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TWIST REGIONS AND COEFFICIENTS STABILITY

OF THE COLORED JONES POLYNOMIAL

MOHAMED ELHAMDADI, MUSTAFA HAJIJ, AND MASAHICO SAITO

Abstract. We prove that the coefficients of the colored Jones polynomial of
alternating links stabilize under increasing the number of twists in the twist
regions of the link diagram. This gives us an infinite family of q-power series
derived from the colored Jones polynomial parametrized by the color and the
twist regions of the alternating link diagram.

1. Introduction

The colored Jones polynomial Jn,L(q) of a link L is a sequence of Laurent poly-
nomials with integer coefficients in one variable. The label n stands for the coloring.
The polynomial J2,L(q) is the original Jones polynomial. The stability of the highest
and lowest coefficients of the colored Jones polynomial has been studied extensively
in the last decade. It was conjectured in [7] that for an alternating link L the lowest
n coefficients of Jn,L(q) agree with the first n coefficients of Jn+1,L(q). This gives a
well-defined q-series invariant called the tail of the colored Jones polynomial. The
term head is used for the highest terms of the colored Jones polynomial. This con-
jecture was proven by Armond [1] and independently by Garoufalidis and Lê [11]
where higher stability was also shown. This work was extended to quantum spin
networks in [12] and all links in [20,21]. Dasbach and Lin showed that the head and
tail of alternating links contain geometric information that can be used as bounds
for the hyperbolic volume of a non-torus alternating link [7]. This work was ex-
tended by Futer, Kalfagianni, and Purcell to a larger class of links [9,10]. The tail
of the colored Jones polynomial has interesting connections with number theory.
It turns out that for many knots with small crossing numbers the tail of the col-
ored Jones polynomial is equal to theta and false theta functions [2,12]. Moreover,
infinite families of classical and new Ramanujan type q-series has been recently dis-
covered and recovered using techniques that are related to the tail [2,8,11–13]. The
tail of the colored Jones polynomial has also been studied using classical q-series
techniques [3, 11, 17]. Several connections between twist regions of a knot diagram
and the colored Jones polynomial have been made. In [5] the authors proved that
Mahler measures of the Jones polynomial and the colored Jones polynomial be-
have like the hyperbolic volume under Dehn surgery and the corresponding full
twists. Specifically, they showed that the Mahler measure of the Jones and colored
Jones polynomial converges under twisting on any number of strands. A generl-
ized Temperley-Lieb algebra was given in [4] to provide an alternative proof of this
result. A twisting formula of the Kauffman bracket was used in [6] to study the
hyperbolic volume of certain families of alternating links. In [2] it was proved that
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the tail of the colored Jones polynomial is invariant under changing the number of
twists in any maximal negative twist region.

In this paper we study the following aspects of the stability of the colored Jones
polynomial of alternating links under twists. For each color we study the stability of
the coefficients of the colored Jones polynomial as we change the number of crossings
in multiple twist regions. The rate of stabiliy is defined and studied as a function of
the number of crossings in twists regions and the color. This stability behavior gives
us an infinite family of q-power series associated with the colored Jones polynomial
of alternating links and parametrized by the color and the twist regions of the link
diagrams. We start by giving the following example to show the behavior we will
study. The following computataions were performed in Mathematica package [33]
and the formula of the colored Jones polynomial was obtained using the techniques
of [24].

Example 1.1. Let P (c1, c2, c3) be the pretzel link presented in Figure 1.

c1 c2 c3

Figure 1. Pretzel link P (c1, c2, c3).

Here c1, c2, and c3 are the number of negative crossings in each twist region.
See Figure 2 for an example of a negative twist region with c crossings. The goal
of this example is to show the stability behavior of the colored Jones polynomial of
the link P (c1, c2, c3) under changing the number of twists in the twists regions of
the link diagram L.

c

Figure 2. A negative twist region with c crossings.

In the pretzel link P (c1, c2, c3), let c1 = 8, c2 = 6, and let c3 take the values
k ≥ 1. We calculate the first k + 1 coefficients of J2(P (8, 6, k)) as can be seen in
the following table.
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The link P (8, 6, k) List of lowest k + 1 of coefficients of J2(P (8, 6, k))

k = 1 1,-1
k = 2 1,-1,3
k = 3 1,-1,3,-4
k = 4 1,-1,3,-4,6
k = 5 1,-1,3,-4,6,-8
k = 6 1,-1,3,-4,6,-8,10
k = 7 1,-1,3,-4,6,-8,10,-11
k = 8 1,-1,3,-4,6,-8,10,-11,13
k = 9 1,-1,3,-4,6,-8,10,-11,13,-13
k = 10 1,-1,3,-4,6,-8,10,-11,13,-13,14

This stability behavior also holds when we change the number of crossings in
two crossing regions at the same time as can be seen from the following table:

The link P (k, k, 2) List of lowest k + 1 of coefficients of J2(P (k, k, 2))

k = 1 1,-1
k = 2 1,-1,3
k = 3 1,-1,3,-3
k = 4 1,-1,3,-3,5
k = 5 1,-1,3,-3,5,-6
k = 6 1,-1,3,-3,5,-6,7
k = 7 1,-1,3,-3,5,-6,7,-8
k = 8 1,-1,3,-3,5,-6,7,-8,9
k = 9 1,-1,3,-3,5,-6,7,-8,9,-10
k = 10 1,-1,3,-3,5,-6,7,-8,9,-10,11

Furthermore, the stability behavior occurs also for higher colors. However, for
higher colors more coefficients stabilize as we increase the number of crossings. For
instance, the following table shows a list of coefficients of the third colored Jones
polynomial for a sequence of pretzel links:

