completing this paper we learned that an extrapolation
theorem in the scale of generalized Orlicz spaces had been proved independently
by Maeda et al. [43]. Their result is analogous to Corollary 4.10 but with more
complicated hypotheses.
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The remainder of this paper is organized as follows. In Section 2 we give the
necessary definitions and preliminary results about generalized Orlicz spaces. In
Section 3 we discuss sufficient conditions for the Hardy–Littlewood maximal opera-
tor to be bounded on generalized Orlicz spaces. We will show that these conditions
hold for a wide variety of examples. In Section 4 we first give some necessary
definitions about weights, and we introduce the abstract formalism of families of
extrapolation pairs that we use to state and prove our extrapolation results. We
then prove Theorems 1.1, 1.3, and 1.4. In fact, we will actually prove general-
izations of these results and then deduce a number of immediate corollaries that
follow from the theory of extrapolation and the sufficient conditions in Section 3.
In Section 5 we prove our complex interpolation theorem. Finally, in Section 6 we
give our applications of extrapolation.

Throughout this paper, C, c, etc., will denote constants whose value may change
at each appearance. If we write C(X,Y, . . .), we mean that the constant depends on
the parameters X, Y , etc. The notation f � g means that there exists a constant
C > 0 such that f � Cg. The notation f ≈ g means that f � g � f . By
L0 = L0(Rn) we denote the set of (Lebesgue) measurable functions on Rn.

2. Φ-functions and generalized Orlicz spaces

We recall some definitions pertaining to generalized Orlicz spaces. For proofs
and further properties, see [24, Chapter 2] and [44]. Our approach follows the
development in [31].

Hereafter, we say that a function f is almost increasing if there exists L � 1
such that for all s � t, f(s) � Lf(t). Almost decreasing is defined analogously. If
we can take L = 1, we say that f is increasing/decreasing.

Definition 2.1. Let ϕ : [0,∞) → [0,∞] be an increasing function such that ϕ(0) =
limt→0+ ϕ(t) = 0 and limt→∞ ϕ(t) = ∞. Such a function ϕ is called a Φ-prefunction.
Furthermore, we say that ϕ is:

(1) a weak Φ-function, denoted ϕ ∈ Φw, if, additionally, t �→ ϕ(t)
t is almost

increasing on (0,∞);
(2) a Φ-function, denoted ϕ ∈ Φ, if, additionally, it is left-continuous and

convex;
(3) a strong Φ-function, denoted ϕ ∈ Φs, if, additionally, it is continuous in R

and convex.

Two Φ-(pre)functions ϕ and ψ are equivalent, ϕ 	 ψ, if there exists L � 1
such that ψ( t

L ) � ϕ(t) � ψ(Lt) for all t. Equivalent Φ-functions give rise to
the same space with comparable norms. The converse, however, is false: there
exist Φ-functions that induce comparable norms but are not equivalent; cf. [24,
Theorem 2.8.1]. We say that ϕ is doubling if ϕ(2t) � Aϕ(t) for every t > 0. For
doubling Φ-functions, 	 and ≈ are equivalent.

While it is common in the literature to work with Φ-functions, it is also con-
venient to work at times with either weak or strong Φ-functions. We can do so
because every weak Φ-function is equivalent to a strong one: the following result
was proved in [31, Proposition 2.3].

Lemma 2.2. Every weak Φ-function is equivalent to a strong Φ-function.
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Given ϕ ∈ Φw, we let ϕ−1 denote the left-inverse of ϕ:

ϕ−1(τ ) := inf{t � 0 : ϕ(t) � τ}.

Then ϕ(ϕ−1(τ )) � τ and ϕ−1(ϕ(t)) � t. Equality holds in the former when ϕ is
continuous, in the latter when ϕ is strictly increasing. Note that ϕ 	 ψ if and only
if ϕ−1 ≈ ψ−1.

The conjugate Φ-function ϕ∗ is defined by the formula

ϕ∗(t) := sup
s�0

st− ϕ(s).

In [24, (2.6.12)], it was shown that ϕ−1(t)(ϕ∗)−1(t) ≈ t when ϕ satisfies addi-
tional growth conditions (more precisely, when it is an N-function; see [24, Defini-
tion 2.4.4]). Here we show that this holds without these additional assumptions.

Lemma 2.3. If ϕ ∈ Φw, then ϕ−1(t)(ϕ∗)−1(t) ≈ t.

Proof. The claim is invariant under equivalence of Φ-functions, so by Lemma 2.2
we may assume that ϕ ∈ Φs.

Since ϕ is convex, t �→ ϕ(t)
t is increasing. If we combine this with the definition

of the conjugate function, we get, for s > 0, that

ϕ∗
(ϕ(s)

s

)
= sup

t�0

(ϕ(s)
s

− ϕ(t)

t

)
t = sup

t∈[0,s]

(ϕ(s)
s

− ϕ(t)

t

)
t � sup

t∈[0,s]

ϕ(s)

s
t = ϕ(s).

On the other hand, choosing t = s in the supremum, we find that

ϕ∗
(
2
ϕ(s)

s

)
= sup

t�0
2
ϕ(s)

s
t− ϕ(t) � 2ϕ(s)− ϕ(s) = ϕ(s).

Thus we have shown that

(2.4) ϕ∗
(ϕ(s)

s

)
� ϕ(s) � ϕ∗

(
2
ϕ(s)

s

)
.

The claim of the lemma is immediate for t = 0, so we may assume that 0 < t < ∞.
In this case we can find s > 0 such that t = ϕ(s) and ϕ−1(t) = s since ϕ ∈ Φs; then
(2.4) gives

ϕ∗
(

t

ϕ−1(t)

)
� t � ϕ∗

(
2t

ϕ−1(t)

)
.

Since (ϕ∗)−1 is increasing and (ϕ∗)−1(ϕ∗(t)) � t, we obtain from this that

(ϕ∗)−1

(
ϕ∗

(
t

ϕ−1(t)

))
� (ϕ∗)−1(t) � 2t

ϕ−1(t)
.

For the left-hand side we distinguish two cases. If ϕ∗(s) > 0, then (ϕ∗)−1(ϕ∗(s)) =
s. If ϕ∗(s) = 0, then s � (ϕ∗)−1(t) for any t > 0 (cf. [30, (2.2)]). In either case, we
obtain that

t

ϕ−1(t)
� (ϕ∗)−1(t) � 2t

ϕ−1(t)
,

from which the claim follows when we multiply by ϕ−1(t) > 0. �
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Generalized Orlicz spaces. To define generalized Orlicz spaces, we extend the
definition of Φ-functions to depend on the location in space.

Definition 2.5. The set Φ(Ω) of generalized Φ-functions consists of those functions
ϕ : Ω× [0,∞) → [0,∞] such that

(1) ϕ(y, ·) ∈ Φ for every y ∈ Ω;
(2) ϕ(·, t) ∈ L0(Ω) for every t � 0.

The families Φs(Ω) and Φw(Ω) are defined analogously.

For simplicity, weak, strong, and generalized Φ-functions will all be called Φ-
functions. In sub- and superscripts the dependence on x will be emphasized by
ϕ(·): Lϕ (Orlicz) versus Lϕ(·) (generalized Orlicz). The properties and definitions
of Φ-functions carry over to generalized Φ-functions pointwise.

We can now define generalized Orlicz spaces. By Lemma 2.2 we can take weak
Φ-functions in our definitions, though in the references above these definitions are
made for Φ-functions.

Definition 2.6. Let ϕ ∈ Φw(Ω) and define the semimodular �ϕ(·) for f ∈ L0(Ω)
by

�ϕ(·)(f) :=

ˆ
Ω

ϕ(x, |f(x)|) dx.

The generalized Orlicz space, also called a Musielak–Orlicz space, is defined as the
set

Lϕ(·)(Ω) = {f ∈ L0(Ω): lim
λ→0

�ϕ(·)(λf) = 0}

equipped with the (Luxemburg) norm

‖f‖Lϕ(·)(Ω) := inf
{
λ > 0: �ϕ(·)

(f
λ

)
� 1

}
.

If the set is clear from the context we abbreviate ‖f‖Lϕ(·)(Ω) by ‖f‖Lϕ(·) or ‖f‖ϕ(·).
Hölder’s inequality holds in generalized Orlicz spaces, with constant 2, without

restrictions on the Φ-function [24, Lemma 2.6.3]:ˆ
Ω

|f | |g| dx � 2‖f‖ϕ(·)‖g‖ϕ∗(·).

Moreover, the following general norm conjugate formula, in a sense the opposite of
Hölder’s inequality, is also true. It was proved in [24, Corollary 2.7.5] for ϕ ∈ Φ(Rn)
with c(ϕ) = 1. However, by Lemma 2.2 it extends to weak Φ-functions.

