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CONTENTS OF PARTITIONS AND THE COMBINATORICS

OF PERMUTATION FACTORIZATIONS IN GENUS 0

S. R. CARRELL AND I. P. GOULDEN

Abstract. The central object of study is a formal power series that we call the
content series, a symmetric function involving an arbitrary underlying formal
power series f in the contents of the cells in a partition. In previous work we
have shown that the content series satisfies the KP equations. The main result
of this paper is a new partial differential equation for which the content series
is the unique solution, subject to a simple initial condition. This equation is
expressed in terms of families of operators that we call U and D operators,
whose action on the Schur symmetric function sλ can be simply expressed
in terms of powers of the contents of the cells in λ. Among our results, we

construct the U and D operators explicitly as partial differential operators in
the underlying power sum symmetric functions. We also give a combinatorial
interpretation for the content series in terms of the Jucys-Murphy elements in
the group algebra of the symmetric group. This leads to an interpretation for
the content series as a generating series for branched covers of the sphere by a
Riemann surface of arbitrary genus g. As particular cases, by suitable choice of
the underlying series f , the content series specializes to the generating series for
three known classes of branched covers: Hurwitz numbers, monotone Hurwitz
numbers, and m-hypermap numbers of Bousquet-Mélou and Schaeffer. We
apply our pde to give new and uniform proofs of the explicit formulas for
these three classes of numbers in genus 0.

1. Introduction and the content series

A k-tuple of positive integers α = (α1, . . . , αk) with α1 ≥ · · · ≥ αk ≥ 1 and
α1 + · · · + αk = n is called an (integer) partition of n with k parts. We use the
notation α � n, |α| = n, and l(α) = k throughout the paper. If α has mi parts
equal to i for each i ≥ 1, then we may also write α = 1m12m2 · · · . The set of all
partitions, including a single partition of 0 with 0 parts, is denoted by P.

We will use various results for symmetric functions in the countable set of vari-
ables x = (x1, x2, . . .), and refer the reader to [M95] for proofs and further details.
The ith power sum symmetric function is given by pi =

∑
j≥1 x

i
j , i ≥ 1, and

p0 = 1. We write p = (p1, p2, . . .) and pα = pα1
pα2

· · · , where α is a partition
with parts α1, α2, . . . (and in general write gα = gα1

gα2
· · · for any gi, i ≥ 1). The

Schur functions sλ for partitions λ ∈ P are related to the pα by the inverse linear
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relations

(1.1) sλ =
∑
α�n

|Cα|
n!

χλ
αpα, λ � n, pα =

∑
λ�n

χλ
αsλ, α � n,

where Cα is the conjugacy class in Sn consisting of all permutations with disjoint
cycle lengths specified by the parts of α, and χλ

α is the value of the irreducible
character χλ of Sn indexed by λ, evaluated at any element of the conjugacy class
Cα. We will use the nonstandard notation sλ(p) to denote the expression for sλ in
terms of p given in (1.1) above (instead of writing sλ(x) to denote the symmetric
function sλ in the underlying variables x in the more standard way). The Hall
inner product for symmetric functions is defined for the basis of Schur functions by
〈sλ, sμ〉 = δλ,μ, λ, μ ∈ P. For any left linear operator A on symmetric functions,
we define A⊥ to be the adjoint operator, so we have

(1.2) 〈Af, g〉 = 〈f,A⊥g〉

for any symmetric functions f, g. It is straightforward to check that p⊥i = i ∂
∂pi

,

i ≥ 1, and we let p⊥ = (p⊥1 , p
⊥
2 , . . .).

Throughout this paper we will consider the combinatorial quantity called content
that is associated with the diagram of a partition. A cell � in the diagram of a
partition that occurs in row i (indexed from the top) and column j (indexed from
the left) has content j − i, written c(�) = j − i. For example, the left hand side
of Figure 1 is a diagram of the partition (5, 3, 3, 1) with the value of the content
in each of its cells. We use the notation � ∈ λ, say in the range of a product or
summation, to mean that � ranges over all cells in the diagram of the partition λ.
We will also encounter skew partitions λ/μ, where λ and μ are partitions such that
λi ≥ μi for all i ≥ 1. The cells in λ/μ are those which are contained in λ but not
in μ; however, we shall view the cells in the skew partition as being drawn on the
integer lattice so that the content of any cell in the skew partition λ/μ is the same
as its content in λ. For example, the right hand side of Figure 1 is a diagram of
the skew partition (5, 3, 3, 1)/(5, 2, 1) along with the content of each of its cells. We
define c(λ/μ) to be the multiset of contents of cells in λ/μ.

0

0

0

1

1 2 3 4

-1

-1-2

-3

0

1

-1

-3

Figure 1. Content of cells in a partition and skew partition

The main object of study in this paper is the formal power series

(1.3) Φf(x)(y, z,p) =
∑
n≥0

zn

n!

∑
λ�n

χλ
(1n)sλ(p)

∏
�∈λ

f(yc(�)),

in variables y, z,p, where f(x) is an arbitrary formal power series in a single variable
x (used as a placeholder only, to avoid confusion with y, z, etc.). We will refer
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generically to Φf(x) as the content series throughout this paper. The related series

Υf(x)(y,p,q) =
∑
n≥0

∑
λ�n

sλ(q)sλ(p)
∏
�∈λ

f(yc(�)),

in variables y,p,q = (q1, q2, . . .), has been studied previously (see, e.g., [Or02, eq.
(3.4.8)]). In [C11], Υ was shown to be a τ -function for the 2-Toda hierarchy, which
means that it satisfies a countable set of pdes in which partial differentiation is
applied in both p and q. The series Υ is also a τ -function for the KP hierarchy
(see, e.g., [GJ08], [Ok00]), in which partial differentiation is applied in one of p or
q only.

The content series Φf(x) can be obtained from Υf(x) by the substitution q1 = z,
qi = 0, i ≥ 2, since

sλ(z, 0, . . .) =
znχλ

(1n)

n!
, λ � n.

The fact that Φf(x) is obtained from Υf(x) by substitution for q implies that
Φ(f(x))(y, z,p) is a τ -function for the KP hierarchy, though it is not a τ -function
for the 2-Toda hierarchy.

A key combinatorial element of the paper is provided by the symmetric group
Sn acting on the set [n] = {1, . . . , n}, n ≥ 0. We use the notation Cα both for the
conjugacy class in Sn and also for the formal sum over that conjugacy class in the
group algebra of Sn, where the particular meaning of each usage will be clear from
the context. In the group algebra of the symmetric group Sn, let Ji denote the
Jucys-Murphy element

(1.4) Ji = (1 i) + (2 i) + · · ·+ (i− 1 i), i = 1, . . . , n.

On the other hand, a key algebraic element of the paper for the various formal
power series in p and other indeterminates is to focus on monomials in the elements
of p. We introduce some terminology to help with this. For a partition α, it is
clear that the monomial pα has (total) degree l(α) in the elements of p. We also
say that pα has weight |α| (note that for the content series, this is also the degree of
the indeterminate z). We will consider partial differential operators in the elements
of p of the form pγp

⊥
α and note that, in the above terminology, this operator has

the following effect on a monomial in the elements of p: it changes the weight by
|γ|−|α| (it also changes the degree by l(γ)−l(α), but that will not be as important).

In Section 2 of the paper we introduce some families of operators on symmetric
functions that are described by their action on the Schur functions, including two
related families of particular importance, the U and D operators. We then give
our main result, an equation for the content series in terms of these operators.
The equation in the main result is actually a (partial) differential equation due
to the fact that the operators can be realized as partial differential operators in
the elements of p. In Section 3 we give a combinatorial interpretation for the
content series in terms of products of permutations via Jucys-Murphy elements or
equivalently an algebraic geometry interpretation in terms of branched covers of the
sphere by a Riemann surface of arbitrary genus. This geometric point of view is then
applied in Section 4 to show that the content series specializes to the generating
series for three previously studied problems concerning branched covers: Hurwitz
numbers, monotone Hurwitz numbers, and m-hypermap numbers. In Section 5 we
give explicit expressions for the U and D operators as differential operators in the
elements of p, in which the U operators increase weight by 1 and the D operators
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decrease weight by 1. These explicit expressions are graded by total degree, and
in Section 6 we prove that the grading is actually indexed by genus from a Jucys-
Murphy point of view. This allows us to give a completely combinatorial proof for
the genus 0 graded portion of the U and D operators. In Section 7 we apply our
genus interpretation for the operators to the main result and thus obtain a partial
differential equation for the genus 0 portion of the content series. Also in Section 7
we give some technical results for symmetric functions in a finite set of variables
that will help us with the applications of our genus 0 pde.

There are three applications of the genus 0 pde, which are given in Section 8.
These applications give us uniform algebraic proofs for the number of branched
covers in genus 0 for each of the Hurwitz numbers, monotone Hurwitz numbers, and
m-hypermap numbers, i.e., for the three specializations of the content series that
were described in Section 4. Our proof is new for the cases of Hurwitz numbers and
the m-hypermap numbers of Bousquet-Mélou and Schaeffer [BMS00]. Motivated
by this, Section 8 begins with a discussion of combinatorial aspects of our methods
and the impact of the underlying multiplication by Jucys-Murphy elements.

2. A partial differential equation for the content series

Suppose that we have families of operators {Uk}k≥0 and {Dk}k≥0 whose action
on Schur functions is given by
(2.1)

Uk sλ =
∑
�:

μ=λ+�

c(�)ksμ, Dk sλ =
∑
�:

λ=μ+�

c(�)ksμ, λ � n, n, k ≥ 0.

