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THE DANCING METRIC, G2-SYMMETRY

AND PROJECTIVE ROLLING

GIL BOR, LUIS HERNÁNDEZ LAMONEDA, AND PAWEL NUROWSKI

Abstract. The “dancing metric” is a pseudo-Riemannian metric g of signa-

ture (2,2) on the spaceM4 of non-incident point-line pairs in the real projective
plane RP

2. The null curves of (M4,g) are given by the “dancing condition”: at
each moment, the point is moving towards or away from the point on the line
about which the line is turning. This is the standard homogeneous metric on
the pseudo-Riemannian symmetric space SL3(R)/GL2(R), also known as the
“para-Kähler Fubini-Study metric”, introduced by P. Libermann. We estab-
lish a dictionary between classical projective geometry (incidence, cross ratio,
projective duality, projective invariants of plane curves, etc.) and pseudo-
Riemannian 4-dimensional conformal geometry (null curves and geodesics,
parallel transport, self-dual null 2-planes, the Weyl curvature, etc.). Then,
applying a twistor construction to (M4,g), a G2-symmetry is revealed, hid-
den deep in classical projective geometry. To uncover this symmetry, one needs
to refine the “dancing condition” to a higher-order condition. The outcome is
a correspondence between curves in the real projective plane and its dual, a
projective geometric analog of the more familiar “rolling without slipping and
twisting” for a pair of Riemannian surfaces.
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1. Introduction

Let us consider the following system of 4 ordinary differential equations for 6
unknown functions p1, p2, p3, q

1, q2, q3 of the variable t,

pi
dqi

dt
= 0,

dpi
dt

= εijkq
j dq

k

dt
, i = 1, 2, 3.

(We are using the summation convention for repeated indices and the symbol εijk,
equal to 1 for an even permutation ijk of 123, −1 for an odd permutation, and 0
otherwise.)
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It is convenient to recast these equations in vector form by introducing the
notation

q =

⎛⎝q1

q2

q3

⎞⎠ ∈ R
3, p = (p1, p2, p3) ∈ (R3)∗.

Then, using the standard scalar and cross-product of vector calculus (and omitting
the dot product symbol), the above system can be written more compactly as

(1) pq′ = 0, p′ = q× q′.

This simple-looking system of 4 ordinary differential equations for 6 unknown
functions enjoys a number of remarkable properties and interpretations, forming
new links between old subjects. The main themes are:

• generic (non-integrable) rank 2 distributions on 5-manifolds,
• 4-dimensional pseudo-Riemannian conformal geometry of split-signature,
• projective differential geometry of plane curves.

These themes are not new (the 1st and 3rd are over a century old), but the
relations between them are new, which we believe is the main contribution of this
article. We shall now give a brief review of these themes and the relations we
establish between them in this paper.

1.1. Summary of main results.

1.1.1. The Cartan-Engel (2, 3, 5)-distribution and its symmetries. Geometrically,
equations (1) define at each point (q,p) ∈ R6, away from a “small” subset, a
2-dimensional subspace D(q,p) ⊂ T(q,p)R

6. Put together, these subspaces define

(generically) a rank 2 distribution D ⊂ TR6, a field of tangent 2-planes, so that
the solutions to our system of equations are precisely the integral curves of D: the
parametrized curves (q(t),p(t)) whose velocity vector (q′(t),p′(t)) lies in D(q(t),p(t))

at each moment t.
Furthermore, we see readily from (1) that the function pq = piqi : R

6 → R is
a “conserved quantity” (constant along solutions), so D is tangent everywhere to
the level surfaces of pq. By a simple rescaling argument (Section 2.2), it suffices to
consider one of its non-zero level surfaces, say Q5 := {pq = 1}. Restricted to Q5,
the equation pq′ = 0 is a consequence of p′ = q×q′; hence our system of equations
(1) reduces to

(2) pq = 1, p′ = q× q′.

The system (Q5,D) given by (2) does not have any more conserved quantities,
since D bracket-generates TQ in two steps: D(2) = [D,D] is a rank 3 distribution
and D(3) = [D,D(2)] = TQ5. Such a distribution is called a (2, 3, 5)-distribution.

The study of (2, 3, 5)-distributions has a rich and fascinating history. Their local

geometry was studied by Élie Cartan in his celebrated “5-variable paper” of 1910
[9], where he showed that the symmetry algebra of such a distribution (vector
fields whose flow preserves D) is at most 14-dimensional. The most symmetric
case is realized, locally uniquely, on a certain compact homogeneous 5-manifold

Q
5
for the 14-dimensional simple exceptional non-compact Lie group G2 equipped

with a G2-invariant (2, 3, 5)-distribution D (Section 3). This maximally symmetric
(2, 3, 5)-distribution D is called the Cartan-Engel distribution and was in fact used

by É. Cartan and F. Engel in 1893 [10,14] to define g2 as the automorphism algebra
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of this distribution; the modern definition of G2 as the automorphism group of the
octonions did not appear until 1908 [11].

Using É. Cartan’s theory of (2, 3, 5)-distributions—in particular, his submaxi-
mality result—we show (Theorem 2.6) that our distribution (Q5,D), as given by
(2), is maximally-symmetric, i.e., admits a 14-dimensional symmetry algebra iso-
morphic to g2 and hence is locally diffeomorphic to the Cartan-Engel distribution

(Q
5
,D). Equations (2) thus provide an explicit model, apparently new, for the

Cartan-Engel distribution.

Theorem 1.1. The system (Q5,D) given by equations (2) is a (2, 3, 5)-distribution
with a 14-dimensional symmetry algebra, isomorphic to g2, the maximum possible
for a (2, 3, 5)-distribution, and is thus locally diffeomorphic to the Cartan-Engel

G2-homogeneous distribution (Q
5
,D).

Most of the symmetries of (1) implied by this theorem are not obvious at all
(“hidden”). There is however an 8-dimensional subalgebra sl3(R) ⊂ g2 of “obvious”
symmetries, generated by

(q,p) �→ (gq,pg−1), g ∈ SL3(R).

The cross-product in (1) can be defined via the standard volume form on R3, hence
the occurrence of SL3(R); see Section 2.4. The group SL3(R) then acts transitively
and effectively on Q5, preserving D, and will be our main tool for studying the
system (1).

To explain the appearance of g2 as the symmetry algebra of (Q5,D), we con-

struct in Section 3 an embedding of (Q5,D) in the “standard model” (Q
5
,D) of

the Cartan-Engel distribution, defined in terms of the split-octonions Õ. Using
Zorn’s “vector matrices” to represent split-octonions—usually it is done with pairs
of “split-quaternions”—we get explicit formulas for the symmetry algebra of (1).

In the next Theorem, �(Õ) stands for the imaginary split octonions.

Theorem 1.2. There is an embedding SL3(R) ↪→ G2 = Aut(Õ) and an SL3(R)-

equivariant embedding R6 ↪→ RP6 = P(�(Õ)) (an affine chart), identifying Q5 with

the open dense orbit of SL3(R) in Q
5
= G2/P and mapping D over to D. The

G2-action on Q
5
defines a Lie subalgebra of vector fields on Q5 isomorphic to g2

(a 14-dimensional simple Lie algebra), forming the symmetry algebra of (Q5,D).

Corollary 1.3. For each A = (aij) ∈ sl3(R), b = (bi) ∈ R
3 and c = (ci) ∈ (R3)∗

the vector field on R6,

XA,b,c = [2bi + aijq
j + εijkpjck − (pjb

j + cjq
j)qi]∂qi

+[2ci − ajipj + εijkq
jbk − (pjb

j + cjq
j)pi]∂pi

,

is tangent to Q5 and preserves D. The collection of these vector fields is a 14-
dimensional subalgebra of the Lie algebra of vector fields on Q5, isomorphic to g2,
and forming the symmetry algebra of the system (Q5,D) defined by (1)

1.1.2. 4-dimensional conformal geometry in split signature. Let M4 ⊂ RP2 ×RP2∗

be the (open dense) subset of non-incident point-line pairs (q, p). There is a prin-
cipal fibration R

∗ → Q5 → M4, the “pseudo-Hopf-fibration”, defined by regard-
ing (q,p) ∈ Q5 as homogeneous coordinates of the pair (q, p) = ([q], [p]) ∈ M4.
The pseudo-Riemannian metric on Q5, of signature (2, 3), induced by the inclusion
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Q5 → R3,3, descends to an SL3(R)-invariant pseudo-Riemannian metric g on M4,
of signature (2, 2) (“split-signature”).

The pair (M4,g) is in fact isometric to the symmetric space SL3(R)/GL2(R),
equipped with the unique (up to scale) pseudo-Riemannian SL3(R)-invariant metric,
first introduced by P. Libermann in [21, p. 89]. We rename g as the dancing metric
to emphasize the projective geometric interpretation of its null curves, as described
in the abstract of this paper. In Theorem 4.3 we summarize some of the (mostly
known) remarkable properties of the dancing metric (self-dual, Einstein, irreducible,
etc.). We prove some of these properties in Section 4.4.

We derive various explicit formulas for the dancing metric, some of which are
(perhaps) new. The most elementary expression is the following: use the local
coordinates (x, y, a, b) on M4 where (x, y) are the Cartesian coordinates of a point
q ∈ RP2 (in some affine chart) and (a, b) the coordinates of a line p ∈ RP2∗ given
by y = ax+ b. Then

g ∼ da[(y − b)dx− xdy] + db[adx− dy],

where ∼ denotes conformal equivalence. See Section 5.2 for a quick derivation
of this formula using the dancing condition. An explicit formula in homogeneous
coordinates for the dancing metric g (not only its conformal class) is given in
Section 4.1.1 (Propostition 4.2; this is essentially P. Libermann’s formula of [21]).
In Section 5.3 we give another formula for g in terms of the cross-ratio (this formula
is probably new).

The main result of Section 4 is a correspondence between the geometries of
(Q5,D) and (M4,g).

Theorem 1.4. The above defined “pseudo-Hopf-fibration” Q5 → M4 establishes
a bijection between integral curves in (Q5,D) and non-degenerate null curves in
(M4,g) with parallel tangent self-dual null 2-plane.

The condition “parallel tangent self-dual null 2-plane” on a null curve in an
oriented split-signature conformal 4-manifold can be regarded as “one-half” of the
geodesic equations. Every null direction is the unique intersection of two null 2-
planes, one self-dual and the other anti-self-dual. It follows that given a null curve
in such a manifold there are two fields of tangent null 2-planes defined along it, one
self-dual and the other anti-self-dual, intersecting in the tangent line. A null curve
is a geodesic if and only if its tangent line is parallel, which is equivalent to the two
tangent fields of null 2-planes being parallel. For our curves, only the self-dual field
is required to be parallel, hence “half-geodesics”.

Following the twistor construction for split-signature metrics as in [3], we show
that (Q5,D) can be naturally identified with the non-integrable locus of the total
space of the self-dual twistor fibration RP1 → T+(M4) → M4 associated with
(M4,g), equipped with its twistor distribution D+. The non-integrability of D is
then seen to be equivalent to the non-vanishing of the self-dual Weyl tensor of g.

This explains also why we do not look at the “other-half” of the null geodesic
equations on M4. They correspond to integral curves of the twistor distribution
D− on the anti-self-dual twistor space T−(M4), which turns out to be integrable,
due to the vanishing of the anti-self-dual Weyl tensor of (M4,g). The resulting
“anti-self-dual-half-geodesics” can be easily described and are rather uninteresting
from the point of view of this article (see Theorem 4.3, Section 4.1.3).
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Figure 1. The dancing condition

1.1.3. Projective geometry: Dancing pairs and projective rolling. Every integral
curve of (Q5,D) projects, via Q5 → M4 ⊂ RP2×RP2∗, to a pair of curves q(t), p(t)
in RP2,RP2∗ (respectively). We offer two interrelated projective geometric interpre-
tations of the class of pairs of curves thus obtained: “dancing pairs” and “projective
rolling”.

By “dancing” we refer to the interpretation of q(t), p(t) as the coordinated motion
of a non-incident point-line pair in RP2. We ask: what “rules of choreography”
should the pair follow so as to define (1) a null curve in M4 (2) with a parallel self-
dual tangent plane? We call a pair of curves q(t), p(t) satisfying these conditions a
dancing pair.

The nullity condition on the pair turns out to have a rather simple “dancing”
description. Consider a moving point tracing a curve q(t) in RP

2 with an associated
tangent line along it, q∗(t) ∈ RP2∗, the dual curve of q(t). Likewise, a moving line
in RP2 traces a curve p(t) in RP2∗, whose dual curve p∗(t) is a curve in RP2, the
envelope of the family of lines in RP2 represented by p(t), or the curve in RP2 traced
out by the “turning points” of the moving line p(t).

Theorem 1.5. A non-degenerate parametrized curve in (M4,g) is null if and only
if the corresponding pair of curves (q(t), p(t)) satisfies the “dancing condition” (see
Figure 1): at each moment t, the point q(t) is moving towards or away from the
turning point p∗(t) of the line p(t).

In Section 5.6 we pose the following “dancing mate” problem: fix an arbitrary
curve q(t) in RP2 (with some mild non-degeneracy condition) and find its “dancing
mates” p(t), that is, curves p(t) in RP

2∗ such that (q(t), p(t)) is a null curve in
(M4,g) with parallel self-dual tangent plane. Abstractly, it is clear that there is a
3-parameter family of dancing mates for a given q(t), corresponding to “horizontal
lifts” of q(t) to integral curves of (Q5,D) via Q5 → M4 → RP2, followed by the
projection Q5 → M4 → RP

2∗.
We study the resulting correspondence of curves q(t) �→ p(t) from the point of

view of classical projective differential geometry. We find that this correspondence
preserves the natural projective structures on the curves q(t), p(t), but in general
does not preserve the projective arc length or the projective curvature. These are the
basic projective invariants of a plane curve; any two of the three invariants form a
complete set of projective invariants for generic plane curves. We use the existence
of a common projective parameter t on q(t), p(t) and the dancing condition to derive
the “dancing mate equation”:

(3) y(4) + 2
y′′′y′

y
+ 3ry′ + r′y = 0.
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Figure 2. Dancing mates around the circle: the point-dancer
moves along the central circle, starting at its “north pole”, moving
clockwise. The line-dancer starts in the vertical position (“y-axis”),
keeping always tangent to one of the curves that spiral around the
circle (the envelope of the line’s motion). At all moments they
comply with the dancing condition; the figure shows the tangent
direction of the point-dancer at the moment it passes through the
north pole (horizontal line segment) and its incidence with the
“turning point” of the line-dancer at that moment.

Here, q(t) is given in homogeneous coordinates by a “lift” A(t) ∈ R3 \ 0 satisfying
A′′′ + rA = 0 for some function r(t) (this is called the Laguerre-Forsyth form of
the tautological equation for a plane curve), and the dual curve to p(t) is given in
homogeneous coordinates by B = −y′A+ yA′.

We study the special case of the dancing mates of the circle. That is, we look
for dancing pairs (q(t), p(t)) where q(t) parametrizes a fixed circle C ⊂ RP

2 (or
conic; projectively they are all equivalent). We show how the above dancing mate
equation (3) reduces in this case to the 3rd order ODE y′′′y2 = 1. The dual dancing
mates p∗(t) form a 3-parameter family of curves in the exterior of the circle C. We
show in Figure 2 a computer generated image of a 1-parameter family of solutions;
all other curves can be obtained from this family by the subgroup SL2(R) ⊂ SL3(R)
preserving C.

As another illustration we give in Section 5.8 examples of dancing pairs with
constant projective curvature: logarithmic spirals, “generalized parabolas”, and ex-
ponential curves.

Finally, in Section 5.9 we turn to the “projective rolling” interpretation of (1):
imagine the curves q(t) and p(t) as the contact points of the two projective planes
RP

2,RP2∗ as they “roll” along each other. When rolling two surfaces along each
other, one needs to pick at each moment, in addition to a pair of contact points
(q, p) on the two surfaces, an identification of the tangent spaces TqRP

2, TpRP
2∗ at
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these points. In the case of usual rolling of Riemannian surfaces, the identification
is required to be an isometry. Here, we introduce the notion of “projective contact”
between the corresponding tangent spaces: it is a linear isomorphism ψ : TqRP

2 →
TpRP

2∗ which sends each line through q to its intersection point with the line p,
thought of as a line in the tangent space to RP2∗ at p.

Now a simple calculation shows that this “projective contact” condition is equiv-
alent to the condition that the graph of ψ is a self-dual null 2-plane in TqRP

2 ⊕
TqRP

2∗ 	 T(q,p)M. The configuration space for projective rolling is thus the space
PC of such projective contact elements (q, p, ψ). Continuing the analogy with the
rolling of Riemannian surfaces, we define projective rolling without slipping as a
curve (q(t), p(t), ψ(t)) in PC satisfying ψ(t)q′(t) = p′(t) for all t.

Theorem 1.6. A curve (q(t), p(t), ψ(t)) in PC satisfies the no-slip condition
ψ(t)q′(t) = p′(t) if and only if (q(t), p(t)) is a null curve in (M4,g); equivalently,
it satisfies the dancing condition of Theorem 1.5.