Lemma 2.7 (Norm conjugate formula). Let ϕ ∈ Φw(R
n), let f, g ∈ L0(Ω), and

suppose that simple functions belong to Lϕ∗(·). Then

c(ϕ)‖f‖ϕ(·) � sup
‖g‖ϕ∗(·)�1

ˆ
Ω

|f | |g| dx � 2‖f‖ϕ(·).

Remark 2.8. The norm conjugate formula is not directly related to the dual space
(Lϕ(·))∗, only to the conjugate modular ϕ∗. Consequently, the formula is also useful
in situations where the space is not reflexive.

Remark 2.9. After completing this paper, we found in [29] that it is possible to
prove the norm conjugate formula without the assumption that simple functions
belong to Lϕ∗(·). This would allow us to remove some of the auxiliary assumptions
in our results. Details are left to the reader.
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Rescaling. Suppose that ϕ ∈ Φw(R
n) and ϕp(x, t) := ϕ(x, t1/p) is also a weak

Φ-function. Then it follows directly from the definition of the Luxemburg norm
that

‖vp‖ϕp(·) = ‖v‖pϕ(·).
This identity will be referred to as rescaling. The next lemma describes how rescal-
ing behaves under conjugation.

Lemma 2.10. Let 1 � p � q < ∞, β := 1
p − 1

q , and ϕ, ψ ∈ Φw(R
n) be such that

ϕ−1(x, t) = tβψ−1(x, t). Define ϕp(x, t) := ϕ(x, t1/p) and ψq(x, t) := ψ(x, t1/q),
and assume they are in Φw(R

n). Then

‖v
p
q ‖ϕ∗

p(·) ≈ ‖v‖
p
q

ψ∗
q (·)

.

Proof. Our proof is based on a pointwise estimate; for simplicity of notation, we
thus drop the “x” for the rest of the proof. By Lemma 2.3, ϕ−1

p (t)(ϕ∗
p)

−1(t) ≈ t.

By definition, ϕ−1
p (t) = ϕ−1(t)p; hence, we have that (ϕ∗

p)
−1(t) ≈ t

(
ϕ−1(t)

)−p
.

Analogously, ψ−1(t) ≈ (t/(ψ∗
q )

−1(t))1/q.

By assumption, ϕ−1(t) = tβψ−1(t). Therefore,

(ϕ∗
p)

−1(t) ≈ t
(
ϕ−1(t)

)−p
= t1−pβψ−1(t)−p = t1−pβ− p

q (ψ∗
q )

−1(t)
p
q .

Since 1−pβ− p
q = 0, we have shown that ϕ∗

p(t) ≈ ψ∗
q (t

q/p), and so the claim follows

by rescaling. �

3. The maximal operator in generalized Orlicz spaces

We begin by recalling the definition of the maximal operator. The Hardy–
Littlewood maximal operator is defined for f ∈ L0(Rn) by

Mf(x) := sup
r>0

 
B(x,r)

|f(y)| dy,

where B(x, r) is the ball with center x and radius r, and
ffl

denotes the average
integral. Equivalently, the averages can be taken over all balls (or all cubes) that
contain x. For the general theory of the maximal operator, see [26].

We now give a family of hypotheses that are closely related to the boundedness
of the maximal operator on generalized Orlicz spaces.

Definition 3.1. Given ϕ ∈ Φw(R
n) and 0 < p < ∞, we define the following

conditions:

(A0) ϕ−1(x, 1) ≈ 1 uniformly in x ∈ Ω.
(A1) There exists β ∈ (0, 1) such that βϕ−1(x, t) � ϕ−1(y, t) for every t ∈[

1, 1
|x−y|n

]
and every x, y ∈ Ω with |x− y| � 1.

(A2) Lϕ(·)(Rn) ∩ L∞(Rn) = Lϕ∞(Rn) ∩ L∞(Rn), with ϕ∞(t) := lim sup
|x|→∞

ϕ(x, t)

and ϕ∞ ∈ Φw.
(Inc)p s �→ s−pϕ(x, s) is increasing for all x ∈ Ω.
(Dec)p s �→ s−pϕ(x, s) is decreasing for all x ∈ Ω.
(aInc)p s �→ s−pϕ(x, s) is almost increasing uniformly in x ∈ Ω.
(aDec)p s �→ s−pϕ(x, s) is almost decreasing uniformly in x ∈ Ω.

We say that ϕ satisfies (aInc) if it satisfies (aInc)p for some p > 1 and (aDec) if it
satisfies (aDec)p for some p < ∞.
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There are three facts we want to observe about these definitions. First, (aDec) is
equivalent to doubling; see [31]. Second, by a change of variables, ϕ ∈ Φw satisfies
(aInc)p for p > 1 if and only if ϕp(x, t) = ϕ(x, t1/p) satisfies (aInc)1, i.e., if and
only if ϕp ∈ Φw. The third is that (A0) yields the inclusion of simple functions in
a generalized Orlicz space. We state this as a lemma; we will use it below to apply
Lemma 2.7.

Lemma 3.2. Let ϕ ∈ Φw(Ω) satisfy (A0). Then simple functions belong to
Lϕ(·)(Ω).

Proof. Since Lϕ(·)(Ω) is a vector space, it suffices to show that χA ∈ Lϕ(·)(Ω) for
every A ⊂ Ω of finite measure. By (A0) and the properties of ϕ−1, there exists
β > 0 such that ϕ(x, β) � 1 for every x ∈ Ω. Then

�ϕ(·)(λβχA) � λ

ˆ
A

ϕ(x, β) dx � λ |A| → 0

as λ → 0, so χA ∈ Lϕ(·)(Ω) by the definition of the space. �

The importance of these conditions is that we can use them to give sufficient
conditions for the maximal operator to be bounded on generalized Orlicz spaces.
The following result was proved in [34, Theorem 4.7].

Theorem 3.3. Let ϕ ∈ Φw(R
n) satisfy conditions (A0)–(A2) and (aInc). Then

M : Lϕ(·)(Rn) → Lϕ(·)(Rn)

is bounded.

Examples. To better understand these conditions, we consider them in several
special cases. In the classical Lebesgue spaces, ϕ(x, t) = tp, (A0)–(A2) hold trivially,
and (aInc) is equivalent to p > 1. This corresponds to the well-known fact that
the maximal operator is not bounded on L1. The fact that we do not need to
assume (aDec) corresponds to the fact that the maximal operator is bounded on
L∞. Similarly, if ϕ(x, t) = Φ(t) for some Young function Φ, then (aInc) is equivalent
to the lower Boyd index of Φ being greater than 1, which is again necessary for the
maximal operator to be bounded on LΦ. (See [7].)

In the variable Lebesgue spaces, the (aInc) condition is equivalent to p− =
ess inf p(x) > 1, which is necessary for the maximal operator to be bounded [24,
Theorem 4.7.1]. The (A1) condition is the local log-Hölder continuity for 1

p , whereas

(A2) is the Nekvinda decay condition N∞. (For definitions, see [17] or [24].) These
conditions are close to optimal, as it is known that one cannot replace log-Hölder
continuity by any weaker modulus of continuity and still guarantee that the maximal
operator is bounded. On the other hand, there exist examples of exponents that do
not satisfy these conditions—indeed, which are not even continuous—but for which
the maximal operator is still bounded on Lp(·) [24, Example 5.1.8].

In the double phase case, the critical issue is the behavior of a around the zero set
{x : a(x) = 0}. Colombo and Mingione [13] found that the critical Hölder exponent
with which a must approach zero is n

p (q−p), which also gives a sufficient condition

for (A1) to hold [34]. A similar observation holds in the limiting double phase
case [5, 6]. Double phase regularity has been studied only in bounded domains;
however, one can use Lemma 3.4 to show that (A2) imposes no additional constraint
compared to (A0).



EXTRAPOLATION IN GENERALIZED ORLICZ SPACES 4331

ϕ(x, t) (A0) (A1) (A2) (aInc) (aDec)

tp(x)a(x) a ≈ 1 1
p ∈ C log

loc p ∈ N∞ p− > 1 p+ < ∞
tp(x) log(e+ t) – 1

p ∈ C log
loc p ∈ N∞ p− > 1 p+ < ∞

tp + a(x)tq a ∈ L∞ a ∈ C
n
p (q−p) a ∈ L∞ p > 1 q < ∞

tp + a(x)tp log(e+ t) a ∈ L∞ a ∈ C log
loc a ∈ L∞ p > 1 p < ∞

Finally, we note that the (A0) condition precludes weighted norm inequalities,
both in the classical case, ϕ(x, t) = tpa(x), and in the variable exponent case,
ϕ(x, t) = tp(x)a(x). In either case the (A0) condition requires the weight to be
essentially constant. Therefore, Theorem 3.3 does not capture these very important
cases. A “weighted” theory in the setting of generalized Orlicz spaces remains an
open problem.

