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HIGHER-DIMENSIONAL CONTACT MANIFOLDS

WITH INFINITELY MANY STEIN FILLINGS

TAKAHIRO OBA

Abstract. For any integer n ≥ 2, we construct an infinite family of (4n− 1)-
dimensional contact manifolds, each of which admits infinitely many pairwise
homotopy inequivalent Stein fillings.

1. Introduction

The enumeration of Stein fillings of a given contact manifold has been considered
as a central problem in contact and symplectic geometry and topology. As earlier
answers to this problem, there are uniqueness results for fillings of the (2n − 1)-
sphere S2n−1 with the standard contact structure ξstd. Eliashberg, Floer, and
McDuff [23] showed that any symplectically aspherical filling of (S2n−1, ξstd) is dif-
feomorphic to the disk D2n. Here a symplectic manifold (W,ω) is called symplecti-
cally aspherical if [ω] ∈ H2(W ;R) vanishes on all aspherical elements in H2(W ;R).
Since a Stein domain is an exact symplectic manifold, it follows from their result
that any Stein filling of (S2n−1, ξstd) is diffeomorphic to D2n. More strongly, when
n = 2, Eliashberg [13] (see also [9]) showed that any Stein filling of (S3, ξstd) is
deformation equivalent to the disk D4 endowed with the standard Stein structure
(cf. [16, 22] and [12] for the symplectomorphism and diffeomorphism parts). Con-
cerning other 3-dimensional contact manifolds, thanks to the seminal works of Loi
and Piergallini [21] and Akbulut and Ozbagci [1], we have various answers to the
above problem. They showed that a 4-dimensional Stein domain admits a Lef-
schetz fibration and conversely that the total space of a 4-dimensional Lefschetz
fibration admits a Stein structure (cf. [27, Chapter 10.2]). This enables us to study
Stein fillings of a given contact 3-manifold by Lefschetz fibrations. For example,
by using Lefschetz fibrations, particularly mapping class groups of fiber surfaces,
Ozbagci and Stipsicz [26] constructed an infinite family of contact 3-manifolds, each
of which admits infinitely many pairwise homotopy inequivalent Stein fillings (see
also [3–5, 10, 34]).

In higher dimensions, the total space of an abstract Weinstein Lefschetz fibration
admits a Weinstein structure, and the contact structure on the convex boundary
is supported by the open book induced by the Lefschetz fibration. Moreover, ac-
cording to a result in [11] (see also [9]), this Weinstein filling can be turned into
a Stein filling of the same contact manifold (see Section 2.4 for details). Hence
we can construct a Stein domain via Lefschetz fibration. However, its fiber is a
higher-dimensional Weinstein domain, so we have to deal with higher-dimensional
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symplectic mapping class groups. Little is known about them, and thus we cannot
apply group-theoretical arguments, used in [26] for example, to them directly.

Our main result is the following.

Theorem 1.1. For any integer n ≥ 2, there is an infinite family {(Ml, ξl)}l∈Z>0

of Stein fillable contact (4n− 1)-manifolds such that:

(1) each (Ml, ξl) admits infinitely many pairwise homotopy inequivalent Stein
fillings;

(2) (Ml, ξl) and (Ml′ , ξl′) are contactomorphic if and only if l = l′.

In the proof of Theorem 1.1, we use open books and Lefschetz fibrations to
obtain contact manifolds and their Stein fillings. The pages and fibers of our open
books and Lefschetz fibrations are symplectomorphic to the Milnor fiber V4 of the
singularity of type A4, called the A4-Milnor fiber, endowed with the canonical
symplectic structure. There is an anti-homomorphism from the braid group B5 to
the symplectic mapping class group of V4, which is familiar as the Birman-Hilden
correspondence in dimension 2. This helps us to deal with the symplectic mapping
class group combinatorially and also contributes to computation of homology groups
of contact manifolds and Stein fillings, coupled with the Picard-Lefschetz formula.
Thus we will provide contact manifolds and their Stein fillings via mapping class
groups generalizing the arguments in low dimensions.

This article is organized as follows: Section 2 consists of five subsections, where
we mainly review Lefschetz fibrations, open books, and related material. In partic-
ular, in Section 2.3 we review the Am-Milnor fiber, examine a Lefschetz fibration
on it, and present the anti-homomorphism mentioned above. Also, we exhibit an
explicit formula of the homology group of a manifold endowed with a Lefschetz
fibration or open book in Section 2.5. Section 3 is divided into four subsections.
After reviewing the Picard-Lefschetz formula and braids given by Baykur and Van
Horn-Morris in Sections 3.1 and 3.2, respectively, we prove Theorem 1.1 in Section
3.3. Finally, in Section 3.4, we conclude this article by explaining why we can
obtain different Stein fillings from the surgical point of view and why we put the
assumption about the dimensions of contact manifolds in the main theorem.

2. Lefschetz fibrations and open books

2.1. Dehn twists. Let T ∗Sn be the cotangent bundle of Sn and let λ be the
canonical Liouville form. Consider T ∗Sn as the set

{(p, q) ∈ R
n+1 × R

n+1 | |q| = 1, q · p = 0}.

In our coordinates, the Liouville form λ can be written as pdq, and the zero-section
Sn, which is Lagrangian in (T ∗Sn, dλ), corresponds to the set {(p, q) ∈ T ∗Sn| p =
0}. For the Hamiltonian function μ(p, q) = |p| on T ∗Sn \ Sn, the Hamiltonian
vector field associated to μ is

Xμ := |p|−1
n+1∑
j

pj
∂

∂qj
− |p|

n+1∑
j

qj
∂

∂pj
.

The flow of Xμ has periodic orbits. To see this, project its orbit of a given point
(p, q) ∈ T ∗Sn \ Sn onto the base space and check that its image equals the unit-
speed geodesic on Sn through q with the tangent vector p/|p|. Since all geodesics
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are 2π-periodic closed circles, the flow determines the Hamiltonian S1-action on
T ∗Sn \ Sn by

σ(eit)(p, q) := (cos(t)q + |p|−1 sin(t)p,−|p| sin(t)q + cos(t)p).

One can extend the time-π map σ(eiπ)(p, q) = (−p,−q) to an involution of T ∗Sn.
The involution restricts to the antipodal map on Sn, denoted by A. Take a function
ψ ∈ C∞(R,R) such that ψ(t) + ψ(−t) = 2π for all t and ψ(t) = 0 for t � 0. Then
the map τ : T ∗Sn → T ∗Sn defined by

τ (x) :=

{
σ(eiψ(|x|))(x) (x �∈ Sn),

A(x) (x ∈ Sn)

is called a modeled Dehn twist. By definition, its support is compact. Furthermore,
it is a symplectomorphism of (T ∗Sn, dλ) (cf. [29, Section 6]).