Our next task is to translate the “half-geodesic” condition (parallel self-dual tan-
gent plane) to rolling language. We use a notion of parallel transport of lines along
(non-degenerate) curves in the projective plane, formulated in terms of Cartan’s
development of the osculating conic along the curve (the unique conic that touches
a given point on the curve to 4th order; see Section 5.9.5). We then define the
“no-twist” condition on a curve of projective contact elements (q(t), p(t), ψ(t)) as
follows: if �(t) is a parallel family of lines along q(t), then ψ(t)�(t) is a parallel
family along p(t).

Theorem 1.7. A projective rolling curve (q(t), p(t), ψ(t)) satisfies the no-slip and
no-twist condition if and only if (q(t), p(t)) is a null curve in M4 with parallel self-
dual tangent plane. Equivalently, (q(t), p(t)) is the projection via Q5 → M4 of an
integral curve of (Q5,D).

The no-twist condition can be thought of as a “2nd dancing condition” for the
dancing pair (q(t), p(t)); admittedly, it is a rather demanding one: the dancers
should be aware of the 5th order derivative of their motion in order to comply with
it. We thus end with the following:

Problem. Find a 2nd order projectively invariant condition for a curve of point-line
pairs (q(t), p(t)) to satisfy the no-slip and no-twist condition of projective rolling
(i.e., to define a null curve in the dancing space (M4,g) with parallel self-dual
tangent 2-plane).

1.2. Background. Our original motivation for this article stems from the article
of the third author with Daniel An [3], where the twistor construction for split-
signature 4-dimensional conformal metrics was introduced, raising the following
natural question: for which split-signature conformal 4-manifolds M4 is the asso-
ciated twistor distribution D+ on T

+M4 a flat (2, 3, 5)-distribution? That is, with
g2-symmetry, the maximum possible.

This is a hard problem, even when M4 is a product of Riemannian surfaces
(Σi, gi), i = 1, 2, equipped with the difference metric g = g1 
 g2. In this case, the
integral curves of the twistor distribution can be interpreted as modeling rolling
without slipping or twisting of the two surfaces along each other. It was known for
a while to R. Bryant and communicated in various places, such as [4, 29], that the
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only case of pairs of constant curvature surfaces that gives rise to a flat (2, 3, 5)-
distribution is that of curvature ratio 9:1 (spheres of radius ratio 3:1, in the positive
curvature case), but An-Nurowski found in [3] a new family of examples. It is still
unknown if more examples exist.

These new examples of An-Nurowski motivated us to look for irreducible split
signature 4-dimensional conformal metrics with flat twistor distribution. A natural
place to start is with homogeneous 4-manifolds G/H, with G ⊂ G2. We know
of a few such examples, but we found the case of SL3(R)/GL2(R) studied in this
article the most attractive due to its projective geometric flavor (“dancing” and
“projective rolling” interpretations), so we decided to dedicate an article to this
example alone.

2. The Cartan-Engel (2, 3, 5)-distribution and its symmetries

2.1. First integral and reduction to the 5-manifold Q5 ⊂ R3,3. Let R3,3 :=
R

3 ⊕ (R3)∗, equipped with the quadratic form pq = piqi. One can easily check
that pq is a first integral of (1) (a conserved quantity). That is, for each c ∈ R, a
solution to (1) that starts on the level surface

Qc = {(q,p)|pq = c}
remains on Qc for all times.

Furthermore, the map (q,p) �→ (λq, λ2p), λ ∈ R, maps solutions on Qc to
solutions on Qλ3c. Hence it is enough to study solutions of the system restricted to
one of the (non-zero) level surfaces, say

Q5 := {(q,p)|pq = 1},
a 5-dimensional affine quadric of signature (3, 3).

Remark. An affine quadric is a non-zero level set of a non-degenerate quadratic
form on Rn. Its signature is the signature of the defining quadratic form.

Remark. We leave out the less interesting case of the zero level surface Q0.

Now restricted to Q5, the equation pq′ = 0 is a consequence of p′ = q × q′;
hence we can replace equations (1) with the somewhat simpler system

(4) pq = 1, p′ = q× q′.

2.2. A rank 2 distribution D on Q5. A geometric reformulation of (4) is the
following: let us introduce the three 1-forms

ωi := dpi − εijkq
jdqk ∈ Ω1(Q5), i = 1, 2, 3,

or in vector notation,

ω = dp− q× dq ∈ Ω1(Q5)⊗ (R3)∗.

Then the kernel of the 1-form ω (the common kernel of its 3 components) defines
at each point (q,p) ∈ Q5 a 2-dimensional linear subspace D(q,p) ⊂ T(q,p)Q

5. Put

together, these subspaces define a rank 2 distribution D ⊂ TQ5 (a field of tangent
2-planes on Q5), so that the solutions to our system of equations (4) are precisely
the integral curves of D: the parametrized curves (q(t),p(t)) whose velocity vector
at each moment t belongs to D(q(t),p(t)).

Proposition 2.1. The kernel of ω = dp−q×dq defines on Q5 a rank 2 distribution
D ⊂ TQ5, whose integral curves are given by solutions to (4).
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Proof. One checks easily that the 3 components of ω are linearly independent. �

2.3. D is a (2, 3, 5)-distribution. We recall first some standard terminology from
the general theory of distributions. A distribution D on a manifold is integrable
if [D,D] ⊂ D. It is bracket generating if one can obtain any tangent vector on
the manifold by successive Lie brackets of vector fields tangent to D. Let ri =
rank(D(i)), where D(i) := [D,D(i−1)] and D(1) := D. Then (r1, r2, . . .), is the
growth vector of D. In general, the growth vector of a distribution may vary from
point to point of the manifold, although not in our case, since our distribution is
homogeneous, as we shall soon see. A distribution with constant growth vector is
regular. It can be shown that for a regular bracket-generating rank 2 distribution on
a 5-manifold there are only two possible growth vectors: (2, 3, 4, 5), called Goursat
distributions, or (2, 3, 5), which is the generic case (see [5]).

Definition 2.2. A (2, 3, 5)-distribution is a bracket-generating rank 2 distribution
D on a 5-manifoldQ5 with growth vector (2, 3, 5) everywhere. That is, D(2) = [D,D]
is a rank 3 distribution, and D(3) = [D,D(2)] = TQ5.

Proposition 2.3. D=Ker(ω)⊂TQ5, defined by (4) above, is a (2,3,5)-distribution.

This is a calculation done most easily using the symmetries of the equations, so
is postponed to the next subsection.

2.4. SL3(R)-symmetry. A symmetry of a distribution D on a manifold Q5 is a
diffeomorphism of Q5 which preserves D. An infinitesimal symmetry of D is a
vector field on Q5 whose flow preserves D.

The use of the vector and scalar product on R3 in (4) may give the impression
that D depends on the Euclidean structure on R3, so (Q5,D) only admits SO3 as
an obvious group of symmetries (a 3-dimensional group). In fact, it is quite easy
to see, as we will show now, that (Q5,D) admits SL3(R) as a symmetry group
(8-dimensional). In the next section we will show the less obvious fact that the
symmetry algebra of (Q5,D) is g2 (14-dimensional).

Fix a volume form on R3, say

vol := dq1 ∧ dq2 ∧ dq3,

and define the associated covector-valued “cross-product” R3 × R3 → (R3)∗ by

v ×w := vol(v,w, ·),

or in coordinates,

(v ×w)i = εijkv
jwk, i = 1, 2, 3.

Let SL3(R) be the group of 3 × 3 matrices with real entries and determinant 1,
acting on R3,3 by

(5) g · (q,p) = (gq,pg−1)

(recall that q is a column vector and p is a row vector). Clearly, this SL3(R)-action
leaves the quadratic form pq invariant and thus leaves invariant also the quadric
Q5 ⊂ R

3,3.
Let e1, e2, e3 (columns) be the standard basis of R3 and let e1, e2, e3 (rows) be

the dual basis of (R3)∗.
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Proposition 2.4.

(a) SL3(R) acts on Q5 transitively and effectively. The stabilizer of (e3, e
3) is

the subgroup

H0 =

⎧⎨⎩
⎛⎝ A

0
0

0 0 1

⎞⎠ |A ∈ SL2(R)

⎫⎬⎭ .

(b) SL3(R) acts on Q5 by symmetries of D.

Proof. Part (a) is an easy calculation (omitted). For part (b), note that SL3(R)
leaves vol invariant; hence the vector product R3×R3→(R3)∗ is SL3(R)-equivariant:
(gv)×(gw) = (v×w)g−1. It follows that ω = dp−q×dq is also SL3(R)-equivariant,
g∗ω = ωg−1; hence D = Ker(ω) is SL3(R)-invariant. �

Proof of Proposition 2.3. Let h0 ⊂ sl3(R) be the Lie algebra of the stabilizer at
(e3, e

3) ∈ Q5. Pick two elements Y1, Y2 ∈ sl3(R) whose infinitesimal action at
(e3, e

3) generates D. Then we need to show that

Y1, Y2, [Y1, Y2], [Y1, [Y1, Y2]], [Y2, [Y1, Y2]]

span sl3(R) mod h0. (This will show that D is (2, 3, 5) at (e3, e
3), so by homogeneity

everywhere.) Now h0 consists of matrices of the form⎛⎝ A
0
0

0 0 0

⎞⎠ , A ∈ sl2(R).

Furthermore, Y ∈ sl3(R) satisfies Y · (e3, e3) ∈ D if and only if

Y =

(
A v
v∗ 0

)
, v =

(
v1
v2

)
, v∗ = (v2,−v1), A ∈ sl2(R).

We can thus take

Y1 =

(
0 0 1
0 0 0
0 −1 0

)
, Y2 =

(
0 0 0
0 0 1
1 0 0

)
;

then [Y1, Y2] = Y3, [Y1, Y3] = Y4 and [Y2, Y3] = Y5, where

Y3 =

(
1 0 0
0 1 0
0 0 −2

)
, Y4 =

(
0 0 −3
0 0 0
0 −3 0

)
, Y5 =

(
0 0 0
0 0 −3
3 0 0

)
,

which together with Y1, Y2 span sl3(R)/h0 	 T(e3,e3)Q
5. �

2.5. g2-symmetry via Cartan’s submaximality. Here we show that the sym-
metry algebra of our distribution (Q5,D), given by (4), is isomorphic to g2, a 14-
dimensional simple Lie algebra, the maximum possible for a (2, 3, 5)-distribution.
We show this as an immediate consequence of a general theorem of Cartan (1910)
on (2, 3, 5)-distributions. In the next section this “hidden symmetry” is explained
and written explicitly by defining an embedding of (Q5,D) in the standard G2-

homogeneous model (Q
5
,D) using split-octonions.

Remark. Of course, there is a third way, by “brute force”, using computer algebra.
We do not find it too illuminating, but it does produce quickly a list of 14 vector
fields on R3,3, generating the infinitesimal g2-action, as given in Corollary 1.3 or
Corollary 3.8 below.
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In a well-known paper of 1910 (the “5-variable paper”), Cartan proved the fol-
lowing.

Theorem 2.5 (Cartan [9]).

(1) The symmetry algebra of a (2, 3, 5)-distribution on a connected 5-manifold
has dimension at most 14, in which case it is isomorphic to the real split-
form of the simple Lie algebra of type g2.

(2) All (2, 3, 5)-distributions with 14-dimensional symmetry algebra are locally
diffeomorphic.

(3) If the symmetry algebra of a (2, 3, 5)-distribution has dimension < 14, then
it has dimension at most 7.

The last statement is sometimes referred to as Cartan’s “submaximality” re-
sult for (2, 3, 5)-distribution. A (2, 3, 5)-distribution with the maximal symmetry
algebra g2 is called flat.

Using Proposition 2.4 and the fact that SL3(R) is 8-dimensional, we immediately
conclude the following from Cartan’s submaximality result for (2, 3, 5)-distributions.

Theorem 2.6. The symmetry algebra of the (2, 3, 5)-distribution defined by (4)
is 14-dimensional, isomorphic to the Lie algebra g2, containing the Lie subalgebra
isomorphic to sl3(R) generated by the linear SL3(R)-action given by equation (5).

Remark. In fact, Cartan [10] and Engel [14] defined in 1893 the Lie algebra g2

as the symmetry algebra of a certain (2, 3, 5)-distribution on an open set in R5,
using formulas similar to our (4). For example, Engel considers in [14] the (2, 3, 5)-
distribution obtained by restricting dp−q×dq to the linear subspace in R3,3 given
by q3 = p3.

3. G2-symmetry via split-octonions

In this section we describe a relation between the algebra of split-octonions Õ

and our equations (2), thus explaining the appearance of the “hidden g2-symmetry”
in Theorem 2.6 of the previous section. We first review some well-known facts con-

cerning the algebra of split-octonions Õ and its automorphism group G2. We then
define the “standard model” for the flat (2, 3, 5)-distribution, a compact hypersur-

face Q
5 ⊂ RP6, the projectivized null cone of imaginary split-octonions, equipped

with a (2, 3, 5)-distribution D ⊂ TQ
5
. The group G2 = Aut(Õ) acts naturally on

all objects defined in terms of the split-octonions, such as Q
5
and D.

The relation of (Q
5
,D) with our system (Q5,D) is seen by finding an embedding

of groups SL3(R) ↪→ G2 and an SL3(R)-equivariant embedding (Q,D) ↪→ (Q
5
,D).

In this way we obtain an explicit realization of g2 as the 14-dimensional symmetry
algebra of (Q,D), containing the 8-dimensional subalgebra of “obvious” sl3(R)-
symmetries, as defined in (5) of Section 2.4. This construction explains also why
the infinitesimal g2-symmetry of (Q5,D) does not extend to a global G2-symmetry.

3.1. Split-octonions via Zorn’s vector matrices. We begin with a brief review
of the algebra of split-octonions, using a somewhat unfamiliar notation due to Max
Zorn (of Zorn’s Lemma fame in set theory), which we found quite useful in our
context. See [26] for a similar presentation.
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The split-octonions Õ is an 8-dimensional non-commutative and non-associative
real algebra, whose elements can be written as “vector matrices”

ζ =

(
x q
p y

)
, x, y ∈ R, q ∈ R

3, p ∈ (R3)∗,

with the “vector-matrix-multiplication”, denoted here by ∗,

ζ ∗ ζ ′ =
(
x q
p y

)
∗
(
x′ q′

p′ y′

)
:=

(
xx′ − p′q xq′ + y′q+ p× p′

x′p+ yp′ + q× q′ yy′ − pq′

)
,

where, as before, we use the vector products R3×R
3 → (R3)∗ and (R3)∗× (R3)∗ →

R3, given by

q× q′ := vol(q,q′, ·), p× p′ := vol∗(p,p′, ·),
vol is the standard volume form on R3,

vol = dq1 ∧ dq2 ∧ dq3,

and vol∗ is the dual volume form on (R3)∗,

vol∗ = dp1 ∧ dp2 ∧ dp3.

In coordinates,

(q× q′)i = εijkq
jq′k, (p× p′)i = εijkpjp

′
k.

Remark. These “vector matrices” were introduced by Max Zorn in [30] (p. 144).
There are some minor variations in the literature in the signs in the multiplication
formula, but they are all equivalent to ours by some simple change of variables.
We are using Zorn’s original formulas. For example, the formula in Wikipedia’s
article “Split-octonion” is obtained from ours by the change of variable p �→ −p.
A better-known formula for octonion multiplication uses pairs of quaternions, but
we found the above formulas of Zorn more suitable; they also fit nicely with the
original Cartan and Engel 1894 formulas.

Conjugation in Õ is given by

ζ =

(
x q
p y

)
�→ ζ =

(
y −q

−p x

)
,

satisfying

ζ = ζ, ζ ∗ ζ ′ = ζ ′ ∗ ζ, ζ ∗ ζ = 〈ζ, ζ〉I,
where I = ( 1 0

0 1 ) and

〈ζ, ζ〉 = xy + pq

is a quadratic form of signature (4, 4) on Õ.
Define as usual

�(ζ) = (ζ + ζ)/2, �(ζ) = (ζ − ζ)/2,

so that

Õ = �(Õ)⊕�(Õ),

where �(Õ) = RI and �(Õ) are vector matrices of the form ζ =
( x q
p −x

)
.
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3.2. About G2.

Definition 3.1. G2 is the subgroup of GL(Õ) 	 GL8(R) satisfying g(ζ ∗ ζ ′) =

g(ζ) ∗ g(ζ ′) for all ζ, ζ ′ ∈ Õ.

Remark. There are in fact three essentially distinct groups denoted by G2 in the
literature: the complex Lie group GC

2 and its two real forms: the compact form and
the non-compact form, “our” G2. See, for example, Theorem 6.105 on p. 421 of
[18].

Proposition 3.2. Every g ∈ G2 preserves the splitting Õ = �(Õ) ⊕ �(Õ). The

action of G2 on �(Õ) is trivial. Thus G2 embeds naturally in GL(�(Õ)) 	 GL7(R).

Proof. Let g ∈ G2. Since I is invertible so is g(I). Now g(I) = g(I ∗ I) = g(I) ∗ g(I),
hence g(I) = I. It follows that g acts trivially on �(Õ) = RI.