In the range of summations above we have used the notation λ = μ + � to mean
that both λ and μ are partitions and that the diagrams differ by a single cell �
(which must be the rightmost cell in some row of λ and must be the bottommost
cell in some column of λ). Note that the Murnaghan-Nakayama formula gives

p1sλ =
∑
�:

μ=λ+�

sμ, p⊥1 sλ =
∑
�:

λ=μ+�

sμ, λ � n, n ≥ 0,

and so we may deduce that for k = 0 such operators exist and are given by U0 = p1
and D0 = p⊥1 . Moreover, we deduce that U0 increases weight (and degree) by 1
and D0 decreases weight (and degree) by 1. In [La13], Lassalle gives a method of
recursively constructing the U and D operators which depends on the underlying
variables x. In Section 5 of this paper, using a similar method, we construct
these operators without needing to make the variables xi explicit. This allows
us to express them as differential operators in the pi’s via explicit summations
of monomials in the pi’s and p⊥i ’s. Note that D⊥

k = Uk and of course U⊥
k = Dk

(see (1.2)) for k ≥ 0, so results for one of these classes immediately yield comparable
results for the other class (via ⊥), and consequently we will concentrate most of
our attention on the Uk’s.

As an aside, the U and D operators are closely related to the join-cut operator

(2.2) Δ = 1
2

∑
i,j≥1

(
pipjp

⊥
i+j + pi+jp

⊥
i p

⊥
j

)
,

which was used in [GJ97] to count the number of factorizations of a permutation
into transpositions (see also [G94]). It is clear that Δ is self-adjoint, but it is also
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an eigenoperator for Schur functions, as specified by

Δsλ =
∑
�∈λ

c(�)sλ, λ ∈ P,

and can be used to construct the Uk and Dk recursively as follows: Start with
U0 = p1 and D0 = p⊥1 . Then, for k ≥ 1, let Uk = [Δ,Uk−1] and Dk = [Dk−1,Δ]
where [A,B] = AB − BA is the commutator of any two operators A and B. It is
straightforward to check that this gives the operation on Schur functions that is
specified in (2.1), but we have not been able to use this recursive method for the
Uk and Dk to determine them explicitly. Note also that the join-cut operator is
weight preserving for monomials in the elements of p.

Two related classes of operators that use a similar range of summation are the
Sekiguchi-Debiard operators {Ck}k≥0 and {Tk}k≥0. These are also eigenoperators
for Schur functions, as specified by
(2.3)

Ck sμ=

⎛⎜⎜⎝ n

χμ
1n

∑
�:

μ=λ+�

c(�)kχλ
1n−1

⎞⎟⎟⎠sμ, Tk sμ=

⎛⎜⎜⎝ 1

(n+ 1)χμ
1n

∑
�:

λ=μ+�

c(�)kχλ
1n+1

⎞⎟⎟⎠sμ,

for μ � n and n, k ≥ 0. The operators Ck and Tk arise in the representation
theory of the symmetric group, where their eigenvalues comprise the moments of
the cotransition and transition measures, respectively, on partitions. Lassalle [La04]
gave explicit formulas for some low order moments of the cotransition and transition
measures (in the more general setting of measures with Jack parameter), of which
the most relevant for our purposes are
(2.4)

C0 sμ = |μ|sμ, C1 sμ = 2
∑
�∈μ

c(�)sμ = 2Δsμ, T0 sμ = sμ, μ ∈ P.

In the following theorem, the main result of this paper, we prove that the op-
erators Uk and Ck can be used to construct a partial differential equation for the
content series. The equation is expressed in terms of these operators, so the fact
that it is a partial differential equation relies on the fact that the Uk and Ck can be
written explicitly as partial differential operators in the elements of p, which will
be carried out in Section 5.

Theorem 2.1. If f(x) =
∑

i≥0 fix
i and g(x) =

∑
i≥0 gix

i with g0 �= 0, then

the content series Φfg−1(x) = Φfg−1(x)(y, z,p) is the unique solution to the partial
differential equation

(2.5)

⎛⎝∑
i≥0

fiy
i Ui

⎞⎠Φfg−1(x) = z−1

⎛⎝∑
i≥0

giy
iCi

⎞⎠Φfg−1(x)

that satisfies the initial condition Φfg−1(x)(y, 0,p) = 1.
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Proof. By reordering summations we obtain⎛⎝∑
i≥0

fiy
i Ui

⎞⎠Φfg−1(x)

=
∑
n≥0

zn

n!

∑
λ�n

χλ
(1n)

(∏
�∈λ

f(yc(�))

g(yc(�))

) ∑
�:

μ=λ+�

⎛⎝∑
i≥0

fiy
ic(�)i

⎞⎠ sμ

=
∑
n≥0

zn

n!

∑
μ�n+1

χμ
1n+1sμ

⎛⎝∏
�∈μ

f(yc(�))

g(yc(�))

⎞⎠ 1

χμ
1n+1

∑
�:

μ=λ+�

⎛⎝∑
i≥0

giy
ic(�)i

⎞⎠χλ
(1n),

and (2.5) follows immediately from (2.3). The initial condition is straightforward.
�

There is a companion result to (2.5) using the operators Dk and Tk and whose

proof is almost identical. This result states that the content series Φfg−1(x) satisfies
the partial differential equation

(2.6)

⎛⎝∑
i≥0

giy
i Di

⎞⎠Φfg−1(x) = z

⎛⎝∑
i≥0

fiy
iTi

⎞⎠Φfg−1(x),

but the initial conditions are quite involved, requiring us to fix Φfg−1(x)(y, z,p) |p1=0,
and we have not been able to apply this to uniquely identify particular content se-
ries.

The following special case of Theorem 2.1 is an immediate corollary, slightly
restated to avoid explicit mention of the operators Ck.

Corollary 2.2. If f(x) =
∑

i≥0 fix
i, then the content series Φf(x) = Φf(x)(y, z,p)

is the unique solution to the partial differential equation

(2.7)

⎛⎝∑
i≥0

fiy
i Ui

⎞⎠Φf(x) =
∂

∂z
Φf(x)

that satisfies the initial condition Φf(x)(y, 0,p) = 1.

Proof. In the special case g(x) = 1, Theorem 2.1 gives⎛⎝∑
i≥0

fiy
i Ui

⎞⎠Φf(x) = z−1C0Φf(x),

and the result follows from (2.4). �

The companion result to Corollary 2.2, analogous to (2.6), is that if g(x) =∑
i≥0 gix

i, then the content series Φg−1(x) = Φg−1(x)(y, z,p) satisfies the partial
differential equation ⎛⎝∑

i≥0

giy
i Di

⎞⎠Φg−1(x) = zΦg−1(x).
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Again, due to the complicated initial condition, we have not been able to apply this
equation to uniquely identify particular content series.

3. Permutation factorizations, branched covers,

and the content series

In order to give a combinatorial interpretation of the content series, we now turn
to the group algebra of the symmetric group. In addition to the basis of conjugacy
classes {Cα : α � n}, the center of the group algebra of Sn also has a basis of
orthogonal idempotents {Fλ : λ � n}. These bases are related by the inverse linear
relations
(3.1)

Fλ =
χλ
(1n)

n!

∑
α�n

χλ
αCα, λ � n, Cα = |Cα|

∑
λ�n

χλ
α

χλ
(1n)

Fλ, α � n,

which are parallel to the relations (1.1) between the bases of Schur functions and
power sums for symmetric functions of degree n.

One of the key results (e.g., see [J74] [Mu81]) about the Jucys-Murphy elements
defined in (1.4) is that any symmetric function of J1, . . . , Jn is contained in the
center of the group algebra of Sn (though it is clear that the Jucys-Murphy elements
themselves are not contained in the center). Moreover, for any symmetric function
G(x1, . . . , xn), we have the following result for the eigenvalues of the orthogonal
idempotent Fλ and the multiset of contents c(λ):

(3.2) G(J1, . . . , Jn)Fλ = G(c(λ))Fλ, λ � n.

The next result gives an explicit interpretation for the content series Φf(x) as
a generating series that counts factorizations in the symmetric group. We use the
notation [A]B to denote the coefficient of A in the expansion of B, in this case in
the context of the group algebra of Sn.

Proposition 3.1. We have

Φf(x)(y, z,p) =
∑
n≥0

zn

n!

∑
α�n

pα|Cα|[Cα]
n∏

i=1

f(yJi).

Proof. The result follows immediately from (1.1), (3.1), and (3.2). �

For m,n ≥ 0 and α � n, consider the m-tuple of permutations (π1, . . . , πm)
in Sn such that π1 · · ·πm = σ ∈ Cα. Then (π1, . . . , πm) is called a factorization
of σ. In the case that the subgroup 〈π1, . . . , πm〉 generated by π1, . . . , πm, σ acts
transitively on [n], we call it a transitive factorization. Transitive factorizations
have been studied extensively in recent years because they encode branched covers
of the sphere by a Riemann surface; in this case we refer to the tuple (π1, . . . , πm)
as the branched cover. Now, the Riemann-Hurwitz Theorem implies that the genus
of the covering surface g ≥ 0 is given by

(3.3) n− l(α) +
m∑
i=1

(n− l(cyc(πi))) = 2n− 2 + 2g,

where cyc(πi) is the partition whose parts are the lengths of the disjoint cycles
in the disjoint cycle representation of the permutation factor πi. Equivalently,
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πi is contained in the conjugacy class Ccyc(πi). In this case we say that both the
permutation factorization and the corresponding branched cover also have genus g.

If each factor πi = (si ti), si < ti, is a transposition, then we say that the factor-
ization is a transposition factorization. Note in this case that we have l(cyc(πi)) =
n − 1, i = 1, . . . ,m, so (3.3) becomes m = n + l(α) − 2 + 2g for transitive trans-
position factorizations. If we further constrain a transposition factorization so that
t1 ≤ · · · ≤ tn, then we call it a monotone transposition factorization (these have
been previously considered, e.g., in [GGN13a]).

Next we will use the result of Proposition 3.1 to obtain a description for the series
expansion of the logarithm of the content series. The proof involves a combinatorial
interpretation in terms of transitive monotone transposition factorizations.