Let (W,ω) be a symplectic 2n-manifold and let L ⊂ W be a Lagrangian n-
sphere. A framing of L is a diffeomorphism v : Sn → L. For simplicity, we
drop the framing from the notation. Two Lagrangian spheres Lk (k = 0, 1) with
framings vk : Sn → Lk are isotopic if there exists a framed Lagrangian isotopy
I = (i, j0, j1) between them, which consists of a smooth family of Lagrangian
embeddings is : Sn → W (0 ≤ s ≤ 1) and two isometries jk : Sn → Sn such that
vk ◦ ik = jk. Suppose that L is a framed Lagrangian sphere. By the Weinstein
tubular neighborhood theorem, there is ε > 0 and a symplectic embedding ι :
DεT

∗Sn → W such that ι|Sn equals the given framing of L, particularly ι(Sn) = L.
Here DεT

∗Sn = {(p, q) ∈ T ∗Sn | |p| ≤ ε}. Take a function ψ ∈ C∞(R,R) such that
ψ(t)+ψ(−t) = 2π for all t and ψ(t) = 0 for t > ε/2, and let τ be the modeled Dehn
twist associated to this ψ. The symplectomorphism τL : (W,ω) → (W,ω) defined
by

τL(x) :=

{
ι ◦ τ ◦ ι−1 (x ∈ Im ι),

x (x �∈ Im ι)

is called a (generalized) Dehn twist along L. The symplectic isotopy class [τL] ∈
π0(Symp(W,ω)) is independent of the choices of ι, ψ, where Symp(W,ω) denotes
the group of symplectomorphisms of (W,ω) and π0(Symp(W,ω)) denotes the group
of symplectic isotopy classes of elements in Symp(W,ω). We have

(1) ϕ ◦ τL ◦ ϕ−1 = τϕ(L)

for a symplectomorphism ϕ : (W,ω) → (W,ω) by the definition of τL.

Notation 2.1. In this article, we will use the usual functional notation for the
products in Symp(W,ω) and π0(Symp(W,ω)); i.e., ϕ ◦ ψ means that we apply ψ
first and then ϕ.

2.2. Exact Lefschetz fibrations. Let (W,dλ) denote an exact symplectic mani-
fold, where λ is a 1-form on W such that dλ is a symplectic form on W .

Definition 2.2. Let (W,dλ) be an oriented compact exact symplectic manifold
with corners, and let D2 be the closed unit disk in C. An exact Lefschetz fibration
is a smooth map f : (W,dλ) → D2 such that:

(i) (Submersion) f is a submersion whose fibers are smooth manifolds with
boundary, except at finitely many critical points in IntW , and f |∂vW :
∂vW → ∂D2, f |∂hW :→ D2 are fibrations, where ∂vW := f−1(∂D2),
∂hW :=

⋃
q∈D2 ∂(f−1(q)).
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(ii) (Lefschetz type singularities) The critical points have distinct critical values
in IntD2, and around each critical point and the corresponding critical
value, there exist complex coordinates (z1, . . . , zn), w such that f can be
written as

w = f(z1, . . . , zn) = z21 + · · ·+ z2n,

with the symplectic form dλ identified with the standard Kähler form in
these coordinates.

(iii) (Exact symplectic fibers) (Fq := f−1(q), dλ|Fq
) is an exact symplectic sub-

manifold in (W,dλ) for each regular value q of f .
(iv) (Horizontality of ∂hW ) If p ∈ ∂hW , then Th

p W ⊂ Tp∂hW , where Th
p W is

the symplectic complement of T v
pW := Ker dfp with respect to dλ.

Remark 2.3. A smooth Lefschetz fibration is a smooth map f : W → D2 which
satisfies the conditions (i) and (ii) of Definition 2.2 except the Kählerness condition.

Here we will briefly review some basic material about exact Lefschetz fibra-
tions. Let f : (W,dλ) → D

2 be an exact Lefschetz fibration, and let Crit(f) (resp.
Critv(f)) be the set of critical points (resp. critical values) of f . For a fixed base
point q0 ∈ ∂D2, a vanishing path γ : [0, 1] → D2 for q ∈ Critv(f) is an embedded
path such that

γ(0) = q0, γ(1) = q, and γ−1(IntD2 \ Critv(f)) = (0, 1).

Since f is a symplectic fiber bundle over D2 \ Critv(f), the tangent space at any
point p ∈ f−1(D2 \ Critv(f)) is equipped with the canonical splitting

TpW ∼= T v
pW ⊕ Th

p W.

This leads to a connection of the symplectic fiber bundle. Let hγ|[t0,t1]:Fγ(t0) →
Fγ(t1) be the parallel transport along the restriction γ|[t0,t1] of γ for 0 ≤ t0 < t1 < 1.
To the path γ we can associate the unique Lagrangian disk Δγ , called the Lefschetz
thimble, such that f(Δγ) = γ([0, 1]), f(∂Δγ) = γ(0). The boundary Vγ := ∂Δγ is
a Lagrangian sphere in (Fq0 , dλ|Fq0

). This is called the vanishing cycle associated
to γ. Using the metric around the critical point and the parallel transport again,
we may equip the vanishing cycle with a framing, so after this we consider the
vanishing cycle as a framed Lagrangian sphere. Suppose that p is the critical point
of f with f(p) = q. Then in terms of vanishing cycles the Lefschetz thimble can be
expressed as

Δγ = (
⋃

0≤t0<1

Vγ|[t0,1]
) ∪ {p}.

Next, take a small loop around q ∈ Critv(f) and orient it counterclockwise.
Connect it to the base point q0 using the vanishing path γ and let us denote the
resulting oriented loop by l. The fibration f restricts to a symplectic S1-bundle
over l. According to the symplectic Picard-Lefschetz theory (cf. [30, Section 1]),
its monodromy is symplectically isotopic to the Dehn twist along the vanishing
cycle Vγ .
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Definition 2.4. Let f : (W,dλ) → D2 be an exact Lefschetz fibration. A matching
path for f is an embedded path γ : [−1, 1] → D2 such that:

(i) γ−1(Critv(f)) = {±1} and γ(−1) �= γ(1);
(ii) the vanishing cycles Vγ± ⊂ f−1(γ(0)) for the vanishing paths γ± : [0, 1] →

D2 given by γ±(t) := γ(±t) coincide as framed Lagrangian spheres of
f−1(γ(0)).