The link P (k + 2, k + 4, k + 1) List of lowest 3k + 1 of coefficients of J3(P (k + 2, k + 4, k + 1))
k = 1 1,-1,-1,0
k = 2 1,-1,-1,0,4,0,-4
k = 3 1,-1,-1,0,4,0,-4,-5,7,6
k = 4 1,-1,-1,0,4,0,-4,-5,7,6,-1,-13,1
k = 5 1,-1,-1,0,4,0,-4,-5,7,6,-1,-13,1,7,9,-8
k = 6 1,-1,-1,0,4,0,-4,-5,7,6,-1,-13,1,7,9,-8,-3,-5,5
k = 7 1,-1,-1,0,4,0,-4,-5,7,6,-1,-13,1,7,9,-8,-3,-5,5,-1,13,-4

Finally, if we increase the number of crossings in twist regions along with the
color we also obtain the stability behaviors shown in the following table:

The link P (2, 5, k) List of lowest k + 1 of coefficients of Jk(P (2, 5, k))

k = 1 1,-1
k = 2 1,-1,-1
k = 3 1,-1,-1,0
k = 4 1,-1,-1,0,0
k = 5 1,-1,-1,0,0,1
k = 6 1,-1,-1,0,0,1,0
k = 7 1,-1,-1,0,0,1,0,1

An explicit formula for the Kauffman bracket of pretzel links is given in [23] and
a recursive formula can be found in [19].
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The purpose of this paper is to prove that the stability behavior illustrated in
this example holds for the colored Jones polynomial of any sequence of alternating
links indexed by the color and the twist regions.

1.1. Main results. We start by stating the first main result on the stability of the
coefficients for the Kaufmman bracket, or equivalently the Jones polynomial, under
increasing the number of twists in a single maximal twist region in:

Theorem 3.4. Let L = Lk be an alternating link diagram with a marked maximal
negative twist region with k ≥ 1 crossings. Then,

〈Lk〉 .
=4k 〈Lk−1〉.

Here the notation P1
.
=n P2 means that the lowest n coefficients of the Laurent

polynomials P1 and P2 coincide up to a sign. This theorem generalizes to alternating
links with multiple marked twist regions in:

Theorem 3.6. Let L = L(k1, . . . , kr) be an alternating link diagram. Then

〈L(k1, . . . , kr)〉 .
=4k 〈L(k1 − 1, . . . , kr − 1)〉,

where k = min1≤i≤r(ki).

Theorem 3.4 generalizes to the unreduced colored Jones polynomial:

Theorem 4.6. Let L = Lk be a reduced alternating link diagram with a marked
maximal negative twist region with k ≥ 1 crossings. Then,

J̃n(Lk)
.
=4n(k−1)+4 J̃n(Lk−1).

Moreover, Theorem 3.6 also generalizes to the unreduced colored Jones polyno-
mial:

Corollary 4.8. Let L = L(k1, . . . , kr) be a reduced alternating link diagram. Then

J̃n(L(k1, . . . , kr))
.
=n(k−1)+1 J̃n(L(k1 − 1, . . . , kr − 1)),

where k = min1≤i≤r(ki).

The previous theorems give us a method to generate families of q-series parame-
trized by the color and the twist regions of the alternating link diagram:

Corollary 4.9. Let L = L(k1, . . . , kr) be an alternating link diagram. Then the

sequence {J̃n(L(k1 + i, . . . , kr + i))}i∈N has a well-defined tail.

Finally we show that our work generalizes the work of Armond and Dasbach [2]
and Garoufalidis and Lê [11]:

Theorem 5.3. Let L = L(k1, . . . , kr) be a reduced alternating diagram. Then the

sequence {J̃n+i(L(k1 + i, . . . , kr + i))}i∈N has a well-defined tail.

1.2. Organization of the paper. The paper is organized as follows. In section
2 we review the basic material needed from skein theory. Section 3 contains the
proof of the result in the case of the Jones polynomial. In section 4 we prove our
result for the colored Jones polynomial. In section 5 we show the connection of this
stability behavior with the tail of the colored Jones polynomial. We conclude the
paper by section 6 which contains some open questions.
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2. Setting the scene

Let M be an oriented 3-manifold and let I be a closed interval. A framed link
in M is an oriented embedding of a disjoint union of oriented annuli in M . If the
manifold M has a boundary ∂M , then a closed interval in ∂M is called a framed
point. A band in M is an oriented embedding of I × I that meets the boundary
∂M orthogonally at two framed points.

Definition 2.1 ([26, 27]). Let M be an oriented 3-manifold and let R be a com-
mutative ring with an identity and an invertible element A. Let LM be the set of
isotopy classes of framed links in M including the empty link. If M has a boundary
and an even number of marked framed points on ∂M , then the set LM also includes
the isotopy classes of bands that meet the marked points. Let RLM be the free
R-module generated by the set LM . The Kauffman bracket skein module of M and
R, denoted by S(M,R) is the quotient module S(M,R) = RLM/K(M), where
K(M) is the smallest submodule of RLM that is generated by all expressions of
the form [16]:

(1) −A −A−1 , (2) L � + (A2 +A−2)L,

where L� consists of an element in LM and the zero-framed knot that

bounds a disk in M .

Throughout this article, the ring R will be fixed to be the ring of all rational
functions Q(A) with the indeterminate A so we will drop the ring from the notation
of the Kauffman bracket skein module. Furthermore, if F is an oriented surface
and M = F × I, then we will refer to S(M) by S(F ) and refer to this module by
the Kauffman bracket skein module of F .