Corollary 3.2. For f(x) =
∑

i≥0 fix
i, where f0, f1, . . . are indeterminates, we

have

log Φf(x)(y, z,p) = Ψf(x)(y, z,p) =
∑
g≥0

Ψf(x)
g (y, z,p),

where

Ψf(x)
g (y, z,p) =

∑
n≥1

zn

n!

∑
β�n

b(β, g)pβy
n+l(β)−2+2g,

for some polynomials b(β, g) in f0, f1, . . . .

Proof. For m,n ≥ 0, i1, . . . , in ≥ 0 with i1 + · · ·+ in = m, and α � n, consider the
monotone transposition factorization ((s1 t1), . . . , (sm tm)), si < ti, i = 1, . . . ,m, in
which for j = 1, . . . , n, exactly ij of t1, . . . , tm are equal to j (which means that
the first i1 are equal to 1, the next i2 are equal to 2, etc., and the last in are equal
to n). If we let a(α,m) be the sum of fi1 · · · fin over all monotone transposition
factorizations that correspond to a given choice of m,n, α, then it follows directly
from the statement of Proposition 3.1 that we can write

Φf(x)(y, z,p) =
∑
n≥0

zn

n!

∑
α�n

∑
m≥0

a(α,m)pαy
m.

Equivalently, Φf(x) is the generating function for monotone transposition factoriza-
tions to which each factorization contributes the monomial zn

n! fi1 · · · finpαym. This
is thus an exponential generating function in z, and it is a standard part of the
theory of exponential generating functions (see, e.g., [GJ83]) that the logarithm of
an exponential generating function is the generating function for the subset of con-
nected objects. In the case of monotone transposition factorizations, the connected
objects are precisely the transitive monotone transposition factorizations, and as
noted above, it follows from (3.3) that m = n+ l(α)−2+2g for some g ≥ 0. When
we apply the logarithm, we thus obtain

log Φf(x) = Ψf(x) =
∑
g≥0

∑
n≥1

zn

n!

∑
β�n

b(β, g)pβy
n+l(β)−2+2g,

where b(β, g) is the sum of fi1 · · · fin over all transitive monotone transposition
factorizations that correspond to a given choice of g, n, α. The result follows im-
mediately. �
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4. Special cases of the content series

We now consider three special cases of the transitive permutation factorizations
described in Section 3. Let Hg(α) be the number of genus g transitive transposition
factorizations of σ ranging over all σ ∈ Cα, for α � n, n ≥ 1, and g ≥ 0. The Hg(α)
are called Hurwitz numbers, which have been studied extensively in all genera (see,
e.g., [GJ97]) because of their appearance in Witten’s Conjecture [W91], first proved
by Kontsevich [K92], and then the moduli space description in [ELSV01]. If we
define the generating series

H = H(y, z,p)=
∑
g≥0

Hg, Hg=
∑
n≥1

zn

n!

∑
β�n

Hg(β)

(n+ l(β)− 2 + 2g)!
pβy

n+l(β)−2+2g,

g ≥ 0,

then it was proved in [GJ08] that

H = log

⎛⎝∑
n≥0

zn

n!

∑
λ�n

χλ
(1n)sλ(p)

∏
�∈λ

eyc(�)

⎞⎠ .

Thus, from Corollary 3.2 and (1.3), we have

(4.1) H = Ψex .

As a second special case, let �Hg(α) be the number of genus g transitive monotone
transposition factorizations of σ ranging over all σ ∈ Cα, for α � n, n ≥ 1, and g ≥ 0.

These numbers �Hg(α) are called monotone Hurwitz numbers and have been studied
in all genera [GGN13a,GGN13b]. Among their properties is a close connection to
the HCIZ matrix integral (e.g., see [GGN14]). If we define the generating series

�H = �H(y, z,p) =
∑
g≥0

�Hg, �Hg =
∑
n≥1

zn

n!

∑
β�n

�Hg(β)pβy
n+l(β)−2+2g, g ≥ 0,

then from the proof of Corollary 3.2 with f(x) =
∑

i≥0 1 · xi = (1− x)−1, we have

�H = log

⎛⎝∑
n≥0

zn

n!

∑
λ�n

χλ
(1n)sλ(p)

∏
�∈λ

(1− yc(�))−1

⎞⎠ .

Thus, from Corollary 3.2 and (1.3), we have

(4.2) �H = Ψ(1−x)−1

.

As a third special case, let G
(m)
g (α) be the number of genus g transitive factor-

izations of σ with precisely m factors, ranging over all σ ∈ Cα, for α � n, n ≥ 1,
and m, g ≥ 0. (Note that in this case, where the factors are arbitrary permutations
in Sn, given α and n, m and g are constrained by (3.3), but m is not uniquely
determined by g, unlike in the case where the factors are transpositions.) These

numbers G
(m)
g (α) are called m-hypermap numbers and have been studied in genus

0; see [BMS00,GS06,Fa16]. If we define the generating series

G(m) = G(m)(y, z,p) =
∑
g≥0

G(m)
g , G(m)

g =
∑
n≥1

zn

n!

∑
β�n

G(m)
g (β)pβy

n+l(β)−2+2g,

g ≥ 0,
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then it was proved in [GJ08] that

G(m) = log

⎛⎝∑
n≥0

zn

n!

∑
λ�n

χλ
(1n)sλ(p)

∏
�∈λ

(1 + yc(�))
m

⎞⎠ .

Thus, from Corollary 3.2 and (1.3), we have

(4.3) G(m) = Ψ(1+x)m .

Thus in all three cases, via (4.1), (4.2), and (4.3), the generating series are
specializations of the content series and its logarithm.

5. Constructing the U and D operators

In this section we give a construction of the U and D operators in terms of
the Bernstein operators {Bn : n ∈ Z}, which are differential operators acting on
symmetric functions (see [M95, p. 95] and [Z81, p. 69]). The generating series for
the Bernstein and adjoint Bernstein operators can be written as

B(t) =
∑
n∈Z

Bnt
n = exp

⎛⎝∑
k≥1

tk

k
pk

⎞⎠ exp

⎛⎝−
∑
k≥1

t−k

k
p⊥k

⎞⎠ ,

B⊥(t) =
∑
n∈Z

B⊥
n tn = exp

⎛⎝−
∑
k≥1

tk

k
pk

⎞⎠ exp

⎛⎝∑
k≥1

t−k

k
p⊥k

⎞⎠ .

In the terminology of Section 1, note that both Bn and B⊥
n change the weight of

monomials in the elements of p by n, n ∈ Z.
In order to describe the action of these operators in a convenient way, we will

define some additional specialized terminology and notation for partitions local
to this section. We consider partitions as being drawn on the integer lattice and
assign to each cell in the lattice its content, not just the cells in the diagram of the
partition. Given a partition λ, we define the boundary curve of λ to be the union of
the following curves associated with the diagram of λ: (i) the line segments on the
bottom edge of cells at the end of a column, (ii) the line segments on the right edge
of cells at the end of a row, (iii) the one-way infinite horizontal line extending to
the right from the top right corner of the cell at the end of row 1, (iv) the one-way
infinite vertical line extending down from the bottom left corner of the cell at the
end of column 1. The cells which lie below and/or to the right of the diagram of
λ but which intersect the boundary curve of λ are called the outer boundary of
λ. For example, on the left hand side of Figure 2 the diagram of the partition
λ = (5, 3, 3, 1) appears along with the cells and the corresponding contents in part
of the outer boundary of λ. Note that each cell in the outer boundary of any
partition λ is uniquely determined by its content, and the set of contents of cells in
the outer boundary of λ is the set of integers. Given a cell � in the outer boundary
of a partition λ we will say that � lies to the right of λ if the left edge of � is
contained in the boundary curve of λ. Similarly we will say that � lies below λ if
the top edge of � is contained in the boundary curve of λ.

Given a partition λ and an integer c, if the cell � in the outer boundary of λ
with content c lies below λ, then let φcλ be the partition constructed from λ by
removing the last cell in each row of λ ending in a cell with content greater than
c and adding a cell to each column of λ ending in a cell with content less than
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cλ

or equal to c. For example, φ2(5, 3, 3, 1) = (4, 3, 3, 3, 1), as illustrated on the right
hand side of Figure 2. Let rc(λ) be the number of rows of λ ending in a cell with
content greater than c, i.e., the number of cells removed when constructing φcλ. For
example, r2(5, 3, 3, 1) = 1. If � does not lie below λ, then leave φcλ as undefined
and let rc(λ) = 0.

Similarly, given a partition λ and an integer c, if the cell � in the outer boundary
of λ with content c lies to the right of λ, then let φ∗

cλ be the partition constructed
from λ by adding a cell to each row of λ ending in a cell with content greater than or
equal to c and removing a cell from each column of λ ending in a cell with content
less than c. For example, φ∗

1(5, 3, 3, 1) = (6, 4, 1), as illustrated on the right hand
side of Figure 3 (note that to obtain the diagram of (6, 4, 1), one must slide upwards
the cell below the row that has been removed). Let r∗c (λ) be the number of rows of
λ ending in a cell with content greater than or equal to c, i.e., the number of cells
added when constructing φ∗

cλ. For example, r∗1(5, 3, 3, 1) = 2. If � does not lie to
the right of λ, then leave φ∗

cλ as undefined and let r∗c (λ) = 0.
The following result giving the action of Bn and B⊥

n on a Schur function appeared
in [CG10], where it was applied in the context of the KP hierarchy. The statement
of the result has been adapted to use the notation described above.