For a matching path γ : [−1, 1] → D
2 for f , let Δγ+

,Δγ− be the Lefschetz
thimbles for γ+, γ−, respectively. Since the framings of the vanishing cycles Vγ+

, Vγ−

are the same, Δγ+
∪ Δγ− is a Lagrangian sphere in (W,dλ) (see Figure 1). This

is called the matching cycle associated to γ. One can equip the matching cycle
Δγ+

∪ Δγ− with a framing by combining the two framings of Δγ+
and Δγ− (see

[31, Section (16g)]).

Figure 1. Matching cycle Δγ+
∪Δγ− .

2.3. Exact symplectic Lefschetz fibrations on Am-Milnor fibers. We recall
the definition of a Stein domain. A strictly plurisubharmonic function on a complex
manifold is a smooth function whose complex Hessian matrix is positive definite at
any point. In this article, we will deal only with the “strict case”, and hence we
will omit the word “strictly”.

Definition 2.5. A Stein domain is a compact complex manifold (W,J) with
boundary which admits a proper and bounded below plurisubharmonic function
φ : W → R with maximal level set ∂W .

Let (W,J) be a Stein domain with a plurisubharmonic function φ, and let λφ :=
−dCφ = −dφ ◦ J . Since the 2-form dλφ = −ddCφ is an exact symplectic form on
W compatible with J , one can obtain from (W,J) with φ the exact symplectic
manifold (W,dλφ).

For the complex polynomial p(z1, . . . , zn+1) = z21 + · · ·+ z2n + zm+1
n+1 and a suffi-

ciently small fixed ε > 0, define

V̂m := {z ∈ C
n+1 | p(z) = ε} and Vm,δ := V̂m ∩D2n+2(δ),

where D2n+2(δ) := {z ∈ Cn+1 | |z1|2 + · · · + |zn+1|2 ≤ δ2 } and δ > 1. Vm,δ is the

Milnor fiber of p, which is also called the Am-Milnor fiber. Let φ : V̂m → R be
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the function defined by φ(z) = (|z1|2 + · · · + |zn+1|2)/4. One can show that φ is
plurisubharmonic on Vm,δ with ∂Vm,δ = {φ(z) = δ2/4}, so Vm,δ is a Stein domain.
This implies that (Vm,δ, dλφ|Vm,δ

) is an exact symplectic manifold. Here dλφ equals

the restriction of the standard Kähler form i(Σn+1
j=1 dzj ∧ dz̄j)/2 on Cn+1.

Now we construct an explicit exact Lefschetz fibration by cutting off Vm :=

Vm,2 in a similar way to [31, Example 15.4]. Let k : V̂m → R be the function
k(z1, . . . , zn, zn+1) := ((|z1|2 + · · · + |zn|2)2 − |z21 + · · · + z2n|2)/4. For some s > 0,
define

V m,s := {z ∈ V̂m | |zn+1| ≤ 1, k(z) ≤ s}.
One can choose a number s so that V m,s ⊂ Vm, and hence we assume this condition.

We claim that the projection f : V m,s → D2, z �→ zn+1, provides an exact Lefschetz
fibration. First, it is not difficult to see that f is a smooth Lefschetz fibration
with the Kählerness condition whose critical values are the (m + 1)st roots of ε.
Next, the restriction φ|f−1(q) is a plurisubharmonic function on the fiber f−1(q) =

{z21 + · · · + z2n = ε − qm+1, k(z) ≤ s}, and the associated exact symplectic form
equals the restriction of dλφ to f−1(q). Thus the fiber is an exact symplectic

submanifold of (V m,s, dλφ). In fact, it is symplectomorphic to the disk cotangent
bundle D√

sT
∗Sn−1 with the canonical symplectic form. Finally we show that

∂hV m,s satisfies condition (iv) of Definition 2.2. Observe that

∂hV m,s =
⋃

q∈D2

({z21 + · · ·+ z2n = ε− qm+1, k(z) = s}).

The symplectic complement (Ker dfp)
⊥dλφ at any point p ∈ ∂hV m,s is spanned over

C by

X := (m+ 1)zmn+1

n∑
j=1

z̄j
∂

∂zj

∣∣∣
p
− 2

( n∑
j=1

|zj |2
) ∂

∂zn+1

∣∣∣
p
,

and dkp(X) = 0, dkp(iX) = 0. This implies that (Ker dfp)
⊥dλφ ⊂ Tp∂hV m,s. Thus

f is an exact Lefschetz fibration.
Under the symplectic identification of Fq := {z21 + · · · + z2n = ε − qm+1} with

T ∗Sn−1, its zero-section corresponds to the sphere
√
ε− qm+1Sn−1 × {q} ⊂ Fq.

Here
√
wSn−1 = {z ∈ C

n | z = ±
√
wx for some x ∈ Sn−1 ⊂ R

n} for w ∈ C.

We can check that this sphere is contained in the fiber f−1(q). Moreover, according
to [18, Section 6c], the Lefschetz thimble Δγ for a vanishing path γ can be written
explicitly as ⋃

t∈[0,1]

(
√
ε− γ(t)m+1Sn−1 × {γ(t)}).

We see that every embedded smooth path γ : [−1, 1] → D2 with γ−1(Critv(f)) =
{±1} is a matching path for γ. Let δj : [−1, 1] → D

2 be the path given by

δj(t) := m+1
√
εeπi(2j+t−1)/(m+1) for j = 1, . . . ,m (see Figure 2). This is a matching

path for f , and its matching cycle is denoted by Lj . Since Lj and Lj+1 intersect
transversely at the single critical point of f , it follows from [31, Lemma 16.13] (cf.
[24, Lemma 7.1]) that two framed Lagrangian spheres τ−1

Lj+1
(Lj) and τLj

(Lj+1) are

framed isotopic. Hence Dehn twists along these framed Lagrangian spheres are
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Figure 2. Paths δ1, δ2, δ3, δ4 for m = 4, where ω := e2πi/5.

symplectically isotopic. In particular, after embedding each Lj ⊂ V m,s into Vm as
a framed Lagrangian sphere, we have

[τLj
τLj+1

τLj
] = [τLj+1

τLj
τLj+1

] ∈ π0(Symp(Vm, dλφ)).