The Kauffman bracket induces an isomophism 〈 〉 : S(S2) −→ Q(A) given by
sending every diagram D to 〈D〉. In particular, this isomorphism sends the empty
link to 1. Let D = I× I be the unit square. Fix 2n marked points on the boundary
of D such that we have n points on the top of D and n points on the bottom of it.
Denote by S(D2, 2n) the Kauffman bracket skein module of the disk D with the
2n marked points. This module can be made into an associative algebra over Q(A)
by the obvious vertical diagram juxtaposition. This algebra, known as the nth

Temperley-Lieb algebra TLn, plays a central role in Witten-Reshetikhin-Turaev
invariants for SU(2) [22, 27], the colored Jones polynomial and its applications
[27,30], and quantum spin networks [24]. See also the book [25] for more details. For
every n ≥ 1 there exists a unique idempotent in TLn known as the nth Jones-Wenzl
idempotent (projector), denoted f (n). The Jones-Wenzl idempotent was defined by
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Jones in [15] and it satisfies the following recursive formula due to Wenzl [32]:

n

=

n− 1 1

−
(Δn−2

Δn−1

)

1n− 1

n− 2

1
n− 1

,

1

=(2.1)

where

Δn = (−1)n
A2(n+1) −A−2(n+1)

A2 −A−2
.

The element f (n) is characterized by the following properties [22]:

n

=

n

,

n− i− 2

1

i

n

= 0.(2.2)

The second equation of (2.2) holds for 0 ≤ i ≤ n−2. We will also need the following
properties of the projector:

n m

m+ n

=

m+ n

,

n

= (−1)nA−n2−2n

n

.

(2.3)

We also need the following fact from [14]:

n n

=
n∑

i=0

Cn,i

n n

i i

n − i

n − i

(2.4)

where

(2.5) Cn,i = An2+2i2−4in (A4;A4)n
(A4;A4)i(A4;A4)n−i

.
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Here (a; q)n is the q-Pochhammer which is defined as

(a; q)n =

n−1∏
j=0

(1− aqj).

The Jones-Wenzl projector can be used to extend the Kauffman bracket skein mod-
ules to banded trivalent graphs. Let (a, b, c) be a triple of positive integers. We say
that (a, b, c) is admissible if a+ b+ c ≡ 0 (mod 2) and |a− b| < c < a+ b. Given an
admissible triple we define a 3-valent vertex as :

b

a

c

=

b

a

c

xy

z

.(2.6)

Here x, y, and z are three non-negative integers that are determined uniquely
by the equations a = x + y, b = x + z, and c = y + z. These three equations are
equivalent to the equations x = a+b−c

2 , y = a+c−b
2 , and z = b+c−a

2 when the triple
(a, b, c) is admissible. We usually refer to the trivalent vertex shown on the right
hand side of the previous equation by τa,b,c and refer to the positive integers a, b,
and c as colors. Furthermore, we usually call x, y, and z the internal colors of the
element τa,b,c.

The fusion formula is given by

nn

=
n∑

i=0

Δ2i

θ(n, n, 2i)

n

n n

n

2i(2.7)

where θ(a, b, c) is the evaluation of the theta graph, Figure 3, in the Kauffman
bracket skein module of S2. We will denote the trivalent graph that appears on the
right hand side of (2.7) by Tn,i.

a

b

c

Figure 3. The theta graph θ(a, b, c).

This evaluation is given explicitly by
(2.8)

θ(a, b, c) = (−1)x+y+zA−2(x+y+z) (A
4;A4)x(A

4;A4)y(A
4;A4)z(A

4;A4)x+y+z+1

(1−A4)(A4;A4)x+y(A4;A4)y+z(A4;A4)x+z
,
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where x, y, and z are the internal colored of the 3-vertex τa,b,c. Furthermore, one
has:

ba

c

= μa,b
c

ba

c

(2.9)

where μa,b
c = (−1)

a+b−c
2 Aa+b−c+ a2+b2−c2

2 .
We will also need the definition of the colored Jones polynomial. Let L be a

framed link in S3. Take cabling of every component of L, according to its framing,
by the nth Jones-Wenzl idempotent and consider the evaluation of a decorated
framed link as an element of S(S3). Up to a power of ±A, that depends on the
framing of L, the value of this element is defined to be the nth (unreduced) colored

Jones polynomial J̃n,L(A). The colored Jones polynomial can be recovered from
the unreduced colored Jones polynomial via:

(2.10) Jn+1,L(q) =
J̃n,L(A)

Δn

∣∣∣∣
A=q1/4

.

Since we are interested in the list of the coefficients of the colored Jones polynomial,
we do not need to take into consideration the framing of the link in our study. For
this reason, in our computations of the coefficients of the nth unreduced colored
Jones polynomial of a link L we choose any diagram D of the link L and compute
the evaluation of the skein element obtained from D by blackboard cabling all its
components by the nth Jones-Wenzl idempotent. We denote this evaluation by
〈Sn(D)〉. Note that

J̃n,L
.
= 〈Sn(D)〉.

Remark 2.2. We will only state the facts that are concerned with the lowest terms
of the colored Jones polynomial of alternating links. It should be noted, however,
that these facts can also be proven for the highest terms analogously.

3. Coefficients stability of the Jones polynomial under increasing

number of twists

In this section we give a proof of the coefficients stability of the Jones polynomial
of alternating link diagram under increasing the number of twists in a maximal twist
region. Later we will give a general proof for all colors. We choose to give a separate
proof for the Jones polynomial since it is less technical and it illustrates clearly the
main idea of the more general technical proof given in section 4.

3.1. Alternating links and the minimal degree of the Jones polynomial.
Let L be a link in S3 and let D be a link diagram of L. For any crossing in D there
are two ways to smooth it, the positive smoothing and the negative smoothing. See
Figure 4.
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+ −

Figure 4. The positive and the negative smoothings of a crossing.