The maximal operator and conjugate Φ-functions. In our extrapolation the-
orems, the hypotheses are not given on the space Lϕ(·) for the original Φ-function
ϕ, but rather on Lϕ∗(·) or on some rescaling of this space. In the scale of the vari-
able Lebesgue spaces these conditions are essentially equivalent; see Diening [23]
or [24, Theorem 5.7.2] for a precise statement. It is not known if this is true for
generalized Orlicz spaces. However, using our assumptions we can give sufficient
conditions on ϕ for the maximal operator to be bounded on Lϕ∗(·) or on a rescaling
of this space. To do so, we need to consider the effect of conjugation and rescaling
on the above conditions. This is done in Propositions 3.5 and 3.6 below. To prove
the first, we give some additional characterizations of the (A2) condition.

Lemma 3.4. Let ϕ ∈ Φw(R
n) and let ϕ∞(t) := lim sup

|x|→∞
ϕ(x, t), ϕ∞ ∈ Φw. Then

the following are equivalent:

(1) ϕ satisfies (A2).
(2) There exist h ∈ L1 and β > 0 such that for every t ∈ [0, 1],

ϕ(x, βt) � ϕ∞(t) + h(x) and ϕ∞(βt) � ϕ(x, t) + h(x).

(3) For any s > 0 there exist h ∈ L1 and β > 0 such that for every t ∈ [0, s],

ϕ(x, βt) � ϕ∞(t) + h(x) and ϕ∞(βt) � ϕ(x, t) + h(x).

Proof. It is clear that (3.4) implies (3.4). For the converse, we assume that (3.4)

holds and s > 1. Let β′ := β
s and t ∈ [0, s]. Since t

s ∈ [0, 1], by (3.4) we see that

ϕ(x, β′t) = ϕ(x, β t
s ) � ϕ∞( ts ) + h(x) � ϕ∞(t) + h(x).

The same argument works for the other inequality as well; hence, (3.4) holds.
Therefore (3.4) and (3.4) are equivalent.

We now consider (3.4) and (3.4). Let

ξ(x, t) := max{ϕ(x, t),∞χ(1,∞)(t)} and ψ(t) := max{ϕ∞(t),∞χ(1,∞)(t)}.
Then Lϕ(·) ∩ L∞ = Lξ(·) and Lϕ∞ ∩ L∞ = Lψ so that (3.4) becomes Lξ(·) = Lψ.
By [24, Theorem 2.8.1], Lξ(·) = Lψ if and only if there exist β > 0 and h ∈ L1 such
that

ξ(x, βt) � ψ(t) + h(x) and ψ(βt) � ξ(x, t) + h(x).

We may assume without loss of generality that β � 1. When t ∈ [0, 1], ξ(x, t) =
ϕ(x, t), ξ(x, βt) = ϕ(x, βt), ψ(t) = ϕ∞(t), and ψ(βt) = ϕ∞(βt), whereas for t > 1
the inequalities are trivial since the right-hand side is infinite. Thus, (3.4) and (3.4)
are equivalent. �
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To describe the impact of rescaling and conjugation we define two operators on
Φ-functions: given ϕ ∈ Φw and α > 0, let

T∗(ϕ)(x, t) := ϕ∗(x, t) and Tα(ϕ)(x, t) := ϕ
(
x, t

1
α

)
.

We study the behavior of our conditions under these transformations. We first
consider (A0)–(A2).

Proposition 3.5. Conditions (A0), (A1), and (A2) are invariant under T∗ and
Tα.

Proof. By Lemma 2.3, ϕ−1(x, t)(ϕ∗)−1(x, t) ≈ t. Furthermore, (Tαϕ)
−1(x, t) =

ϕ−1(x, t)α. When t = 1, we see from these that (A0) is invariant. Likewise, we see
that (A1) is invariant.

For (A2), we use Lemma 3.4. We find that

Tαϕ(x, β
αt) = ϕ

(
x, βt

1
α

)
� ϕ∞

(
t

1
α

)
+ h(x) = Tαϕ∞(t) + h(x)

and similarly for the other inequality in Lemma 3.4(3.4). Hence (A2) is invariant
under Tα. By [24, Lemma 2.6.4], the inequality

ϕ(x, βt) � ϕ∞(t) + h(x)

is equivalent to
T∗ϕ(x,

t
β ) � T∗ϕ∞(t)− h(x),

and similarly for the other inequality. Hence we see by Lemma 3.4(3.4) that (A2)
is invariant under T∗ as well. �

We next consider (aDec) and (aInc). The following result is a generalization
of [31, Lemma 2.4].

Proposition 3.6. Let ϕ ∈ Φw. Then ϕ satisfies (aInc)p if and only if T∗(ϕ) = ϕ∗

satisfies (aDec)p′ , where 1
p + 1

p′ = 1. Further, Tα maps (aInc)p to (aInc)p/α and

(aDec)p to (aDec)p/α.

Proof. We first consider the special case of (Inc) and (Dec). We have that ϕ satisfies

(Inc)p if and only if ϕ(t1/p)
t is increasing, similarly for ϕ∗ and (Dec)p′ . From the

definition of the conjugate function,

ϕ∗(s
1
p′ )

s
=

1

s
sup
t�0

ts
1
p′ − ϕ(t) = sup

v�0

(
v
− 1

p′ −
ϕ
(
(sv)

1
p
)

sv

)
v,

where we used the change of variables t := (sv)
1
p . From this expression, we see that

ϕ∗ satisfies (Dec)p′ and (Inc)p′ if ϕ satisfies (Inc)p and (Dec)p, respectively. Since
(ϕ∗)∗ = ϕ [24, Corollary 2.6.3], we conclude that ϕ satisfies (Inc)p if and only if ϕ∗

satisfies (Dec)p′ .
Suppose now that ϕ satisfies (aInc)p. Then ψ(s) := sp inft�s t

−pϕ(t) satis-
fies (Inc)p and ϕ ≈ ψ. By the above argument, ψ∗ satisfies (Dec)p′ and, by
[24, Lemma 2.6.4], ϕ∗ 	 ψ∗; hence, ϕ∗ satisfies (aDec)p′ . Conversely, suppose ϕ∗

satisfies (aDec)p′ . Then we can argue in the same way with the auxiliary function

ψ(s) := sp
′
supt�s t

−p′
ϕ∗(t) (since ϕ = (ϕ∗)∗).

It remains to consider Tp. As before, ϕ satisfies (aInc)p if and only if ϕ(t1/p)
t is

almost increasing. Since Tαϕ(x, t
α
p ) = ϕ(x, t

1
p ), Tαϕ then satisfies (aInc)p/α. The

case of (aDec) is proved analogously. �
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4. Extrapolation in generalized Orlicz spaces

Weights and classical extrapolation. We give some preliminary definitions and
results about weights and the classical theory of Rubio de Francia extrapolation,
as well as more recent generalizations. For more information and proofs, we refer
the reader to [20, 26] and the references they contain.

By a weight we mean a non-negative, locally integrable function w such that
0 < w(x) < ∞ almost everywhere. For 1 � p < ∞, the weighted Lebesgue space
Lp(w) consists of all f ∈ L0 such that

‖f‖Lp(w) =

(ˆ
Rn

|f |pw dx

)1/p

< ∞.

For 1 < p < ∞, a weight w is in the Muckenhoupt class Ap, denoted w ∈ Ap, if

[w]Ap
= sup

Q

( 
Q

w dx

)( 
Q

w1−p′
dx

)p−1

< ∞,

where the supremum is taken over all cubes with sides parallel to the coordinate
axes. (Equivalently, we can replace cubes by balls.) When p = 1, we say w ∈ A1 if

[w]A1
= sup

Q

( 
Q

w dx

)
ess sup
x∈Q

1

w(x)
< ∞.

Given 1 < p < q < ∞, A1 � Ap � Aq. A simple example of a Muckenhoupt Ap

weight is w(x) = |x|a, −n < a < n(p− 1).
A weight w satisfies the reverse Hölder condition with exponent s > 1, denoted

w ∈ RHs, if

[w]RHs
= sup

Q

( 
Q

ws dx

)1/s ( 
Q

w dx

)−1

< ∞.

By Hölder’s inequality, if s > t, then RHs � RHt. There is a close connection
between the Ap and RHs classes:⋃

p�1

Ap =
⋃
s>1

RHs =: A∞.

However, it is important to note that while w ∈ Ap for some p if and only if
w ∈ RHs for some s, there is no connection between the size of s and p. This can
be seen by considering the reverse Hölder exponents of the power weights |x|a.