This leads to the well-defined anti -homomorphism

ρ : Bm+1 → π0(Symp(Vm, dλφ)), ρ(σj) = [τLj
],

where σi is one of the Artin generators of Bm+1. Here, we use the opposite notation
to the usual functional one, as mentioned in Notation 2.1, for the products in Bm+1,
which is why ρ is not a homomorphism but an anti-homomorphism. This ρ is known
as the Birman-Hilden correspondence [6] in the case dimVm = 2 and it is injective.

2.4. Contact open books and abstract Weinstein Lefschetz fibrations. Let
(W,dλ) be an exact symplectic manifold. A Liouville domain is a compact exact
symplectic manifold (W,dλ) with boundary such that the Liouville vector field Xλ

defined by ιXλ
dλ = λ is transverse to ∂W pointing outwards.

Definition 2.6. A Weinstein domain is a Liouville domain (W,dλ) which admits
a Morse function φ : W → R with maximal level set ∂W and whose Liouville vector
field Xλ is gradient-like for φ.

We will rarely discuss a Liouville vector field and a Morse function associated to
a Weinstein domain, so we will omit them from the notation.

Definition 2.7. An abstract contact open book is a tuple (Σ, dλ;ϕ) consisting of
a Weinstein domain (Σ, dλ) and a symplectomorphism ϕ of (Σ, dλ) equal to the
identity near ∂Σ.

In the above definition, (Σ, dλ) is called the page, and ϕ is called the monodromy
of the abstract contact open book (Σ, dλ;ϕ).

Now we briefly explain how to obtain a contact structure adapted to a given
abstract contact open book (see [14, Chapter 7.3] for more details). Let (Σ, dλ)
be a 2n-dimensional Weinstein domain and let ϕ be a symplectomorphism of
(Σ, dλ) equal to the identity near ∂Σ. Giroux showed that ϕ is isotopic, through
symplectomorphisms equal to the identity near ∂Σ, to an exact symplectomor-
phism ϕ′ of (Σ, dλ), i.e., a symplectomorphism such that (ϕ′)∗λ − λ is exact
(cf. [14, Lemma 7.34]). If ϕ is such an exact symplectomorphism of (Σ, dλ), there
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exists a unique smooth function θ̄ : Σ → R+, up to adding a constant, such that
ϕ∗λ− λ = dθ̄. Note that θ̄ is constant near ∂Σ because ϕ∗λ is λ near ∂Σ. Set

Σ(ϕ) := {(x, θ) ∈ Σ× R | 0 ≤ θ ≤ θ̄(x)}/(x, θ̄(x)) ∼ (ϕ(x), 0).

Although by definition it depends on the choice of θ̄, here we suppress θ̄ from the
notation, and we will do the same with the following notions. The 1-form λ + dθ
is a contact form on Σ(ϕ). Let c be the value of θ̄ near ∂Σ. Define the closed
(2n+ 1)-manifold

M(Σ, dλ;ϕ) := (Σ(ϕ) � ∂Σ× D
2)/ ∼,

where (x, eiθ) ∈ ∂(∂Σ × D
2) is identified with [x, cθ/2π] ∈ Σ(ϕ). To construct a

contact form on ∂Σ × D2, let h1, h2 : [0, 1] → R be functions, shown in Figure 3,
such that

• h1(r) = 2 and h2(r) = r2 near r = 0,
• h1(r) = e1−r and h2(r) = 1 for r ∈ [1/2, 1], and
• h1(r)h

′
2(r)− h2(r)h

′
1(r) �= 0 for r �= 0.

Then one can define a contact form on ∂Σ× D2 by

h1(r)λ|∂Σ + h2(r)dθ,

where (r, θ) are polar coordinates on D2, and it extends to a contact form on
M(Σ, dλ;ϕ). Let us denote by ξ(Σ,dλ;ϕ) the corresponding contact structure. This
is called supported by (Σ, dλ;ϕ). One can prove that if two abstract contact open
books have the same pages and symplectically isotopic monodromies, then the
supported contact structures are isotopic.

Figure 3. Graphs of functions h1 and h2.

As we associated the contact manifold to an abstract contact open book, a
Weinstein domain can be obtained from the data of a symplectic manifold and an
ordered collection of framed Lagrangian spheres in it.

Definition 2.8. An abstract Weinstein Lefschetz fibration is a tuple (Σ, dλ;L1, . . . ,
Lm) consisting of a Weinstein domain (Σ, dλ) and an ordered collection of framed
Lagrangian spheres L1, . . . , Lm in (Σ, dλ).

In the above definition, (Σ, dλ) is called the fiber, and Lj are called vanishing
cycles of the abstract Weinstein Lefschetz fibration (Σ, dλ;L1, . . . , Lk).
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Given an abstract Weinstein Lefschetz fibration (Σ, dλ;L1, . . . , Lm) of dimΣ =
2n (n > 2), we can construct a Weinstein domain. Based on [25, pp. 11-12], we
briefly review the construction. Let (D2, dλstd) be the standard Weinstein disk with

λstd =
1

2
xdy − 1

2
ydx and φstd(x, y) = x2 + y2,

and let φ be the Morse function associated to the Weinstein domain (Σ, dλ). First,

take the completion (Σ̂, dλ̂) of (Σ, dλ) with φ̂ and deform φ̂ into another φ̃ so

that φ̃ is C∞-small on Σ and ∂φ̃/∂t > 0 on [0,∞) × ∂Σ. Here the comple-

tion of a Weinstein domain (W,dλ) with φ is the symplectic manifold (Ŵ , dλ̂) :=

(W,dλ)∪ ([0,∞)×∂W, d(etλ|∂W )) with extended φ as φ̂(t, x) = et on [0,∞)×∂W .