Proposition 5.1. Given a partition λ and an integer n, we have

Bnsλ = (−1)rn(λ)sφnλ, B⊥
n sλ = (−1)r

∗
n(λ)sφ∗

−nλ
,

with the convention that a Schur function whose index is undefined is zero.
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Proof. In [CG10, Thm. 3.4] we proved that Bnsλ = (−1)i−n−1sλ(i) , where λ(i) =
(λ1 − 1, . . . , λui(λ) − 1, i − 1, λui(λ)+1, . . .) with nonnegative integer ui(λ) chosen
uniquely so that λui(λ) ≥ i > λui(λ)+1 and positive integer i chosen uniquely so

that |λ(i)| − |λ| = n. But for any positive integer i it is straightforward to see that
λ(i) = φi−1−ui(λ)λ, |λ(i)| − |λ| = i − 1 − ui(λ) and ri−1−ui(λ)(λ) = ui(λ), and the
result follows immediately for Bnsλ.

In [CG10] we also proved that B⊥
n sλ = (−1)j−1sλ(−j) , where λ(−j) = (λ1 +

1, . . . , λj−1+1, λj+1, . . .), and positive integer j is chosen uniquely so that |λ(−j)|−
|λ| = n. But for any positive integer j it is straightforward to see that λ(−j) =
φ∗
λj+1−jλ, |λ(−j)| − |λ| = j − (λj + 1), and r∗j−(λj+1)(λ) = j − 1, and the result

follows immediately for B⊥
n sλ. �

Now that we have a convenient combinatorial description of the action of Bn and
B⊥

n on Schur functions, we consider the action of the compound operator BnB
⊥
−m.

We say that a skew partition λ/μ is a rim hook when the diagram is edgewise
connected and contains no 2 × 2 subset of cells. The length of a rim hook λ/μ is
the number of cells in its diagram, and the height (denoted by ht(μ/λ)) is one less
that the number of nonempty rows in its diagram.

Theorem 5.2. Suppose that λ is a partition and n, m are integers such that
BnB

⊥
−msλ �= 0. Then:

• If n > m, then BnB
⊥
−msλ = (−1)ht(μ/λ)sμ, where μ/λ is a rim hook of

length n−m such that c(μ/λ) = {m,m+ 1, . . . , n− 1}.
• If m > n, then BnB

⊥
−msλ = (−1)ht(λ/μ)sμ, where λ/μ is a rim hook of

length m− n such that c(λ/μ) = {n, n+ 1, . . . ,m− 1}.
• If n = m, then BnB

⊥
−msλ = sλ, and the cell in the outer boundary of λ

with content n lies to the right of λ.

Proof. First, suppose n > m. Since BnB
⊥
−msλ �= 0 we know that μ = φnφ

∗
mλ

exists. Now the subset of cells added to φ∗
mλ with content greater than or equal

to n coincides with the subset of cells removed from μ with content greater than
n, and similarly the subset of cells removed from φ∗

mλ with content less than m
coincides with the subset of cells added to μ with content less than m. This means
that the outer boundary of λ and μ is the same for cells with content greater than
or equal to n or less than m.

◦
◦ ◦

◦ ◦
◦

× ×

λ φ∗
0λ φ4φ

∗
0λ

-3 -2 -1

0 1

2 3 4 5

6

0 1 2

3 4 5 6

7

4 5

6

-3 -2 -1-1-2-3

Figure 4. Example λ and φ4φ
∗
0λ

Let � be a cell in the outer boundary of λ with content in the set {m,m +
1, . . . , n− 1}. If � is to the right of λ, such as the cell in the outer boundary of λ
with content 2 in Figure 4, then it is added to φ∗

mλ and so is in μ. If � is below λ
but not to the right of λ, such as the cell in the outer boundary of λ with content
3 in Figure 4, then � must be in the outer boundary of φ∗

mλ and must be added
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to φnφ
∗
mλ and so is in μ. If � is not to the right of λ or below λ, such as the cell

in the outer boundary of λ with content 1 in Figure 4, then there must be a row
of λ whose rightmost cell has content equal to the content of �. In this case a cell
must be added to this row in φ∗

mλ, and so � lies below φ∗
m and hence is added to

μ. In each case � is contained in μ. Since there are n−m such cells and also since
|μ| − |λ| = n−m, the result follows.

Now we have BnB
⊥
−msλ = (−1)rn(φ

∗
mλ)+r∗m(λ)sμ. Since each cell removed in μ

must have been added to φ∗
mλ we see that rn(φ

∗
mλ)−r∗m(λ) is the number of cells in

μ that were added in φ∗
mλ. Each of these cells must necessarily be in their own row

of μ/λ, and with the exception of the row in μ/λ containing the cell with content
m, each such row must have a cell that was added in φ∗

mλ. Thus, the number of
cells in μ that were added in φ∗

mλ is one less than the number of rows in μ/λ, so
rn(φ

∗
mλ)− r∗m(λ) = ht(μ/λ), completing the proof for the case n > m.

The case that m > n follows similarly to the above and so we shall not include
it. If n = m, then by the same argument as above, λ and φnφ

∗
mλ must have the

same outer boundary and so φnφ
∗
mλ = λ. Also, since φ∗

mλ is defined, the cell in the
outer boundary of λ with content m must be to the right of λ, giving the result in
the case n = m. �

The following result is an immediate corollary of the above theorem, stated in
terms of the generating series B and B⊥ for the Bernstein and adjoint Bernstein
operators. For a skew partition λ/μ, we use the notation σ(λ/μ) =

∑
�∈λ/μ c(�) =∑

c∈c(λ/μ) c.

Corollary 5.3. For any positive integer k and any partition λ,

[tk]q−
1
2B(tq

1
2 )B⊥(tq−

1
2 )sλ =

∑
μ

(−1)ht(μ/λ)q
σ(μ/λ)

k sμ,

[t−k]q−
1
2B(tq

1
2 )B⊥(tq−

1
2 )sλ =

∑
μ

(−1)ht(λ/μ)q
σ(λ/μ)

k sμ,

where the first sum is over all μ such that μ/λ is a rim hook of length k and the
second sum is over all μ such that λ/μ is a rim hook of length k. Also,

[t0]q−
1
2B(tq

1
2 )B⊥(tq−

1
2 )sλ =

	(λ)∑
m=1

qλm−m+1/2sλ.

Proof. Extracting coefficients, we have

[tk]q−
1
2B(tq

1
2 )B⊥(tq−

1
2 )sλ =

∑
n∈Z

qn−
k+1
2 BnB

⊥
k−nsλ.

Suppose for some n ∈ Z, BnB
⊥
k−nsλ �= 0. Then from Theorem 5.2 we have

BnB
⊥
k−nsλ = (−1)ht(μ/λ)sμ, where μ/λ is a rim hook of length k and where

c(μ/λ) = {n−k, n−k+1, . . . , n−1}. Now, σ(μ/λ) =
∑

c∈c(μ/λ) c = k(n−k)+
(
k
2

)
,

so σ(μ/λ)
k = n− k + k−1

2 = n− k+1
2 as required.

The expressions for the coefficients of t−k and t0 follow similarly. �

We are now able to construct the U and D operators in terms of the Bernstein op-

erators. We express our result in terms of the generating series U(x) =
∑

k≥0 Uk
xk

k!

and D(x) =
∑

k≥0Dk
xk

k! .
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Theorem 5.4. Let

V (q, t,p,p⊥) = exp

⎛⎝∑
k≥1

(q
k
2 − q−

k
2 )pk

tk

k

⎞⎠ exp

⎛⎝∑
k≥1

(q
k
2 − q−

k
2 )p⊥k

t−k

k

⎞⎠ .

Then we have

U(x) = [t1]
1

e
x
2 − e−

x
2
V (ex, t,p,p⊥), D(x) = [t−1]

1

e
x
2 − e−

x
2
V (ex, t,p,p⊥).

Proof. First note that Corollary 5.3 implies that

U(x) = [t1]e−x/2B(tex/2)B⊥(te−x/2), D(x) = [t−1]e−x/2B(tex/2)B⊥(te−x/2).

Now, for formal power series f, g in the indeterminate z, and D = a d
dz where a is a

scalar, the Liebniz rule gives the operator identity eDf = (eDf)eD. Also, if b is a
scalar, then we have eDebz = eabebz. Combining these results using indeterminates
p1, p2, . . . and noting that p⊥k pm = 0 for k �= m, we obtain

exp

⎛⎝∑
k≥1

akp
⊥
k

⎞⎠ exp

⎛⎝∑
m≥1

bmpm

⎞⎠
= exp

⎛⎝∑
k≥1

kakbk

⎞⎠ exp

⎛⎝∑
m≥1

bmpm

⎞⎠ exp

⎛⎝∑
k≥1

akp
⊥
k

⎞⎠ ,

for scalars ak, bk, k ≥ 1. Thus we have

q−
1
2B(tq

1
2 )B⊥(tq−

1
2 )

= q−
1
2 exp

⎛⎝∑
k≥1

q
k
2 tk

k
pk

⎞⎠ exp

⎛⎝−
∑
k≥1

q−
k
2 t−k

k
p⊥k

⎞⎠ exp

⎛⎝−
∑
m≥1

q−
m
2 tm

m
pm

⎞⎠
× exp

⎛⎝∑
m≥1

q
m
2 t−m

m
p⊥m

⎞⎠
= q−

1
2 exp

⎛⎝∑
k≥1

k
q−k

k2

⎞⎠V (q, t,p,p⊥) =
1

q
1
2 − q−

1
2

V (q, t,p,p⊥),

and the result follows with q = ex. �

The series V that appears in Theorem 5.4 has previously appeared in [LT01], in
connection with a different problem that also concerned Jucys-Murphy elements.
The first consequence of this result concerns the form of the operators Uk and Dk

as partial differential operators in the elements of p.

Corollary 5.5. For k ≥ 1, we have Uk =
∑

h≥0 U
(h)
k , where

U (h)
k =

∑
γ,α∈P,

l(γ),l(α)≥1,
l(γ)+l(α)=k+1−2h,

|γ|=|α|+1

c(γ, α) pγ p
⊥
α ,

for some scalars c(γ, α).
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Proof. From Theorem 5.4 we obtain

Uk = [xkt1]
1
2

sinh x
2

exp

⎛⎝∑
k≥1

sinh kx
2

k
2

pkt
k

⎞⎠ exp

⎛⎝∑
k≥1

sinh kx
2

k
2

p⊥k t
−k

⎞⎠
= [xkt1]

1

x
∑

i≥0
x2i

22i(2i+1)!

exp

⎛⎝∑
i≥0

x2i+1

22i(2i+ 1)!