While the theory of Rubio de Francia extrapolation is usually applied to prove
norm inequalities for operators, the properties of the operator itself play no direct
role in the statement or proof of extrapolation. Moreover, we will want to use
extrapolation to prove more general inequalities, such as the Coifman–Fefferman
type inequalities relating pairs of operators, e.g., inequalities of the form

‖Tf‖ϕ(·) � ‖Mf‖ϕ(·),
where T is a singular integral operator and M the Hardy–Littlewood maximal op-
erator. We also want to be able to use extrapolation to prove weak-type and vector-
valued inequalities. For more on this approach in the classical setting, see [20].

Therefore, rather than consider inequalities relating the norms of Tf and f , we
will consider families of pairs of non-negative measurable functions,

F = {(f, g)},
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with (implicitly) additional restrictions on f and g. The pairs (f, g) are called
extrapolation pairs. In our extrapolation theorems we will assume that we have
weighted norm inequalities

(4.1) ‖f‖Lp(w) � C(n, p, [w]Aq
)‖g‖Lp(w)

and use them to deduce generalized Orlicz space inequalities

(4.2) ‖f‖ϕ(·) � C(n, ϕ)‖g‖ϕ(·).
More precisely, in order to prove (4.2) for a fixed pair (f, g), we need to have that
(4.1) holds for a weight w ∈ Aq that we construct in the course of the proof. The
problem is that in this abstract setting do not know that this will be the case: e.g.,
we cannot rule out a priori that ‖f‖Lp(w) = ∞ but ‖g‖Lp(w) is finite.

To avoid this problem we adopt the following convention. Given a family F of
extrapolation pairs, if we write

‖f‖Lp(w) � C(n, p, [w]Aq
)‖g‖Lp(w), (f, g) ∈ F ,

then we mean this inequality holds for a given weight w ∈ Aq for all pairs (f, g)
such that the left-hand side is finite. If we write

‖f‖ϕ(·) � C(n, ϕ)‖g‖ϕ(·), (f, g) ∈ F ,

we mean the same thing: this inequality holds for all pairs such that f ∈ Lϕ(·). In
the proof we will use this latter assumption to prove that ‖f‖Lp(w) is finite for a
specific weight w. Note that we do not assume that ‖g‖Lp(w) is finite, though if

g ∈ Lϕ(·), then in the course of the proof we will show that it is. (If ‖g‖Lp(w) = ∞,
then there is nothing to prove for this particular pair.)

To apply extrapolation to prove norm inequalities for an operator T (as in our
main results in the Introduction), we would consider a family of extrapolation pairs
of the form F = {(|Tf |, |f |)}. If T is defined on Lϕ(·), then we can take f ∈ Lϕ(·),
but then we need to check that the above conventions hold for all such pairs. This
is the approach we take to prove Theorems 1.1–1.4; see below. Alternatively, if T is
defined on a dense subset, then we can use approximation arguments to prove norm
inequalities. We will discuss this approach in further detail in Section 6 below.

To put our extrapolation results in context and because we will need them below
in our proofs, we state two versions of extrapolation. The first is the classical result
of Rubio de Francia. For a proof, see [20, Theorem 3.9, Corollary 3.12].

Theorem 4.3. Given a family of extrapolation pairs F , suppose that for some
p0 ∈ [1,∞) and every w0 ∈ Ap0

,

‖f‖Lp0 (w0) � C(n, p0, [w0]Ap0
)‖g‖Lp0 (w0), (f, g) ∈ F .

Then for every p ∈ (1,∞) and every w ∈ Ap,

‖f‖Lp(w) � C(n, p, [w]Ap
)‖g‖Lp(w), (f, g) ∈ F .

Moreover, for every p, q ∈ (1,∞) and w ∈ Ap,∥∥∥∥
(∑

k

fq
k

)1/q∥∥∥∥
Lp(w)

� C(n, p, q, [w]Ap
)

∥∥∥∥
(∑

k

gqk

)1/q∥∥∥∥
Lp(w)

, {(fk, gk)}k ⊂ F .

The second result we need is the limited range extrapolation theorem of Auscher
and Martell [3]. (See also [20, Theorem 3.23].)
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Theorem 4.4. Given a family of extrapolation pairs F and 1 < q− < q+ < ∞,
suppose that for some p0 ∈ (q−, q+) and every w0 ∈ Ap0/q− ∩RH(q+/p0)′ ,

‖f‖Lp0 (w0) � C(n, p0, [w0]Ap0/q−
, [w0]RH(q+/p0)′ )‖g‖Lp0 (w0), (f, g) ∈ F .

Then for every p ∈ (q−, q+) and every w ∈ Ap/q− ∩RH(q+/p)′ ,

‖f‖Lp(w) � C(n, p, [w]Ap/q−
, [w]RH(q+/p)′ )‖g‖Lp(w), (f, g) ∈ F .

Diagonal and off-diagonal extrapolation. We now prove Theorems 1.1 and
1.3. First note that Theorem 1.1 is actually a special case of Theorem 1.3 when
p = q, so it will suffice to prove the latter. In turn, Theorem 1.3 is a consequence
of the following more general result expressed in terms of extrapolation pairs.

Theorem 4.5. Given a family of extrapolation pairs F , suppose that for some p, q,
1 � p � q < ∞, and all w ∈ A1,

(4.6) ‖f‖Lq(w) � C(n, p, q, [w]A1
)‖g‖Lp(wp/q), (f, g) ∈ F .

Let ϕ ∈ Φw(R
n) satisfy (aInc)p (i.e., ϕp ∈ Φw). Define β := 1

p − 1
q , ψ

−1(x, t) :=

t−βϕ−1(x, t), and ψq(x, t) := ψ(x, t1/q). If simple functions belong to Lψ∗
q (·) and

the Hardy–Littlewood maximal operator is bounded on Lψ∗
q (·), then

(4.7) ‖f‖Lψ(·) � C‖g‖Lϕ(·) , (f, g) ∈ F .

Before proving Theorem 4.5 we first state and prove three corollaries. In the
first two, we use the results of Section 3 to immediately get sufficient conditions on
ϕ, ψ for the conclusions of Theorem 4.5 to hold.

Corollary 4.8. Let p, q, β, and F be as in Theorem 4.5 and suppose (4.6) holds.
Let ψ ∈ Φw(R

n) and define ϕ−1(x, t) := tβψ−1(x, t). If ψ satisfies assumptions
(A0)–(A2) and there exist q+ > q such that ψ satisfies (aInc)q and (aDec)q+ , then
(4.7) holds.

Proof. Since ψ satisfies (aInc)q,
ϕq(x,t)

t is almost increasing and so ψq ∈ Φw. Since
ψ satisfies (A0)–(A2) and (aDec)q+ , and since ψ∗

q = T∗Tq(ψ), ψ
∗
q satisfies (A0)–(A2)

and (aInc)(q+/q)′ by Propositions 3.6 and 3.5. Hence, by Theorem 3.3, the maximal

operator is bounded on Lψ∗
q (·). Finally, since ψ∗

q satisfies (A0), by Lemma 3.2,

simple functions are contained in Lψ∗
q (·). Therefore, we can apply Theorem 4.5 to

get the desired result. �

Alternatively, we can state the assumptions in terms of ϕ.

Corollary 4.9. Let p, q, β, and F be as in Theorem 4.5 and suppose (4.6) holds.
Let ϕ ∈ Φw(R

n) and define ψ−1(x, t) := t−βϕ−1(x, t). If ϕ satisfies (A0)–(A2),
(aInc)p, and (aDec)p+

for some p+ > p, then (4.7) holds.

Proof. It follows from the definition of ψ that it also satisfies (A0)–(A2). Further-
more, ϕ satisfies (aInc)p and (aDec)p+

if and only if ϕ−1 satisfies (aDec)1/p and
(aInc)1/p+

, respectively. Thus, ψ satisfies (aInc)q and (aDec)q+ . Hence, the result
follows from Corollary 4.9. �

By using the full strength of Rubio de Francia extrapolation, we can also prove
the following result, which holds for a large class of Φ-functions.
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Corollary 4.10. Given a family of extrapolation pairs F , suppose that for some
p ∈ [1,∞) and all w ∈ Ap,

(4.11) ‖f‖Lp(w) � C(n, p, [w]Ap
)‖g‖Lp(w), (f, g) ∈ F .

Suppose ϕ is a weak Φ-function that satisfies assumptions (A0)–(A2) and (aDec).
If p > 1, then we also assume (aInc). Then

(4.12) ‖f‖Lϕ(·) � C‖g‖Lϕ(·) , (f, g) ∈ F .