Next, enlarge the product (Σ, dλ)×(D2, dλstd) to be (Σ̂×C, d(λ̂+λ̂std)) and define a

newWeinstein domain, say (Σ, dλ)�(D2, dλstd), as the sublevel set {φ̃+x2+y2 ≤ 1}.
We may consider the boundary of (Σ, dλ) � (D2, dλstd) as M(Σ, dλ; id) and as-
sume the contact structure on ∂((Σ, dλ)� (D2, dλstd)) to be supported by the open

book (Σ, dλ; id). Put each Lagrangian sphere Lj on Σ × {e 2π
m j} ⊂ M(Σ, dλ; id),

where the mapping torus Σ(id) ⊂ M(Σ, dλ; id) is identified with Σ × S1. By
[33, Lemma 4.2], we may assume that Li is a Legendrian sphere Λi. Attach Wein-
stein (n+1)-handles to the Weinstein domain (Σ, dλ)�(D2, dλstd) along Λ1, . . . ,Λm

and obtain the new Weinstein domain W (Σ, dλ;L1, . . . , Lm). We have to remark
that similar discussions can be found in [8, Section 8.1] and [15, Definition 6.3].
The argument in the former is based on the Liouville setting instead of Weinstein.
In the latter, Giroux and Pardon obtained a Weinstein domain corresponding to
(Σ, dλ) � (D2, dλstd) in a slightly different way. To a given Weinstein domain
(Σ, dλ) with Morse function φ satisfying ∂Σ = {φ = 0}, they associated the Wein-
stein domain {φ + x2 + y2 ≤ 0} ⊂ Σ × C as the desired one. Hence, they cut the
product manifold Σ×C to get the Weinstein domain instead of enlarging Σ×D in
the above argument.

Definition 2.9. A Stein filling of a contact manifold (M, ξ) is a Stein domain
whose boundary is contactomorphic to (M, ξ). Then ξ is called Stein fillable.

On the boundary ∂((Σ, dλ) � (D2, dλstd)), the above handle attachments yield
Legendrian surgeries on Λ1, . . . ,Λm, and by [33, Theorem 4.4] the resulting contact
manifold is contactomorphic to

(M(Σ, dλ; τLm
◦ · · · ◦ τL1

), ξ(Σ,dλ;τLm◦···◦τL1
)).

Thanks to a result of Eliashberg [11, Theorem 1.3.2] (cf. [9, Theorem 13.5]), there is
a complex structure and a plurisubharmonic function on W (Σ, dλ;L1, . . . , Lm) such
that these make it Stein, and as a symplectic manifold the resulting Stein domain is
symplectomorphic to the initial Weinstein domain. From this, the contact structure
on the boundary of this Stein domain is isomorphic to ξ(Σ,dλ;τLm◦···◦τL1

), and hence
the Stein domain serves as a Stein filling of the contact manifold

(M(Σ, dλ; τLm
◦ · · · ◦ τL1

), ξ(Σ,dλ;τLm◦···◦τL1
)).

2.5. Homology groups of manifolds with Lefschetz fibrations or open
books. In this subsection, we often regard a handlebody as a CW complex and
consider its homology groups.
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Let (Σ, dλ;L1, . . . , Lm) be an abstract Weinstein Lefschetz fibration, where dimΣ
= 2n, and W (Σ, dλ;L1, . . . , Lm) is the corresponding Weinstein domain. Its homol-
ogy groups are easy to read off from the collection of vanishing cycles. We omit dλ
from the collection of the notation because we focus only on the algebraic topology
of the Weinstein domain. Since (Σ, dλ) is Weinstein, we may take a handle de-
composition of Σ without handles of index > n, and it yields the following handle
decomposition of Σ×D2:

h(0) ∪ (
⋃
j

h
(1)
j ) ∪ · · · ∪ (

⋃
j

h
(n)
j ),

where each h
(k)
j is a k-handle. As mentioned before, the Weinstein domainW (Σ;L1,

. . . , Lm) is decomposed into Σ×D2 andm (n+1)-handles, which yields the following
handle decomposition of W (Σ;L1, . . . , Lm):

h(0) ∪ (
⋃
j

h
(1)
j ) ∪ · · · ∪ (

⋃
j

h
(n)
j ) ∪ (

⋃
j

h
(n+1)
j ),

where each h
(n+1)
j is the (Weinstein) (n + 1)-handle attached along Lj . Now con-

sider the chain complex (C∗(W (Σ;L1, . . . , Lm)), ∂∗). Since Ck(W (Σ;L1, . . . , Lm))
is generated by the k-handles, we can easily see that Ker ∂n is isomorphic to
Hn(Σ×D2;Z) ∼= Hn(Σ;Z) and write g1, . . . , gk for its generators. Also, Im ∂n+1 is
generated by the attaching spheres Lj of the (n+1)-handles, which may be assumed
to lie on Σ× {pt} homologically. Thus we have

(2) Hn(W (Σ;L1, . . . , Lm);Z) ∼= 〈 g1, . . . , gk | [L1], . . . , [Lm] 〉.

This is equivalent to

Hn(W (Σ;L1, . . . , Lm);Z) ∼= Hn(Σ;Z)/〈[L1], . . . , [Lm]〉,

which means that the nth homology group of the Lefschetz fibration is obtained as
the quotient of the nth homology group of the fiber Σ by the subgroup generated
by the homology classes of the vanishing cycles.

Next consider a manifold endowed with an abstract contact open book and
describe its homology groups in terms of the page and monodromy of the open
book. For our purpose it suffices to compute the (2n − 1)st homology group of a
(4n−1)-manifold with an open book whose page is symplectomorphic to the Milnor
fiber Vm. Hence although in general the dimension of Vm is even, after this it is
assumed to be 4n − 2. Let (Vm, dλ;ϕ) be an abstract contact open book whose
page is the Milnor fiber (Vm, dλ) of dim = 4n − 2 (n ≥ 2). As we did before, we
suppress dλ from the notation of the abstract contact open book.

To see the homology group, we examine the algebraic topology of the boundary
of Vm, which is diffeomorphic to the Brieskorn (4n− 3)-sphere

Σ(2, . . . , 2︸ ︷︷ ︸
2n−1

,m+ 1) := V̂m ∩ {|z1|2 + · · ·+ |z2n|2 = 1}.

Let a := (a1, . . . , an) with each aj ∈ Z>0. Define the graph G(a) for a whose ver-
tices are v1, . . . , vn with labels a1, . . . , an, respectively, and whose edges lie between
vi and vj if i �= j and gcd(ai, aj) > 1 (e.g. Figure 4).
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Proposition 2.10 (Brieskorn [7, Satz 1(ii)]). For n ≥ 4, the Brieskorn sphere
Σ(a1, . . . , an) is a homotopy sphere if the graph G(a) associated to a = (a1, . . . , an)
satisfies either of the following conditions:

(1) G(a) has two isolated points;
(2) G(a) has an isolated point and a connected component K consisting of an

odd number of points such that if vi, vj ∈ K with i �= j, gcd(ai, aj) = 2.

Figure 4. Graphs G(a) for a = (2, 2, 2, 2, 2,m + 1), where m is
odd (resp. even) on the left (resp. right).