After applying a smoothing to each crossing in D we obtain a planar diagram
consisting of a collection of disjoint circles in the plane. We call this diagram along
with the crossings assignments a state of the diagram D. More precisely, write RD

to denote the set of crossings of the diagram D. A state of the diagram D is a
function s : RD −→ {−1,+1}. If s is a state of D, then we denote by s(D) the
diagram constructed from D using s. The state which assigns to every crossing the
value +1 is called the all-positive state and is denoted by s+(D). The all-negative
state s−(D) is defined similarly. For a state s of a diagram D we write |s(D)| to
denote the number of connected components in s(D).

The all-negative state can be used to compute the minimum degree of adequate
links, a class of links that contain alternating links. We will need the notion of
adequate links later so we give its definition here.

Definition 3.1. Let D be a link diagram. The minus-graph of the diagram D,
denoted G−(D) is the graph whose vertices are the circles of s−(D) and whose
edges correspond to the crossings in the diagram D. The reduced minus-graph of
D, denoted by G′

−(D), is obtained from G−(D) by replacing parallel edges by a
single edge (see Figure 5).

The plus-graph and the reduced plus-graph of a link diagram D are defined
similarly. A link diagram D is called minus-adequate if G−(D) does not contain
any loop. The notion of plus-adequate diagram is defined similarly. A link diagram
is adequate if it is both minus-adequate and plus-adequate. It is known [29] that a
reduced alternating diagram is adequate.

D G′
−(D)s−(D) G−(D)

Figure 5. A link diagram D, its all-negative state s−(D), the
minus-graph G−(D), and the reduced all minus-graph G′

−(D).

The Kauffman skein relation can be used to show that the all-positive state (re-
spectively the all-negative state) realizes the highest (respectively, the lowest) co-
efficient of the Jones polynomial of a plus-adequate (respectively, minus-adequate)
link.

For an element f in S(S2) expressed as an element in Z[A−1][[A]], the symbol
m(f) will denote the minimum degree of f .
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Proposition 3.2 ([29]). Let D be a minus-adequate link diagram with c crossings.
Then

m(〈D〉) = m(〈s−(D)〉) = −c− 2|s−(D)|,

and for any state s of D different from s−, we have

m(〈s(D)〉)− 4 ≥ m(〈s−(D)〉),

with equality if the state s is obtained from s− by changing the label of one crossing
from a positive smoothing to a negative smoothing.

Our work here can be considered as a generalization of the previous fact. We
are interested in the list of coefficients of the Jones polynomial. For this reason we
need the following definition.

Let P1(q) and P2(q) be power series in Z[q−1][[q]]. For a non-negative integer n,
we say that P1 and P2 are n equivalent and write P1(q)

.
=n P2(q), if their first n

coefficients agree up to a sign. For instance, −q−4+4q−3−6+11q
.
=5 1−4q+6q4.

If P1(q)
.
=n P2(q) for every integer n ≥ 0, then we simply write P1(q)

.
= P2(q).

Definition 3.3. Let P = {Pn(q)}n∈N be a sequence of formal power series in
Z[q−1][[q]] and let f : N −→ N be an increasing function. We say that the sequence
P stabilizes with rate f if there exists a formal power series TP(q) in Z[[q]] that
satisfies

TP(q)
.
=f(n) Pn(q) for all n ∈ N.

Note that the sequence P stabilizes with rate f if and only if Pn(q)
.
=f(n) Pn+1(q)

for all n ≥ 1. We call the function f the rate of stability of the sequence P and we
call the power series TP(q) the tail of P. If the tail TP(q) of a sequence P exists,
then it is independent from the rate of stability. Note that if P stabilizes with rate
f , then it also stabilizes with any rate g such that g ≤ f . We say that the rate of
stabilization f is maximal for the sequence P if it stabilizes with rate f but it does
not stabilize for any rate g such that g > f .

We will show that the Jones polynomial of a sequence of alternating links
parametrized by the number of twists in a maximal negative twist region has a
well-defined tail in the sense of Definition 3.3. For this purpose we need the follow-
ing notion.

3.2. Twist regions. Let L be a link diagram. Suppose that L has r maximal
negative twist regions labeled by 1, . . . , r. Let ki be the number of negative crossings
in the region i. We will denote by L(k1, . . . , kr) the link diagram L with r labeled
maximal negative twist regions such that the ith region has ki ≥ 1 crossings. In the
case when we are interested in a subset of the total sets of r twist regions we will
only label these regions that we are interested in and use the same notation above
to denote the link diagram with the labeled twist regions. In particular, when we
are interested merely in a single maximal negative twist region with k crossings in
the diagram L then we will refer to this link diagram by Lk and refer to the twist
region we are interested in as the marked twist region of the diagram L. Figure 6
shows a link diagram with a total of four maximal negative twist regions labeled
by two different methods.
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L′ L
1

2

3

1

2

3

4

Figure 6. The link L′ = L′(4, 2, 3) on the left and the link L =
L(4, 3, 2, 3) on the right.

Let L = L(k1, . . . , kr) be an alternating link diagram such that ki ≥ 1. Suppose
that bi ∈ Z such that ki + bi ≥ 0. The link diagram L(k1 + b1, . . . , kr + br) is the
link diagram obtained from L(k1, . . . , kr) by replacing the ith twist region which
has ki negative crossings with a twist region with ki + bi negative crossings. In the
case when ki + bi = 0 then we replace the ith maximal twist region by the negative
smoothing as illustrated in Figure 7.

Figure 7. Replacing a maximal twist region by the negative
smoothing when the number of this twist region becomes zero.

Theorem 3.4. Let L = Lk be an alternating link diagram with a marked maximal
negative twist region with k ≥ 1 crossings. Then,

(3.1) 〈Lk〉 .
=4k 〈Lk−1〉.