Next, to show that �(Õ) is g-invariant, define S := {ζ ∈ Õ|ζ ∗ ζ = −I}. Then it

is enough to show that (1) S is g-invariant, (2) S ⊂ �(Õ), (3) S spans �(Õ).
(1) is immediate from g(−I) = −I. For (2), let ζ =

( x q
p −y

)
∈ S. Then ζ ∗ ζ =

−I =⇒ x2−pq = y2−pq = −1, (x+y)q = (x+y)p = 0 =⇒ x+y = 0 =⇒ ζ ∈ �(Õ).

For (3), it is easy to find a basis of �(Õ) in S. �

The Lie algebra of G2 is the sub-algebra g2 ⊂ End(Õ) of derivations of Õ: the

elements X ∈ End(Õ) such that X(ζ ∗ ζ ′) = (Xζ)∗ ζ ′+ ζ ∗ (Xζ ′) for all ζ, ζ ′ ∈ Õ. It

follows from the last proposition that g2 embeds as a subalgebra of End(�(Õ)). In

his 1894 thesis É. Cartan gave explicit formulas for the image of this embedding,
as follows.

For each (A,b, c) ∈ sl3 ⊕ R3 ⊕ (R3)∗ define ρ(A,b, c) ∈ End(�(Õ)), written

as a block matrix, corresponding to the decomposition �(Õ) 	 R3 ⊕ (R3)∗ ⊕ R,( x q
p −x

)
�→ (q,p, x), by

ρ(A,b, c) =

⎛⎝ A Rc 2b
Lb −At 2c
ct bt 0

⎞⎠ ,

where Lb : R3 → (R3)∗ is given by q �→ b × q and Rc : (R3)∗ → R
3 is given by

p �→ p× c.

Now define ρ̃ : sl3 ⊕ R3 ⊕ (R3)∗ → End(Õ) by

ρ̃(A,b, c)ζ = ρ(A,b, c)�(ζ).
Explicitly, we find

ρ̃(A,b, c)

(
x q
p y

)
=

(
pb+ cq Aq+ (x− y)b+ p× c

−pA+ b× q+ (x− y)c −pb− cq

)
.

Proposition 3.3. The image of ρ̃ in End(Õ) is g2. That is, for all (A,b, c) ∈
sl3 ⊕ R

3 ⊕ (R3)∗, ρ̃(A,b, c) is a derivation of Õ, and all derivations of Õ arise in
this way. Thus G2 is a 14-dimensional Lie group. It is a simple Lie group of type
g2 (the non-compact real form).

Proof (This is a sketch; for more details see for example [26]). One shows first
that ρ̃(A, a,b) is a derivation by direct calculation. In the other direction, ifX ∈ g2,

i.e., is a derivation, then its restriction to �(Õ) is antisymmetric with respect to
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the quadratic form J = x2 − pq, i.e., is in the 21-dimensional Lie algebra so4,3 of
the orthogonal group corresponding to J. One then needs to show the vanishing
of the projection of X to so4,3/Im(ρ) (a 21−14=7 dimensional space). The latter
decomposes under SL3(R) as R

3 ⊕ (R3)∗ ⊕R, so by the Schur Lemma it is enough
to check the claim for one X in each of the three irreducible summands.

Now one can pick a Cartan subalgebra and root vectors showing that this algebra
is of type g2 (see Cartan’s thesis [7], p. 146). �

Remark. Cartan gave the above representation of g2 in his 1894 thesis [7] with no
reference to octonions; the relation with octonions was published by him later in
1908 [11]. He presented g2 as the symmetry algebra of a rank 3 distribution on the

null cone in �(Õ).

3.3. The distribution (Q
5
,D). Imaginary split-octonions �(Õ) satisfy ζ = −ζ

and are given by vector-matrices of the form

ζ =

(
x q
p −x

)
,

where (q,p, x) ∈ R3 ⊕ (R3)∗ ⊕ R.

Definition 3.4. Let Ω := ζ ∗ dζ (an Õ-valued 1-form on �(Õ)). Explicitly,

Ω :=

(
x dx− q dp x dq− q dx+ p× dp

p dx− x dp+ q× dq x dx− p dq

)
.

Proposition 3.5. Let Ker(Ω) be the distribution (with variable rank) on �(Õ)

annihilated by Ω and let C ⊂ �(Õ) be the null cone, C = {ζ ∈ �(Õ)|x2 −pq = 0}.
Then Ker(Ω) is:

(1) G2-invariant,
(2) R∗-invariant, under ζ �→ λζ, λ ∈ R∗,
(3) tangent to C \ 0,
(4) a rank 3 distribution when restricted to C \ 0.
(5) The R∗-orbits on C are tangent to Ker(Ω).

Proof.

(1) Ω is G2-equivariant, i.e., g
∗Ω = gΩ for all g ∈ G2, hence Ker(Ω) is g-

invariant. Details: g∗(ζ∗dζ) = (gζ)∗d(gζ) = (gζ)∗[g(dζ)] = g(ζ∗dζ) = gΩ.
(2) λ∗Ω = λ2Ω =⇒ Ker(λ∗Ω) = Ker(λ2Ω) = Ker(Ω).
(3) C is the 0 level set of f(ζ) = ζ ∗ ζ̄ = −ζ ∗ ζ; hence the tangent bundle to

C \ 0 is the kernel of df = −(dζ) ∗ ζ − ζ ∗ dζ = −Ω−Ω = −2�(Ω), hence
Ker(Ω) ⊂ Ker(df).

(4) Use the fact that G2 × R∗ acts transitively on C \ 0, so it is enough to
check at say q = e1, p = 0, x = 0. Then Ker(Ω) at this point is given
by dp1 = dq2 = dq3 = dx = 0, which defines a 3-dimensional subspace of

�(Õ)).
(5) The R∗-action is generated by the Euler vector field

E = pi
∂

∂pi

+ qi
∂

∂qi
+ x

∂

∂x
,

hence Ω(E) = ζ ∗ dζ(E) = ζ ∗ ζ = 0, for ζ ∈ C.

�
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Corollary 3.6. Ker(Ω) descends to a G2-invariant rank 2 distribution D on the

projectivized null cone Q
5
= (C \ 0)/R∗ ⊂ P(�(Õ)) ∼= RP6.

Now define an embedding ι : R3,3 → �(Õ) by (q,p) �→ (q,p, 1). The pull-back
of Ω by this map is easily seen to be

(6) ι∗Ω =

(
−q dp dq+ p× dp
−dp+ q× dq −p dq

)
.

Let SL3(R) act on Õ by(
x q
p y

)
�→

(
x gq

pg−1 y

)
, g ∈ SL3(R).

This defines an embedding SL3(R) ↪→ Aut(Õ).

Theorem 3.7. Let Q = {pq = 1} ⊂ R3,3. Then

(a) the composition

Q
ι−→ C \ 0 R

∗
−→ Q

5
, (q,p) �→ [(q,p, 1)] ∈ Q

5 ⊂ P(�(Õ)) ∼= RP
6

is an SL3(R)-equivariant embedding of (Q,D) in (Q
5
,D).

(b) The image of Q5 → Q
5
is the open-dense orbit of the SL3(R)-action on the

projectivized null cone Q
5 ⊂ P(�(Õ)) ∼= RP6; its complement is a closed

4-dimensional submanifold.

Proof. (a) Under SL3(R), �(Õ) decomposes as R3,3 ⊕ R; hence R3,3 → �(Õ),
(q,p) �→ [q,p, 1] is an SL3(R)-equivariant embedding. Formula (6) for i∗Ω shows
that D is mapped to D.

(b) From the previous item, the image of Q5 in Q
5
is a single SL3(R)-orbit,

5-dimensional, hence open. It is dense, since the complement is a 4-dimensional

submanifold in Q
5
, given in homogeneous coordinates by the intersection of the

hyperplane x = 0 with the quadric pq − x2 = 0. Restricted to x = 0, a 5-
dimensional projective subspace in RP

6, the equation pq = 0 defines a smooth
4-dimensional hypersurface, a projective quadric of signature (3, 3). �

Now if we consider the projectivized g2-action on [�(Õ) \ 0]/R∗ and pull it back
to R3,3 via (q,p) �→ [(q,p, 1)], we obtain a realization of g2 as a Lie algebra of
vector fields on R3,3 tangent to Q, whose restriction to Q forms the symmetry
algebra of (Q,D).

Corollary 3.8. For each (A,b, c) ∈ sl3 ⊕ R3 ⊕ (R3)∗ the vector field on R3,3,

XA,b,c = [2b+Aq+ p× c− (pb+ cq)q]∂q

+[2c− pA+ q× b− (pb+ cq)p]∂p,

is tangent to Q ⊂ R3,3. The resulting 14-dimensional vector space of vector fields
on Q forms the symmetry algebra of (Q,D).

Explicitly, if A = (aij), b = (bi), c = (ci), then

XA,b,c = [2bi + aijq
j + εijkpjck − (pjb

j + cjq
j)qi]∂qi

+[2ci − ajipj + εijkq
jbk − (pjb

j + cjq
j)pi]∂pi

.
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Proof. Let u = (q,p) ∈ R3,3; then ι(u) = (u, 1) ∈ �(Õ). Any linear vector field X

on �(Õ) can be block decomposed as

(X11u+X12x)∂u + (X21u+X22x)∂x,

with

X11 ∈ End(R3,3), X12 ∈ R
3, X21 ∈ (R3,3)∗, X22 ∈ R.

The induced vector field on R
3,3, obtained by projectivization and pulling back via

ι, is the quadratic vector field

[X12 + (X11 −X22x)u− (X21u)u]∂u.

Now plug in the formula for X from the last corollary. �

4. Pseudo-Riemannian geometry in signature (2, 2)

In this section we relate the geometry of the (2,3,5)-distribution (Q5,D) given
by equations (2) to 4-dimensional conformal geometry by giving Q5 the structure
of a principal R∗-bundle Q5 → M4, the “pseudo-Hopf-fibration”, inducing on M4

a split-signature pseudo-Riemannian metric g, which we call the “dancing metric”.
We then show in Theorem 4.8 (Section 4.3), using the Maurer-Cartan structure

equations of SL3(R), that the projection Q5 → M4 establishes a bijection between
integral curves in (Q5,D) and (non-degenerate) null curves in (M4,g) with parallel
self-dual tangent null 2-plane.

A more conceptual explanation to Theorem 4.8 is given in Theorem 4.9, where
we show that (Q5,D) can be naturally embedded in the total space of the self-dual
twistor fibration RP1 → T+(M4) → M4 associated with (M4,g), equipped with its
canonical twistor distribution D+, as introduced in [3]. The non-integrability of D
is then seen to be due to the non-vanishing of the self-dual Weyl tensor of g.

4.1. The pseudo-Hopf-fibration and the dancing metric.

4.1.1. First definition of the dancing metric. Recall from Section 2.1 that Q5 =
{(q,p)|pq = 1} ⊂ R3,3 (the “unit pseudo-sphere”). To each pair (q,p) ∈ Q5

we assign the pair Π(q,p) = ([q], [p]) = (q, p) ∈ RP2 × RP2∗, where q ∈ RP2,
p ∈ RP2∗ are the points with homogeneous coordinates q,p (respectively). Let
I
3 ⊂ RP

2 ×RP
2∗ be the subset of pairs (q, p) given in homogeneous coordinates by

the equation pq = 0, also called incident pairs (the name comes from the geometric
interpretation of such a pair as a (point, line) pair, such that the line passes through
the point; more on this in Section 5). It is easy to see from the equation pq = 0
that I3 is a 3-dimensional closed submanifold of RP2 × RP

2∗. Its complement

M4 := (RP2 × RP
2∗) \ I3

is the set of non-incident point-line pairs, a connected open dense subset of RP2 ×
RP2∗. Clearly, if pq = 1, then ([q], [p]) �∈ I3; thus Π : Q5 → M4 is well-defined and
clearly surjective.

Define an R
∗-action on Q5, where λ ∈ R

∗ acts by

(7) (q,p) �→ (λq, λ−1p), λ ∈ R
∗.

This is a free R
∗-action whose orbits are precisely the fibers of

Π : Q5 → M4, (q,p) �→ ([q], [p]).
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That is, Π is a principal R∗-fibration. Now the quadratic form pq defines on R3,3

a flat split-signature metric, whose restriction to Q5 ⊂ R3,3 is a (2, 3)-signature
metric. Furthermore, the principal R∗-action on Q5 is by isometries, generated by
a negative definite vector field. Combining these, we get:

Proposition 4.1 (Definition of the dancing metric). Restrict the flat split-
signature metric −2dp dq on R3,3 to Q5. Then there is a unique pseudo-Riemannian
metric g on M4, of signature (2, 2), rendering Π : Q5 → M4 a pseudo-Riemannian
submersion. We call g the dancing metric.

Remark. The factor −2 in the above definition is not essential and is introduced
merely for simplifying later explicit formulas for g.

Remark. This definition is analogous to the definition of the Fubini-Study metric
on CP2 via the (usual) Hopf fibration S1 → S5 → CP2. In fact, M4 is referred to
by some authors as the “para-complex projective plane” and g as the “para-Fubini-
Study metric” [2, 12].

Using the SL3(R)-invariance of g it is not difficult to come up with an explicit
formula for g in homogenous coordinates q,p on RP2,RP2∗ (respectively).

Proposition 4.2. Let Π̃ : R3,3 \ {pq = 0} → M4, (q,p) �→ ([q], [p]). Then

(8) Π̃∗g = −2
(q× dq)(p× dp)

(pq)2
.

Proof. The expression on the right hand side of (8) is a quadratic 2-form, R∗×R
∗-

invariant, Π̃-horizontal (vanishes on Π̃-vertical vectors), and SL3(R)-invariant. It
thus descends to an SL3(R)-invariant quadratic 2-form on M . By examining the
isotropy representation of the stabilizer of a point in M (equation (23) below) we
see that M admits a unique SL3(R) quadratic 2-form, up to a constant multiple.
It is thus sufficient to verify the formula on a single non-null vector, say e1 − e1 ∈
T(e3,e3)Q. We omit this easy verification. �

Remark. Using standard vector identities, formula (8) can be rewritten also as

(9) Π̃∗g = −2
(pq)(dp dq)− (p dq)(dpq)

(pq)2
.

An advantage of this formula is that it makes sense in higher dimensions, defining
the “para-Fubini-Study” metric on

[
Rn+1,n+1 \ {pq = 0}

]
/(R∗×R∗). It also com-

pares nicely with the formula for the standard Fubini-Study metric gFS on CPn =[
Cn+1 \ {0}

]
/C∗, given in complex homogenous coordinates z = (z0, . . . , zn)

t ∈
Cn+1, z∗ := z̄t, by

Π̃∗gFS =
(z∗z)(dz∗ dz)− (z∗ dz)(dz∗ z)

(z∗z)2
.

We give later three more explicit formulas for g: in Proposition 4.10 (item (a)) g
is expressed in terms of the Maurer-Cartan form of SL3(R), analogous to a formula
for the Fubini-Study metric on CPn in terms of the Maurer-Cartan form of SUn+1.
In Proposition 5.5 we give a “cross-ratio” formula for g. Lastly, in Section 5.2 we
derive a simple formula in local coordinates for the conformal class [g], using the
“dancing condition”.
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Figure 3. The definition of Σq̄,p̄

4.1.2. Orientation. We define an orientation on M4 via its para-complex structure.
Namely, using the decomposition T(q,p)M

4 = TqRP
2 ⊕ TpRP

2∗, define K : TM →
TM by K(q′, p′) = (q′,−p′). A para-complex basis for T(q,p)M

4 is then an or-
dered basis of the form (v1, v2,Kv1,Kv2). One can check easily that any two such
bases are related by a matrix with positive determinant; hence these bases give a
well-defined orientation on M4. See Proposition 4.10(c) below for an alternative
definition in terms of the Maurer-Cartan form of SL3(R).

4.1.3. Some properties of the dancing metric. The dancing metric has remarkable
properties. We group in the next theorem some of them.

Theorem 4.3.

(1) (M4,g) is the homogeneous symmetric space SL3(R)/H, where H	GL2(R)
(the precise subgroup H is described below in Section 4.4). The SL3(R)-
action on M4 is induced from the standard action on R3,3, ([q], [p]) �→
([gq], [pg−1]). The GL2(R)-structure endows M

4 with a structure of a para-
Kähler manifold.

(2) (M4,g) is a complete, Einstein, irreducible, pseudo-Riemannian 4-manifold
of signature (2, 2). It is self-dual (with respect to the above orientation),
i.e., its anti-self-dual Weyl tensor W− ≡ 0, but is not conformally flat. Its
self-dual Weyl curvature tensor W+ is nowhere vanishing, of Petrov type
D.

(3) The splitting T(q,p)M
4 = TqRP

2 ⊕ TpRP
2∗ equips M4 with a pair of com-

plementary null, self-dual, parallel, integrable, rank 2 distributions. Their
integral leaves generate a pair of foliations of M4 by totally geodesic self-
dual null surfaces, the fibers of the double fibration

M4

π

����
��
��
��

π̄

���
��

��
��

�

RP2 RP2∗

(4) M4 admits a 3-parameter family of anti-self-dual totally geodesic null sur-
faces, naturally parametrized by the incidence variety I3 := {(q̄, p̄)|q̄ ∈ p̄} ⊂
RP2 ×RP2∗. For each incident pair (q̄, p̄) ∈ I3, the corresponding surface is
the set Σq̄,p̄ of non-incident pairs (q, p) such that q ∈ p̄ and q̄ ∈ p.