Thus it follows from this proposition and Figure 4 that the Brieskorn (4n− 3)-
sphere Σ(2, . . . , 2,m+1) is a homotopy sphere if m is even. Hereafter m is assumed
to be even.

By definition, the manifold M(Vm;ϕ) splits into the mapping torus Vm(ϕ) and
∂Vm×D2, and hence we first write H2n+1(Vm(ϕ);Z) and then H2n+1(M(Vm;ϕ);Z)
by gluing the two parts.

Before computing the homology, we claim that Vm has a handle decomposi-
tion with one 0-handle and m (2n − 1)-handles. In particular, such a handle de-
composition can be arranged so that the cores of these (2n − 1)-handles generate
H2n−1(Vm;Z), and moreover each of them is represented by the matching cycle Li

in Section 2.3. To see this, consider the handle decomposition of Vm associated to
the Lefschetz fibration f : V m,s → D

2. Note that after rounding off the corners,

V m,s is diffeomorphic to Vm. Fix the segments from the origin to the (m+1)st roots
of ε as vanishing paths for Critv(f). Since the regular fiber of f is diffeomorphic
to the disk cotangent bundle DT ∗S2n−2 of some radius, its handle decomposition
consists of one 0-handle and one (2n− 2)-handle. Combined with the fact that Vm

splits into DT ∗S2n−2 × D2 and m + 1 (2n − 1)-handles, this induces the handle
decomposition of Vm,

h(0) ∪ (h(2n−2)) ∪ (
m⋃
j=0

h
(2n−1)
j ),

where the jth (2n − 1)-handle h
(2n−1)
j corresponds to the critical value

m+1
√
εe2πij/(m+1) of f . Slide h

(2n−1)
j over h

(2n−1)
j−1 in descending order for j =

1, . . . ,m and write h̃
(2n−1)
j for the resulting (2n− 1)-handle. The attaching sphere

of h
(2n−1)
0 is the vanishing cycle with respect to the fixed vanishing path for

m+1
√
ε ∈ Critv(f), which is the image of the zero-section S2n−2

0 of DT ∗S2n−2.
Here this disk cotangent bundle is considered as a fiber of the trivial fibration

DT ∗S2n−2 × ∂D2 → ∂D2.
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Let B ⊂ DT ∗S2n−2 be the cocore of the (2n−2)-handle of the handle decomposition
of DT ∗S2n−2 we took before. Obviously, B is a fiber of the disk bundle DT ∗S2n−2.
Hence, the belt sphere of the (2n− 2)-handle h(2n−2) is

∂(B ×D2) = B × ∂D2 ∪ ∂B ×D2 ⊂ ∂(DT ∗S2n−2 ×D2),

which intersects the attaching sphere S2n−1
0 of h

(2n−1)
0 transversely in a single point.

Thus, we can cancel the pair of h
(2n−1)
0 and h(2n−2). Finally, we obtain the new

handle decomposition of Vm,

h(0) ∪ h̃
(2n−1)
1 ∪ · · · ∪ h̃(2n−1)

m ,

which is desired. This implies that the h̃
(2n−1)
j generate H2n−1(Vm;Z), and they

are represented by Lj because the cores of h
(2n−1)
j are the Lefschetz thimbles for

the fixed vanishing paths and the previous handle slides make the core of h̃
(2n−1)
j

the sum of two Lefschetz thimbles homologically.
For the mapping torus Vm(ϕ), the following long exact sequence holds (see [17,

Example 2.48]):

· · · → H2n−1(Vm;Z)
ϕ∗−id∗−→ H2n−1(Vm;Z)

i∗−→ H2n−1(Vm(ϕ);Z)

→ H2n−2(Vm;Z) → · · · ,

where i is the inclusion map Vm ↪→ Vm × {0} ⊂ Vm(ϕ) and ϕ∗, id∗, i∗ are auto-
morphisms of homology groups induced from ϕ, id, i, respectively. Vm admits the
above handle decomposition without (2n−2)-handles, and henceH2n−2(Vm;Z) = 0.
Therefore, by the above exact sequence we have

H2n−1(Vm(ϕ);Z) ∼= 〈 [L1], . . . , [Lm] | ϕ∗([L1])− ([L1]), . . . , ϕ∗([Lm])− [Lm] 〉.
To get a description of H2n−1(M(Vm;ϕ);Z), by checking the following Mayer-
Vietoris long exact sequence:

· · · → H2n−1(∂Vm × ∂D2;Z) → H2n−1(Vm(ϕ);Z)⊕H2n−1(∂Vm × D
2;Z)

→ H2n−1(M(Vm;ϕ);Z) → H2n−2(∂Vm × ∂D2;Z) → · · · ,
we conclude that H2n−1(M(Vm;ϕ);Z) is isomorphic to H2n−1(Vm(ϕ);Z) because
∂Vm is a homotopy (4n− 2)-sphere (n ≥ 2). Thus,
(3)
H2n−1(M(Vm;ϕ);Z) ∼= 〈 [L1], . . . , [Lm] | ϕ∗([L1])− ([L1]), . . . , ϕ∗([Lm])− [Lm] 〉.

3. Construction

3.1. Picard-Lefschetz formula. The Picard-Lefschetz formula helps us compute
homology groups (2) and (3). This formula was initially proven to study an action
of the monodromy around a Lefschetz type singularity of a holomorphic function
on the homology group of its regular fiber. Given an exact symplectic manifold
(W,dλ) and a framed Lagrangian sphere L ⊂ (W,dλ), we obtain an exact Lefschetz
fibration whose fiber is symplectomorphic to (W,dλ) and vanishing cycle is L (see
[31, Lemma 16.8]). Thus we can state the Picard-Lefschetz formula apart from
holomorphic maps.

Theorem 3.1 (Picard-Lefschetz formula [20, 28] (cf. [19, (6.3.3)])). Let L be a
framed Lagrangian n-sphere in a compact exact symplectic 2n-manifold (W,dλ)
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with boundary. Then we have for the induced automomorphism (τL)∗ : Hj(W ;Z) →
Hj(W ;Z),

(τL)∗(c) =

{
c+ (−1)

(n+1)(n+2)
2 〈c, [L]〉[L] (c ∈ Hn(W ;Z)),

c (c ∈ Hj(W ;Z), j �= n).

Here, 〈 , 〉 : Hn(W ;Z)×Hn(W ;Z) → Z denotes the intersection product.

Although we need to fix an orientation of L temporarily to determine the ho-
mology class, the above formula still holds even if we change this orientation.

