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ON SOME DETERMINANT AND MATRIX INEQUALITIES
WITH A GEOMETRICAL FLAVOUR

TING CHEN

ABSTRACT. In this paper we study some determinant inequalities and matrix
inequalities which have a geometrical flavour. We first examine some inequal-
ities which place work of Macbeath in a more general setting and also relate
to recent work of Gressman. In particular, we establish optimisers for these
determinant inequalities. We then use these inequalities to establish our Main
Theorem, which gives a geometric inequality of matrix type which improves
and extends some inequalities of Christ.

1. INTRODUCTION

1.1. Notation and preliminaries. Let R™ be the n-dimensional Euclidean space,
n > 1. || denotes the Lebesgue measure on R™ and the absolute value on R. Denote
M™*"(R) by a set of all n x n real matrices. Let B(0,r) be the ball centred at 0
with radius r. For A C R™ of finite Lebesgue measure, we define the symmetric
rearrangement of A as
A* :={x:|z| <r} = B(0,r), with |A*| = |A].

That is, v,r™ = | A|, where v,, is the volume of unit ball in R”. We then define the
symmetric decreasing rearrangement of a nonnegative measurable function f as

[ (z) 12/0 X{f>t)- (2)dt,

where X ¢} is the characteristic function of the level set {x : f(x) > t}, and define
the Steiner symmetrisation of f with respect to the j-th coordinate as

ij(xl, ceey xn) = f*j (xl, ceey xn) = / XL (@1 e s g1y g1 yeees®y ) ST (xj)dt'
0

Let u € R™ be a unit vector, and let v be its orthogonal complement. Then for
any z € R, it can be uniquely written as x = tu + y where y € u. We define the
Steiner symmetrisation of A with respect to the direction u as

Su(4) = {tu—ky:Aﬂ(Ru-ﬁ-y);Amt < W}

Obviously, Rjx4 is the Steiner symmetrisation of A with respect to the direction e;,
1 < j < n. For simplicity, we denote S;, Se,,_, -+ Se, (F) by SE, where {e1,...,e,}
is the standard orthonormal basis in R™.
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One easily sees that for any measurable set £ C R,

(1.1) sup |z| < sup |zf,
reE* zEE

and from this it is not hard to see that

(1.2) sup o —yl < sup |z —yl.
z,ycE* z,ye

One way to obtain this is as follows:
(1.3) sup |z —y|= sup |z|> sup |z|.
z,yek 2€E—E z€(E—E)*
For any A, B € R" of finite Lebesgue measure, it follows from the Brunn-Minkowski
inequality that
(1.4) A*+B*C (A+B)".

Applying (L4) in (L3) implies
sup |z —yl=> sup |z[=  sup [z —yl,
z,yeE ze(E—-E)* reEE* yeE*
which completes (L2]).
Let E be a measurable set of finite volume in R™. By the definition of the
symmetric rearrangement,

E* = B(0,r), with v,r" = |E|.

Clearly,
sup |z|=r, sup |z —y|=2r
rxeE* z,ycE*
By (1)) and (T2]) we have the following sharp inequalities:
(1.5) |E| < vy, sup |z]™,
zel
Un
(1.6) |E| < 5, sup [z —y["
2" zyeR

Moreover, optimisers of both (L) and (L) are balls in R™. Inequality (L) is an
isodiametric inequality; that is, amongst all sets with given diameter the ball has
maximal volume.

1.2. Macbeath’s inequalities. We now go on to study the analogues of (L)
and (L), where we replace the distance norm by a volume or determinant, so the
question becomes that of studying inequalities of the form

(1.7) |E| < A, sup  det(0,y1,...,Yn)
y; €L
J=1,..., n
and
(1.8) |E| < B, sup det(y1,...,Ynt1)s
y; €EE
j=1,...,n+1

which are supposed to hold for any measurable set F in R™. Here

det(y1, ..., Ynt1) := nlvol(co{yr, ..., Ynt1}).

Sodet(y1,...,Ynst1) > 0. The precise value of det(yi, . .., yn+1) is the absolute value
of the determinant of the matrix (Y1 — Yn+t1,---sYn — Yn+1)nxn- 10 the special case
when n = 1, they become of the type ([L5) and (L6 automatically. Note that both
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([C0) and ([LY) are GL,,(R) invariant, and (L8] is translation invariant while (7))
is not. Actually, it is enough to study convex measurable sets in R", since

sup det(0,y1,...,yn) = sup det(0,y1,...,Yn)

y; €L y;j €co(E)
j=1,....n j=1,....,n
and
sup  det(yr,...,Ynt1) = sup  det(yi,...,Ynt1)-
y; €E yj€Eco(E)
j=1,...,n+1 j=1,...,n+1

We are interested in the best constants A,, B,, and their optimisers. It is not
hard to deduce that the best constants A, and B,, are related by

(1.9) B, < A, < (n+1)B,.