Remark. The last point (4) can be reformulated as follows: let N5 ⊂ M4 × I3 be
defined via the incidence diagram of Figure 3, i.e.,

N5 = {(q, p, q̄, p̄)|q �∈ p, q̄ ∈ p̄, q ∈ p̄, q̄ ∈ p} ⊂ RP
2 × RP

2∗ × RP
2 × RP

2∗.
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Then N5 is a 5-dimensional submanifold of M4 × I3, equipped with the double
fibration

(10) N5

π12

����
��
��
�� π34

���
��

��
��

�

M4
I
3

The right hand fibration π34 : N5 → I
3 foliates N5 by 2-dimensional surfaces,

each of which projects via π12 : N5 → M4 to one of the surfaces Σq̄,p̄. That

is, Σq̄,p̄ = π12

(
π−1
34 (q̄, p̄)

)
. The left hand fibration π12 : N5 → M4 foliates N5

by projective lines and can be naturally identified with the anti-self-dual twistor
fibration T

−M4 → M4 associated with (M4,g) (see Section 4.2.4). The fibers of
π34 then correspond to the integral leaves of the anti-self-dual twistor distribution
D−, which is integrable in our case, due to the vanishing of W− (see Corollary 4.11,
Section 4.4 below).

Most claims of this theorem can be found in various sources in the literature
(see e.g. [2] and the many references within). Using the Maurer-Cartan equations
of SL3(R) (Section 4.4), it is quite straightforward to prove these results. Alterna-
tively, one can write explicitly the dancing metric in local coordinates (Section 5.2)
and let a computer calculate curvature, symmetries, etc.

4.2. Rudiments of 4-dimensional geometry in split-signature.

4.2.1. Linear algebra. Let V be an oriented 4-dimensional real vector space
equipped with a quadratic form 〈 , 〉 of signature (+ + −−). It is convenient to
introduce null bases in such a V . This is a basis {e1, e2, e1, e2} ⊂ V such that

〈ea, eb〉 = 〈ea, eb〉 = 0, 〈ea, eb〉 = δab , a, b = 1, 2.

Note that if {x1, x2, x1, x2} ⊂ V ∗ is the dual basis, i.e., xa(eb) = xa(eb) = 0, xa(eb)=
xb(e

a) = δab , then

(11) 〈 , 〉 = 2(x1x1 + x2x2).

Remark. Our convention is that the symmetric tensor product xy ∈ S2 V ∗ of two
elements x, y ∈ V ∗ is the symmetric bilinear form

(12) (xy)(v, w) := [x(v)y(w) + y(v)x(w)]/2, v, w ∈ V.

Now let vol := x1 ∧ x2 ∧ x1 ∧ x2 ∈ Λ4 V ∗ and let ∗ : Λ2 V ∗ → Λ2 V ∗ be the
corresponding Hodge dual, satisfying α ∧ ∗β = 〈α, β〉vol, α, β ∈ Λ2(V ∗). Then
∗2 = 1 and one has the splitting

(13) Λ2 V ∗ = Λ2
+ V ∗ ⊕ Λ2

− V ∗,

where Λ2
± V ∗ are the ±1 eigenspaces of ∗, called the SD (self-dual) and ASD (anti-

self-dual) 2-forms (respectively).
Let SO2,2 ⊂ GL(V ) be the corresponding orientation-preserving orthogonal

group and let so2,2 ⊂ End V be its Lie algebra. With respect to a null basis,
the matrices of elements in so2,2 are of the form

(14)

(
A B
C −At

)
, A,B,C ∈ Mat2×2(R), B

t = −B, Ct = −C.
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There are a natural isomorphism (equivalence of SO2,2-representations)

(15) so2,2
∼→ Λ2 V ∗, T �→ 1

2
〈 · , T · 〉

and a Lie algebra decomposition so2,2 = sl
+
2 (R)⊕ sl

−
2 (R), given by(

A B
C −At

)
=

(
A0 0
0 −At

0

)
+

(
trA
2

I B

C − trA
2

I

)
, A0 = A− trA

2
I ∈ sl2(R),

matching the decomposition of (13), i.e., sl±2 (R)
∼→ Λ2

± V ∗.
Given a 2-plane W ⊂ V pick a basis θ1, θ2 of the annihilator W 0 ⊂ V ∗ and let

β = θ1 ∧ θ2. If we pick another basis of W 0, then β is multiplied by a non-zero
constant (the determinant of the matrix of change of basis); hence Rβ ⊂ Λ2(V ∗)
is well-defined in terms of W alone. This defines the Plücker embedding of the
grassmannian of 2-planes Gr(2, V ) ↪→ P(Λ2 V ∗) 	 RP5. Its image is given in
homogeneous coordinates by the quadratic equation β ∧ β = 0. We say that a 2-
plane W is SD (self-dual) if Rβ ⊂ Λ2

+ V ∗ and ASD (anti-self-dual) if Rβ ⊂ Λ2
− V ∗.

We denote by

T
+V := {W ⊂ V |W is an SD 2-plane}.

Using the Plücker embedding, T+V is naturally identified with the conic in P(Λ2
+ V ∗)

	 RP2 given by the equations β ∧ β = 0, ∗β = β. Similarly for the ASD 2-planes
T
−V .
A null subspace is a subspace of V on which the quadratic form 〈 , 〉 vanishes.

The maximum dimension of a null subspace is 2, in which case we call it a null
2-plane. It turns out that the null 2-planes are precisely the SD and ASD 2-planes.

Proposition 4.4. Let V be an oriented 4-dimensional vector space equipped with
a quadratic form of signature (2, 2). Then

(1) A 2-plane W ⊂ V is null if and only if it is SD or ASD. Thus the space
Gr0(2, V ) of null 2-planes in V is naturally identified with

Gr0(2, V ) = (T+V ) � (T−V ), T
±V 	 RP

1.

(2) Every 1-dimensional null subspace N ⊂ V is the intersection of precisely two
null 2-planes, one SD and one ASD, N = W+ ∩W−.

The proof is elementary (omitted). Let us describe briefly the picture that
emerges from the last assertion (see Figure 4). The set of 1-dimensional null sub-
spaces N ⊂ V forms the projectivized null cone PC, a 2-dimensional quadric surface
in PV 	 RP3, given in homogeneous coordinates, with respect to a null basis in
V , by the equation xaxa = 0. The statement then is that the SD and ASD null
2-planes in V define a double ruling of PC. That is, the surface PC ⊂ PV , although
not flat, contains many lines, forming a pair of foliations, so that through each
point e ∈ PC pass exactly two lines, one from each foliation. The two lines through
e can also be found by intersecting PC with the tangent plane to PC at e. In some
affine chart, if PC is given by z = xy and e = (x0, y0, x0y0), then the two null lines
through e are given by z = x0y, z = xy0.

4.2.2. The Levi-Civita connection and its curvature. Now let M be an oriented
smooth 4-manifold equipped with a pseudo-Riemannian metric g of signature (2, 2).
Denote byΛk := Λk(T ∗M) the bundle of differential k-forms onM and by Γ(Λk) its
space of smooth sections. In a (local) null coframe η = (η1, η2, η1, η2)

t ∈ Γ(Λ1⊗R4)
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Figure 4. The double-ruling of the projectivized null cone PC ⊂ PV .

the metric is given by g = 2ηaη
a, and the Levi-Civita connection is given by the

unique so2,2-valued 1-form Θ satisfying dη + Θ ∧ η = 0; i.e., the connection is
torsion-free. The associated covariant derivative is ∇η = −Θ⊗η, and the curvature
is the so2,2-valued 2-form Φ = dΘ + Θ ∧ Θ. The curvature form Φ defines via the
isomorphism so2,2 	 Λ2(T ∗

mM) of (15) the curvature operator R ∈ Γ(End(Λ2)),
which is self-adjoint with respect to g, i.e., R∗ = R. Now we use the decomposition
Λ2 = Λ2

+ ⊕Λ2
− to block decompose

(16) R =

(
A+ B
B∗ A−

)
,

where B ∈ Hom(Λ2
+,Λ

2
−) and A± ∈ End Λ2

± are self-adjoint. This can be further
refined into an irreducible decomposition

R ∼ (trA±, B, A+ − 1
3 trA+, A− − 1

3 trA−),

where trA+ = trA− = 1
4 scalar curvature, B is the traceless Ricci tensor, and the

last two components are traceless self-adjoint endomorphisms W± ∈ Γ(End0(Λ
2
±)),

defining the conformally invariant Weyl tensor, W := W+ ⊕ W− [27]. Thus the
metric is Einstein if and only if B = 0, conformally flat if and only if W = 0,
self-dual if and only if W = W+ (i.e., W− = 0), and anti-self-dual if and only if
W = W− (i.e., W+ = 0).

4.2.3. Principal null 2-planes. Associated with the Weyl tensor W are its principal
null 2-planes, as follows. Recall from Section 4.2.1 (just before Proposition 4.4) that
a 2-plane W ⊂ TmM corresponds to a unique 1-dimensional space Rβ ⊂ Λ2(T ∗

mM)
satisfying β ∧ β = 0. Also, W is SD if and only if β ∈ Λ2

+, ASD if and only if
β ∈ Λ2

−.

Definition 4.5. A null 2-plane W ⊂ TmM is principal if the associated non-zero
elements β ∈ Λ2(T ∗

mM) satisfy β ∧Wβ = 0.

If W+
m = 0, then all SD null 2-planes in TmM are principal (by definition). Oth-

erwise, the quadratic equation β ∧W+β = 0 defines a conic (possibly degenerate)
in PΛ2

+(T
∗
mM) 	 RP2, intersecting the conic T+(TmM) given by β ∧ β = 0 in at

most 4 points, corresponding precisely to the principal SD 2-planes. The possible
patterns of intersection of these two conics give rise to an algebraic classification
of the SD Weyl tensor W+, called the Petrov classification. A similar classification
holds for W−.
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Figure 5. The Petrov classification

Remark. The diagram in Figure 5 depicts the classification over C. In the real case
(such as ours) there are more subcases, as some of the intersection points might be
non-real. See for example [16] for the complete classification.

4.2.4. The twistor fibration and distribution. (We shall state the results for the SD
twistor fibration, but they apply verbatim to the ASD case as well.) Let M be
an oriented 4-manifold with a split-signature pseudo-Riemannian metric, as in the
previous subsection. The SD (self-dual) twistor fibration is the fiber bundle

RP
1 → T

+M → M

whose fiber at a point m ∈ M is the set T+(TmM) of SD null 2-planes in TmM
(see Proposition 4.4 of Section 4.2.1 above). The total space T+M is a 5-manifold
equipped with a natural rank 2 distribution D+ ⊂ T (T+M), the SD twistor dis-
tribution, defined by the Levi-Civita connection, as follows: a point m̃ ∈ T+

mM
corresponds to an SD 2-plane W ⊂ TmM ; the 2-plane D+

m̃ ⊂ Tm̃(T+M) is the hor-
izontal lift of W via the Levi-Civita connection. One can check that D+ depends
only on the conformal class [g] of the metric on M . By construction, the integral
curves of D+ project to null curves in M with parallel self-dual tangent 2-plane.
Conversely, each null curve in M with parallel SD null 2-plane lifts uniquely to an
integral curve of (T+M,D+).

This is the split-signature version of the famous twistor construction of Roger
Penrose [25]. A standard feature of the twistor construction is the relation between
the integrability properties of D+ and the vanishing of the SD Weyl tensor W+.
Namely, D+ is integrable if and only if W+ ≡ 0 (i.e., M is ASD). Less standard is
the case of non-vanishing W+, treated by An-Nurowski in [3].

Theorem 4.6 ([3]). Let (T+M,D+) be the SD twistor space and distribution of
a split-signature oriented pseudo-Riemannian conformal 4-manifold (M, [g]) with
a nowhere-vanishing SD Weyl tensor W+. Then D+ is (2, 3, 5) away from the
principal locus of T+M . That is, D+ is (2, 3, 5) when restricted to the open subset
T+
∗ M ⊂ T+M obtained by removing the set of points corresponding to the principal

SD 2-planes (at most 4 points on each fiber of T+M → M ; see Definition 4.5
above).

See the theorem in [3], right before Corollary 1.

4.3. The tangent SD 2-plane along a null curve in the dancing space. Now
we return to our case of M4 ⊂ RP

2 ×RP
2∗ equipped with the dancing metric g, as

defined in Proposition 4.1.

Definition 4.7. Let Γ be a parametrized curve in M4, Γ(t) = (q(t), p(t)). Then
Γ is non-degenerate if q(t), p(t) are regular curves in RP2,RP2∗ (respectively); i.e.,
q′(t) �= 0 and p′(t) �= 0 for all t.
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Note that the non-degeneracy condition is reparametrization independent; hence
it applies to unparametrized curves Γ ⊂ M (1-dimensonal submanifolds). It means
that Γ is nowhere tangent to the leaves of the double fibration RP

2 ← M4 → RP
2∗.

Equivalently, the projections of Γ to RP2 and RP2∗ are non-singular.
Now let Γ be a null curve in (M4,g). Then, by Proposition 4.4, there are two

tangent null 2-plane fields defined along Γ, one SD and the other ASD, whose
intersection is the tangent line field along Γ.

Theorem 4.8. Every integral curve Γ̃ of (Q5,D) projects to a non-degenerate null
curve Γ in M4 with a parallel SD tangent 2-plane. Conversely, every non-degenerate
null curve in (M4,g) with parallel SD tangent 2-plane lifts uniquely to an integral
curve of (Q5,D).

Theorem 4.9. For each (q,p) ∈ Q5, the 2-plane

Π∗D(q,p) ⊂ T(q,p)M
4,

where (q, p) = Π((q,p)) is a non-principal self-dual 2-plane. The resulting map

Q5 → T
+M4, (q,p) �→ Π∗D(q,p),

is an SL3(R)-equivariant embedding, identifying Q5 with the non-principal locus of
D+ in T+M4, and mapping D over to D+.

The proofs of these two theorems will be carried out in the next subsection, using
the Maurer-Cartan structure equations of SL3(R).

4.4. Proofs of Theorems 4.8 and 4.9. Let {e1, e2, e3} be the standard basis
of R3 and let {e1, e2, e3} be the dual basis of (R3)∗. Recall (Section 2.4) that
G = SL3(R) acts transitively on (Q5,D) and (M4,g) by g · (q,p) = (gq,pg−1),
g · ([q], [p]) = ([gq], [pg−1]), preserving D and g (respectively). Fix m̃0 = (e3, e

3) ∈
Q5 and m0 = Π(m̃0) = ([e3], [e

3]) ∈ M4. Define

(17) G

j ���
��

��
��

�
j̃ �� Q5

Π
��

M4

by j̃(g) = g · m̃0 = (ge3, e
3g−1), j(g) = g ·m0 = ([ge3], [e

3g−1]) = (Π ◦ j̃)(g). Then
j is a principal H-fibration and j̃ is a principal H0-fibration, where

H =

{(
A 0
0 a−1

)
| A ∈ GL2(R), a = det(A)

}
	 GL2(R)

is the stabilizer subgroup of m0, with Lie algebra

(18) h =

{(
X 0
0 −x

)
| X ∈ gl2(R), x = tr(X)

}
	 gl2(R),

and

H0 =

{(
A 0
0 1

)
| A ∈ SL2(R)

}
	 SL2(R)

is the stabilizer subgroup of m̃0, with Lie algebra

h0 =

{(
X 0
0 0

)
| X ∈ sl2(R)

}
	 sl2(R).
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The left-invariant MC (Maurer-Cartan) form on G = SL3(R) is the g-valued 1-
form ω = (ωi

j) := g−1dg, i.e., tr(ω) = ωi
i = 0, i, j ∈ {1, 2, 3} (using, as always, the

summation convention on repeated indices). The components of ω provide a global
coframing on G, whose basic properties (immediate from its definition) are

(19)

(a) ωe = idg,
(b) (Lg)

∗ω = ω (left invariance),
(c) (Rg)

∗ω = g−1ωg (right Ad-equivariance),
(d) dω = −ω ∧ ω (the MC structure equation).

Now let us rename the components of ω:

(20) ηa := ωa
3, ηb := ω3

b, φ := ωa
a = −ω3

3, θ
a
b := ωa

b + δabφ, a, b ∈ {1, 2}.
Furthermore, introduce the matrix notation

(21) η :=

⎛⎜⎜⎝
η1

η2

η1
η2

⎞⎟⎟⎠ ,Θ :=

(
θ 0
0 −θt

)
, θ := (θab) =

(
2ω1

1 + ω2
2 ω1

2

ω2
1 ω1

1 + 2ω2
2

)
.

With this notation,(19c) now reads

(22) (Rh)
∗η = ρ−1

h η, (Rh)
∗Θ = ρ−1

h Θρh, h ∈ H,

where ρ : H → SO2,2 is the isotropy representation

(23) h =

(
A 0
0 a−1

)
�→ ρh =

(
aA 0
0 (aAt)−1

)
, A ∈ GL2(R), a = detA.