In Theorem 1.1, we will deal only with the case dimW = 4n − 2 = 2(2n − 1).
For a Lagrangian (2n − 1)-sphere L ⊂ W , χ(L) = 0 and 〈[L], [L]〉 = 0. Hence we
have

(τL)
m
∗ (c) = c+m(−1)

2n(2n+1)
2 〈c, [L]〉[L]

for any c ∈ H2n−1(W ;Z) and m ∈ Z.

3.2. Baykur-Van Horn-Morris’ 4-braids. A quasipositive factorization of a
braid β ∈ Bm is an ordered tuple (β1, . . . , βk) such that β = β1 · · ·βk and each
βj is conjugate to one of the Artin generators of Bm. Two quasipositive factoriza-
tions are equivalent if they are related by a finite sequence of Hurwitz moves, their
inverses, and global conjugations:

(β1, . . . , βj−1, βj , βj+1, βj+2, . . . , βk) ∼ (β1, . . . , βj−1, βjβj+1β
−1
j , βj , βj+2, . . . , βk),

(β1, . . . , βk) ∼ (γ−1β1γ, . . . , γ
−1βkγ) for any γ ∈ Bm.

Figure 5

Figure 6

Figure 7
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Baykur and Van Horn-Morris [5] recently constructed infinitely many 4-braids,
each of which admits infinitely many inequivalent quasipositive factorizations. Their
construction is based on the open book adapted to the standard contact 3-torus
constructed by Van Horn-Morris [32] whose page is diffeomorphic to Σ1,3 and whose
monodromy is τA3

◦ τA2
◦ τA1

. Here Σ1,3 is an oriented compact surface of genus
1 with 3 boundary components, and A1, A2, A3 are simple closed curves shown on
Σ1,3 depicted in Figure 5. Let A be a simple closed curve on Σ1,3 as shown in Fig-
ure 5. Capping off the boundary δ of Σ1,3, we obtain curves a1, a2, a3, a depicted
in Figure 6. Since these curves are preserved under the hyperelliptic involution
of the capped-off surface, we obtain from a1, a2, a3, a the arcs α1, α2, α3, α on the
hyperelliptic quotient, that is, the disk (see Figure 7). We often identify the braid
group Bm on m strands with the mapping class group of an m marked disk. Write
βi and β for the braids corresponding to the half twists along αi and α, respectively.
Define the braid βk,l by

βk,l := (β−kβ1β
k)(β−kβ2β

k)(β−kβ3β
k)β2

l ∈ B4.

Yasui [34] pointed out that [τA] belongs to the centralizer of [τA3
] ◦ [τA2

] ◦ [τA1
].

It follows from this result that [τa] belongs to the centralizer of [τa3
] ◦ [τa2

] ◦ [τa1
].

Moreover, [τa] (resp. [τaj
]) is the image of the braids β (resp. βj) under the anti-

homomorphism ρ between the braid group and the 2-dimensional mapping class
group defined in Section 2.3. Hence, we have

ρ(ββ1β2β3) = [τa3
] ◦ [τa2

] ◦ [τa1
] ◦ [τa] = [τa] ◦ [τa3

] ◦ [τa2
] ◦ [τa1

] = ρ(β1β2β3β),

which proves, coupled with the injectivity of ρ, that β belongs to the centralizer of
β1β2β3. Therefore,

βk,l = βk′,l and ρ(βk,l) = ρ(βk′,l)

for any integers k, k′. For the next subsection, we describe β1, β2, β3, β in the Artin
generators σ1, σ2, σ3 of B4:

β1 = σ−2
3 σ−1

1 σ2σ1σ
2
3 , β2 = σ2, β3 = σ2

3σ1σ2σ
−1
1 σ−2

3 , β = σ3.

3.3. Proof of Theorem 1.1. First recall that as defined in Section 2.3, L1, L2,
L3, L4 are framed Lagrangian spheres realized as matching cycles of the exact Lef-
schetz fibration f on the cut-off Milnor fiber V 4,s of dimV 4,s = 4n − 2 (n ≥ 2).
The image of the Artin generator σj under the anti-homomorphism ρ : B5 →
π0(Symp(V4, dλφ)) is the symplectic isotopy class of the Dehn twist along Lj , that
is, ρ(σj) = [τLj

]. Define the Lagrangian spheres B1,k, B2,k, B3,k in (V4, dλφ) by

B1,k := τk+2
L3

◦ τL1
(L2), B2,k := τkL3

(L2), B3,k := τk−2
L3

◦ τ−1
L1

(L2).

Note that ρ(β−kβjβ
k) = [τBj,k

] for j = 1, 2, 3. We set

ϕk,l := τL4
◦ τ lL2

◦ τB3,k
◦ τB2,k

◦ τB1,k
,

and we have

ρ(βk,lσ4) = ρ(σ4) ◦ ρ(βl
2) ◦ ρ(β−kβ3β

k) ◦ ρ(β−kβ2β
k) ◦ ρ(β−kβ1β

k)

= [τL4
] ◦ [τL2

]l ◦ [τB3,k
] ◦ [τB2,k

] ◦ [τB1,k
]

= [ϕk,l].
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Here βk,l is thought of as the element in B5 through the canonical inclusion B4 ↪→
B5. Consider the abstract Weinstein Lefschetz fibration

(V4, dλφ;B1,k, B2,k, B3,k, L2, . . . , L2︸ ︷︷ ︸
l

, L4)

for any integers k ≥ 0 and l > 0, and let Wk,l denote the Weinstein domain
associated to this abstract Weinstein Lefschetz fibration. As mentioned in Section
2.4, Wk,l may be assumed to be a Stein domain. Let ξk,l be the contact structure
supported by the abstract contact open book (V4, dλφ;ϕk,l). Note that the contact
structure on ∂Wk,l induced from the Stein structure on Wk,l is isomorphic to ξk,l
on M(V4, dλφ;ϕk,l). Since βk,l = βk′,l and [ϕk,l] = ρ(βk,lσ4) = ρ(βk′,lσ4) = [ϕk′,l],
two abstract contact open books (V4, dλφ;ϕk,l) and (V4, dλφ;ϕk′,l) support isotopic
contact structures, and hence the contactomorphism class of ξk,l is independent of
k. Therefore, we may write (Ml, ξl) for (∂Wk,l, ξk,l) and regard the Stein domain
Wk,l as a Stein filling of (Ml, ξl).