∑
k≥1

k2ipkt
k

⎞⎠
× exp

⎛⎝∑
i≥0

x2i+1

22i(2i+ 1)!

∑
k≥1

k2ip⊥k t
−k

⎞⎠ ,

and the result follows straightforwardly. �

Using the notation of Section 1, Corollary 5.5 says that U (h)
k , h ≥ 0, and thus

Uk itself, increases the weight of monomials in the elements of p by 1.

Consider the generating series for these operators U (h)
k given by U (h)(x) =∑

k≥0 U
(h)
k

xm

m! , for h ≥ 0. To state explicit expressions for these generating series
in a compact form, it will be convenient to use some notation: Let

P (t) =
∑
k≥1

pkt
k, P⊥(t) =

∑
k≥1

p⊥k t
k, Q(t) = P (t) + P⊥(t−1),

and define D = t d
dt , and then Qi = DiQ(t), i ≥ 0. We also introduce the linear

operator Ω that shuffles pi’s to the left and p⊥i ’s to the right in a monomial as if they
commute with each other. Then from the last equality in the proof of Corollary 5.5
we obtain

U (h)(x) = Ω[w2ht1]
1

x
∑

i≥0
w2ix2i

22i(2i+1)!

exp

⎛⎝∑
i≥0

w2ix2i+1

22i(2i+ 1)!
Q2i

⎞⎠ ,

and evaluating this coefficient for small values of h gives (with Q = Q0)

U (0)(x) = Ωx−1exQ,(5.1)

U (1)(x) = Ω 1
24

(
x2Q2 − x

)
exQ,(5.2)

U (2)(x) = Ω 1
5760

(
5x5Q2

2 + 3x4Q4 − 10x4Q2 − 3x3
)
exQ.

For example, by evaluating the coefficient of xk

k! in (5.1), we immediately obtain

the following expression for the operators U (0)
k .

Corollary 5.6. We have U (0)
0 = p1, and for k ≥ 1, we have

U (0)
k =

k∑
j=1

1

k + 1

(
k + 1

j

)∑
pa1

· · · paj
p⊥b1 · · · p

⊥
bk+1−j

,

where the inner summation ranges over the set Tj,k+1−j consisting of all positive
integers a1, . . . , aj , b1, . . . , bk+1−j subject to the restriction that

a1 + · · ·+ aj = b1 + · · ·+ bk−j+1 + 1.
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6. Grading the U and D operators by genus

In Corollary 5.5, we proved that Uk, as a partial differential operator, increases
the weight of monomials in the elements of p by 1. Moreover, Uk could be written
as a sum of monomials in the pi’s and p⊥i ’s of total degree k + 1 − 2h where h is
any nonnegative integer. In addition, we gathered together the monomials for each

such choice of h into an operator that we called U (h)
k , h ≥ 0. In this section we

focus on this nonnegative integer h and prove that it actually can be considered as

a parameter of genus, so from this point of view the operator U (h)
k is the genus h

portion of Uk. To do so, we will again consider the Jucys-Murphy elements that
were defined in (1.4). The derivation that follows is very similar to the construction
of the join-cut operator for star factorizations constructed in [GJ09].

Consider any n ≥ 1 and any permutation σ ∈ Sn (but depending on the context,
we’ll also use σ for the corresponding element of the group algebra). Let σ′ denote
the permutation in SM in which M = n+1 is a fixed point and in which σ′(i) = σ(i)
for all i = 1, . . . , n. For any permutation in SM , we refer to the cycle containing
the maximum element M as the M - cycle of that permutation, so, e.g., the M -
cycle of σ′ has length 1. The key fact that we use relates the operator Uk and the
Jucys-Murphy element JM via

(6.1) Uk pcyc(σ) =
∑

τ∈Jk
Mσ′

pcyc(τ),

where cyc was defined in Section 3. Though we have been unable to find equa-
tion (6.1) stated explicitly in this form, it seems clear that it is well known to a
number of authors; e.g., for closely related work see the original papers of Jucys [J74]
and Murphy [Mu81], as well as Diaconis and Greene [DG89]), Féray [Fé12], Lascoux
and Thibon [LT01], Lassalle [La13], and Okounkov [Ok96].

Thus we will consider Jk
Mσ′ and specifically the product

(6.2) τ = κ1 · · ·κk σ′, κi = (ci M), 1 ≤ ci ≤ M − 1, i = 1, . . . , k.

We show below that the genus of the corresponding branched cover (κk, . . . , κ1, σ
′)

(as discussed in Section 3) is precisely h and that it contributes a monomial of
total degree k + 1 − 2h in the pi’s and in the p⊥i ’s to Uk, thus establishing the

genus interpretation of the parameter h in U (h)
k . To do so, we will consider the

product (6.2) iteratively and hence define the partial products σ(0) = σ′, σ(i) =
κi σ(i−1), i = 1, . . . , k, so in particular τ = σ(k). Let the length of the M - cycle
in σ(i) be si ≥ 1, for i = 0, . . . , k. We also define the branched covers B(i) =
(κi, . . . , κ1, σ), for i = 0, . . . , k. From (6.1), to determine the action of the operator
Uk, we need to determine the lengths of the cycles in the disjoint cycle representation
of σ(k) in terms of the length of the cycles in σ. Throughout our iteration, we will
refer to the cycles of σ as initial cycles.

Iteration: At stage i, for i = 0, . . . , k, we have the permutation σ(i), and we
introduce a subset H(i) of the stages that we consider to be marked, for purposes
that will become clear. At stage 0, H(0) is the empty set, and we will iteratively
update H(i) as we proceed through the stages. At stage 0, the M - cycle of σ(0)

has length s0 = 1, and the other cycles are the initial cycles. Thus, if k = 0, we

immediately have U0 = U (0)
0 = p1. If k ≥ 1, then for i = 1, . . . , k, at stage i there

are two possibilities for the product σ(i) = κi σ
(i−1): either (a) ci is contained in
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the M - cycle of σ(i−1) or (b) it is not. For (a), then in the product the M - cycle
of σ(i−1) is cut into two cycles: the M - cycle of σ(i) and another cycle, of length
di ≥ 1, which we will refer to as a spare cycle. For (b), then in the product the
M - cycle of σ(i−1) is joined to another cycle of σ(i−1), of length ei ≥ 1, to create
the M - cycle of σ(i). Note that for (a) we have di = si−1 − si ≥ 1, and for (b)
we have ei = si − si−1 ≥ 1. Thus σ(i) has an M - cycle together with a (possibly
empty) collection of spare cycles (created at some of stages 1, . . . , i by cuts from the
M - cycle), and all other cycles (if any) are initial cycles. More formally the latter
initial cycles are all the cycles of σ whose elements are not contained in the orbit
of M in 〈κi, . . . , κ1, σ〉.

Now we go back to case (b) of the iteration described above and consider two
subcases: either (i) the M - cycle of σ(i−1) is joined to an initial cycle of σ(i−1) or
(ii) the M - cycle of σ(i−1) is joined to a spare cycle of σ(i−1). In subcase (i), then
the genus of the branched cover B(i) is the same as the genus of the branched cover
B(i−1); in subcase (ii), the genus of the branched cover B(i) is 1 greater than the
genus of the branched cover B(i−1). That is, in subcase (ii) we are simply rejoining
a cycle that was cut from the M - cycle at a previous stage i′ to the M - cycle (though
the join point may be different from the cut point). In subcase (ii) we update H(i)

by H(i) = H(i−1) ∪ {i′, i} and note that

(6.3) cyc(σ(i)) = cyc((
∏
j∈[i],

j /∈{i′,i}

κj) σ
′) and ei = di′ .

Finally, we regard the M - cycle of σ(k) as a cycle that is created in our iteration at
an additional, artificial, k + 1st stage, and thus define sk+1 = 0, dk+1 = sk. We
then have di = si−1 − si ≥ 1 for i = k + 1.

At the termination of our iteration, we can conclude from (6.3) by induction on
the stages that

cyc(σ(k)) = cyc((
∏

j∈[k],

j /∈H(k)

κj) σ
′)

and that if |H(k)| = 2h, then the genus of B(k) is h. But in this case we cre-
ate a spare cycle at exactly j of the k + 1 − 2h unmarked stages and let the
values of the corresponding di’s be given by a1, . . . , aj . We also join an initial cy-
cle to the M - cycle at the remaining k + 1 − j − 2h of the unmarked stages and
let the values of the corresponding ei’s be given by b1, . . . , bk+1−j−2h. Note that
a1, . . . , aj , b1, . . . , bk+1−j−2h ≥ 1 and that

(b1 + · · ·+ bk+1−j−2h)− (a1 + · · ·+ aj) =
∑

i∈[k+1]\U(k)

(si − si−1)

=
∑

i∈[k+1]

(si − si−1) = sk+1 − s0 = −1.

Thus in this case σ(k) contributes the monomial operator pa1
· · · paj

p⊥b1 · · · p
⊥
bk+1−j−2h

(multiplied by some scalar coefficient) to the operator U (h)
k , and comparison with

Corollary 5.5 gives us the desired conclusion, that from the Jucys-Murphy/branched

cover point of view, U (h)
k is the genus h portion of Uk.
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For the particular case of genus 0 we can determine the scalar coefficients of

the monomial operators in U (0)
k by a more detailed analysis, which gives us the

following combinatorial proof of Corollary 5.6.