Moreover, we have that for any q, 1 < q < ∞,

(4.13)

∥∥∥∥
(∑

k

fq
k

)1/q∥∥∥∥
Lϕ(·)

� C(n, q, ϕ)

∥∥∥∥
(∑

k

gqk

)1/q∥∥∥∥
Lϕ(·)

, {(fk, gk)}k ⊂ F .

Proof. If p > 1, then ϕ satisfies (aInc)p− for some p− > 1 by assumption. By
Theorem 4.3, we have that (4.11) holds also for some p � p−. (If p = 1, then this
is automatically true without using Theorem 4.3.) Since A1 ⊂ Ap we satisfy the
hypotheses of Corollary 4.8, and so we get (4.12). To prove (4.13) we repeat this
argument, starting from the weighted vector-valued inequality in Theorem 4.3. �

Remark 4.14. An off-diagonal version of Corollary 4.10 holds, using the off-diagonal
extrapolation theorem [20, Theorem 3.23]. Details are left to the interested reader.

Proof of Theorem 4.5. We begin the proof by using the Rubio de Francia iteration
algorithm. Let m := ‖M‖

L
ψ∗
q (·)→L

ψ∗
q (·) and define R : L0(Rn) → [0,∞] by

Rh(x) :=

∞∑
k=0

Mkh(x)

2kmk
,

where for k � 1, Mk denotes k iterations of the maximal operator, and M0h = |h|.
Then the following properties hold:

(A) |h| � Rh,
(B) ‖Rh‖

L
ψ∗
q (·) � 2‖h‖

L
ψ∗
q (·) ,

(C) Rh ∈ A1 and [Rh]A1
� 2m.

Property (A) holds since Rh � M0h = |h|, (B) holds since
∥∥∥Mkh

2kmk

∥∥∥
L

ψ∗
q (·) =

‖Mkh‖
L

ψ∗
q (·)

2kmk
�

m‖Mk−1h‖
L

ψ∗
q (·)

2kmk
� · · · �

‖h‖
L

ψ∗
q (·)

2k
,

and (C) holds since M(Rh) � 2mRh by the sublinearity of the maximal operator.
Fix (f, g) ∈ F and define H := {h : ‖h‖ϕ∗

q(·) � 1}. By rescaling, Lemma 2.7,

and (A),

‖f‖qψ(·) =
∥∥fq

∥∥
ψq(·)

� sup
h∈H

ˆ
Rn

fqh dx � sup
h∈H

ˆ
Rn

fq Rh dx.

To apply our hypothesis, by our convention on families of extrapolation pairs we
need to show that the right-hand term is finite. But this follows at once by Hölder’s
inequality and (B): for all h ∈ H,

(4.15)

ˆ
Rn

fq Rh dx � 2‖fq‖ψq(·)‖Rh‖ψ∗
q (·) � 4‖f‖qψ(·)‖h‖ψ∗

q (·) < ∞;
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the last inequality holds since, again by our convention, f ∈ Lψ(·). Given this and
(C) we can apply our hypothesis (4.6) to get that

‖f‖ψ(·) � sup
h∈H

( ˆ
Rn

fqRh dx

) 1
q

� C sup
h∈H

( ˆ
Rn

gp(Rh)
p
q dx

) 1
p

.

Let ϕp(x, t) := ϕ(x, t1/p); then for any h ∈ H, by Hölder’s inequality, rescaling,
Lemma 2.10, and property (B),

(4.16)

ˆ
gp(Rh)

p
q , dx � 2

∥∥ gp∥∥
ϕp(·)

∥∥(Rh)
p
q

∥∥
ϕ∗

p(·)
� ‖g‖pϕ(·)‖Rh‖

p
q

ψ∗
q (·)

� ‖g‖pϕ(·).

If we combine the last two inequalities we get that ‖f‖ψ(·) � ‖g‖ϕ(·), as desired. �

Proof of Theorem 1.3. We will derive this result as a consequence of the proof of
Theorem 4.5. Define the family of extrapolation pairs

F = {(|Tg|, |g|) : g ∈ Lϕ(·)}.

(Recall that we assume that T is defined on Lϕ(·) and Tg is measurable.) By

inequality (4.16) we have that g ∈ Lp((Rh)
p
q ) for every h ∈ H; therefore, by

assumption Tg ∈ Lq(Rh). This gives us inequality (4.15) (with f = |Tg|) without
the a priori assumption that Tg ∈ Lψ(·). Therefore, the proof goes through and we
get the desired conclusion. �

Remark 4.17. It is also possible to derive Theorem 4.5 from a similar result for
Banach function spaces that was proved in [20, Theorem 4.6]. To do so, we must
first prove that our hypotheses imply that Lϕ(·) is a Banach function space. We
sketch the proof of this fact. By our assumption that the maximal operator is
bounded on Lϕ∗

p(·), we have that Lϕ∗
p(·) ↪→ L1

loc. This inclusion is equivalent to χE

being contained in the associate space (Lϕ∗
p(·))′ for every measurable set E, |E| < ∞

[24, Remark 2.7.10]. By our assumption that simple functions are contained in

Lϕ∗
p(·), (Lϕ∗

p(·))′ = Lϕp(·) ([24, Remark 2.7.4], since (ϕ∗)∗ = ϕ). Thus, we have that
χE ∈ Lϕp(·), and so by rescaling, χE ∈ Lϕ(·). On the other hand, by Lemma 2.10
(replacing p, q with 1, p), the fact that χE ∈ Lϕ∗

p(·) implies that χE ∈ Lϕ∗(·). Thus
simple functions are contained in Lϕ(·) ∩Lϕ∗(·). Therefore, by [24, Corollary 2.7.9],
Lϕ(·) is a Banach function space.

The remainder of the hypotheses of [20, Theorem 4.6] can be checked similarly.
However, if we take this approach, the proof of Theorem 1.3 is more complicated.
Therefore, it seemed more straightforward to give a direct proof of Theorem 4.5.

Limited range extrapolation. We now turn to Theorem 1.4. As before, this
theorem will be a consequence of the following result stated in terms of extrapolation
pairs. The details of the proof of Theorem 1.4 are essentially the same as the proof
of Theorem 1.3 above and so are omitted.

Theorem 4.18. Given a family of extrapolation pairs F and 1 < q− < q+ < ∞,
suppose that for some p ∈ (q−, q+) and every w ∈ Ap/q− ∩RH(q+/p)′ ,

(4.19) ‖f‖Lp(w) � C(n, p, [w]Ap/q−
, [w]RH(q+/p)′ )‖g‖Lp(w), (f, g) ∈ F .
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Let ϕ ∈ Φw(R
n) satisfy (aInc)p and (aDec)q+ . If simple functions belong to Lϕ∗

p(·)

and the Hardy–Littlewood maximal operator is bounded on Lψ(·), where ψ(x, t) :=
ϕ∗
p(x, t

1/α), α := (q+/p)
′, and ϕp(x, t) = ϕ(x, t1/p), then

(4.20) ‖f‖Lϕ(·) � C‖g‖Lϕ(·) , (f, g) ∈ F .

Again by using the results in Section 3 we can give sufficient conditions on the
Φ-function ϕ for Theorem 4.18 to hold.

Corollary 4.21. Let p, q−, q+, and F be as in Theorem 4.18 and suppose (4.19)
holds. Let ϕ ∈ Φw(R

n) satisfy assumptions (A0)–(A2), (aInc)p− , and (aDec)p+
for

some q− < p− � p+ < q+. Then (4.20) holds.

Remark 4.22. To compare the hypotheses of Corollary 4.21 to those of Corol-
lary 4.10, note that the latter can be restated as ϕ satisfies (aInc)p− and (aDec)p+

for some 1 � p− � p+ < ∞.

Proof. By Theorem 4.4 we may assume that (4.19) holds for some p ∈ (q−, p−).
Since p < p−, it follows that ϕ satisfies (aInc)p. Since ϕ satisfies (A0)–(A2) and
(aDec)p+

, by Propositions 3.5 and 3.6, ψ = TαT∗Tp(ϕ) satisfies (A0)–(A2) and
(aInc)(p+/p)′/α. Note that this makes sense because

(p+/p)
′

α
=

(p+/p)
′

(q+/p)′
> 1.

Hence, by Theorem 3.3, the maximal operator is bounded on Lψ(·). Finally, ϕ∗
p =

T∗Tp(ϕ) satisfies (A0), and so by Lemma 3.2, simple functions are contained in

Lϕ∗
p(·). Therefore, we can use Theorem 4.18 to get the desired conclusion. �

Proof of Theorem 4.18. First note that ϕp ∈ Φw(R
n) since ϕ satisfies (aInc)p.