Next, we show that the contact manifold (Ml, ξl) admits infinitely many pairwise
homotopy inequivalent Stein fillings. To see this, we prove that for k, k′ ≥ 0, Wk,l

and Wk′,l are homotopy equivalent if and only if k = k′ by computing the (2n−1)st

homology group of Wk,l. As we saw in Section 2.5, [Lj ] generate H2n−1(V4;Z), and
they also serve as generators of H2n−1(Wk,l;Z), where we choose the orientations
of Lj so that for i ≤ j,

〈[Li], [Lj ]〉 =
{
1 (j = i+ 1),

0 (otherwise).

According to the Picard-Lefschetz formula combined with the definitions of Bj,k,
we have

[B1,k] = (τk+2
L3

◦ τL1
)∗([L2]) = −(−1)ε(n)[L1] + [L2] + (k + 2)(−1)ε(n)[L3],

[B2,k] = (τkL3
)∗([L2]) = [L2] + k(−1)ε(n)[L3],

[B3,k] = (τk−2
L3

◦ τ−1
L1

)∗([L2]) = (−1)ε(n)[L1] + [L2] + (k − 2)(−1)ε(n)[L3],

where ε(n) := 2n(2n + 1)/2 is the exponent appearing in the Picard-Lefschetz
formula. From the equation (2),

H2n−1(Wk,l;Z) ∼= 〈 [L1], [L2], [L3], [L4] | [B1,k], [B2,k], [B3,k], [L2], . . . , [L2], [L4] 〉
∼= 〈 [L3] | k[L3] 〉

∼=
{
Z (k = 0),

Zk (k > 0).

The homology group depends on k, and Wk,l and Wk′,l are mutually homotopy
inequivalent if k �= k′. Thus we obtain the conclusion.

Finally, we see that the infinite family {Ml}l∈Z>0
contains infinitely many pair-

wise homotopy inequivalent (4n − 1)-manifolds. Here Ml may be assumed to be
equipped with the abstract contact open book (V4, dλφ;ϕ0,l). Since the page V4 of
the open book is a homotopy sphere, we can apply the equation (3) to Ml. By the
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Picard-Lefschetz formula again, we have

(ϕ0,l)∗([L1]) = [L1] + (−1)ε(n)l[L2],

(ϕ0,l)∗([L2]) = 3(−1)ε(n)[L1] + (9l + 1)[L2]− 6(−1)ε(n)[L3]− 6[L4],

(ϕ0,l)∗([L3]) = −l(−1)ε(n)[L2] + [L3] + (−1)ε(n)[L4],

(ϕ0,l)∗([L4]) = −2(−1)ε(n)[L1]− 6l[L2] + 4(−1)ε(n)[L3] + 5[L4].

Hence

H2n−1(Ml;Z) ∼= 〈 [L1], [L2], [L3], [L4] | (ϕ0,l)∗([Lj ])− [Lj ] (j = 1, . . . , 4)〉
∼= 〈 [L2], [L3] |l[L2] = 0 〉
∼= Z⊕ Zl.

Therefore, if l �= l′, Ml and Ml′ are mutually homotopy inequivalent. In particular,
two contact manifolds (Ml, ξl) and (Ml′ , ξl′) are mutually non-contactomorphic,
which finishes the proof of Theorem 1.1.

3.4. Remarks on Theorem 1.1. To obtain distinct Stein fillings, we use in-
equivalent quasipositive braid factorizations constructed by Baykur and Van Horn-
Morris. They took advantage of the element τa in the centralizer of τa3

◦ τa2
◦ τa1

and then conjugated the corresponding part of the factorization τ la2
◦ τa3

◦ τa2
◦ τa1

by τa. This twisting operation for the given factorization is called a partial twist,
studied in [2], which corresponds to a Luttinger surgery along a Lagrangian torus
in the total space of the Lefschetz fibration corresponding to the initial factor-
ization. The curves a1, a2, a3, a are symmetric with respect to the hyperelliptic
involution of the surface (see Figure 6), and hence this procedure can descend to
the braid group B4. Moreover the anti-homomorphism ρ makes a partial twist
valid for the symplectic mapping class group of the Milnor fiber. Similarly to the
4-dimensional case, in our case, we see that the parallel transport corresponding to
τB3,0

◦ τB2,0
◦ τB1,0

∈ Symp(V4, λφ) preserves the Lagrangian sphere L3, and this

provides a Lagrangian S1 × S2n−1 in W0,l. Thus our Stein filling Wk,l is obtained
from a surgery on W0,l along this Lagrangian S1 × S2n−1.

In our theorem, we assume that the dimensions of the contact manifolds are
4n − 1. The proof of this theorem is given by the algebraic argument, especially
the Picard-Lefschetz formula. Let (W,dλ) be an exact symplectic 4n-manifold,
and let L be a framed Lagrangian 2n-sphere in (W,dλ). Then the self-intersection
number of L is non-zero, and according to the Picard-Lefschetz formula, (τL)

2
∗

acts trivially on H2n(W ;Z). Hence, we have at most two distinct subgroups of
H2n(V4;Z) generated by the vanishing cycles. This is why we put the assumption
of the dimensions.

However, we can construct the corresponding infinite families of contact (4n+1)-
manifolds and their Stein fillings as we did. Let L1, L2, L3, L4 be framed Lagrangian
spheres obtained as matching cycles of the exact Lefschetz fibration f : V 4,s → D2 of

dimV 4,s = 4n (n ≥ 1). Define the Lagrangian spheres B1,k, B2,k, B3,k in (V4, dλφ)
and the symplectomorphism ϕk,l ∈ Symp(V4, dλφ) as in the proof of Theorem 1.1.
Let (Ml, ξl) be the (4n+1)-dimensional contact manifold obtained from the abstract
contact open book (V4, dλφ;ϕ0,l), and let Wk,l be its Stein filling obtained from the
abstract Weinstein Lefschetz fibration (V4, dλφ;B1,k, B2,k, B3,k, L2, . . . , L2︸ ︷︷ ︸

l

, L4).
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We would like to conclude this article with the following question:

Question 3.2. Let (Ml, ξl) be the (4n + 1)-dimensional contact manifold and let
Wk,l be its Stein filling defined above. Then, does the family {Wk,l}k∈Z of Stein
fillings contain infinitely many Stein fillings up to symplectic deformation equiv-
alent? Also, does the family {(Ml, ξl)}l∈Z of contact manifolds contain infinitely
many contact manifolds up to contactomorphism?
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