Combinatorial proof of Corollary 5.6: We consider only the products σ(k)

that have no marked stages in the above iteration and thus for which the M- cycle
is only ever joined to initial cycles. Thus as above we create a cycle in the iteration
above at exactly j of the k + 1 stages, where 1 ≤ j ≤ k, and let the values of the
corresponding di’s be given by a1, . . . , aj . Then we join a cycle to the M - cycle at
the remaining k+1− j stages and let the values of the corresponding ei’s be given
by b1, . . . , bk+1−j . As above in the case h = 0 we have a1, . . . , aj , b1, . . . , bk+1−j ≥ 1
and

(b1 + · · ·+ bk−j+1)− (a1 + · · ·+ aj) =
k+1∑
i=1

(si − si−1) = sk+1 − s0 = −1.

Note also that for i = 1, . . . , k, the ith partial sum of the ordered −a’s and b’s is
given by si − s0 = si − 1 ≥ 0. But there are

(
k+1
j

)
possible ordered stages with j

di’s and k+1− j ei’s, and the action on the product pcyc(σ) in genus 0 is described
by the operator

(6.4)

k∑
j=1

(
k + 1

j

)∑
pa1

· · · paj
p⊥b1 · · · p

⊥
bk+1−j

,

where the inner summation ranges over Tj,k+1−j if we allow all possible orders.
However, we have to account for the condition that all of the partial sums of the
−a’s and b’s are nonnegative.

Now, for any m-tuple of integers q = (q1, . . . , qm) let the ith cyclic shift of q
be given by q(i) = (qi+1, . . . , qm, q1, . . . , qi), for i = 1, . . . ,m− 1. Then if the sum
of the elements of q is −1, it is well known (by what is often referred to as the
Cycle Lemma) that among the m m-tuples given by q together with its m−1 cyclic
shifts, all of the m-tuples are distinct and, moreover, exactly one of the m-tuples
has partial sums that are all nonnegative. Thus, in the operator (6.4), to account
for the nonnegative partial sum condition on the k+1-tuples in the summation set,
we must divide by k + 1, completing our combinatorial proof of Corollary 5.6. �

7. A partial differential equation for the content series

in genus 0

7.1. The partial differential equation in genus 0. In the following result we
give a partial differential equation for the genus 0 portion of the content series.
In the terminology of Section 1, note that on the left hand side the differential
operators increase the weight of monomials in the elements of p by 1, while on
the right hand side, this weight is preserved. The increase in weight on the left
hand side reflects the combinatorial fact described in Section 6, that after inserting
n+1 as a fixed point, we have moved from the symmetric group Sn to Sn+1 in the
multiplication by the Jucys-Murphy element Jn+1.
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Theorem 7.1. Let Ψ̂
f(x)
0 = Ψ̂

f(x)
0 (z,p) = Ψ

f(x)
0 (1, z,p). Then Ψ̂f(x) is the unique

solution to the partial differential equation
(7.1)

zp1+z
∑
k≥1

fk
k + 1

k∑
j=1

(
k + 1

j

)∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

pa1
· · · paj

[u	]

⎛⎝∑
i≥1

(
p⊥i Ψ̂

f(x)
0

)
ui

⎞⎠k+1−j

=
∑
i≥1

pip
⊥
i Ψ̂

f(x)
0

that satisfies the initial condition Ψ̂
f(x)
0 (0,p) = 0.

Proof. We denote the set of partitions of [m] into i nonempty subsets B = {B1, . . . ,
Bi} by Πm,i. The sets Bj are called the blocks of B. For an integer partition
α = (α1, . . . , αm) and a subset β ⊆ [m] with elements β1 < · · · < βi, define α(β) to
be the partition {αβ1

, . . . , αβi
}. Now if α is a partition with m parts and F = F (p)

is a formal power series in p, then by the product rule, we have

p⊥α e
F =

m∑
i=1

∑
{B1,...,Bi}

∈Πm,i

(
p⊥α(B1)

F
)
· · ·

(
p⊥α(Bi)

F
)
eF .

Now consider this result together with Corollaries 2.2, 3.2, 5.5, and 5.6. Note that

if we multiply equation (2.7) on both sides by ze−Ψf(x)

(after carrying out the
differentiations), then on the LHS we have a linear combination of monomials in
z, y,p: one of these monomials is zp1, and all other monomials are of the form

S = z yk pγ

(
p⊥α(B1)

z|ν1| pν1
y|ν1|+l(ν1)−2+2g1

)
· · ·

(
p⊥α(Bi)

z|νi| pνi
y|νi|+l(νi)−2+2gi

)
,

where k ≥ 1, l(α) = m, m ≥ 1, l(γ) = k + 1 − 2s − m ≥ 1, s ≥ 0, |γ| = |α| + 1,
1 ≤ i ≤ m, |B1|, . . . , |Bi| ≥ 1, B1 � · · · � Bi = [m], l(ν1), . . . , l(νi) ≥ 1, and
g1, . . . , gi ≥ 1. Thus we have (ignoring the scalar multiple induced by applying the
p⊥i ’s)

(7.2) S = zR pη y
N ,

where

|η| = |γ|+ |ν1|+ · · ·+ |νi| − |α(B1)| − · · · − |α(Bi)|
= |γ|+ |ν1|+ · · ·+ |νi| − |α| = |ν1|+ · · ·+ |νi|+ 1,

l(η) = l(γ) + l(ν1) + · · ·+ l(νi)− l(α(B1))− · · · − l(α(Bi))

= l(γ) + l(ν1) + · · ·+ l(νi)− l(α) = l(ν1) + · · ·+ l(νi) + k + 1− 2s− 2m,

and thus we have

R = 1 + |ν1|+ · · ·+ |νi| = |η|
and

N = k + |ν1|+ · · ·+ |νi|+ l(ν1) + · · ·+ l(νi)− 2i+ 2g1 + · · ·+ 2gi

= k + (|η| − 1) + (l(η)− k − 1 + 2s+ 2m)− 2i+ 2g1 + · · ·+ 2gi

= |η|+ l(η)− 2 + 2 (s+m− i+ g1 + · · ·+ gi) .(7.3)
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But if we multiply equation (2.7) on both sides by ze−Ψf(x)

, then on the RHS we
have a linear combination of monomials of the form

(7.4) z
∂

∂z
z|η| pη y

|η|+l(η)−2+2g = |η| · z|η| pη y|η|+l(η)−2+2g , g ≥ 0.

Now, suppose that on both sides we consider only monomials of the form
z|η| pη y

|η|+l(η)−2, for η ∈ P with l(η) ≥ 1. Then on the RHS, from (7.4), we must
have g = 0. On the LHS, from (7.2) and (7.3), we must have s = g1 = · · · = gi = 0
and i = m, so |γ1| = · · · = |γi| = 1. Thus we obtain equation (7.1), and the initial
condition follows immediately, to complete the proof of the result. �

We can obtain pde’s that are similar to (7.1) for genus up to and including g for

each g ≥ 0 by using the explicit expressions for the U (g)
k given in Section 5, but they

quickly become complicated, and we have not been able to apply such an equation
even in the case of genus 1 to count branched covers in the three special cases.

7.2. Technical results on symmetric functions for applications of the dif-
ferential equation. In this section we give some technical results for symmetric
functions in a finite set of variables x1, . . . , xn that we will use in Section 8 to apply
Theorem 7.1 for particular cases of the content series. The complete symmetric
functions are given by h0(x1, . . . , xn) = 1 and

(7.5) hk(x1, . . . , xn) =
∑

i1,...,in≥0
i1+···+in=k

xi1
1 · · ·xin

n , k ≥ 1.

These are the Schur symmetric function sλ(x1, . . . , xn) in the case that the partition
λ has the single part k. In general, for a partition λ = (λ1, . . . , λn) with at most
n parts, the Schur symmetric function sλ(x1, . . . , xn) can be written as a ratio of
determinants via

(7.6) sλ(x1, . . . , xn) =
det

(
xλi+n−i
j

)
1≤i,j≤n

det
(
xn−i
j

)
1≤i,j≤n

.

Proposition 7.2. For n ≥ 1, we have

n∑
i=1

xk+n−1
i

n∏
j=1
j 	=i

1

xi − xj
=

{
hk(x1, . . . , xn), k ≥ 0,

0, −(n− 1) ≤ k ≤ −1.

Proof. The determinant in the denominator of (7.6) is the Vandermonde determi-
nant, which can be evaluated as the simple product

det
(
xn−i
j

)
1≤i,j≤n

=
∏

1≤i<j≤n

(xi − xj).

Now in the case that the partition λ has the single part k, we obtain from (7.6)
that

hk(x1, . . . , xn) =
det

(
x
kδi,1+n−i
j

)
1≤i,j≤n

det
(
xn−i
j

)
1≤i,j≤n

=

n∑
i=1

xk+n−1
i

n∏
j=1
j 	=i

1

xi − xj
,

where the second equality follows from the cofactor expansion of the numerator
determinant in row 1 and the Vandermonde determinant evaluation given above.
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The result follows immediately for k ≥ 0. For k = 1 −m and m between 2 and n
inclusive, note that the numerator determinant has row 1 equal to row m and thus
has value 0, giving the result for −(n− 1) ≤ k ≤ −1. �

For a set of positive integers α = {α1, . . . , αn} of size n, n ≥ 1, and nonnegative
integers a1, . . . , an, we define the symmetrization action

Θα pa1
· · · pan

=
∑
σ∈Sn

x
aσ(1)
α1 · · ·xaσ(n)

αn ,

extended linearly to all polynomials of total degree at most n in {pi}i≥1 (where
we set p0 = 1). We will use Θ to prove that two power series are identical via the
following result.

Proposition 7.3. If P1 and P2 are polynomials of degree at most n in {piyi}i≥1,
for any formal power series y with 0 constant term, and Θ[n] P1 = Θ[n] P2, then
P1 = P2.

The following result that relates Θ to the complete symmetric functions via
Proposition 7.2 is applied later in the paper to determine the generating series for
both Hurwitz numbers and m-hypermap numbers in genus 0.