Proof. Using the Kauffman skein relation to smooth one of the crossings in the
marked twist region gives:

〈Lk〉 = A

k − 1

+A−1

k − 1
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Untwisting the regions in the first term in the previous equation we obtain:

〈Lk〉 = A(−A3)k−1 +A−1〈Lk−1〉.(3.2)

Let L′ be the link obtained from Lk in the first term in equation (3.2). Figure
8 shows that both L′ and Lk−1 are alternating.

L′ Lk−1

Figure 8. Giving a maximal negative twist region in an alternat-
ing link L = Lk, the two links L′ and Lk−1 obtained from L are
alternating.

Assuming that the total number of crossings in the link diagram Lk is c, then
the numbers of crossings in the link diagrams Lk−1 and L′ are c − 1 and c − k,
respectively. Furthermore, it is clear that |s−(Lk)| = |s−(Lk−1)| and |s−(L′)| =
|s−(Lk)| − 1.

Thus by Proposition 3.2:

m(A(−A3)k−1〈L′〉) = (3k − 2)− (c− k)− 2(|s−(Lk)| − 1)

= 4k − c− 2|s−(Lk)|,
and

m(A−1〈Lk−1〉) = (−1)− (c− 1)− 2|s−(Lk)|)
= −c− 2|s−(Lk)| = m(Lk).

Hence, by equation (3.2), the first 4k terms of A−1〈Lk−1〉 do not get canceled by
any term in the expansion of −A3k−2〈L′〉. This completes the proof. �

Formulas for the Kauffman bracket under twisting can be also found in [5, 6].
Equation (2.10) and the previous Theorem 3.4 immediately imply the following.

Corollary 3.5. Let L = Lk be an alternating link diagram with a marked maximal
negative twist region with k ≥ 1 crossings. Then the sequence {J2(Lk+i)}i∈N has a
well-defined tail.

Now assume that an alternating link L = L(k1, k2) with k1, k2 ≥ 1 has two
marked maximal twist regions and we want to compare the first few coefficients of
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the Jones polynomial L(k1−1, k2−1) with L = L(k1, k2). By the previous theorem
one has

〈L(k1, k2)〉 .
=4k1

〈L(k1 − 1, k2)〉 .
=4k2

〈L(k1 − 1, k2 − 1)〉.

Hence,

〈L(k1, k2)〉 .
=4k 〈L(k1 − 1, k2 − 1)〉,

where k := min(k1, k2). In general we have the following.

Theorem 3.6. Let L = L(k1, . . . , kr) be an alternating link diagram. Then,

(3.3) 〈L(k1, . . . , kr)〉 .
=4k 〈L(k1 − 1, . . . , kr − 1)〉,

where k = min1≤i≤r(ki).

The previous theorem along with equation (2.10) immediately imply the follow-
ing corollary.

Corollary 3.7. Let L = L(k1, . . . , kr) be an alternating link diagram. Then the
sequence {J2(L(k1 + i, . . . , kr + i))}i∈N has a well-defined tail.

We will denote by T2,L(k1,...,kr) the tail in Corollary 3.7 associated with the
alternating link diagram L(k1, . . . , kr) and the Jones polynomial.

The following corollary follows from Theorem 3.4.

Corollary 3.8. Let L = L(k1, . . . , kr) be an alternating link diagram. Then the
sequence {J2(L(k1 + i, . . . , kr + i))}i∈N stabilizes with rate k + i + 1 where k =
min1≤j≤r(kj).

The rate of stability for the sequence specified in Corollary 3.8 is maximal. This
can be seen by considering the example of J2(P (8, 6, i)) where P (c1, c2, c3) is shown
in Figure 6. The following table shows that J2(P (8, 6, i))

.
=i+1 J2(P (8, 6, i+1)) for

1 ≤ i ≤ 3, but this is not the case for the rate i+ 2.

The link P (8, 6, i) List of lowest i+ 2 of coefficients of J2(P (8, 6, i))
i = 1 1,-1,2
i = 2 1,-1,3,-3
i = 3 1,-1,3,-4,5

4. The main theorems

4.1. The colored Kauffman skein relation and the minimal degree of the
colored Jones polynomial. The minimum degree of the colored Jones polyno-
mial of alternating links can be computed from the link diagram. For the purpose
of this paper we need to state this fact in terms of the identity (2.4). This identity
(2.4) generalizes the Kauffman skein relation. Motivated by this fact, we define the
n+ 1 different states for a link diagram D for every positive integer n. More pre-
cisely, an n-colored state is a function sn : RD −→ {0, . . . , n}. If sn is a state of D,
then define sn(D) to be the skein element in S(S2) obtained from D by replacing
every crossing labeled 0 ≤ i ≤ n by the skein element shown in Figure 9.
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n− i

i

Figure 9. Given n ≥ 1, there are n+ 1 colored smoothings of a crossing.

Furthermore, when it is necessary to specify the assignments of a state sn in the
notation we will use sn(i1, . . . , ik) to refer to sn where 0 ≤ i1, . . . , ik ≤ n are the
assignments for the crossings of D defined by the state sn. We will refer to the state
which assigns n to every crossing by sn− and we will refer to the state which assigns
0 to every crossing by sn+. For a state sn(i1, . . . , ik)(D) of a diagram D crossings
define the skein element

(4.1) 〈sn(i1, . . . , ik)(D)〉 =
k∏

j=0

Cn,ijs
n(i1, . . . , ik)(D).

It is clear from (2.4) that

(4.2) 〈Sn(D)〉 =
∑
sn

〈sn(D)〉.

Using the identity (2.4), the following was proved in [14].

Proposition 4.1 ([14]). Let D be a reduced alternating link diagram with c cross-
ings. Then

(4.3) m(〈Sn(D)〉) = m(〈sn−(D)〉) = −cn2 − 2ns−(D),

and for any state sn different from sn−, we have

(4.4) m(〈sn(D)〉)− 2n ≥ m(〈sn−(D)〉),

with equality if sn is obtained from sn− by changing the label of one crossing from n
to n− 1.