The MC structure equation (19d) also breaks into two equations:

(24) dη +Θ ∧ η = 0, dΘ+Θ ∧Θ =

(
ϕ 0
0 −ϕt

)
,

where

(25) ϕ := dθ + θ ∧ θ =

(
2η1 ∧ η1 + η2 ∧ η2 η2 ∧ η1

η1 ∧ η2 η1 ∧ η1 + 2η2 ∧ η2

)
.

From formula (18) for h, we see that the four 1-forms ηa, ηb ∈ Ω1(G) are pointwise
linearly independent and j-horizontal, i.e., vanish on the fibers of j : G → M , hence
span j∗(T ∗M) ⊂ T ∗(G). Similarly, ηa, ηb, φ span j̃∗(T ∗Q5).

Proposition 4.10. Consider the principal fibrations j, j̃ of (17) and the left-
invariant 1-forms η, φ, θ,Θ, ϕ on G, as defined above in (20)-(25). Then

(a) j∗g = 2ηaη
a, where g is the dancing metric on M4, as defined in Proposi-

tion 4.1.
(b) Let ∇ be the covariant derivative on T ∗M associated with the Levi-Civita

connection of g and let ∇̃ = j∗(∇) be its pull-back to j∗(T ∗M).Then ∇̃ηa =

−θab⊗ ηb, ∇̃ηb = θab ⊗ ηa, or in matrix form, ∇̃η = −Θ⊗ η. The associated
curvature 2-form is Φ := dΘ + Θ ∧ Θ, given in terms of η by (24)-(25)
above.

(c) Let vol ∈ Ω4(M) be the positively oriented unit volume form on M4 (see
Section 4.1.2). Then j∗(vol) = η1 ∧ η2 ∧ η1 ∧ η2.

(d) Let D ⊂ TQ5 be the rank 2 distribution given by dp = q × dq and let
D0 ⊂ T ∗Q5 be its annihilator. Then j̃∗(D0) = Span{η2 − η1, η

1 + η2, φ}.
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Remark. We can rephrase the above in terms of coframes on M and Q, as follows:
let σ be a local section of j : G → M . Then (a) η̂ = σ∗η is a null coframe on

M , so that g = 2η̂aη̂
a, (b) Θ̂ = σ∗(Θ) is the connection 1-form of the Levi-Civita

connection of g with respect to the coframe η̂, (c) vol = η̂1 ∧ η̂2 ∧ η̂1 ∧ η̂2, and (d)

D = Ker{η̃2 − η̃1, η̃1 + η̃2, φ̃}, where η̃ = σ̃∗η, φ̃ = σ̃∗φ and σ̃ = σ ◦ Π (a local
section of j̃ : G → Q).

Proof. (a) First, the formula (Rh)
∗η = ρ−1

h η of equation (22) implies that ηaη
a,

a G-left-invariant j-horizontal symmetric 2-form on G, is H-right-invariant, hence
descends to a well-defined G-invariant symmetric 2-form on M. Next, by examining
the isotropy representation of H (equation (23)), one sees that Tm0

M admits a
unique H-invariant quadratic form, up to a constant multiple; hence M admits a
unique G-invariant symmetric 2-form, up to a constant multiple. It follows that it
is enough to verify the equation j∗g = 2ηaη

a on a single non-null element Y ∈ g =
TeG; for example, Y = Y1 from the proof of Proposition 2.3. We omit this (easy)
verification.

(b) The relations dη + Θ ∧ η = 0, (Rh)
∗Θ = ρ−1

h Θρh, and the formula for
Θ ((21)-(24)) show that Θ is an so2,2-valued 1-form on G, defining a torsion-free
SO2,2-connection on T ∗M , hence is in fact the Levi-Civita connection of g.

(c) First, one verifies that η1∧η2∧η1∧η2 is a volume form of norm 1 with respect
to 2ηaη

a. Then, to compare to the orientation definition of Section 4.1.2, we check
that K∗ηa = ηa, K∗ηb = −ηb; hence η1 + η1, η

2 + η2, η
1 − η1, η

2 − η2 is a para-
complex coframe. Now one calculates (η1 + η1)∧ (η2 + η2)∧ (η1 − η1)∧ (η2 − η2) =
4η1 ∧ η2 ∧ η1 ∧ η2; hence η1, η2, η1, η2 is a positively oriented coframe.

(d) Let Ej : G → R3 be the function that assigns to an element g ∈ G its j-th
column, j = 1, 2, 3. Then ω = g−1dg is equivalent to dEj = Eiω

i
j . Next, let

Ei : G → (R3)∗ be the function assigning to g ∈ G the i-th row of g−1. Then
clearly EiEj = δij (matrix multiplication of a row by column vector), and by

taking the exterior derivative of the last equation we obtain dEi = −ωi
jE

j . Also,

det(g) = 1 implies that Ei×Ej = εijkE
k, Ei×Ej = εijkEk. Next, by definition of

j̃, E3 = q ◦ j̃, E3 = p ◦ j̃. Now we calculate j̃∗(dp− q× dq) = dE3 −E3 × dE3 =
−ω3

jE
j − (E3 × Ei)ω

i
3 = (η2 − η1)E

1 − (η1 + η2)E
2 + φE3. �

Corollary 4.11 (Proofs of Theorems 4.8 and 4.9).

(a) (M4,g) is Einstein but not Ricci-flat, SD (i.e., W− ≡ 0), and W+ is
nowhere vanishing, of Petrov type D (see Figure 5). More precisely, at
each (q, p) ∈ M there are exactly two principal SD null 2-planes, each of
multiplicity 2, given by TqRP

2 ⊕ {0} and {0} ⊕ TpRP
2∗.

(b) Every integral curve Γ̃ of (Q,D) projects to a non-degenerate null curve

Γ := Π ◦ Γ̃ in (M4,g) with parallel SD tangent 2-plane.
(c) Every non-degenerate null curve Γ in (M4,g) with parallel SD tangent 2-

plane lifts uniquely to an integral curve Γ̃ of (Q5,D).
(d) For every m̃ ∈ Q5, Π∗Dm̃ ⊂ TΠ(m̃)M

4 is a non-principal SD null 2-plane.

(e) Let T+
∗ M ⊂ T

+M be the non-principal locus (the complement of the prin-
cipal points). Then the map ν : Q5 → T+

∗ M , m̃ �→ Π∗Dm̃ is an SL3(R)-
equivariant diffeomorphism, mapping D onto D+.
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Proof. (a) By Proposition 4.10(a) and 4.10(c), the coframe η1, η2, η1, η2 is null and
positively oriented. It follows from the definition of the Hodge dual that

j∗(Λ2
+ M) = Span{η1 ∧ η1 + η2 ∧ η2, η1 ∧ η2, η1 ∧ η2},(26a)

j∗(Λ2
− M) = Span{η1 ∧ η1 − η2 ∧ η2, η1 ∧ η2, η2 ∧ η1}.(26b)

Then using the formula for the curvature form Φ (equations (24)-(25)) and the
definition of the curvature operator R (Section 4.2.2), one finds that j∗(R) is diag-
onal in the above bases, with matrix

j∗(R) =

⎛⎜⎜⎜⎜⎝
−3

0
0

−1
−1

−1

⎞⎟⎟⎟⎟⎠.

Comparing this expression with the decomposition of R of (16), we see that the
dancing metric is Einstein (B ≡ 0), the scalar curvature is −12, W− ≡ 0, and

j∗(W+) =

(
−2

1
1

)
.

Now let a, b, c be the coordinates dual to the basis of j∗(Λ2
+ M) of equation (26a).

Then β ∧ β = 0 is given by a2 − bc = 0 and β ∧W+β = 0 by 2a2 + bc = 0. This
system of two homogeneous equations has two non-zero solutions (up to a non-zero
multiple), a = b = 0 and a = c = 0, each with multiplicity 2 (the pair of conics
defined in each fiber of PΛ2

+M by these equations is tangent at its two intersection
points). The corresponding SD 2-forms are η1 ∧ η2, η

1 ∧ η2, corresponding to the
principal SD null 2-planes TqRP

2⊕{0} and {0}⊕TpRP
2∗ (respectively), as claimed.

(b) Let Γ̃(t) = (q(t),p(t)) be a regular parametrization of an integral curve of

(Q5,D); i.e., Γ̃′ = (q′,p′) is nowhere vanishing and p′ = q×q′. We first show that

Γ = Π ◦ Γ̃ is non-degenerate. Let Γ(t) = Π(Γ̃(t)) = (q(t), p(t)), where q(t) = [q(t)],
p(t) = [p(t)]. We need to show that q′, p′ are nowhere vanishing.

Lemma 4.12. The distribution D ⊂ TQ5, given by dp = q× dq, is also given by
dq = −p× dp.

Proof. Let D′ = Ker(dq+ p× dp) ⊂ TQ5. Then both D,D′ are SL3(R)-invariant;
hence it is enough to compare them at, say, (e3, e

3) ∈ Q5. At this point D is
given by dp1 + dq2 = dp2 − dq1 = dp3 = dp3 + dq3 = 0, and D′ by dq1 − dp2 =
dq2 + dp1 = dq3 = dp3 + dq3 = 0. These obviously have the same 2-dimensional
space of solutions. �

Now q′ = q′ (mod q); hence q′ = 0 =⇒ q×q′ = 0 =⇒ p′ = 0, so by Lemma 4.12,
q′ = −p× p′ = 0. Similarly, p′ = 0 =⇒ q′ = p′ = 0; hence Γ is non-degenerate.

Next we show that Γ is null. Let σ be a lift of Γ̃ (hence of Γ) to G = SL3(R).
Let σ∗ηa = sadt, σ∗ηb = sbdt, a, b = 1, 2, for some real-valued functions (of t)
s1, s2, s1, s2. Then, by Propositions 4.10(a) and 4.10(d),

g(Γ′,Γ′) = 2sas
a = 2(s1(−s2) + s2s1) = 0;

hence Γ is a null curve.
Next we show that the SD null 2-plane along Γ is parallel. Let η̂ = η ◦ σ be the

coframing of Γ∗(TM) determined by the lift σ of Γ (a “moving coframe” along Γ).
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Remark. η̂ should not be confused with σ∗η = (s1, s2, s1, s2)
tdt, the restriction of

η̂ to TΓ.

Let W be the 2-plane field along Γ defined by η̂1 + η̂2 = η̂2 − η̂1 = 0. By
Proposition 4.10(d), σ∗(η1+η2) = σ∗(η2−η1) = 0; hence W is tangent to Γ. The 2-
form corresponding toW is β = (η̂1+η̂2)∧(η̂2−η̂1) = η̂1∧η̂2+η̂1∧η̂2+η̂1∧η̂1+η̂2∧η̂2,
which is SD by formula (26a); hence W is the SD tangent 2-plane field along Γ.
Now a short calculation, using Proposition 4.10(b), shows that

∇β = 3(σ∗φ)⊗ (η̂1 ∧ η̂2 − η̂1 ∧ η̂2).

By Proposition 4.10(d), σ∗φ = 0, hence ∇β = 0, so W is parallel.
(c) Let σ be a lift of Γ to G, with σ∗ηa = sadt, σ∗ηb = sbdt.

Lemma 4.13. Given a non-degenerate parametrized null curve Γ : R → M , there
exists a lift σ of Γ to G such that s1 = s2 = 0, s1 = s2 = 1. In other words,

σ∗ω =

⎛⎝ ∗ ∗ 0
∗ ∗ 1
1 0 ∗

⎞⎠ dt.

Remark. We call such a lift σ adapted to Γ.

Proof. Starting with an arbitrary lift σ, any other lift is of the form σ̄ = σh, where
h : R → H is an arbitrary H-valued smooth function, i.e.,

h =

(
A 0
0 a−1

)
, A : R → GL2(R), a = det(A).

Now a short calculation shows that

σ̄∗ω = h−1(σ∗ω)h+ h−1dh =

⎛⎝ ∗ ∗ 0
∗ ∗ 1
1 0 ∗

⎞⎠ dt

provided

(27) aA

(
0
1

)
=

(
s1

s2

)
, (1, 0) = (s1, s2)aA.

Now one checks that the last system of equations can be solved for A if and only
if (s1, s2) �= 0, (s1, s2) �= 0, and sas

a = 0. These are precisely the non-degeneracy
and nullity conditions on Γ. From A we obtain h and the desired σ̄. �

Once we have an adapted lift σ of Γ, with associated moving coframe η̂ := η ◦σ,
we define a 2-plane field W along Γ by η̂1 + η̂2 = η̂2 − η̂1 = 0. Then σ∗(η1 + η2) =
(s1 + s2)dt = 0, σ∗(η2 − η1) = (s2 − s1)dt = 0; hence W is tangent to Γ. Let
β := (η̂1 + η̂2) ∧ (η̂2 − η̂1). Then β is SD, so W is the SD tangent 2-plane along Γ.
NowW is parallel ⇐⇒ ∇β = 3(σ∗φ)⊗(η̂1∧η̂2−η̂1∧η̂2) ≡ 0 (mod β) ⇐⇒ σ∗φ = 0,
since η̂1 ∧ η̂2 − η̂1 ∧ η̂2 is a non-zero ASD form, hence �≡ 0 (mod β). It follows that
σ satisfies σ∗(η1 + η2) = σ∗(η2 − η1) = σ∗(φ) = 0; hence, by Proposition 4.10(d),

Γ̃ := j̃ ◦ σ is a lift of Γ to an integral curve of (Q,D).

To show uniqueness, if Γ̃(t) = (q(t),p(t)), then any other lift of Γ to Q5 is of the
form (λ(t)q(t),p(t)/λ(t)) for some non-vanishing real function λ(t). If this other
lift is also an integral curve of (Q5,D), then (p/λ)′ − (λq)× (λq)′ = −(λ′/λ2)p+
(1/λ − λ2)p′ = 0. Multiplying the last equation by q and using pq = 1,p′q = 0,
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we get λ′ = 0 =⇒ (1− λ3)p′ = 0. Now p′ �= 0 since Γ is non-degenerate =⇒ λ3 =
1 =⇒ λ = 1.

(d) Let m = Π(m̃), W = Π∗(Dm̃) ⊂ TmM , g ∈ G such that j̃(g) = m̃, and
η̂ = η(g) the corresponding coframing of TmM . Then, by Proposition 4.10(d),
W = Ker{η̂1 + η̂2, η̂

2 − η̂1}. As before (item (b)), one checks that β := (η̂1 + η̂2) ∧
(η̂2− η̂1) = η̂1∧ η̂2+ η̂1∧ η̂2+ η̂1∧ η̂1+ η̂2∧ η̂2 is SD =⇒ W is SD, but not principal
(the SD 2-planes are given by η̂1 ∧ η̂2 and η̂1 ∧ η̂2; see the proof of item (a) above).

(e) One checks that ν is SL3(R)-equivariant, Q
5 and T+

∗ M are SL3(R)-homogene-
ous manifolds, with the same stabilizer at m̃0 = (e3, e

3) and ν(m̃0); hence ν is a
diffeomorphism. It remains to show that ν∗D = D+. This is just a reformulation
of items (b) and (c) above. �

5. Projective geometry: Dancing pairs and projective rolling

We give here two related projective geometric interpretations of the Cartan-
Engel distribution (Q5,D): “dancing pairs” and “projective rolling”. We start in
Section 5.1 with the dancing condition, characterizing null curves in (M4,g). In
Section 5.2 we use this characterization for an elementary derivation of an explicit
coordinate formula for the conformal class of g. In Section 5.3 we give yet another
formula for the dancing metric g, this time in terms of the cross-ratio, a classical
projective invariant of 4 colinear points. This is followed in Section 5.4 by a study
of the relation between the projective structures of the members of a dancing pair
(the structures happily match up), which we use in Section 5.6 for deriving the
“dancing mate equation”. To illustrate all these concepts we study two examples:
the “dancing mates of the circle” (Section 5.7) and “dancing pairs with constant
projective curvature” (Section 5.8).

We mention also in Sect. 5.5 a curious geometric interpretation for (1) (hence of
the Cartan-Engel distribution) that we found during the proof of Proposition 5.9:
curves in R3 with constant “centro-affine torsion”.

The rest of the section (Section 5.9) is dedicated to projective rolling. Our mo-
tivation comes from the intrinsic geometric formulation of ordinary (Riemannian)
rolling, as appears in [5]. After making the appropriate definitions, the nullity
condition of the dancing metric (M4,g) becomes the “no-slip” condition for the
projective rolling of RP

2 along RP
2∗, self-dual null 2-planes become “projective

contact elements” of the two surfaces, and the condition of “parallel self-dual tan-
gent 2-plane” is the “no-twist” condition of projective rolling, expressed in terms of
the osculating conic of a plane curve and its developments, as appear in É. Cartan’s
book [6].