Moreover, the calculations in the proof of Corollary 4.21 show that ψ ∈ Φw(R
n)

since ϕ satisfies (aDec)q+ .
As in the proof of Theorem 4.5, we now define an iteration algorithm. Let

m := ‖M‖Lψ(·)→Lψ(·) and with the same notation as before let

Rh(x) :=
∞∑
k=0

Mkh(x)

2kmk
.

Assume that h � 0 and define H := R(hα)1/α. Then we have that

(A) h � H,
(B) ‖H‖ϕ∗

p(·) � 2‖h‖ϕ∗
p(·),

(C) H ∈ A1 ∩RH(q+/p)′ ⊂ Ap/q− ∩RH(q+/p)′ .

These properties are proved in much the same way as the analogous properties for
Rh in the proof of Theorem 4.5. As before, we have hα � R(hα), so Property (A)
holds. Similarly, we have ‖Rh‖ψ(·) � 2‖h‖ψ(·), and so by rescaling

‖H‖ϕ∗
p(·) = ‖R(hα)1/α‖ϕ∗

p(·) = ‖R(hα)‖1/αψ(·) � 21/α‖hα‖1/αψ(·) � 2‖h‖ϕ∗
p(·).

Finally, we have R(hα) ∈ A1 and [R(hα)]A1
� 2m, and so Hα ∈ A1. Thus, by

the rescaling properties of A1 weights (see [21, Theorems 2.2, 2.3]) we have that
H ∈ A1 ∩RH(q+/p)′ ⊂ Ap/q− ∩RH(q+/p)′ .
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We can now estimate as follows. Let H := {h : ‖h‖ϕ∗
p(·) � 1}. Then by rescaling,

Lemma 2.7, and (A),

‖f‖pϕ(·) = ‖fp‖ϕp(·) � sup
h∈H

ˆ
Rn

fph dx � sup
h∈H

ˆ
Rn

fpH dx.

As before, to apply our hypothesis, we check to see if our convention about
extrapolation pairs holds. By Hölder’s inequality and (B) we have that for any
h ∈ H, ˆ

Rn

fpH dx � 2‖fp‖ϕp(·)‖H‖ϕ∗
p(·) � 4‖f‖pϕ(·)‖h‖ϕ∗

p(·) < ∞;

the last inequality holds since we assume that ‖f‖ϕ(·) < ∞. Therefore, by (C) we
can apply our hypothesis (4.19) to get

sup
h∈H

ˆ
Rn

fpH dx � sup
h∈H

ˆ
Rn

gpH dx.

By Hölder’s inequality, rescaling, and (B) we have that for all h ∈ H,ˆ
Rn

gpH dx � 2‖gp‖ϕp(·)‖H‖ϕ∗
p(·) � 4‖g‖ϕ(·)‖h‖ϕ∗

p(·) � 4‖g‖ϕ(·).

If we combine these estimates we get ‖f‖ϕ(·) � ‖g‖ϕ. �

5. Complex interpolation

In this section we prove a complex interpolation theorem in the scale of gen-
eralized Orlicz spaces. Note that real interpolation has, for the most part, not
been especially useful even in the variable exponent setting, since the primary and
secondary parameter (i.e., p and θ in (A,B)p,θ) do not co-vary (but see [1] for an
exception). Therefore, it is natural to first consider complex interpolation in the
more general setting of generalized Orlicz spaces.

Previously, Musielak [44, Theorem 14.16] proved complex interpolation results,
but his proofs were longer and more complicated; a simpler proof was given in [25].
However, in both cases the results apply only to N -functions which are proper.
Here we eliminate the first restriction.1

We recall the definition of the norm in the interpolation space [Lϕ0(·), Lϕ1(·)][θ].

Let S := {z ∈ C : 0 < Re z < 1}, so that S = {z ∈ C : 0 � Re z � 1}, where
Re z is the real part of z. Let G be the space of functions on S with values in
Lϕ0(·)+Lϕ1(·) which are analytic on S and bounded and continuous on S such that
F (it) and F (1 + it) tend to zero as |t| → ∞. (Recall that i denotes the imaginary
unit. Also, F is analytic with values in a Banach space means that d

dz̄F = 0 in the
Banach space.) For F ∈ G we set

‖F‖G := sup
t∈R

max
{∥∥F (it)

∥∥
ϕ0(·)

,
∥∥F (1 + it)

∥∥
ϕ1(·)

}
.

Then we define the norm of [Lϕ0(·), Lϕ1(·)][θ] by

‖f‖[θ] := inf
{
‖F‖G : F ∈ G and f = F (θ)

}
.

For ϕ0, ϕ1 ∈ Φw(R
n) and θ ∈ (0, 1) we define the θ-intermediate function ϕθ by

ϕ−1
θ (x, ·) =

(
ϕ−1
0 (x, ·)

)1−θ(
ϕ−1
1 (x, ·)

)θ
.

1Using the results of [29], it is possible to eliminate also the latter restriction.
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Then ϕθ is also a weak Φ-function.

Theorem 5.1 (Complex interpolation). Let ϕ0, ϕ1 ∈ Φw(Ω) satisfy (A0). Then[
Lϕ0(·)(Ω), Lϕ1(·)(Ω)

]
[θ]

= Lϕθ(·)(Ω)

for all 0 < θ < 1.

Proof. We proceed along the lines of [8]. By Lemma 2.2 we may assume without
loss of generality that ϕ0, ϕ1 ∈ Φs(Ω). We extend ϕj : Ω×[0,∞) → [0,∞], j = 1, 2,
to ϕj : Ω×C → [0,∞] via ϕj(x, t) = ϕj(x, |t|). For z ∈ C with 0 � Re z � 1 define
ϕz by

ϕ−1
z (x, t) =

(
ϕ−1
0 (x, t)

)1−z(
ϕ−1
1 (x, t)

)z
.

Then ϕ−1
z is holomorphic in z on S and continuous on S.

For g ∈ Lϕθ(·) with ‖g‖ϕθ
� 1 define

fε(z;x) := exp(−ε+ εz2 − εθ2)ϕ−1
z

(
x, ϕθ(x, g(x))

)
sgn g(x).

Then f(θ) = exp(−ε)g when ϕθ(x, g(x)) ∈ (0,∞) and

|fε(1 + it, x)| = exp(−εt2 − εθ2)
∣∣ϕ−1

1+it

(
x, ϕθ(x, g)

)∣∣ � ϕ−1
1

(
x, ϕθ(x, g)

)
,

|fε(it, x)| = exp(−ε− εt2 − εθ2)
∣∣ϕ−1

it

(
x, ϕθ(x, g)

)∣∣ � ϕ−1
0

(
x, ϕθ(x, g)

)
.

Since ϕ1(ϕ
−1
1 (t)) � t and

´
ϕθ(x, g(x)) dx � 1 we conclude that �ϕ1(·)(fε(1+it, ·)) �

1, similarly for ϕ0. Thus ‖fε‖G = supt∈R
max

{
‖fε(it, ·)‖ϕ0(·), ‖fε(1+ it, ·)‖ϕ1(·)

}
�

1. This and f(θ) = exp(−ε)g imply that ‖ exp(−ε)g‖[θ] � 1. Letting ε → 0, we
find by a scaling argument that ‖g‖[θ] � ‖g‖ϕθ(·).

We now prove the opposite inequality. Since ϕ0 and ϕ1 satisfy (A0), so does ϕz.
By Lemma 2.3, ϕ∗

z := (ϕz)
∗ also satisfies (A0). Be Lemma 2.2, we may assume

that ϕ∗
z ∈ Φs(R

n). By Lemma 2.7,

(5.2) ‖g‖ϕθ(·) � sup
‖b‖ϕ∗

θ
(·)�1

ˆ
Rn

|g| |b| dx.

For ‖g‖[θ] � 1 and b as above put

hε(z;x) := exp(−ε+ εz2 − εθ2)ψz

(
x, ϕ∗

θ

(
x, b(x)

))
sgn g(x),

where ψz is the right-inverse of ϕ∗
z. Since ϕ∗

z ∈ Φs(R
n), the right-inverse agrees

with the left-inverse, except possibly at the origin:

ψz(x, t) =

{
(ϕ∗

z)
−1(x, t) if t > 0,

tz(x) if t = 0.

Here tz(x) := sup{t � 0 : ϕ∗
z(x, t) = 0}. Since ϕ∗

z ∈ Φs(Ω), it follows that
ϕ∗
z(x, ψz(t)) = t when t > 0. But since ϕ∗

z is left-continuous, also ϕ∗
z(x, ψz(0)) =

ϕ∗
z(x, tz(x)) = 0, so that ϕ∗

z(x, ψz(t)) = t for all t.
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Writing Fε(z) :=
´
Rn |fε| |hε| dx we find by Young’s inequality that

Fε(it) �
ˆ
Ω

ψit

(
x, ϕ∗

θ(x, b(x))
)
ϕ−1
it

(
x, ϕθ

(
x, g(x)

))
dx

�
ˆ
Ω

ϕ∗
it

[
x, ψit

(
x, ϕ∗

θ(x, b(x))
)]

+ ϕit

[
ϕ−1
it

(
x, ϕθ

(
x, g(x)

))]
dx

=

ˆ
Ω

ϕ∗
θ(x, b(x)) + ϕθ(x, g(x)) dx

� 2.