Lemma 7.4.

(1) Consider formal power series f(u) and g(u), in which the coefficients are
constant and linear, respectively, in the {pisi}i≥1. Then we have

Θ[n]

n∑
j=1

∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

pa1
· · · paj

j!
s	+1[u	] f(u)

g(u)n−j

(n− j)!

∣∣∣∣
s=1

=
n∑

i=1

xif(xi)
n∏

j=1
j 	=i

(
xj

xi − xj
+ Θ{j}g(xi)

∣∣
s=1

)
.

(2) Consider a formal power series g(u) in which the coefficients are linear in
the {pisi}i≥1. Then we have

Θ[n]

n∑
k=1

1

(n− k)!

k∑
j=1

∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

pa1
· · · paj

j!
s	+1[u	]

g(u)k−j

(k − j)!

∣∣∣∣
s=1

=

n∑
i=1

xi

n∏
j=1
j 	=i

(
1 +

xj

xi − xj
+ Θ{j}g(xi)

∣∣
s=1

)
.

Proof. For part (1), let b(u) =
∑

	≥0 b	u
	 be a formal power series independent of

{pisi}i≥1, and note that∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

(
Θ[j]pa1

· · · paj

)
[u	]b(u)

∣∣
s=1

= j!
∑
	≥0

b	 x1 · · ·xj h	+1−j(x1, . . . , xj)

= j!
∑
	≥0

b	 x1 · · ·xj

j∑
i=1

x	
i

n∏
r=1
r 	=i

1

xi − xr
= j!

j∑
i=1

xib(xi)
n∏

r=1
r 	=i

xr

xi − xr
,
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where the second to last equality is obtained from Proposition 7.3 with n = j and
k = �+ 1− j. Thus from the above we obtain

LHS =
n∑

j=1

∑
α
β=[n]
|α|=j

|β|=n−j

∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

(
Θα

pa1
· · · paj

j!

)
s	+1[u	] f(u)

(
Θβ

g(u)n−j

(n− j)!

)∣∣∣∣∣
s=1

=
∑

α
β=[n]
|α|≥1
|β|≥0

xif(xi)

( ∏
r∈α
r 	=i

xr

xi − xr

)(∏
b∈β

Θ{j} g(xi)|s=1

)

=

n∑
i=1

xif(xi)
∑

γ
β=[n]

(∏
r∈γ

xr

xi − xr

)(∏
b∈β

Θ{j} g(xi)|s=1

)
,

where for the last equality we have reordered the summations and changed the
summation variable α to γ = α \ i, and for the second to last equality we have
applied part (1) of the result. Part (2) of the result follows immediately.

For part (2), we have

LHS =
n∑

k=1

∑
α
β=[n]
|α|=n−k
|β|=k

(
Θα

1

(n− k)!

)

×
(
Θβ

k∑
j=1

∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

pa1
· · · paj

j!
s	+1[u	]

g(u)n−j

(n− j)!

∣∣∣∣
s=1

)

=
∑

α
β=[n]
|α|≥0
|β|≥1

( ∏
a∈α

1

)∑
i∈β

xi

∏
b∈β

(
xj

xi − xj
+ Θ{b}g(xi)

∣∣
s=1

)

=
n∑

i=1

xi

∑
α
γ=[n]

( ∏
a∈α

1

)∏
r∈γ

(
xj

xi − xj
+ Θ{b}g(xi)

∣∣
s=1

)
,

where for the last equality we have reordered the summations and changed the
summation variable β to γ = β \ i. The result follows immediately. �

8. Applications of the content series in genus 0

In this section, we apply Theorem 7.1 for the three special cases of the content
series identified in Section 4 to obtain new and uniform proofs for the explicit
numbers of branched covers in genus 0. In each case we give an algebraic proof
that the generating series for the appropriate numbers satisfies the genus 0 pde
given by Theorem 7.1 and that it has the appropriate initial condition (the latter
is immediate in each case).



CONTENTS OF PARTITIONS AND PERMUTATION FACTORIZATIONS 5073

However, in Section 6 we have given a combinatorial proof for the genus 0 portion
of the U operators, in terms of multiplication by the Jucys-Murphy element Jn+1,
after inserting a fixed point to move from Sn to Sn+1. This gives an underlying
combinatorial flavor to our algebraic proof. In the case of Hurwitz numbers, this
provides a significant contrast with the proof given in [GJ97], where a much simpler
genus 0 pde (the join-cut equation) was obtained via a combinatorial analysis of
the effect on disjoint cycle lengths when multiplying within Sn by the set of trans-
positions. In the case of m-hypermap numbers, a similar proof could be obtained if
we were able to carry out the combinatorial analysis of the effect on disjoint cycle
lengths when multiplying within Sn by the set of all permutations. We have been
unable to carry out this analysis in general and thus have been unable to obtain
such a proof for the genus 0 m-hypermap numbers (but for the case of multiplica-
tion by a cycle of arbitrary length, together with fixed points, see [GJ00]). Thus,
by moving from Sn to Sn+1 and not remaining within Sn, it seems that we have ob-
tained significant underlying combinatorial advantage in this paper, and we believe
that further work along these lines would be worthwhile.

8.1. Hurwitz numbers in genus 0. Define the series

(8.1) G = G(z,p) =
∑
n≥1

zn
∑
α�n

pα
|Autα| n

l(α)−3

l(α)∏
j=1

α
αj

j

αj !
,

and recall from Section 4 that H0(1, z,p) is the generating series for Hurwitz num-
bers in genus 0. Then it has previously been established (e.g., see [GJ97], [H1891])
that H0(1, z,p) = G(z,p). We now give a new proof of this result by applying
Theorem 7.1. To do so, note that from Theorem 7.1 and (4.1), the generating

series H0(1, z,p) = Ψ̂ex

0 satisfies the partial differential equation

(8.2) A(H0(1, z,p)) = 0

where

A(F )=z
∑
k≥1

1

(k + 1)!

k∑
j=1

(
k + 1

j

)∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

pa1
· · · paj

[u	]

⎛⎝∑
i≥1

(p⊥i F )ui

⎞⎠k+1−j

+ p1z −
∑
i≥1

pip
⊥
i F.

Now let s be given by the functional equation s = z expφ0(s), where φi(s) =∑
j≥1

jj+i

j! pjs
j , for any integer i. In [GJ97] we proved that

p⊥i G =
ii−1

i!
si − ii

i!
si
∑
j≥1

jj+1

j!
pjs

j 1

i+ j
,

and thus we have

(8.3)
∑
i≥1

pip
⊥
i G = φ−1(s)− 1

2φ0(s)
2,

∑
i≥1

(p⊥i G)ui = T (us)− S(us),
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where T (x) =
∑

i≥1
ii−1

i! xi and S(x) =
∑

i≥1
ii

i!x
i
∑

j≥1
jj+1

j! pjs
j 1
i+j . Then it is

well known that ii−1 counts the number of rooted labelled trees on i vertices and
that the tree series T (x) satisfies the functional equation T = xeT . From the proof
of Proposition 3.2 in [GJ97], we obtain immediately that

(8.4) Θ{j} S(u)|s=1 =
u

u− xj
− T (u)

T (u)− T (xj)

1

1− T (xj)
,

and using Lagrange’s Implicit Function Theorem (see, e.g., Theorem 1.2.4, p. 17,
in [GJ83]), we obtain

(8.5) Θ{j}φ−1(1) = T (xj), Θ{j}φ0(1) =
T (xj)

1− T (xj)
.

Now to prove that H0(1, z,p) = G. From (8.2) and (8.3), we obtain

eφ0(s)A(G)

(8.6)

= s
∑
k≥1

1

(k + 1)!

k∑
j=1

(
k + 1

j

)∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

pa1
· · · paj

[u	]
(
T (us)− S(us)

)k+1−j

+ p1s− eφ0(s)
(
φ−1(s)− 1

2φ0(s)
2
)
.

This is a formal power series in {pisi}i≥1 with no constant term, and the sum of
terms of total degree n, n ≥ 2, is given by

∑
k≥n−1

k∑
j=1

(
k+1
j

)
(k + 1)!

∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

pa1
· · · paj

s	+1

× [u	]

(
k + 1− j

n− j

)
T (u)k+1−n (−S(u))

n−j

− 1

(n− 1)!
φ0(s)

n−1φ−1(s) +
1

2(n− 2)!
φ0(s)

n

=
n∑

j=1

1

j!(n− j)!

∑
	≥0

∑
a1,...,aj≥1

a1+...+aj=	+1

pa1
· · · paj

s	+1[u	] (−S(u))n−j
∑
i≥0

T (u)i

i!

− 1

(n− 1)!
φ0(s)

n−1φ−1(s) +
1

2(n− 2)!
φ0(s)

n,

where for the last equality, we have changed from summation variable k to i =
k + 1 − n and reordered the sums. Now we set s = 1 and apply Θ[n] to this
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expression, via Lemma 7.4, (8.4), and (8.5). Using the notation Ti to denote T (xi),
i = 1, . . . , n, this gives

n∑
i=1

xie
Ti

n∏
j=1
j 	=i

(
xj

xi − xj
−Θ{j} S(xi)|s=1

)
−

n∑
i=1

Ti

n∏
j=1
j 	=i

Tj

1− Tj
+

(
n

2

) n∏
j=1

Tj

1− Tj

=
n∑

i=1

Ti

n∏
j=1
j 	=i

Tj(1 + Ti − Tj)

(1− Tj)(Ti − Tj)
−

⎛⎝ n∏
j=1

Tj

1− Tj

⎞⎠(
n∑

i=1

(1− Ti)−
(
n

2

))

=

⎛⎝ n∏
j=1

Tj

1− Tj

⎞⎠
⎛⎜⎜⎝ n∑

i=1

(1− Ti)

⎛⎜⎜⎝ n∏
j=1
j 	=i

(
1

Ti − Tj
+ 1

)
− 1

⎞⎟⎟⎠+

(
n

2

)⎞⎟⎟⎠

=

⎛⎝ n∏
j=1

Tj

1− Tj

⎞⎠
⎛⎜⎜⎝ ∑

α⊆[n]
|α|≥2

∑
i∈α

(1− Ti)
∏

j∈α\i

1

Ti − Tj
+

(
n

2

)⎞⎟⎟⎠
=

⎛⎝ n∏
j=1

Tj

1− Tj

⎞⎠(
0−

(
n

2

)
+

(
n

2

))
= 0,

where for the second to last equality, we have applied Proposition 7.2 in the variables
Ti, for i in α. This completes our treatment of the terms of total degree n ≥ 2
in (8.6). Now, the sum of terms of total degree 1 in (8.6) is given by∑

k≥1

1

(k + 1)!
(k + 1)

∑
	≥0

p	+1s
	+1[u	]T (u)k + p1s− φ−1(s),

and we set s = 1 and apply Θ[1] to this expression via (8.5) to obtain x1e
T1−T1 = 0.