5.1. Projective duality and the dancing condition. Let RP2 := P(R3) be the
real projective plane, i.e., the space of 1-dimensional linear subspaces in R

3, with

π : R3 \ {0} → RP
2, q �→ Rq,

the canonical projection. If q = π(q) ∈ RP2, where q = (q1, q2, q3)t ∈ R3 \ {0}, we
write q = [q] and say that q1, q2, q3 are the homogeneous coordinates of q. Similarly,
RP2∗ := P((R3)∗) is the dual projective plane, with

π̄ : (R3)∗ \ 0 → RP
2∗, p �→ Rp,

the canonical projection, π̄(p) = [p].
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Figure 6. The envelope of a family of lines

A projective line in RP2 is the projectivization of a 2-dimensional linear sub-
space in R

3, i.e., the set of 1-dimensional subspaces of R
3 contained in a fixed

2-dimensional linear subspace of R3. The space of projective lines in RP2 is natu-
rally identified with RP2∗; to each p = [p] ∈ RP2∗ corresponds a projective line in
RP2, the projectivization of p0 = {q ∈ R3|pq = 0}, and each projective line in RP2

is of this form. Similarly, RP2 is naturally identified with the space of projective
lines in RP2∗; to each point q = [q] ∈ RP2 corresponds a projective line in RP2∗,
the projectivization of the 2-dimensional subspace q0 = {p ∈ (R3)∗|pq = 0}.

We say that (q, p) ∈ RP2 × RP2∗ are incident if q belongs to the projective
line in RP

2 corresponding to p (same as p belongs to the projective line in RP
2∗

corresponding to q). We also write this condition as q ∈ p. In homogeneous
coordinates this is simply pq = 0.

Given a smooth curve γ ⊂ RP2 (a 1-dimensional submanifold), the duality map
∗ : γ → RP

2∗ assigns to each point q ∈ γ its tangent line q∗ ∈ RP
2∗. The image of

γ under the duality map is the dual curve γ∗ ⊂ RP2∗. In homogeneous coordinates,
if γ is parametrized by q(t) = [q(t)], where q(t) ∈ R3 \{0}, then γ∗ is parametrized
by q∗(t) = [q∗(t)], where q∗(t) := q(t)× q′(t) ∈ (R3)∗ \ {0}. If γ is a smooth curve
without inflection points (points where q′′ ≡ 0mod q′; see Definition 5.22 below),
then γ∗ is smooth as well. More generally, inflection points of γ map to singular
(or “cusp”) points of γ∗, where (q∗)′ = 0.

Similarly, given a curve γ̄ ⊂ RP2∗, the duality map γ̄ → RP2 assigns to each
line p ∈ γ̄ its turning point p∗. In homogeneous coordinates, if γ̄ is parametrized
by p(t) = [p(t)], then its dual γ̄∗ ⊂ RP2 is parametrized by p∗(t) = [p∗(t)], where
p∗(t) = p(t)× p′(t).

Geometrically, γ̄ is a 1-parameter family of lines in RP2, and its dual γ̄∗ is the
envelope of the family (see Figure 6). Using the above formulas for the duality map,
it is easy to verify that, away from inflection points, (γ∗)∗ = γ; that is, p(t) is the
tangent line to γ̄∗ at p∗(t).

Definition 5.1. (See Figure 1 of Section 1.1.3.) A pair of parametrized curves
q(t), p(t) in RP2,RP2∗ (respectively) satisfies the dancing condition if for each t:

(1) (q(t), p(t)) is non-incident;
(2) if q′(t) �= 0 and p′(t) �= 0, then the tangent line q∗(t) at q(t) is incident to

the turning point p∗(t) of p(t).

Remark. In condition (2), if either q′ or p′ vanish, then q∗ or p∗ is not well-defined,
in which case, by definition, the curves satisfy the dancing condition.
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Proposition 5.2. The following conditions on a parametrized curve Γ(t) =
(q(t), p(t)) in M4 are equivalent:

(1) Γ(t) is a null curve in (M4,g);
(2) the pair of curves q(t), p(t) satisfies the dancing condition.

Proof. We use the notation of the proof of Proposition 4.10(d). Let σ be a lift
of Γ to G = SL3(R) (see diagram (17) of Section 4.4). Then (q(t),p(t)) :=
(E3(σ(t)), E

3(σ(t))), σ∗ηa = sadt, σ∗ηb = sbdt. If either q
′ or p′ vanish, then either

(s1, s2) = (0, 0) or (s1, s2) = (0, 0). Hence, by Proposition 4.10(a), g(Γ′,Γ′) =
2sas

a = 0, so (1) and (2) are both satisfied. If neither q′ nor p′ vanishes, then
q∗ = [q∗], p∗ = [p∗], where

q∗ = q× q′ = E3 × E′
3 = E3 × Eas

a = s1E2 − s2E1,
p∗ = p× p′ = E3 × (E3)′ = −E3 × Ebsb = −s1E2 + s2E1.

The dancing condition is then q∗p∗ = 0, i.e., (s1E2 − s2E1)(−s1E2 + s2E1) =
−sas

a = 0, which is the nullity condition on Γ. �

Remark. It is clear that both the dancing metric and the dancing condition are
SL3(R)-invariant and homogeneous in the velocity Γ′ of a parametrized curve Γ
in M4, thus defining each a field of tangent cones on M4. It is also clear from
the formula of the isotropy representation (23) that M4 admits a unique SL3(R)-
invariant conformal metric (of whatever signature). The main point of the last
proposition, perhaps less obvious, is then that the dancing condition is quadratic
in the velocities Γ′, thus defining some conformal metric on M4. This point can
be proved in an elementary fashion, as we now proceed to show, and thus gives an
alternative proof of the last proposition.

5.2. A coordinate formula for the conformal class of the dancing metric.
Let us use Cartesian coordinates (x, y) for a point q ∈ RP2 (in some affine chart)
and the coordinates (a, b) for a line y = ax+ b (a point p ∈ RP2∗). If q(t) is given
by (x(t), y(t)), then its tangent line y = Ax+B at time t satisfies

(28) y(t) = Ax(t) +B, y′(t) = Ax′(t).

Likewise, if p(t) is a curve in RP
2∗ given by y = a(t)x + b(t), then its “turning

point” (X,Y ) at time t satisfies

(29) Y = a(t)X + b(t), 0 = a′(t)X + b′(t).

The dancing condition (“the turning point of p(t) lies on the tangent line to
q(t)”) is then

Y = AX + B.

Expressing A,B,X, Y in the last equation in terms of x, y, a, b and their derivatives
via (28)-(29), we obtain a′[(y − b)x′ − xy′] + b′[ax′ − y′] = 0. We have shown the
following:

Proposition 5.3. The dancing metric g on M is given in the above local coordi-
nates x, y, a, b by

g ∼ da[(y − b)dx− xdy] + db[adx− dy],

where ∼ denotes conformal equivalence (equality up to multiplication by some non-
vanishing function on M).
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Figure 7. The cross-ratio definition of the dancing metric

Remark. In fact, although somewhat less elementary, it is not hard to show that the
missing conformal factor on the right hand side of the above formula is a constant
multiple of (y − ax− b)−2.

5.3. A cross-ratio formula for the dancing metric.

Definition 5.4. The cross-ratio of 4 distinct points a1, a2, a3, a4 on a line � ⊂ RP2

is

[a1, a2, a3, a4] :=
x1 − x3

x1 − x4
· x4 − x2

x3 − x2
,

where xi is the coordinate of ai with respect to some affine coordinate x on �.

It is well-known, and not hard to verify, that this definition is independent of
the affine coordinate chosen on � and that it is SL3(R)-invariant.

Now consider a non-degenerate parametrized curve Γ in M4 and two points on
it, Γ(t) = (q(t), p(t)) and Γ(t+ ε) = (q(t+ ε), p(t+ ε)). These determine 4 colinear
points q, qε, q̄, q̄ε, where q := q(t), qε = q(t+ ε), and q̄, q̄ε are the intersection points
of the two lines p := p(t), pε := p(t+ ε) with the line � through q, qε (respectively),
as shown in Figure 7. (The line � is well-defined, for small enough ε, by the non-
degeneracy assumption on Γ.)

Let us expand the cross-ratio of q, qε, q̄, q̄ε in powers of ε.

Proposition 5.5. Let Γ(t) be a non-degenerate parametrized curve in M4, let
q, qε, q̄, q̄ε be as defined above, and let v = Γ′(t). Then

[q, qε, q̄, q̄ε] = 1− 1

2
ε2g(v, v) +O(ε3),

where g is the dancing metric on M , as defined in Proposition 4.1.

Proof. Lift Γ(t) to a curve Γ̃(t) = (q(t),p(t)) in Q. Then � = [q×qε], q̄ = [q̄], and
q̄ε = [q̄ε], where

q̄ = (q× qε)× p = qε − (pqε)q,

q̄ε = (q× qε)× pε = (pεq)qε − q.

Now it is easy to show that if 4 colinear points a1, . . . , a4 ∈ RP2 are given by
homogeneous coordinates ai ∈ R

3 \ 0, such that a3 = a1 + a2, a4 = ka1 + a2,
then [a1, a2, a3, a4] = k (see for example [17]). Using this formula and the above
expressions for q̄, q̄ε, we obtain, after some manipulations,

[q, qε, q̄, q̄ε] =
1

(pqε)(pεq)
= 1 + ε2(q× q′)(p× p′) +O(ε3).

Now we use the expression for g of Proposition 4.2. �
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5.4. Dancing pairs and their projective structure.

Definition 5.6. A dancing pair is a pair of parametrized curves q(t), p(t) in RP
2,

RP2∗ (respectively) obtained from the projections q(t) = [q(t)], p(t) = [p(t)] of an
integral curve (q(t),p(t)) of (Q5,D). If q(t), p(t) is a dancing pair we say that p(t)
is a dancing mate of q(t).

Equivalently, by Theorem 4.8, this is the pair of curves one obtains from a non-
degenerate null curve in M4 with parallel self-dual tangent plane when projecting
it to RP2 and RP2∗.

We already know that dancing pairs satisfy the dancing condition. We now
want to study further the projective geometry of such pairs of curves, using the
classical notions of projective differential geometry, such as the projective structure
of a plane curve, projective curvature, and projective arc length. We will derive
a 4th order ODE whose solutions give the dancing mates p(t) of a given (locally
convex) curve q(t). We will give several examples of dancing pairs, including the
surprisingly non-trivial case of the dancing mates associated with a point moving
on a circle.

Differential projective geometry is not so well-known nowadays, so we begin with
a brief review of the pertinent notions. Our favorite references are É. Cartan’s book
[6] and the more modern references of Ovsienko-Tabachnikov [24] and Konovenko-
Lychagin [19].

The projective structure and arc length. There are three basic projective
invariants of an embedded plane curve γ ⊂ RP2: its projective structure, the pro-
jective arc length, and the projective curvature. They form a complete set of pro-
jective invariants: a diffeomeorphism of plane curves that preserves the invariants
is a restriction of a projective transformation in SL3(R).

Definition 5.7. A projective structure on a curve γ (a 1-dimensional manifold)
is a maximal atlas of charts (Uα, tα), where {Uα} is an open cover of γ and the
tα : Uα → RP1, called projective coordinates, are embeddings whose transition
functions tα ◦ t−1

β are given by (restrictions of) Möbius transformation in PGL2(R).

For example, stereographic projection from any point q on a conic C ⊂ RP2 to
some line � (non-incident to q) gives C a projective structure, independent of the
point q and line � chosen (a theorem attributed to Steiner; see [24, p. 7]).

An embedded curve γ ⊂ RP
2 is locally convex if it has no inflection points

(points where the tangent line has a 2nd order contact with the curve). Every
locally convex curve γ ⊂ RP2 inherits a canonical projective structure. There are
various equivalent ways to define this projective structure, but we will give the most
classical one, using the tautological ODE associated with a plane curve (we follow
here closely Cartan’s book [6]).

Let q(t) be a regular parametrization of an embedded curve γ ⊂ RP2, i.e., q′ �= 0,
and q(t) a lift of q(t) to R3 \ {0}, i.e., q(t) = [q(t)]. Then local-convexity (absence
of inflection points) is equivalent to det(q(t),q′(t),q′′(t)) �= 0, so there are unique
a0, a1, a2 (functions of t) such that

(30) q′′′ + a2q
′′ + a1q

′ + a0q = 0.

The last equation is called the tautological ODE associated with γ (or rather its
parametrized lift q(t)). Solving for the unknowns a0, a1, a2 (by Kramer’s rule), we
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get

a0 = −J

I
, a1 =

K

I
, a2 = −I ′

I
,

where

I := det(q,q′,q′′), J = det(q′,q′′,q′′′), K := det(q,q′′,q′′′).

The tautological ODE equation (30) depends on the choice of parametrized lift
q(t). One can modify q(t) in two ways:

• Rescaling: q(t) �→ q̄(t) = λ(t)q(t), where λ(t) ∈ R∗. This changes I �→ λ3I,
so if I �= 0 (no inflection points) one can rescale (uniquely) to I = 1, then
obtain a2 = 0.

• Reparametrization: t �→ t̄ = f(t), for some diffeomorphism f . This changes
I �→ (f ′)3I, so again, if I �= 0, then one can reparametrize (uniquely up to
an additive constant) to I = 1 so as to obtain a2 = 0.

So one can achieve a tautological ODE for γ with a2 = 0 by either rescaling or
reparametrization. Can we combine reparametrization and rescaling so as to reduce
the tautological ODE to q′′′ + a0q = 0?

The answer is “yes” and the resulting ODE is called the Laguerre-Forsyth form
(LF) of the tautological ODE for γ. A straightforward calculation ([6], pp. 48-50)
shows that

Proposition 5.8. Given a locally convex curve γ ⊂ RP2 with a parametrized lift
q(t) satisfying q′′′ + a1q

′ + a0q = 0,

(1) one can achieve the LF form by modifying q(t) to q̄(t̄) = f ′(t)q(t), where
t̄ = f(t) solves

S(f) =
a1
4

and where

S(f) =
1

2

f ′′′

f ′ − 3

4

(
f ′′

f ′

)2

is the Schwarzian derivative of f .
(2) The LF form is unique up to the change q(t) �→ q̄(t̄) = f ′(t)q(t), where

t̄ = f(t) is a Möbius transformation. Hence the LF form defines a projective
structure on γ.

(3) Given an LF form q′′′ + a0q = 0 for γ, the one form dσ := (a0)
1/3dt is

a well-defined 1-form on γ (independent of the particular LF form chosen),
called the projective arc length [6, p. 50].

Remark. It is possible to extend the definition of the projective structure to all
embedded curves in RP2, not necessarily locally convex (see [13]).

The points on γ where the projective arc length vanishes, dσ = 0, are called sex-
tactic points and are characterized geometrically as the points where the osculating
conic to the curve (the conic which “best approximates” the curve around a given
point) has higher order of contact with the curve than expected (5th or higher).
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The projective curvature. The projective curvature κ of a curve γ ⊂ RP2 is
a function defined along γ, away from sextactic points, where dσ = 0. Away
from such points one can use σ as a natural parameter on γ and compare it to
a projective parameter t, given by the projective structure (see Proposition 5.8).
Namely, σ defines a local diffeomorphism RP1 → γ, whose Schwarzian derivative is
the quadratic form κ(σ)(dσ)2. The pair (dσ, κ) forms a complete set of projective
invariants for curves in RP

2 (for which they are defined), analogous to the square
of the arc length element and curvature for regular curves in the Euclidean plane.
For curves with constant projective curvature, the constant κ by itself is a complete
invariant (same as in the Euclidean case). Along a conic dσ ≡ 0, and so κ is not
defined.

Remark. In the book of Ovsienko-Tabachnikov [24] (a beautiful book; we highly
recommend it) the term “projective curvature” is used to denote what we call here
the projective structure, and it is stated that “the projective curvature is, by no
means, a function on the curve” ([24, p. 14], the online version). This can be
somewhat confusing if one does not realize the difference in usage of terminology.
We adhere to the classical terminology, as in Cartan’s book [6].

Example. A classical application of the last proposition is to show that the du-
ality map γ → γ∗ preserves the projective structure and curvature but reverses the
projective arc length (provided both γ and γ∗ are locally convex): parametrize γ by
[q(t)] in the LF form, i.e., q′′′ + a0q = 0; then γ∗ is parametrized by [p(t)], where
p(t) = q(t)× q′(t). Then one can calculate easily that p(t) satisfies p′′′ − a0p = 0,
which is also in the LF form. Hence t is a common projective parameter on γ, γ∗,
so [q(t)] �→ [p(t)] preserves the projective structure but reverses the projective arc
length.

Proposition 5.9. Let γ, γ̄ be a pair of non-degenerate curves in RP
2,RP2∗ (respec-

tively), parametrized by a dancing pair q(t), p(t) (i.e., q(t) = [q(t)], p(t) = [p(t)],
where p′ = q × q′,pq = 1). Then the map γ → γ̄, q(t) �→ p(t) is projective, i.e.,
preserves the natural projective structures on γ, γ̄ induced by their embedding in
RP

2,RP2∗ (respectively).

Proof. According to the last proposition, it is enough to show that (q(t),p(t)) can
be reparametrized in such a way that q(t),p(t) each satisfy a tautological ODE
with a2 = 0 and the same a1.

Lemma 5.10. Let (q(t),p(t)) ∈ R3,3 be a solution of p′ = q × q′, pq = 1, with
I(q) = det(q,q′,q′′) �= 0 and I(p) = det(p,p′,p′′) �= 0. Let I = I(q), Ī =
I(p), J = J(q), J̄ = J(p), etc. Then

(1) p′q = pq′ = p′q′ = pq′′ = p′′q = 0.
(2) Ip = q′ × q′′, Īq = p′ × p′′.
(3) q′ = −p× p′.
(4) I2 + J = Ī2 − J̄ = 0.
(5) Ī = I, J̄ = −J, K̄ = K.
(6) ā2 = a2, ā1 = a1, ā0 = −a0.

