Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy-Landau-Littlewood inequality


Authors: Vladimir I. Bogachev, Egor D. Kosov and Georgii I. Zelenov
Journal: Trans. Amer. Math. Soc. 370 (2018), 4401-4432
MSC (2010): Primary 60E05, 60E15; Secondary 28C20, 60F99
DOI: https://doi.org/10.1090/tran/7181
Published electronically: February 1, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the distribution density of any non-constant polynomial $ f(\xi _1,\xi _2,\ldots )$ of degree $ d$ in independent standard Gaussian random variables $ \xi _i$ (possibly, in infinitely many variables) always belongs to the Nikolskii-Besov space  $ B^{1/d}(\mathbb{R}^1)$ of fractional order $ 1/d$ (and this order is best possible), and an analogous result holds for polynomial mappings with values in  $ \mathbb{R}^k$.

Our second main result is an upper bound on the total variation distance between two probability measures on $ \mathbb{R}^k$ via the Kantorovich distance between them and a suitable Nikolskii-Besov norm of their difference.

As an application we consider the total variation distance between the distributions of two random $ k$-dimensional vectors composed of polynomials of degree $ d$ in Gaussian random variables and show that this distance is estimated by a fractional power of the Kantorovich distance with an exponent depending only on $ d$ and $ k$, but not on the number of variables of the considered polynomials.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078
  • [2] B. V. Agafontsev and V. I. Bogachev, Asymptotic properties of polynomials in Gaussian random variables, Dokl. Akad. Nauk 429 (2009), no. 2, 151-154 (Russian). MR 2640592
  • [3] Miguel A. Arcones, The class of Gaussian chaos of order two is closed by taking limits in distribution, Advances in stochastic inequalities (Atlanta, GA, 1997) Contemp. Math., vol. 234, Amer. Math. Soc., Providence, RI, 1999, pp. 13-19. MR 1694760
  • [4] L. M. Arutyunyan and E. D. Kosov, Estimates for integral norms of polynomials on spaces with convex measures, Mat. Sb. 206 (2015), no. 8, 3-22 (Russian, with Russian summary); English transl., Sb. Math. 206 (2015), no. 7-8, 1030-1048. MR 3438588, https://doi.org/10.4213/sm8436
  • [5] Vlad Bally and Lucia Caramellino, On the distances between probability density functions, Electron. J. Probab. 19 (2014), no. 110, 33. MR 3296526, https://doi.org/10.1214/EJP.v19-3175
  • [6] Oleg V. Besov, Valentin P. Ilin, and Sergey M. Nikolskiĭ, Integral representations of functions and imbedding theorems. Vol. I, II, translated from the Russian, Scripta Series in Mathematics, edited by Mitchell H. Taibleson, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto, Ont.-London, 1978, 1979. MR 519341,MR 0521808
  • [7] S. G. Bobkov and F. L. Nazarov, Sharp dilation-type inequalities with fixed parameter of convexity, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 351 (2007), no. Veroyatnost i Statistika. 12, 54-78, 299 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 152 (2008), no. 6, 826-839. MR 2742901, https://doi.org/10.1007/s10958-008-9100-9
  • [8] Vladimir I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. MR 1642391
  • [9] Vladimir I. Bogachev, Differentiable measures and the Malliavin calculus, Mathematical Surveys and Monographs, vol. 164, American Mathematical Society, Providence, RI, 2010. MR 2663405
  • [10] V. I. Bogachev, Gaussian measures on infinite-dimensional spaces, Real and stochastic analysis, World Sci. Publ., Hackensack, NJ, 2014, pp. 1-83. MR 3220428, https://doi.org/10.1142/9789814551281_0001
  • [11] V. I. Bogachev, Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures, Uspekhi Mat. Nauk 71 (2016), no. 4(430), 107-154 (Russian, with Russian summary). MR 3588922, https://doi.org/10.4213/rm9721
  • [12] V. I. Bogachev and A. V. Shaposhnikov, Lower bounds for the Kantorovich distance, Dokl. Akad. Nauk 460 (2015), no. 6, 631-633 (Russian); English transl., Dokl. Math. 91 (2015), no. 1, 91-93. MR 3410641
  • [13] V. I. Bogachev, F.-Yu. Vang, and A. V. Shaposhnikov, Estimates for Kantorovich norms on manifolds, Dokl. Akad. Nauk 463 (2015), no. 6, 633-638 (Russian, with Russian summary); English transl., Dokl. Math. 92 (2015), no. 1, 494-499. MR 3443996
  • [14] V. I. Bogachev and G. I. Zelenov, On convergence in variation of weakly convergent multidimensional distributions, Dokl. Akad. Nauk 461 (2015), no. 1, 14-17 (Russian); English transl., Dokl. Math. 91 (2015), no. 2, 138-141. MR 3442783
  • [15] Anthony Carbery and James Wright, Distributional and $ L^q$ norm inequalities for polynomials over convex bodies in $ \mathbb{R}^n$, Math. Res. Lett. 8 (2001), no. 3, 233-248. MR 1839474, https://doi.org/10.4310/MRL.2001.v8.n3.a1
  • [16] Yu. A. Davydov and G. V. Martynova, Limit behavior of distributions of multiple stochastic integrals, Statistics and control of random processes (Russian) (Preila, 1987) ``Nauka'', Moscow, 1989, pp. 55-57 (Russian). MR 1079335
  • [17] R. Fortet and E. Mourier, Convergence de la répartition empirique vers la répartition théorique, Ann. Sci. Ecole Norm. Sup. (3) 70 (1953), 267-285 (French). MR 0061325