The proof of the previous fact utilizes finding the minimum degree of certain
skein elements called adequate skein elements due to Armond [1]. We introduce this
concept here since it will be needed later. Let S be a crossingless skein element in
S(S2) consisting of circles and arcs connecting Jones-Wenzl projectors with various
colors. Denote by S̄ the skein element obtained from S by replacing every ith

Jones-Wenzl idempotent with the identity element in TLi. The skein element S is
called adequate if S̄ consists of circles each of which passes at most once through the
regions where we had the boxes of the idempotents in S. Denote M(S) := m(S̄).
Computing the minimum degree of adequate skein elements can be done easily
using the following lemma:

Lemma 4.2 ([1]). Let S be an in element in S(S2) expressed as a single diagram
containing the Jones-Wenzl idempotent; then m(S) ≥ M(S). Furthermore, if S is
adequate, then m(S) = M(S).
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4.2. Twist regions and lowest terms of the colored Jones polynomial. We
want to study the list of lowest terms of the colored Jones polynomial of a reduced
alternating link diagram L = L(k1, . . . , kr) as we increase the number of crossings in
the labeled maximal twist regions. For this purpose we need to study the minimum
degree of a certain trivalent graph obtained from the link diagram L(k1, . . . , kr). Let
Υ(n, p) be the skein element in S(S2) obtained from L(k1, . . . , kr) by cabling all the
strands outside of the first maximal twist region by the nth Jones-Wenzl projector
and replacing this twist region by the trivalent graph Tn,p, where 0 ≤ p < n, as
illustrated in Figure 10.

n n

n n

k1 2p

Figure 10. Replacing a maximal twist region with k1 crossings
in the alternating diagram D by the trivalent graph Tn,p.

See also Figure 11 for an example.

1

2

3

4

2p

n

n n

n

Figure 11. On the left L = L(4, 3, 2, 3) where the labels 1, 2, 3
and 4 for the maximal negative twist regions are shown on the
diagram. On the right the skein element Υ(n, p) is obtained by
replacing the twist region labeled 1 by the trivalent graph Tn,p,
where 0 ≤ p < n.

Applying the fusion formula to the twist regions 2, . . . , r in the skein element
Υ(n, p) we obtain

(4.5) Υ(n, p) =
∑

0≤j2,...,jr≤n

r∏
i=2

(μn,n
2ji

)ki
Δ2ji

θ(n, n, 2ji)
Γn,p,(j2,...,jr),

where Γn,p,(j2,...,jr) is the trivalent graph obtained from Υ(n, p) by replacing ith

twist region by an edge colored 2ji, where 0 ≤ ji ≤ n, and coloring all of the other
edges by n. See Figure 12 for an example.
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1

2

3

4

2j2

2j3

2j4

2p 2p

n

n n

n

Figure 12. On the left the skein element Υ(n, p) obtained from
the link L = L(4, 3, 2, 3) shown in Figure 11. On the right the
trivalent graph Γn,p,(j2,j3,j4) obtained from Υ(n, p) by replacing the
maximal twist regions labeled 2, 3, and 4 by the labels 2j2, 2j3, and
2j4, respectively.

We want to find the minimum degree of the skein element Υ(n, p). For this
purpose we recall the following fact from [1].

Lemma 4.3 ([1]).

(1) Let 1 ≤ j ≤ n; then

m(μn,n
2j ) = m(μn,n

2(j−1))− 4j.

(2) Let 1 ≤ j ≤ n; then

m(
Δ2j

θ(n, n, 2j)
) = m(

Δ2(j−1)

θ(n, n, 2(j − 1))
)− 2.

(3) Let 1 ≤ ji, p ≤ n for 2 ≤ i ≤ r. Then

m(Γn,p,(j2,...,ji−1,ji,ij+1,...,jr)) = m(Γn,p,(j2,...,ji−1,ji−1,ij+1,...,jr))± 2.(4.6)

The following lemma studies the minimum degree of the trivalent graph Υ(n, p).

Lemma 4.4. Let L = L(k1, . . . , kr) be a reduced alternating link diagram with c
crossings. Let Υ(n, p) be the skein element in S(S2) obtained from L(k1, . . . , kr) as
illustrated above. Then m(Υ(n, p)) = −n2(c− k1)− 2(s−(L)n− (n− p)).

Proof. The trivalent graph Υ(n, p) can be written as in equation (4.5). We claim
that the minimum degree of Υn,p is coming from the term

(4.7)

r∏
i=2

(μn,n
2n )ki

Δ2n

θ(n, n, 2n)
Γn,p,(n,...,n)

and the minimal degree of this term does not get canceled by any other terms from

the summation (4.5). Since μn,n
2n = A−n2

and Δ2n = θ(n, n, 2n), we can write (4.7)
as

r∏
i=2

(μn,n
2n )ki

Δ2n

θ(n, n, 2n)
Γn,p,(n,...,n) = (A)−n2(c−k1)Γn,p,(n,...,n).