Proof. (1) From p′ = q × q′ =⇒ p′q = p′q′ = 0. From pq = 1 =⇒ p′q + pq′ =
0 =⇒ pq′ = 0 =⇒ 0 = (pq′)′ = p′q′ + pq′′ = pq′′. Similarly, 0 = (p′q)′ =
p′′q+ p′q′ = p′′q.
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(2) From (1), pq′ = pq′′ = 0 =⇒ cp = q′ × q′′ for some function c (we assume
I �= 0, hence q′ × q′′ �= 0). Taking the dot product of the last equation with q
and using pq = 1 we get c = I =⇒ Ip = q′ × q′′.

Next, from (1), p′q = p′′q = 0 =⇒ c̄q = p′×p′′ for some function c̄ (here we
assume Ī �= 0). Take the dot product with p and get c̄ = Ī =⇒ Īq = p′ × p′′.

(3) (This was already shown in Lemma 4.12, but we give another proof here.) From
(1), pq′ = p′q′ = 0 =⇒ q′ = fp× p′ for some function f . Cross-product with
q, use the vector identity

(p1 × p2)× q = (p1q)p2 − (p2q)p1,

and get −p′ = q′ × q = f(p × p′) × q = f [(pq)p′ − (p′q)p] = fp′ =⇒ f =
−1 =⇒ q′ = −p× p′.

(4) Ip = q′×q′′,p′ = q×q′ =⇒ I ′p+ I(q×q′) = q′×q′′′. Now dot product with
q′′, use pq′′ = 0, and get I2 + J = 0. Very similarly, get (Ī)2 − J̄ = 0.

(5) Use the vector identity

det(q1 × q2,q2 × q3,q3 × q1) = [det(q1,q2,q3)]
2

to get IĪ = det(Ip,p′,p′′) = det(q′ × q′′,q× q′,q× q′′) = I2, hence I = Ī .
From (4), J̄ = Ī2 = I2 = −J.
From p′ = q×q =⇒ p′′ = q×q′′ =⇒ p′′q′′ = 0 =⇒ p′′′q′′+p′′q′′′ = 0. Now

K = det(q,q′′,q′′′) = (q × q′′)q′′′ = p′′q′′′, K̄ = det(p,p′′,p′′′) = −p′′′q′′,
hence K − K̄ = p′′q′′′ + p′′′q′′ = (p′′q′′)′ = 0.

(6) Immediate from item (5) and the definition of a0, a1, a2. �

Now γ is locally convex, so we can reparametrize q(t) to achieve I(q) = 1. The
equation p′ = q×q′ is reparametrization invariant, so it still holds. It follows from
item (5) of the lemma that I(p) = 1 as well, hence both a2 = ā2 = 0. From item (6)
of the lemma we have that a1 = ā1. Hence the equation for projective parameter
S(f) = a1/4 is the same equation for both curves q(t) and p(t). �

5.5. An aside: Space curves with constant “centro-affine torsion”. We
mention here in passing a curious geometric interpretation of a formula that ap-
peared during the proof of Proposition 5.9 (see part (4) of Lemma 5.10):

(31) J(q) + I2(q) = 0,

where

I(q) = det(q,q′,q′′), J(q) = det(q,q′′,q′′′).

Effectively, this formula means that it is possible to eliminate the p variable from
our system of equations (2), reducing them to a single 3rd order ODE for a space
curve q(t).

In fact, it is not hard to show that (31) is equivalent to (2); given a non-degenerate
(I(q) �= 0) solution q(t) to (31), use the “moving frame” q(t),q′(t),q′′(t) to define
p(t) by

(32) p(t)q(t) = 1, p(t)q′(t) = 0, p(t)q′′(t) = 0.

Then check that (31) implies that (q(t),p(t)) is a solution to (2).
The curve p(t) associated to a non-degenerate curve q(t) via (32) represents the

osculating plane Ht along q(t), via the formula Ht = {q|p(t)q = 1}.
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Figure 8. A projective involute which is not a dancing pair

For any space curve (with I �= 0) the quantity J = J/I2 is parametrization-
independent and SL3(R)-invariant, called by some authors the (unimodular) centro-
affine torsion [23]. Hence (2) can also be interpreted as the equations for space
curves with J = −1.

5.6. Projective involutes and the dancing mate equation. The reader may
suspect now that the necessary condition of Proposition 5.9 is also sufficient for a
pair of curves to be a dancing pair. This is not so, as the following example shows.

Example (See Figure 8). Let γ, γ̄ be the pair consisting of a circle q(t) =

[cos(t), sin(t), 1] and the dual of the concentric circle p∗(t) = [
√
2 cos(t + π/4),√

2 sin(t+ π/4), 1]. One can check easily that (q(t), p(t)) satisfies the dancing con-
dition (i.e., defines a null curve in M4) and that the map q(t) �→ p(t) is projective
(as the restriction to γ of an element in SL3(R): a dilation followed by a rotation).
Nevertheless, the pair of curves q(t), p(t) is not a dancing pair (there is no way to
lift (q(t), p(t)) to a solution (q(t),p(t)) of pq = 1,p′ = q× q′).

We are going to study carefully the situation now and find an extra condition
that the map q(t) �→ p(t) should satisfy for the pair of curves q(t), p(t) to be a
dancing pair.

Definition 5.11. Let γ ⊂ RP2 be a locally convex curve. A projective involute of
γ is a smooth map i : γ → RP2 such that

• for all q ∈ γ, i(q) ∈ q∗ (the tangent line to γ at q),
• i is a projective immersion.

The last phrase means that i is an immersion and the resulting local diffeomor-
phism between γ and its image is projective with respect to the natural projective
structures on γ and i(γ), defined by their embedding in RP2.

Proposition 5.12. Near a non-inflection point of a curve γ ⊂ RP2 there is a 4-
parameter family of projective involutes, given by the solutions of the following 4th
order ODE: if γ is given by a tautological ODE in the LF form A′′′ + rA = 0, then
its projective involutes are given by [A(t)] �→ [B(t)], where B(t) = (C−y′(t))A(t)+
y(t)A′(t), C is an arbitrary constant, and y(t) is a solution of the ODE

y(4) + 2
y′′′(y′ − C)

y
+ 3ry′ + r′y = 0.
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Proof. Calculate, using A′′′ + rA = 0:

B = xA+ yA′,

B′ = x′A+ (x+ y′)A′ + yA′′,

B′′ = (x′′ − ry)A+ (2x′ + y′′)A′ + (x+ 2y′)A′′,

B′′′ = (x′′′ − r′y − r(x+ 3y′))A+ (3x′′ − ry + y′′′)A′ + 3(x′ + y′′)A′′.

HenceB×B′′′ = 0 =⇒ y(x′+y′′) = x(x′+y′′) = x(3x′′+y′′′)−y(x′′′−3ry′−r′y) = 0.
Then y �= 0 =⇒ x′ + y′′ = 0 =⇒ x+ y′ = C, for some constant C, hence

y(4) = 2
y′′′(C − y′)

y
− 3ry′ − r′y.

This gives a 5-parameter family of solutions. Then imposing, say, det(B,B′, B′′) =
1 reduces it to a 4-parameter family (removing the scaling ambiguity on B). �

Now given a non-degenerate γ ⊂ RP
2, parametrized by q(t), we know, by Propo-

sition 5.9 and the preceding example, that each of its dancing mates p(t) gives rise
to a projective involute q(t) �→ p(t) �→ p∗(t). The dancing mates of γ form a 3-
parameter sub-family of the projective involutes, as they are obtained by lifting γ
horizontally via Q5 → RP

2, followed by the projection Q5 → RP
2∗. We are thus

looking for a single equation characterizing projective involutes of γ that correspond
to dancing mates.

Proposition 5.13. Let γ ⊂ RP
2 be a non-degenerate curve with a tautological

ODE in LF form A′′′ + rA = 0. Let i : γ → RP2 be a projective involute given in
homogeneous coordinates by B = xA+ yA′. Then b = B ×B′ is a dancing mate of
A if and only if x+y′ = 0. That is, C = 0 in the previous proposition so y satisfies
the ODE

y(4) + 2
y′′′y′

y
+ 3ry′ + r′y = 0.

Proof. Let (q(t),p(t)) be an integral curve of (Q5,D). Then p∗ = p × p′ = −q′.
Then, to bring both q,p∗ to LF form we need the same projective parameter
t̄ = f(t), so that A(t̄) = f ′(t)q(t), B(t̄) = f ′(t)p∗(t) = −f ′(t)q′(t). Taking the
derivative of A(t̄) = f ′(t)q(t) with respect to t, we get f ′(dA/dt̄) = f ′′q + f ′q′ =
(f ′′/f ′)A−B, hence B = xA+y(dA/dt̄), with x = f ′′/f ′, y = −f ′ =⇒ x+dy/dt̄ =
f ′′/f ′ − f ′′/f ′ = 0. �

Remark. The geometric meaning of the condition x+ y′ = 0 is the following. Since
B = xA+ yA′ then B′ = x′A+ (x+ y′)A′ + yA′′. Hence the condition x+ y′ = 0
means that B′ is the intersection point of the line b and the line a′ = A×A′′ (the
line connecting A and A′′). In Section 5.9 below, we will further interpret this
condition in terms of the osculating conic and Cartan’s developments.

5.7. Example: Dancing around a circle. Take γ to be a conic, e.g. a circle,
A = (1 + t2, 2t, 1− t2). Then A′′′ = 0, so A(t) is in the LF form with r = 0. Then
the dancing mate equation in this case is

y(4) + 2
y′′′y′

y
= 0.
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Any quadratic polynomial solves this (since y′′′ = 0), and the corresponding involute
B = −y′A+ yA is a straight line. To show this, take y = at2 + bt+ c. Then

B = (bt2 + 2(c− a)t− b,−2at2 + 2c,−bt2 − 2(a+ c)t− b),

which is contained in the 2-plane

(a+ c)x+ by + (c− a)z = 0,

so projects into a straight line in RP2.
If y is not a quadratic polynomial, then in a neighborhood of t where y′′′(t) �= 0,

0 =
y(4)

y′′′
+ 2

y′

y
= [log(y′′′y2)]′ = 0 =⇒ y′′′y2 = const.

Now we can assume, without loss of generality, that const. = 1 (multiplying y by a
constant does not affect [B(t)]), so we end up with the ODE

y′′′y2 = 1.

We do not know how to solve this equation explicitly, so we do it numerically. The
result is Figure 2 of Section 1.1.3 above.

A few words about this drawing: we make the drawing in the XY plane, where
the circle is X2+Y 2 = 1 and dancing curves around it are obtained from solutions
of y′′′y2 = 1 via the formulas

B = −y′A+ yA′ − y′
(
1 + t2 − 2tz, 2(t− z), 1− t2 − 2tz

)
,

(X,Y ) =

(
B2

B1
,
B3

B1

)
=

(2(t− z), 1− t2 − 2tz)

1− t2 − 2tz
, z = y/y′.

The projective coordinate t on a conic C misses a point (the point at “infinity”),
so when integrating this equation numerically, one needs a second coordinate, t̄ =
f(t) = 1/t, and the transformation formulas ȳ = f ′y, etc.

5.8. Example: Dancing pairs of constant projective curvature.
The idea: fix a point (q0,p0) ∈ Q and an element Y ∈ sl3(R) such that Y ·
(q0,p0) is D-horizontal. That is, p0dq and dp − q0 × dq both vanish on Y ·
(q0,p0) = (Y q0,−p0Y ). The subspace of such Y has codimension 3 in sl3(R),
i.e. is 5-dimensional, since SL3(R) acts transitively on Q and D has corank 3.

Then the orbit of (q0,p0) under the flow of Y ,

(q(t),p(t)) = exp(tY ) · (q0,p0) = (exp(tY )q0,p0exp(−tY ))

is an integral curve of D (this follows from the SL3(R)-invariance of D). The
projected curves q(t) = [q(t)], p(t) = [p(t)] are then a dancing pair. Each of the
curves is an orbit of the 1-parameter subgroup exp(tY ) of SL3(R). Such curves
are called W -curves or “pathcurves”. They are very interesting curves, studied by
Klein and Lie in 1871 [20]. They are: straight lines and conics, exponential curves,
logarithmic spirals, and “generalized parabolas” (see below for explicit formulas).
This class of curves (except lines and conics, considered degenerate) coincides with
the class of curves with constant projective curvature κ.
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The classification of curves with constant projective curvature κ, up to projective
equivalence, is as follows. There are two generic cases, divided (strangely enough)
by the borderline value κ0 = −3(32)−1/3 ≈ −0.94:

• κ > κ0: logarithmic spirals, r = eaθ, a > 0 (in polar coordinates);
• κ = κ0: the exponential curve y = ex;
• κ < κ0: generalized parabolas, y = xm, m > 0, m �= 2, 1, 1/2.

The curves. Take q0 = (0, 0, 1)t, p0 = (1, 0, 0). Then Y · (q0,p0) ∈ D(q0,p0),
Y ∈ sl3(R), implies that

Y =

(
A v
v∗ 0

)
, v =

(
v1
v2

)
, v∗ = (v2,−v1), A ∈ sl2(R).

Let H0
∼= SL2(R) be the stabilizer subgroup of (q0,p0). It acts on Y by the adjoint

representation,
(A,v) �→ (hAh−1, hv), h ∈ SL2(R).

Then, reducing by this SL2(R)-action as well as by rescaling, Y �→ λY, λ ∈ R
∗

(this just reparametrizes the orbit), and removing orbits which are fixed points and
straight lines, we are left with a list of “normal forms” of Y (two one-parameter
families and one isolated case):

Y1 :=

⎛⎝ 1 0 1
0 −1 a
a −1 0

⎞⎠ , a > 0,(33a)

Y2 :=

⎛⎝ 0 1 b
−1 0 0
0 −b 0

⎞⎠ , b > 0,(33b)

Y3 :=

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠ .(33c)

Proposition 5.14. The pair of curves [q(t)], [p(t)] in RP2,RP2∗ (respectively),
where q(t) = exp(tY )q0, p(t) = p0 exp(−tY ), q0 = (0, 0, 1)t, p0 = (0, 0, 1), and
Y is any of the matrices in equations (33) above, is a dancing pair of curves with
constant projective curvature κ (same value of κ for each member of the pair). All
values of κ ∈ R can be obtained in such a way.

Proof. A matrix Y with tr(Y ) = 0 has characteristic polynomial of the form
det(λI − Y ) = λ3 + a1λ+ a0. Then, using Y 3 + a1Y + a0I = 0 (Cayley-Hamilton),
we have that q(t) := exp(tY )q0 satisfies the tautological ODE

q′′′ + a1q
′ + a0q = 0.

From Cartan’s formulas ([6], pp. 69 and 71), we then find easily

κ = a1a
−2/3
0 /2.

Now in our case, the characteristic polynomials are

(a) λ3 − λ− 2a, (b) λ3 + λ− b2, (c) λ3 − 1;

hence we get projective curvatures

(a) κ = −(32a2)−1/3, (b) κ = b−4/3/2, (c) κ = 0.
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Figure 9. A dancing pair of logarithmic spirals with κ = 0

We thus get all possible values of κ. �

To visualize such a pair, we draw in Figure 9 the pair (q(t), p∗(t)), where p∗(t) =
[p∗(t)] is the curve dual to p(t), given by p∗(t) = p(t)× p′(t) = −Y q(t).

5.9. Projective rolling without slipping and twisting.

5.9.1. About Riemannian rolling. Let us first describe ordinary (Riemannian) roll-
ing, following [5, p. 456]. Let (Σi,gi), i = 1, 2, be two Riemannian surfaces. The
configuration space for rolling the two surfaces along each other is the space RC of
Riemannian contact elements (u1, u2, ψ), where ui ∈ Σi and

ψ : Tu1
Σ1 → Tu2

Σ2

is an isometry. RC is a 5-manifold, and if Σi are oriented, then RC is the disjoint
union RC = RC+ � RC−, where each RC± is a circle bundle over Σ1 × Σ2 in an
obvious way, so that RC+ consists of the orientation preserving Riemannian contact
elements and RC− are the orientation reversing.

A parametrized curve (u1(t), u2(t), ψ(t)) in RC satisfies the non-slip condition if

u′
2(t) = ψ(t)u′

1(t)

for all t. It satisfies also the no-twist condition if for every parallel vector field v1(t)
along u1(t),

v2(t) = ψ(t)v1(t)

is parallel along u2(t), where “parallel” is taken with respect to the Levi-Civita
connection of the corresponding metric.

It is easy to show that these two conditions define together a rank 2 distribution
D ⊂ TRC which is (2, 3, 5) unless the surfaces are isometric ([5], p. 458). For some
special pairs of surfaces (e.g., a pair of round spheres of radius ratio 3 : 1) D is
maximally symmetric, i.e., admits g2-symmetry (maximum possible). Recently [3],
some new pairs of surfaces were found where the corresponding rolling distribution
(RC,D) admits g2-symmetry, but the general case is not settled yet.