Analogously, Fε(1 + it) � 2, so the three-line theorem implies that Fε(z) � 2 for
all z ∈ S.

When z = θ, ψθ is the right inverse of ϕ∗
θ. Then by the definition, ψθ(x, ϕ

∗
θ(x, t))

� t. Thus, we obtain that

Fε(θ) = exp(−2ε)

ˆ
Ω

|g(x)|ψz

(
x, ϕ∗

θ

(
x, b(x)

))
dx � exp(−2ε)

ˆ
Ω

|g(x)| b(x) dx.

Taking the supremum over b and letting ε → 0, we get from this and (5.2) that
‖g‖ϕθ(·) � c; hence, ‖g‖ϕθ(·) � ‖g‖[θ]. �
Remark 5.3. Section 7.1 of [24] contains a proof of the complex interpolation the-
orem without the N-function assumption (for variable exponent Lebesgue spaces).
However, that proof contains an error since it is based on the inequality ϕ−1(ϕ(t)) �
t, which is in general false. This problem is overcome above by the use of the right-
inverse.

The following result is proved using Theorem 5.1 by means of the Riesz–Thorin
Interpolation Theorem and the Hahn–Banach Theorem; cf. [24, Corollary 7.1.4]
and [25, Corollary A.5].

Corollary 5.4. Let ϕ0, ϕ1 ∈ Φw(R
n) satisfy (A0) and let T be a sublinear operator

that is bounded from Lϕj(·)(Ω) to Lϕj(·)(Ω) for j = 0, 1. Then for 0 < θ < 1, T is
also bounded from Lϕθ(·)(Ω) to Lϕθ(·)(Ω).

The next result is proved using Calderón’s interpolation theorem; cf. [24, Corol-
lary 7.1.6].

Corollary 5.5. Let ϕ0, ϕ1 ∈ Φw(R
n) satisfy (A0), let X be a Banach space, and

let T be a linear operator that is bounded from X to Lϕ0(·)(Ω) and compact from X
to Lϕ1(·)(Ω). Then for 0 < θ < 1, T is also compact from X to Lϕθ(·)(Ω).

6. Applications of extrapolation and interpolation

In this section we give some representative applications of extrapolation to prove
norm inequalities in generalized Orlicz spaces. The key to such inequalities is the
existence of weighted norm inequalities, and there is a vast literature on this subject.
For additional examples in the context of variable Lebesgue spaces that can be easily
extended to generalized Orlicz spaces, see [18–20,22].

As we noted in Section 4, to apply extrapolation to prove norm inequalities we
either need that the operator is a priori defined on Lϕ(·) or we need to use density
and approximation arguments. In this case our conditions from Section 3 are very
useful. For instance, if ϕ ∈ Φw(Ω) satisfies (A0) and (aDec), then L∞

c (Ω) and
C∞

c (Ω) are both dense in Lϕ(·)(Ω). (See [31, Theorems 4.3, 4.5].)
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To apply extrapolation via density and approximation, we consider a common
special case. Suppose T is a linear operator that is defined on a dense subset
X ⊂ Lϕ(·), and suppose further that X ⊂ Lp(w) for all p � 1 and w ∈ A1. (This is
the case if X = L∞

c , C∞
c .) If T satisfies weighted norm inequalities on Lp(w), then

we can take as our extrapolation pairs the family

F = {(min(|Tf |, k)χB(0,k), |f |) : f ∈ X}.
Arguing as in Remark 4.17, we have that simple functions, and so L∞

c , are contained
in Lϕ(·); hence, min(|Tf |, k)χB(0,k) ∈ Lϕ(·), and so F satisfies the convention for
families of extrapolation pairs. Thus, we can apply Theorem 4.5 (when p = q) to
prove that for all f ∈ X, ‖Tf‖ϕ(·) � C‖f‖ϕ(·). Since T is linear, given an arbitrary

f ∈ Lϕ(·), if we take any sequence {fj} ⊂ X converging to f , {Tfj} is Cauchy and

we can define Tf as the limit. This extends the norm inequality to all of Lϕ(·).
If T is not linear, then this argument does not work. However, suppose T has

the property that |Tf(x)| � T (|f |)(x) and if f is non-negative and {fj} is any
non-negative sequence that increases pointwise to f , then

Tf(x) � lim inf
k→∞

Tfj(x).

(This is the case, for instance, if T is the maximal operator.) Given this, the
above argument can essentially be repeated, since given non-negative f ∈ Lϕ,
fj = min(f, k)χB(0,k) ∈ Lϕ(·) ∩ L∞

c .
In the following examples we will state our hypotheses in terms of the assump-

tions used in Corollaries 4.10 and 4.21. The necessary families of extrapolation
pairs can be constructed using the above arguments; we leave the details to the
interested reader. (In the case of variable exponent spaces, several examples are
worked out in detail in [18, Chapter 5].) Obviously, weaker assumptions can be
used; again, we leave the precise statements to the interested reader.

The maximal operator. Though we assume the boundedness of the maximal
operator in order to apply extrapolation, one important consequence is that we get
vector-valued inequalities for the maximal operator. For 1 < p, q < ∞, w ∈ Ap,
and sequence {fk}k ⊂ L0,∥∥∥∥

(∑
k

(Mfk)
q

)1/q∥∥∥∥
Lp(w)

� C

∥∥∥∥
(∑

k

fq
k

)1/q∥∥∥∥
Lp(w)

.

See [2]. Therefore, we have the following result.

Corollary 6.1. Suppose that ϕ ∈ Φw satisfies (A0)–(A2), (aInc), and (aDec).
Then for 1 < q < ∞,∥∥∥∥

(∑
k

(Mfk)
q

)1/q∥∥∥∥
Lϕ(·)

� C

∥∥∥∥
(∑

k

|fk|q
)1/q∥∥∥∥

Lϕ(·)
.

Calderón–Zygmund singular integrals. Let Δ be the diagonal in Rn×Rn, that
is, Δ := {(x, x) : x ∈ Rn}. A bounded linear operator T : L2 → L2 is a Calderón–
Zygmund singular integral operator if there exists a kernel K : Rn × Rn \Δ → R

such that for all f ∈ C∞
c and x �∈ supp(f),

Tf(x) =

ˆ
Rn

K(x, y)f(y) dy,
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and, moreover, for some ε > 0 the kernel satisfies

|K(x, y)| � C

|x− y|n ,

|K(x, y)−K(x, y + h)|+ |K(x, y)−K(x+ h, y)| � C
|h|ε

|x− y|n+ε
, 2|h| � |x− y|.

Calderón–Zygmund operators satisfy weighted norm inequalities: for 1 < p < ∞
and w ∈ Ap,

‖Tf‖Lp(w) � C‖f‖Lp(w).

See [26]. Therefore, we get the following result.

Corollary 6.2. Suppose that ϕ ∈ Φw satisfies (A0)–(A2), (aInc), and (aDec).
Then

‖Tf‖Lϕ(·) � C‖f‖Lϕ(·) .

Moreover, for 1 < q < ∞,∥∥∥∥
(∑

k

|Tfk|q
)1/q∥∥∥∥

Lϕ(·)
� C

∥∥∥∥
(∑

k

|fk|q
)1/q∥∥∥∥

Lϕ(·)
.

We can also extend the Coifman–Fefferman inequality [11] relating singular inte-
grals and the Hardy–Littlewood maximal function. Given w ∈ A∞ and 0 < p < ∞,

‖Tf‖Lp(w) � C‖Mf‖Lp(w).

By extrapolation we can extend this to generalized Orlicz spaces.

Corollary 6.3. Suppose that ϕ ∈ Φw satisfies (A0)–(A2) and (aDec). Then

‖Tf‖Lϕ(·) � C‖Mf‖Lϕ(·) .

Remark 6.4. One feature of the Coifman–Fefferman inequality is that it holds for
0 < p < 1. The analogous condition in the generalized Orlicz spaces would be for
it to hold for a “quasi Φ-function”, that is, a function ϕ such that for some r > 1,
ϕr(x, t) = ϕ(x, tr) is a Φ-function. Our proof of extrapolation can be generalized
to this context; details are left to the interested reader. For such a result in the
context of variable Lebesgue spaces, see [19].