We want to find the minimum degree of Γn,p,(n,...,n). We do this by comparing this

element to Γn,n,(n,...,n). The state Γn,n,(n,...,n) is equivalent to the all-negative state
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smoothing of the link Ln. Since L is alternating then Ln is minus-adequate and
hence Γn,n,(n,...,n) is an adequate skein element. The skein element Γn,p,(n,...,n) is

obtained from Γn,n,(n,...,n) by merging exactly n− p circles as illustrated in Figure

13 (a) and (b). Hence the number of connected components of Γn,p,(n,...,n) is n− p

fewer than that number of Γn,n,(n,...,n). In other words, the number of connected

components of the state Γn,p,(n,...,n) is ns−(L)− (n− p). Figure 13 (b) shows the
local difference between the skein elements Γn,p,(n,...,n) and Γn,n,(n,...,n). All circles

in Γn,p,(n,...,n) in the region outside the illustrated region in Figure 13 (b) pass at
most once through the regions of the idempotents since the outside of this skein
element is identical to the outside of the adequate skein element Γn,n,(n,...,n). On
the other hand, each one of the n− p circles inside the region illustrated in Figure
13 (b) passes at most once through the region of the idempontents. The same holds
for the circles labeled p. Hence all circles in Γn,p,(n,...,n) pass at most once through
the regions of the idemponents and hence Γn,p,(n,...,n) is an adequate skein element.

n− pp

p

n

n

(b)

n

n

p

p

n− pn− p

(a)

Figure 13. (a) The local change that we need to do on the skein
element Γn,n,(n,...,n) to obtain the skein element Γn,p,(n,...,n). (b)
The skein element Γn,n,(n,...,n) is an adequate skein element and
Γn,p,(n,...,n) is obtained from the skein element Γn,n,(n,...,n) by merg-

ing n− p circles in Γn,n,(n,...,n) to obtain the gray circle.

Since Γn,p,(n,...,n) is an adequate skein element then by Lemma 4.2 we have
m(Γn,p,(n,...,n)) = M(Γn,p,(n,...,n)). However, M(Γn,p,(n,...,n)) is equal to −2(ns−(L)
−(n− p)). Thus,

m((A)−n2(c−k1)Γn,p,(n,...,n)) = −n2(c− k1)− 2(s−(L)n− (n− p)).

It is left to show that none of the terms in the summation (4.5) cancels the minimum

term in (A)−n2(c−k1)Γn,p,(n,...,n). This follows immediately from Lemma 4.3. The
result follows. �
Remark 4.5. In Lemma 4.4, we assume that r is the number of total maximal
negative twist regions in the diagram L. It should be noted however that the
proofs given here work when we choose to label a subset of the maximal twist
regions set of the diagram. The reason for choosing r to be maximal is to make the
notation of the lemma less cumbersome.

Theorem 4.6. Let L = Lk be a reduced alternating link diagram with a marked
maximal negative twist region with k ≥ 1 crossings. Then,

(4.8) J̃n(Lk)
.
=4n(k−1)+4 J̃n(Lk−1).
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Proof. Since

(4.9) 〈Sn(Lk)〉 .
= J̃n(Lk),

then we will do the computations on 〈Sn(Lk)〉. Using equation (2.4) on a single
crossing of the marked twist region we obtain:

〈Sn(Lk)〉
.
=

nn

nn

k

=

n−1∑
j=0

Cn,j

nn

nn

j

+ Cn,n

nn

nn

k − 1

= R(n, k) + A−n2〈Sn(Lk−1)〉

where

R(n, k) =
n−1∑
j=0

Cn,j

nn

nn

j

.

.(4.10)

Applying the fusion formula on the skein element that appears in R(n, k), we obtain

R(n, k) =

n−1∑
j=0

j∑
p=0

Cn,j
Δ2p

θ(j, j, 2p)

nn

nn

n − p

n − p

p

.

Using the formula (2.9), we have

R(n, k) =
n−1∑
j=0

j∑
p=0

Cn,j
Δ2p

θ(j, j, 2p)
(μn,n

2p )k−1

nn

p

n − p

(4.11)

where

μn,n
2p = (−1)n−pAn2+2n−2p−2p2

.
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Now consider the equation that we derived earlier:

(4.12) 〈Sn(Lk)〉 = R(n, k) +A−n2〈Sn(Lk−1)〉.

We want to show that R(n, k) does not contribute to the first 4n(k − 1) + 4 terms
of 〈Sn(Lk)〉. We show this by proving that the minimum degree of R(n, k) is

4n(k − 1) + 4 higher than the minimum degree of A−n2〈Sn(Lk−1)〉.

Assume that the diagram Lk has c crossings. This implies that the number of
crossings of the diagram Lk−1 is c − 1. Moreover, |s−(Lk−1)| = |s−(Lk)|. Since
Lk−1 is alternating, then m(〈Sn(Lk−1)〉) = −(c− 1)n2 − 2ns−(Lk). Hence,

(4.13) m(A−n2〈Sn(Lk−1)〉) = m(〈Sn(Lk)〉).

This implies that the minimum degree of 〈Sn(Lk)〉 comes from the second sum-

mand of (4.12) which is A−n2〈Sn(Lk−1)〉. Now, denote by Υ(n, p) the skein element
that appears on the right hand side of equation (4.11) and write

R(n, k) = Cn,n−1

Δ2(n−1)

θ(n− 1, n− 1, 2n− 2)
(μn,n

2n−2)
k−1Υ(n, n− 1)

+

n−2∑
p=0

Cn,n−1
Δ2p

θ(n− 1, n− 1, 2p)
(μn,n

2p )k−1Υ(n, p)

+
n−2∑
j=0

j∑
p=0

Cn,j
Δ2p

θ(j, j, 2p)
(μn,n

2p )k−1Υ(n, p).(4.14)

We claim that the minimum degree of R(n, k) is coming from the first summand
of (4.14). To see this, first note that Lemma 4.4 implies

m(Υ(n, p)) = −n2(r − k)− 2(s−(Lk)n− (n− p)).

Moreover,

Cn,j
Δ2p

θ(j, j, 2p)
(μn,n

2p )k−1 = (−1)−j−n+kn+2p−kpA2j+2j2−2n−4jn+2kn+kn2−2kp+2p2−2kp2

× (A4;A4)j(A
4;A4)n(A

4;A4)1+2p

(A4;A4)−j+n(A4;A4)j−p(A4;A4)1+j+p(A4;A4)2p
.