Now in [3] it was noticed that Riemannian rolling can be reformulated as follows.
Let M4 := Σ1 × Σ2, equipped with the difference metric g = g1 
 g2. This is
a pseudo-Riemannian metric of signature (2, 2). Then one can check easily that
ψ : Tu1

Σ1 → Tu2
Σ2 is an isometry if and only if its graph

Wψ = {(v, ψv)|v ∈ Tu1
Σ1} ⊂ Tu1

Σ1 ⊕ Tu2
Σ2 	 T(u1,u2)M

4
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Figure 10. The natural isomorphism Ψq,p : � �→ �∗

is a non-principal null 2-plane; i.e., a null 2-plane not of the form Tu1
Σ1 ⊕ {0} or

{0} ⊕ Tu2
Σ2 (compare with Corollary 4.11a). This defines an embedding of RC in

the total space of the twistor fibration TM4 → M4 of (M4,g) (see Section 4.2.4).
Furthermore, if Σi are oriented, then one can orient M4 so that RC+ (orientation
preserving ψ’s) is mapped to the self-dual twistor space T+M4 and RC− to the anti-
self-dual twistor space T−M4. Finally, it is shown in [3] that under the embedding
RC ↪→ TM4, the rolling distribution D on RC goes over to the twistor distribution
associated with Levi-Civita connection of (M4,g).

In what follows, we give a similar “rolling interpretation” of the self-dual twistor
space of the dancing space (M4,g), and thus, via the identification Q5 ↪→ T+M4

of Theorem 4.9, a “rolling interpretation” of our equations (2). The novelty here
is that the dancing metric (M4,g) is irreducible, i.e., not a difference metric as in
the case of Riemannian rolling. And yet, it can be given a rolling interpretation of
some sort and in addition admits g2-symmetry.

We try to keep our terminology as close as possible to the above terminology of
Riemannian rolling in order to make the analogy transparent.

5.9.2. A natural isomorphism of projective spaces. A projective isomorphism of two
projective spaces P(V ), P(W ) is the projectivization [T ] of a linear isomorphism T :

V
∼−→ W of the underlying vector spaces, [T ] : [v] �→ [Tv]. Two linear isomorphisms

T, T ′ : V → W induce the same projective isomorphism if and only if T ′ = λT for
some λ ∈ R∗.

For each non-incident pair (q, p) ∈ M4 we define a projective isomorphism

(34) Ψq,p : P(TqRP
2)

∼−→ P(TpRP
2∗)

by first identifying P(TqRP
2) with the pencil of lines through q and P(TpRP

2∗) with
the points on the line p. We then send a line � through q to its intersection point
�∗ with p. One can verify easily that Ψq,p is a projective isomorphism. See Figure
10.

5.9.3. Projective contact.

Definition 5.15. A projective contact element between RP2 and RP2∗ is a triple
(q, p, ψ) where (q, p) ∈ M4 and

ψ : TqRP
2 → TpRP

2∗

is a linear isomorphism covering the natural projective isomorphism Ψq,p of (34);
that is, [ψ] = Ψq,p. The set of projective contact elements forms a principal R∗-
fibration PC → M4, (q, p, ψ) �→ (q, p).

Remark. We only allow projective contacts between RP2 and RP2∗ at a non-incident
pair (q, p) ∈ M4.
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Let us look at the projective contact condition on ψ. We take a non-zero v ∈
TqRP

2 and let w = ψ(v). To v corresponds a line � through q, tangent to v at q.
Likewise, to w corresponds a point �∗ ∈ p, whose dual line in RP

2∗ (the pencil of
lines through �∗) is tangent to w at p. The projective contact condition on ψ is
then the incidence relation �∗ ∈ �. But this is precisely the dancing condition; i.e.,
(v, w) ∈ T(q,p)M

4 is a null vector. In other words, the graph of ψ,

Wψ = {(v, ψ(v)) | v ∈ TqRP
2} ⊂ TqRP

2 ⊕ TpRP
2∗ = T(q,p)M

4,

is a null 2-plane. More precisely,

Proposition 5.16. A linear isomorphism ψ : TqRP
2 → TpRP

2∗ is a projective
contact if and only if its graph Wψ ⊂ T(q,p)M

4 is a non-principal self-dual null
2-plane (see Corollary 4.11).

Proof. We recall from Section 4.4: a local section σ of j : SL3(R) → M around
(q, p) ∈ M provides a null coframing η̂ := σ∗η = (η̂1, η̂2, η̂1, η̂2)

t such that TqRP
2 ⊕

{0} = {η̂1 = η̂2 = 0}, {0} ⊕ TpRP
2∗ = {η̂1 = η̂2 = 0} and g = 2η̂a η̂

a. Let
f = (f1, f2, f

1, f2) be the dual framing, ψ(fa) = ψabf
b. Now the projective contact

condition is ψ(v)(v) = 0 =⇒ ψab = −ψba. Say ψ(f1) = λf2, ψ(f2) = −λf1 for some
λ ∈ R∗ =⇒ Wψ = Span{f1+λf2, f2−λf1} = Ker{λη̂1− η̂2, λη̂

2− η̂1}. The 2-form
corresponding to Wψ is thus β = (λη̂1 − η̂2)∧ (λη̂2 + η̂1). Using formula (26a), this
is easily seen to be the general form of an SD non-principal null 2-plane. �

Corollary 5.17. The map ψ �→ Wψ defines an SL3(R)-equivariant embedding

PC ↪→ T
+M4

whose image is the set T+
∗ M

4 of non-principal SD 2-planes in TM4 (the non-
integrable locus of the twistor distribution D+).

Now combining this last corollary with Theorem 4.9, we obtain the identifications

Q5 	 T
+
∗ M

4 	 PC.

Tracing through our definitions, we find

Proposition 5.18. There is an isomorphism of principal R∗-bundles over M4,

Q5 ∼−→ PC,

sending (q,p) ∈ Q5 to the projective contact element (q, p, ψ), where q = [q], p =
[p], and ψ : TqRP

2 → TpRP
2∗ is given in homogeneous coordinates by

ψ([v]) = [q× v].

That is, if v = dπq(v), then ψ(v) = dπ̄p(q× v).

Definition 5.19. A parametrized curve (q(t), p(t), ψ(t)) in PC satisfies the no-slip
condition if

ψ(t)q′(t) = p′(t)

for all t.

Proposition 5.20. The projection PC → M4 defines a bijection between curves in
PC satisfying the no-slip condition and non-degenerate null curves in M4.
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Figure 11. An inflection point

Proof. If (q(t), p(t), ψ(t)) satisfies the no-slip condition, then (q′(t), p′(t)) ∈ Wψ(t),
which is a null plane; hence (q′(t), p′(t)) is a null vector. Conversely, if (q(t), p(t))
is null and non-degenerate, then for all t there is a unique non-principal SD null
2-plane Wt containing the null vector (q′(t), p′(t)). By the previous proposition,
there is a unique ψ(t) such that Wt = Wψ(t); hence ψ(t)q′(t) = p′(t) and so
(q(t), p(t), ψ(t)) satisfies the no-slip condition. �
5.9.4. The normal acceleration.

Definition 5.21. Given a parametrized regular curve q(t) in RP2, i.e., q′(t) �= 0,
its normal acceleration, denoted by q′′, is a section of the normal line bundle of the
curve, defined as follows: lift the curve to q(t) in R3 \ 0, then let

q′′ := dπq(q
′′) (mod q′),

where π : R3 \ 0 → RP2 is the canonical projection q �→ [q].

Claim. This definition is independent of the lift q(t) chosen.

Proof. Note first that Rq = Ker(dπq) and that dπqq
′ = q′. Now if we modify the

lift by q �→ λq, where λ is some non-vanishing real function of t, then q′′ �→ (λq)′′ ≡
λq′′ (mod q,q′) =⇒ dπλq(λq)

′′ ≡ dπλq(λq
′′) = dπλq(dλq(q

′′)) = d(π ◦ λ)q(q′′) =
dπq(q

′′) (mod q′). �
Remark. If we write q(t) in some affine coordinate chart, q(t) = (x(t), y(t)), then
the above definition implies that q′′ = (x′′, y′′) mod (x′, y′). The disadvantage of
this simple formula is that it is not so easy to show directly that this definition is
independent of the affine coordinates chosen (the reader is invited to try).

Definition 5.22. An inflection point of a regular curve in RP2 is a point where
the normal acceleration vanishes. (See Figure 11.)

Remark. It is easy to check that the definition is parametrization independent. In
fact, it is equivalent to the following, perhaps better-known, definition: an inflection
point is a point where the tangent line has a higher order of contact with the curve
than expected (second order or higher).

Now given a curve (q(t), p(t), ψ(t)) in PC, if it satisfies the no-slip condition
ψ(t)q′(t) = p′(t), then ψ(t) induces a bundle map, denoted also by ψ(t), between
the normal line bundles along q(t) and p(t).

Proposition 5.23. For any curve (q(t), p(t), ψ(t)) in PC satisfying the no-slip
condition ψ(t)q′(t) = p′(t),

ψ(t)q′′(t) = p′′(t).
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Proof. First note that for the normal accelerations q′′, p′′ to be well-defined, both
q′, p′ must be non-vanishing; i.e., Γ(t) := (q(t), p(t)) is a non-degenerate null curve
in M4 (see Definition 4.7). It follows (see Lemma 4.13) that we can choose an
adapted lift σ of Γ to SL3(R) with associated coframing η̂ = σ∗η and dual framing

{f1, f2, f1, f2} such that Γ′ = f2 + f1. Let Γ̃ = j̃ ◦ σ, with Γ̃(t) = (q(t),p(t)),

sij = ωi
j(Γ̃

′), Ei(t) = Ei(σ(t)). Then q′ = E′
3 = E2 + s33E3 =⇒ q′′ ≡ E′

2 ≡
s12E1 (mod q,q′) =⇒ q′′ ≡ s12f1 (mod q′), and similarly p′′ ≡ s12f

2 (mod p′). Now

W+ = Span{f2 + f1, f1 − f2} =⇒ ψf2 = f1 =⇒ ψq′′ = ψ(s21f2) = s21f
1 = p′′

(mod p′).

�
Corollary 5.24. For a pair of regular curves (q(t), p(t)) satisfying the dancing
condition (equivalently, Γ(t) = (q(t), p(t)) is a non-degenerate null curve in M4),
q(t) is an inflection point if and only if p(t) is an inflection point.

5.9.5. Osculating conics and Cartan’s developments. To complete the “projective
rolling” interpretation of (Q5,D) we introduce a projective connection associated
with a plane curve γ ⊂ RP2, defined on its fibration of osculating conics Cγ ; the
associated horizontal curves of this connection project to plane curves which are
“Cartan’s developments” of γ. The “no twist” condition for projective rolling is then
expressed in terms of this connection, in analogy with the rolling of Riemannian
surfaces.

Let γ ⊂ RP2 be a smooth locally convex curve (i.e., without inflection points).
For each q ∈ γ there is a unique conic Cq ⊂ RP2 which is tangent to γ to order 4
at q. This is the projective analog of the osculating circle to a curve in Euclidean
differential geometry. Define

Cγ = {(q, x) | q ∈ γ, x ∈ Cq} ⊂ γ × RP
2.

We get a fibration
Cγ → γ, (q, x) → q.

Remark. The fibration Cγ → γ has some remarkable properties, see Figure 12. We
refer the reader to the beautiful article [15] for further details..

Figure 12. The osculating conics of a tractrix and a logarithmic spiral

There is a projective connection defined on Cγ → γ, i.e., a line field on Cγ ,
transverse to the fibers, whose associated parallel transport identifies the fibers
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Figure 13. Cartan’s development x(t) of γ

of Cγ projectively. Its integral curves (the horizontal lifts of γ to Cγ) are defined
as follows ([6, p. 58]): if we parametrize γ by q(t), then its horizontal lifts are
parametrized curves (q(t), x(t)) ∈ Cγ such that the projected curve x(t) is tangent
to the line �(t) passing through x(t) and q(t). The projections x(t) of such horizontal
curves on RP2 are Cartan’s developments of γ. See Figure 13.

Next we consider another fibration of projective lines along γ,

Lγ := P(TRP2)|γ → γ.

The fiber over q ∈ γ is the projectivized tangent space P(TqRP
2), which we can

also identify with the pencil of lines through q.
We identify the fiber bundles Cγ 	 Lγ using the usual “stereographic projection”:

a point x ∈ Cq, x �= q, is mapped to the line � joining x with q, while q itself is
mapped to the tangent line to γ at q. Thus the projective connection on Cγ defines,
via the identification Cγ 	 Lγ , a projective connection on Lγ .

5.9.6. Examples of developments. These are important examples and will be used
later.

(1) Parametrize a locally convex curve γ ⊂ RP2 by A(t) in LF form, i.e., A′′′+rA =
0 (see Proposition 5.9). Using homogeneous coordinate (x, y, z) on RP2 with
respect to the frame A(t), A′(t), A′′(t), the osculating conic Ct at [A(t)] is given
by y2 = 2xz (see [6], p. 55).

In particular, taking x = y = 0, we get that [A′′(t)] is on the osculating
conic at [A(t)]. In fact, x(t) := [A′′(t)] is a development of γ.

Proof. (A′′)′ = −rA, so the tangent line to A′′(t) passes through A(t). �
The associated parallel line �(t) along γ is given by a′ = A × A′′ where

a = A×A′ is the dual curve.
(2) In fact, the development [A′′(t)] of the previous item is not so special. It is

easy to see that for any point x ∈ Cq (other than x = q), one can pick a
parametrization A(t) of γ in LF form such that x = [A′′(0)].

Proof (Sketch). Start with any A(t) such that q = [A(0)], then find a Möbius
transformation t̄ = f(t) such that f(0) = 0 and Ā(t̄) = f ′(t)A(t) satisfies
x = [Ā′′(0)]. �

(3) Another way to get all developments of γ, using the notation of the first ex-
ample, is to parametrize Ct by P (u) = A(t) + uA′(t) + (u2/2)A′′(t). Then the
developments are given by x(t) = [P (u(t))], where u(t) satisfies u′ + 1 = 0;
i.e., Pc(t) = A(t) + (c − t)A′(t) + [(c − t)2/2]A′′(t) is a development of γ for
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Figure 14. Development of the 2nd kind (development of the dual curve)

Figure 15. Parallel transport of a line along a conic

every constant c. (Note that these developments miss exactly the first example
x(t) = [A′′(t)] above.)

Using this formula, Cartan shows that every development curve Pc(t) is
tangent to γ as t → c, with a cusp at t = c.

(4) Consider the curve γ∗ ⊂ RP2∗ dual to a curve γ ⊂ RP2 with a parametrization
A(t) in LF form. Parametrize γ∗ by a = A×A′. One can check easily that a(t)
satisfies a′′′ − ra = 0, so is also in LF form. It follows, as in the last example,
that a′′(t) is a development of γ∗. The associated “parallel line” along a(t) (a
point on a(t)) is A′ = a× a′′.

Remark. Cartan calls the curve A′(t) a development of the 2nd kind of γ (see
Figure 14). It can also be characterized as the envelope (or dual) of the family
of tangents to osculating conics along the development A′′(t).

(5) When γ is itself a conic C the osculating conic is obviously C itself for all q ∈ C;
hence the development curves (q(t), x(t)) satisfy x(t) = const. It follows that
if we parallel transport a line along a conic, we get a family of concurrent lines
�(t). See Figure 15.

5.9.7. The no-twist condition.

Definition 5.25. A projective rolling without slipping or twisting of RP2 along
RP

2∗ is a parametrized curve (q(t), p(t), ψ(t)) in PC, satisfying for all t:

• the no-slip condition: ψ(t)q′(t) = p′(t);
• the no-twist condition: if u(t) is a parallel section of P(TRP2) along q(t),
then ψ(t)u(t) is a parallel section of P(TRP2∗) along p(t).



THE DANCING METRIC, G2-SYMMETRY AND PROJECTIVE ROLLING 4479

Theorem 5.26. Under the identification Q5 	 PC, integral curves of the Cartan-
Engel distribution (Q5,D) correspond to projective rolling curves in PC satisfying
the no-slip and no-twist conditions.

Proof. Let (q(t),p(t)) be an integral curve of (Q5,D) and let (q(t), p(t), ψ(t)) be
the corresponding projective rolling curve in PC. Then (q(t), p(t)) is a null curve
in M4; hence (q(t), p(t), ψ(t)) satisfies the no-slip condition. Let �(t) be a parallel
line along q(t). We need to show that �∗(t) := ψ(t)�(t) = �(t)∩p(t) is parallel along
p(t). Pick a projective parameter t for q(t) and a lift A(t) of q(t) to R3 \ 0 such
that (1) A′′′+ rA = 0 (the LF form) and (2) �(t) is the line a′ = A×A′′ connecting
A(t) and A′′(t) (see example (2) in Section 5.9.6). Now p(t) is a dancing mate of
q(t); hence its dual p∗(t) is given by B = xA+ yA′, where B′′′ ×B = 0, x+ y′ = 0.
It follows that �∗(t) = [B′(t)] (see the remark following Proposition 5.13), which is
parallel along p(t) = [b(t)], by example (4) in Section 5.9.6. �

Figure 16. The proof of Theorem 5.26
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