Commutators of singular integrals. Given a Calderón–Zygmund singular inte-
gral T and a function b ∈ BMO, the space of functions of bounded mean oscillation,
we define the commutator [b, T ] to be the operator

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x) =

ˆ
Rn

(
b(x)− b(y)

)
K(x, y)f(y) dy.

Commutators were introduced by Coifman, Rochberg, and Weiss [12], who proved
that they are bounded on Lp, 1 < p < ∞, if and only if b ∈ BMO. Weighted norm
inequalities were proved by Pérez [49]: if b ∈ BMO and w ∈ Ap, then

‖[b, T ]f‖Lp(w) � C‖f‖Lp(w).

Therefore, we get the following result.

Corollary 6.5. Suppose that ϕ ∈ Φw satisfies (A0)–(A2), (aInc), and (aDec).
Then

‖[b, T ]f‖Lϕ(·) � C‖f‖Lϕ(·) .
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Remark 6.6. It was recently shown in [15] that in the variable exponent case, given
an exponent p(·) such that the maximal operator is bounded on Lp(·) and a singular
integral T with sufficiently smooth kernel K, if the commutator [b, T ] is bounded
on Lp(·), then b ∈ BMO. The same argument extends to the setting of generalized
Orlicz spaces.

The Riesz potential and fractional maximal operators. Given 0 < α < n,
we define the Riesz potential (also referred to as the fractional integral operator)
to be the positive integral operator

Iαf(x) =

ˆ
Rn

f(y)

|x− y|n−α
dy.

The associated fractional maximal operator is defined by

Mαf(x) = sup
r>0

|B(x, r)|αn
 
B(x,r)

|f(y)| dy.

These operators satisfy the following weighted norm inequalities: for w ∈ A1 and
p, q such that 1 < p < n/α and 1

p − 1
q = α

n ,

‖Iα‖Lq(w) � C‖f‖Lp(wp/q)

and

‖Mα‖Lq(w) � C‖f‖Lp(wp/q).

(These inequalities are usually stated in terms of the Apq condition of Muckenhoupt
and Wheeden, but this special case is sufficient for our purposes. See [18] for further
details.)

Moreover, for w ∈ A∞ and 0 < p < ∞ we have the Coifman–Fefferman type
inequality

‖Iα‖Lp(w) � C‖Mαf‖Lp(w).

Therefore, by extrapolation we get the following results.

Corollary 6.7. Given 0 < α < n, suppose ϕ, ψ ∈ Φw are such that ϕ−1(x, t) =
t
α
nψ−1(x, t), ψ satisfies (A0)–(A2), and there exist n

n−α < p− < p+ < ∞ such that

ψ satisfies (aInc)p− and (aDec)p+
. Then

‖Iαf‖ψ(·) � C‖f‖ϕ(·),

‖Mαf‖ψ(·) � C‖f‖ϕ(·).

Corollary 6.8. Suppose that ϕ ∈ Φw satisfies (A0)–(A2), (aInc), and (aDec) and
0 < α < n. Then

‖Iαf‖ϕ(·) � C‖Mαf‖ϕ(·).

Remark 6.9. Given b ∈ BMO, it is also possible to define commutators [b, Iα].
These operators were introduced by Chanillo [9], and weighted inequalities anal-
ogous to those for Iα were proved in [16]. We can therefore prove estimates on
generalized Orlicz spaces for [b, Iα]. Details are left to the interested reader.
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The spherical maximal operator. The spherical maximal operator is defined
for f ∈ L0 by

Mf(x) = sup
t>0

∣∣∣∣
ˆ
Sn−1

f(x− ty) dσ(y)

∣∣∣∣ ,
where Sn−1 is the unit sphere in Rn and σ is the surface measure. Stein [52] proved
that for n � 3, the spherical maximal operator is bounded on Lp for p > n

n−1 .
Weighted norm inequalities hold for p in the same range, but with strong conditions
on the weight. It follows from a result of Cowling et al. [14] that

‖Mf‖Lp(w) � C‖f‖Lp(w),

provided w ∈ Ap/q− ∩RH(q+/p)′ , where

q− =
p

(n− 1)(1− δ)
, q+ = (n− 1)q−, max(0, 1− p/n) � δ � n− 2

n− 1
.

See [22, Corollary 3.12] for details. By taking δ close to n−2
n−1 and arguing as in the

previous reference, we get the following result.

Corollary 6.10. Given n � 3, suppose ϕ ∈ Φw satisfies (A0)–(A2) and for n
n−1 <

p− < p+ = (n− 1)p−, ϕ satisfies (aInc)p− and (aDec)p+
. Then

‖Mf‖Lϕ(·) � C‖f‖Lϕ(·) .

Remark 6.11. Even though weighted norm inequalities hold for all p > n
n−1 , the

restriction that p+ = (n − 1)p− is close to optimal. See [22] and the references it
contains.

The Sobolev embedding theorem. Given ϕ ∈ Φw(R
n) and an open set Ω ∈

Rn, we define the generalized Orlicz–Sobolev space W 1,ϕ(·)(Ω) to be the set of all

f ∈ W 1,1
loc (Ω) such that f, |∇f | ∈ Lϕ(·)(Ω). This is a Banach space with norm

‖f‖W 1,ϕ(·)(Ω) = ‖f‖ϕ + ‖∇f‖ϕ. We define W
1,ϕ(·)
0 (Ω) to be the closure of C∞

c (Ω)

in W 1,ϕ(·)(Ω). For more information on these spaces, see [31].
We can use extrapolation to prove the Sobolev embedding theorem and then

combine this with interpolation to prove a version of the Rellich–Kondratchov The-
orem. We begin with the following weighted norm inequality: for all f ∈ C∞

c (Ω),
w ∈ A1, and p ∈ [1, n),

‖f‖Lp∗ (w) � C‖∇f‖Lp(wp/p∗ ),

where p∗ = np
n−p is the Sobolev exponent of p. See [20, Lemma 4.31] or [18,

Lemma 6.32].
We use extrapolation (Corollary 4.9) and the above inequality to prove the

Sobolev embedding theorem. This improves [30, Corollary 6.9] by removing the
extraneous assumptions that ϕ is an N-function and satisfies (aInc).

Corollary 6.12 (Sobolev embedding). Let ϕ ∈ Φw(R
n) satisfy (A0)–(A2) and

(aDec)p+
for some p+ < n. Define ψ−1(x, t) := t−

1
nϕ−1(x, t). Then

W
1,ϕ(·)
0 (Rn) ↪→ Lψ(·)(Rn).

To prove our main compact embedding theorem, we first give a preliminary
result.
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Theorem 6.13. Let ϕ ∈ Φw(R
n) satisfy (A0)–(A2) and (aDec). Then

W
1,ϕ(·)
0 (Ω) ↪→↪→ Lϕ(·)(Ω).

Theorem 6.13 is proved in essentially the same way as in the case of variable
Lebesgue spaces; see [24, Theorem 8.4.2] for details. The proof requires the fol-
lowing lemma, which can be proved in two ways, both analogous to the proofs
in variable Lebesgue spaces. First, it can be proved directly, arguing as in [24,
Lemma 8.4.1] (based on Young’s convolution inequality [24, Lemma 4.6.3]). Alter-
natively, it can be proved via extrapolation and a density argument as in [18, The-
orem 5.11].

Lemma 6.14. Let ϕ ∈ Φw(R
n) satisfy (A0)–(A2) and let Ψ be a standard mollifier.

Then
‖Ψε ∗ u− u‖ϕ(·) � ε‖u‖ϕ(·)

for every u ∈ W 1,ϕ(·)(Rn). Here Ψε(t) := ε−nΨ( tε ).

If we now use Corollary 5.5 to interpolate between the inequalities in Corol-
lary 6.12 and Theorem 6.13, we get the Rellich–Kondrachov Theorem for general-
ized Orlicz–Sobolev spaces. The analogous result for variable Sobolev spaces was
proved in [24, Corollary 8.4.4].

Theorem 6.15 (Compact Sobolev embedding). Let ϕ ∈ Φw(R
n) satisfy (A0)–(A2)

and (aDec)p+
for p+ < n. Define ψ−1(x, t) := t−αϕ−1(x, t), with α ∈ [0, 1

n ). Then

W
1,ϕ(·)
0 (Ω) ↪→↪→ Lψ(·)(Ω).

Remark 6.16. In Theorems 6.13 and 6.15 we have assumed that ϕ ∈ Φw(R
n) even

though the results hold in domain Ω. Alternatively, we could assume ϕ ∈ Φw(Ω) if
Ω is bounded and quasiconvex or if we replace assumption (A1) by (A1)Ω. See [31]
for more details, including the definition of the last condition.
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