Hence,
(4.15)

m(Cn,j
Δ2p

θ(j, j, 2p)
(μn,n

2p )k−1Υ(n, p)) = 2j + 2j2 − 4jn+ 2kn+ 2kn2 − 2p− 2kp+ 2p2

− 2kp2 − n2r − 2ns−(Lk).

In particular,

m(Cn,n−1

Δ2(n−1)

θ(n− 1, n− 1, 2n− 2)
(μn,n

2n−2)
k−1Υ(n, n− 1)) = −2ns−(Lk)

− n2r + 4n(k − 1) + 4.
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Moreover, from (4.15) we see that

m(Cn,n−1

Δ2(n−1)

θ(n− 1, n− 1, 2n− 2)
(μn,n

2n−2)
k−1Υ(n, n− 1))

< m(Cn,j
Δ2p

θ(j, j, 2p)
(μn,n

2p )k−1Υ(n, p)),

when j, p 
= n− 1. Thus,

m(R(n, k)) = m(Cn,n−1

Δ2(n−1)

θ(n− 1, n− 1, 2n− 2)
(μn,n

2n−2)
k−1Υ(n, n− 1))

= −2ns−(Lk)− n2r + 4n(k − 1) + 4.

Since the minimum degree of the term R(n, k) is higher than the minimum degree of

A−n2〈Sn(Lk−1)〉 by at least 4n(k−1)+4, then by equation (4.12) we are done. �
The following three corollaries immediately follow from Theorem 4.6 and they

are analogous to Corollary 3.5, Theorem 3.6, and Corollary 3.7, respectively.

Corollary 4.7. Let L = Lk be a reduced alternating link diagram with a marked
maximal negative twist region with k≥1 crossings. Then the sequence {J̃n(Lk+i)}i∈N

has a well-defined tail.

Corollary 4.8. Let L = L(k1, . . . , kr) be a reduced alternating link diagram. Then

(4.16) 〈Sn(L(k1, . . . , kr))〉 .
=4n(k−1)+4 〈Sn(L(k1 − 1, . . . , kr − 1))〉,

where k = min1≤i≤r(ki).

Corollary 4.9. Let L = L(k1, . . . , kr) be an alternating link diagram. Then the

sequence {J̃n(L(k1 + i, . . . , kr + i))}i∈N has a well-defined tail.

We will denote by Tn,L(k1,...,kr) the tail in Corollary 4.9 associated with the
alternating link diagram L(k1, . . . , kr) and the Jones polynomial.

Finally, the following corollary follows immediately from (4.8) and (4.6).

Corollary 4.10. Let L = L(k1, . . . , kr) be an alternating link diagram. Then
for every n ≥ 2 the sequence {Jn(L(k1 + i, . . . , kr + i))}i∈N stabilizes with a rate
(n− 1)k + i+ 1 where k = min1≤j≤r(kj).

5. Connection with the tail of the colored Jones polynomial

The tail of the unreduced colored Jones polynomial of an alternating link L is a
q-series TL(q) that satisfies:

(5.1) TL(q)
.
= J̃n(L).

See [1, 7, 11] for more details. This follows from the fact that for every n ≥ 2 one
has [1]:

(5.2) J̃n(L)
.
=4n J̃n−1(L).

It was proven in [2] that the tail of an alternating link with a reduced alternating
link diagram L depends only on the reduced minus-graph of G′

−(L). More precisely
we state the following theorem.

Theorem 5.1 ([1]). Let L1 and L2 be two alternating links with alternating dia-
grams D1 and D2. If the graph G′

−(D1) coincides with G′
−(D2), then TL1

= TL2
.
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Given a link diagram L = L(k1, . . . , kr), Theorem 5.1 implies that adding neg-
ative twists to the r labeled twists in L does not change the tail TL(q). More
precisely we can restate Theorem 5.1 in terms of our notation:

Theorem 5.2. Let L = L(k1, . . . , kr) be a reduced alternating link diagram. Then
for every n ≥ 2 we have

(5.3) 〈Sn(L(k1, . . . , kr))〉 .
=4n 〈Sn−1(L(k1 + b1, . . . , kr + br))〉,

where bi ∈ Z such that ki + bi ≥ 1 for 1 ≤ i ≤ r.

The rate of stabilization 4n is maximal for the sequence {J̃n(L)}n∈N where L is
an alternating link. This can be seen by considering the coefficient of the colored
Jones polynomial of figure-eight knot. Theorem 5.2 also implies the following:

Theorem 5.3. Let L = L(k1, . . . , kr) be a reduced alternating diagram. Then the

sequence {J̃n+i(L(k1 + i, . . . , kr + i))}i∈N has a well-defined tail.

6. Open questions

The tail of the colored Jones polynomial satisfies certain product structures [2,
12]. Furthermore, it has found multiple connections with number theory [2,11–14].
These properties and connections are yet to be addressed for the q-series that we
introduced here. In [28] a categorified version of the tail of the colored Jones
polynomial was given. The result in [28] is basically a categorification of Theorem
5.2. It is an interesting question whether there is a similar categorification for the
Theorem 3.6 and Corollary 4.9.

Our calculations show that there are higher levels of stability for the coefficients
of the colored Jones polynomial of alternating link diagrams. In other words, if we
subtract the stabilized tail from the shifted colored Jones polynomials of alternating
diagram we obtain another sequence of q-series whose coefficients stabilize in the
sense of Corollary 4.8. The process of subtracting can be iterated to obtain higher
stabilities. See for example [31]. We conjecture that this stability holds for all
higher order coefficients for all alternating links. Finally, we conjecture that this
stability also occurs for other quantum invariants.
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