From Proposition 7.3, we see that this completes the proof that A(G) = 0 and, since
H0(1, 0,p) = G(0,p) = 0, that the generating series for Hurwitz numbers in genus
0 is given by H0(1, z,p) = G(z,p).

8.2. m-hypermap numbers in genus 0. Define the series

(8.7) Q = Q(z,p) =
∑
n≥1

zn
∑
α�n

pα
|Autα| m

((m− 1)n− 1)!

((m− 1)n− l(α) + 2)!

l(α)∏
j=1

(
mαj − 1

αj

)
,

and recall from Section 4 that G
(m)
0 (1, z,p) is the generating series for m-hypermap

numbers in genus 0. Then Bousquet-Mélou and Schaeffer [BMS00] proved bijec-

tively that G
(m)
0 (1, z,p) = Q(z,p). We now prove this result algebraically by

applying Theorem 7.1. To do so, note that from Theorem 7.1 and (4.3), the gener-

ating series G
(m)
0 (1, z,p) = Ψ̂

(1+x)m

0 satisfies the partial differential equation

(8.8) B(G
(m)
0 (1, z,p)) = 0,



5076 S. R. CARRELL AND I. P. GOULDEN

where

B(F ) = z

m∑
k=1

(
m

k

)
1

k + 1

k∑
j=1

(
k + 1

j

)∑
	≥0

∑
a1,...,aj≥1

a1+···+aj=	+1

pa1
· · · paj

× [u	]

⎛⎝∑
i≥1

(p⊥i F )ui

⎞⎠k+1−j

+ p1z −
∑
i≥1

pip
⊥
i F.

Now let w be given by the functional equation w = z (1 + ψ(w))m−1, where

ψ(w) =
∑

j≥1

(
mj−1

j

)
pjw

j . Slightly adapting the proof of Theorem 2.1 in [GS06]

we obtain

p⊥i Q = (1 + ψ(w))
1

i

(
mi

i− 1

)
wi −

(
mi

i

)
wi

∑
j≥1

j

(
mj − 1

j

)
pjw

j 1

i+ j
,

and thus we have

(8.9)
∑
i≥1

pip
⊥
i Q = (1 + ψ(w)) ξ(w)− m

2(m− 1)
ψ(w)2,

where ξ(w) =
∑

i≥1
1
i

(
mi
i−1

)
piw

i and

(8.10)
∑
i≥1

(p⊥i Q)ui = (1 + ψ(w))R(uw)− Y (uw),

where R(x) =
∑

i≥1
1
i

(
mi
i−1

)
xi and Y (x) =

∑
i≥1

(
mi
i

)
xi

∑
j≥1 j

(
mj−1

j

)
pjw

j 1
i+j .

Then 1
i

(
mi
i−1

)
is a generalization of the Catalan number (the latter is the casem = 2),

and its generating series R(x) satisfies the functional equation R = x(1 + R)m.
Adapting the proof of Proposition 3.2(2) in [GJ97], we obtain

(8.11) Θ{j} Y (u)|w=1 =
u

u− xj
− R(u)

R(u)− R(xj)

1 +R(xj)

1− (m− 1)R(xj)
,

and using Lagrange’s Implicit Function Theorem (see, e.g., Theorem 1.2.4, p. 17,
in [GJ83]), we obtain

(8.12) Θ{j}ψ(1) =
(m− 1)R(xj)

1− (m− 1)R(xj)
, Θ{j}ξ(1) = R(xj).

Now to prove that G
(m)
0 (1, z,p) = Q. From (8.8), (8.9), and (8.10), we obtain

(1 + ψ(s))m−1B(Q)

= w
m∑

k=1

(m
k

) 1

k + 1

k∑
j=1

(k + 1

j

)∑
�≥0

∑
a1,...,aj≥1

a1+···+aj=�+1

pa1 · · · paj [u
�]
(
(1 + ψ(w))R(uw)

− Y (uw)
)k+1−j

+ p1w − (1 + ψ(w))m ξ(w)− m

2(m− 1)
(1 + ψ(w))m−1 ψ(w)2

= m!
m∑

k=1

1

(m− k)!

k∑
j=1

1

j!(k + 1− j)!

∑
�≥0

∑
a1,...,aj≥1

a1+···+aj=�+1

pa1 · · · pajw
�+1[u�]

(
(1 + ψ(1))R(u)

− Y (u)
)k+1−j

+ p1w − (1 + ψ(w))m ξ(w)− m

2(m− 1)
(1 + ψ(w))m−1 ψ(w)2.
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But this is a polynomial in {piwi}i≥1 with all terms of total degree at most m+1.
Thus we set w = 1 and apply Θ[m+1] to this expression via Lemma 7.4, (8.11),
and (8.12). Using the notation Ri to denote R(xi), i = 1, . . . ,m+ 1, this gives

m!

⎛
⎜⎜⎝

m+1∑
i=1

xi

m+1∏
j=1
j �=i

(
1 +

xj

xi − xj
+

(
1 + Θ{j}ψ(1)

)
Ri −Θ{j} Y (xi)|w=1

)

−
m+1∑
i=1

xi

m+1∏
j=1
j �=i

(
1 +

xj

xi − xj

)
+ h1(x1, . . . , xm+1)

−
m+1∑
i=1

Ri

m+1∏
j=1
j �=i

1

1− (m− 1)Rj
+ (m− 1)

⎛
⎝m+1∏

j=1

1

1− (m− 1)Rj

⎞
⎠ ∑

1≤i<n≤m+1

RiRn

⎞
⎟⎟⎠

= m!

⎛
⎜⎜⎝

m+1∑
i=1

xi

m+1∏
j=1
j �=i

Ri(1 + Ri)

(1− (m− 1)Rj)(Ri −Rj)
−

m+1∑
i=1

xm+1
i

m+1∏
j=1
j �=i

1

xi − xj
+ h1(x1, . . . , xm+1)

−

⎛
⎝m+1∏

j=1

1

1− (m− 1)Rj

⎞
⎠

⎛
⎝m+1∑

i=1

Ri(1− (m− 1)Ri)− (m− 1)
∑

1≤i<n≤m+1

RiRn

⎞
⎠

⎞
⎟⎟⎠

= m!

⎛
⎝m+1∏

j=1

1

1− (m− 1)Rj

⎞
⎠

(
m+1∑
i=1

(Rm+1
i − (m− 1)Rm+2

i )

m+1∏
j=1
j �=i

1

Ri −Rj

− h1(R1, . . . , Rm+1) + (m− 1)h2(R1, . . . , Rm+1)

)
= 0,

where for the second to last equality, we have applied Proposition 7.2, and for
the last equality we have applied Proposition 7.2, but in the variables Ri, for i =
1, . . . ,m + 1. From Proposition 7.3, we see that this completes the proof that
B(Q) = 0, and since G0(1, 0,p) = Q(0,p) = 0, that the generating series for
m-hypermap numbers in genus 0 is given by G0(1, z,p) = Q(z,p).

Recently, and independently, Fang [Fa16] proved that G0(1, z,p) satisfies this
same partial differential equation B(G0(1, z,p)) = 0 via a combinatorial analysis of
the corresponding constellations. He gives an algebraic proof for B(Q) = 0 that is
quite different from our proof. In addition, Fang gives a partial differential equation
for m-hypermap numbers in arbitrary genus. A similar equation for arbitrary genus
was also obtained in [KZ15], using the language of Grothendieck’s dessins d’enfant.

8.3. Monotone Hurwitz numbers in genus 0. From (4.2), we can apply Theo-

rem 2.1 with f(x) = 1 and g(x) = 1− x for the generating series �H = �H(y, z,p) =

Φ(1−x)−1

for monotone Hurwitz numbers and thus obtain the partial differential
equation

(8.13) U0 e
�H = z−1 (C0 − y C1) e

�H.

Now U0 = p1, and from (2.4) we have C0 = z ∂
∂z , C1 = 2Δ. Thus, adapting slightly

the proof of Theorem 7.1, we see that the generating series �H0 = �H0(y, z,p) for
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monotone Hurwitz numbers in genus 0 satisfies the partial differential equation

1

2y

(
z
∂

∂z
�H0 − zp1

)
=

1

2

∑
i,j≥1

(
pipjp

⊥
i+j

�H0 + pi+j

(
p⊥i �H0

)(
p⊥j �H0

))
.

But this equation for �H0 was given in [GGN13a] (it follows immediately from
Theorem 1.2 of that paper). The equation is called the join-cut equation, and
it was obtained in [GGN13a] by a combinatorial analysis of multiplication by a
transposition factor. In [GGN13a], it was proved that

�H0(1, z,p) =
∑
n≥1

zn
∑
α�n

pα
|Autα|

(2n+ l(α)− 3)!

(2n)!

l(α)∏
j=1

(
2αj

αj

)
,

and we won’t repeat such a proof here.
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