  • [18] G. H. Hardy, E. Landau, and J. E. Littlewood, Some inequalities satisfied by the integrals or derivatives of real or analytic functions, Math. Z. 39 (1935), no. 1, 677-695. MR 1545530, https://doi.org/10.1007/BF01201386
  • [19] L. Kantorovitch, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 199-201. MR 0009619
  • [20] L. V. Kantorovič and G. Š. Rubinšteĭn, On a space of completely additive functions, Vestnik Leningrad. Univ. 13 (1958), no. 7, 52-59 (Russian, with English summary). MR 0102006
  • [21] Robert V. Kohn and Felix Otto, Upper bounds on coarsening rates, Comm. Math. Phys. 229 (2002), no. 3, 375-395. MR 1924360, https://doi.org/10.1007/s00220-002-0693-4
  • [22] E. D. Kosov, Fractional smoothness of images of logarithmically concave measures under polynomials, arXiv:1605.00162 (2016).
  • [23] Shigeo Kusuoka, On the absolute continuity of the law of a system of multiple Wiener integral, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 1, 191-197. MR 700600
  • [24] Elchanan Mossel, Ryan O'Donnell, and Krzysztof Oleszkiewicz, Noise stability of functions with low influences: invariance and optimality, Ann. of Math. (2) 171 (2010), no. 1, 295-341. MR 2630040, https://doi.org/10.4007/annals.2010.171.295
  • [25] F. Nazarov, M. Sodin, and A. Volberg, The geometric Kannan-Lovász-Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions, Algebra i Analiz 14 (2002), no. 2, 214-234 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 14 (2003), no. 2, 351-366. MR 1925887
  • [26] S. M. Nikolskiĭ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York-Heidelberg., 1975. Translated from the Russian by John M. Danskin, Jr.; Die Grundlehren der Mathematischen Wissenschaften, Band 205. MR 0374877
  • [27] Ivan Nourdin, David Nualart, and Guillaume Poly, Absolute continuity and convergence of densities for random vectors on Wiener chaos, Electron. J. Probab. 18 (2013), no. 22, 19. MR 3035750, https://doi.org/10.1214/EJP.v18-2181
  • [28] Ivan Nourdin, Giovanni Peccati, Guillaume Poly, and Rosaria Simone, Multidimensional limit theorems for homogeneous sums: a survey and a general transfer principle, ESAIM Probab. Stat. 20 (2016), 293-308. MR 3533710, https://doi.org/10.1051/ps/2016014
  • [29] Ivan Nourdin and Guillaume Poly, Convergence in total variation on Wiener chaos, Stochastic Process. Appl. 123 (2013), no. 2, 651-674. MR 3003367, https://doi.org/10.1016/j.spa.2012.10.004
  • [30] Ivan Nourdin and Guillaume Poly, An invariance principle under the total variation distance, Stochastic Process. Appl. 125 (2015), no. 6, 2190-2205. MR 3322861, https://doi.org/10.1016/j.spa.2014.12.010
  • [31] David Nualart, The Malliavin calculus and related topics, 2nd ed., Probability and its Applications (New York), Springer-Verlag, Berlin, 2006. MR 2200233
  • [32] David Nualart and Ciprian A. Tudor, The determinant of the iterated Malliavin matrix and the density of a pair of multiple integrals, Ann. Probab. 45 (2017), no. 1, 518-534. MR 3601655, https://doi.org/10.1214/15-AOP1015
  • [33] Christian Seis, Maximal mixing by incompressible fluid flows, Nonlinearity 26 (2013), no. 12, 3279-3289. MR 3141856, https://doi.org/10.1088/0951-7715/26/12/3279
  • [34] B.A. Sevastyanov, A class of limit distributions for quadratic forms of normal stochastic variables, Teor. Veroyatn. Primen. 6 (1961), 368-372 (Russian). English transl.: Theory Probab. Appl. 6 (1961), 337-340.
  • [35] Ichiro Shigekawa, Stochastic analysis, translated from the 1998 Japanese original by the author, Translations of Mathematical Monographs, Iwanami Series in Modern Mathematics, vol. 224, American Mathematical Society, Providence, RI, 2004. MR 2060917
  • [36] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60E05, 60E15, 28C20, 60F99

Retrieve articles in all journals with MSC (2010): 60E05, 60E15, 28C20, 60F99


Additional Information

Vladimir I. Bogachev
Affiliation: Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia – and – National Research University Higher School of Economics, Moscow, 101000 Russia
Email: vibogach@mail.ru

Egor D. Kosov
Affiliation: Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia – and – National Research University Higher School of Economics, Moscow, 101000 Russia
Email: ked_2006@mail.ru

Georgii I. Zelenov
Affiliation: Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia – and – National Research University Higher School of Economics, Moscow, 101000 Russia
Email: zelenovyur@gmail.com

DOI: https://doi.org/10.1090/tran/7181
Keywords: Distribution of a polynomial, Nikolskii--Besov class, Hardy--Landau--Littlewood inequality, total variation norm, Kantorovich norm
Received by editor(s): March 21, 2016
Received by editor(s) in revised form: December 22, 2016
Published electronically: February 1, 2018
Additional Notes: This work has been supported by the Russian Science Foundation Grant 14-11-00196 at Lomonosov Moscow State University.
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society