Indeed, the translation invariance of (L8] allows us to assume that 0 € E. Then
B,, < A, follows immediately. On the other hand, by the basic determinant prop-
erty we have
n+1
det(yl, ey yn-i-l) < Z det(O, Y1y 5 Yj—1>Yj+1y- - - yn),
j=1

which implies that

sup  det(yr,...,Ynt1) <(n+1) sup det(0,y1,...,Yn)-
y;€E y; €EE
Jj=1,....n+1 Jj=1,..., n
That completes A,, < (n 4+ 1)B,. So in the special case when n = 1, we have
A; =2, By =1, which follows from (3] and (L4)).

Geometrically, the right side of (L8] relates to the maximal volume of n-simplex
whose vertices are in E. The relationship between the maximal volume of the
n-simplex whose vertices are in F¥ and the measure of E has been studied before
(see [10], [13]). Tt is well known that by compactness, given a compact convex set
E C R™, there exists a simplex T' C F of maximal volume. Let F' be a facet of
T, v the opposite vertex, and H the hyperplane through v parallel to F. Then H
supports F, since otherwise one would obtain a contradiction to the maximality
of the volume of T. Since F' is an arbitrary facet of T, T is contained in the
simplex —n(T — ¢) + ¢, where ¢ is the centroid of T. See [10] for details. So
T CEC —n(T —¢)+ ¢, and thus
(1.10) |E| < n"|T],
which implies that

B, <n" A, <(n+1)n".

In 1950, Macbeath [I3] already gave the sharp version of ([I0) and (LE)) as

follows. Given a compact convex set £ C R™, denote by B,, the set of convex

polytopes with at most m vertices in F, and denote by €&, the set of convex
polytopes with at most m vertices in E*. Then
(1.11) sup |T'| < sup |T).
T'eC,, TEDm
So when m = n + 1, (LT1) gives

sup  det(yr,...,Ynt1) < sup  det(yi,...,Ynt1)-
y; €E” y;€E
j=1,...,n+1 Jj=1,...,n+1
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Moreover the problem is clearly affine invariant; thus the extremising sets turn out
to be balls and ellipsoids for (I.§)). Because the maximal simplex with vertices on
a ball is the regular simplex with all sides equal, we can obtain the corresponding
best constant B,,. However, we do not believe that the sharp value of A, in (I
has been given previously.

1.3. Our results. In this paper we shall give an alternative method to derive
([0 and (L) with sharp constants A,, B,. In Section 2, we will study some
rearrangement inequalities which together with some work in [4] establish this. A
key ingredient will be a rearrangement inequality of [4], stating that for any E; C R

of finite Lebesgue measure and a; € R, j =1,...,[,
l l
(1.12) sup Zaﬂ:j < sup Zaja:j .
:L’jEE; j=1 I]‘GE]‘ j=1

See Lemma for the proof.

We have described geometric inequalities in Section [Tl and 2] and it is very
natural to consider their functional forms and generalisations. See for example
Gardner [7]. More generally, returning to the inequalities (I1I), (T2]), we see there
are functional versions. One can consider a bilinear functional rearrangement ver-
sion of ([L2)). For all nonnegative measurable functions f, g defined on R",

(1.13) sup f*(z)g"(y)|lz —y| < sup f(x)g(y)lz -yl
T,y T,y
holds. Likewise, by the same argument as in its proof we also have

(1.14) sup [ (@)]z| < sup f(@)|zl.

For the proof, see Section 4 in [4].
In Section 2, generalizing them we arrive at the following multilinear functional
rearrangement inequalities:

(115) sup H f;(yj) det(ovyla .. ayn) < sup H f](yj) det((), Yty oy yn)

Yj Yj

j=1 j=1
and
n+1 n+1
(1.16) sup [ [ £5 (w5) det(yn, .. ynsa) < sup [ £i(ys) det(un, .- o),
Yj j=1 Yj j=1

which hold for any nonnegative measurable functions vanishing at infinity f; defined
on R™, in the sense that all its positive level sets have finite measure,

Hz :|f(z)| >t} < oo, for all ¢t > 0.

As a matter of fact, we establish much more general inequalities in Theorem
below. Then we get (7)), (I8)) with the sharp constants by specialising to f; = x&
in (CI5)-(TI4), which also includes Macbeath’s work (LII) when m =n + 1.
There is another class of inequalities concerning analogues of ([H), (LT) where
we replace the underlying Euclidean space R™ by the space of n x n real matrices
and the Euclidean norm by | det(A)|. For example, Christ first studied this type of
inequality in [5]. Here “det” becomes ordinary determinant of a matrix.
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Sublemma 14.1 ([5]). For any n > 1 there exists C € Rt with the following
property. Let E C IM™*"™(R) be a compact convex set satisfying |E| < oo and
E = —E. Then there exists A € E satisfying

(1.17) |det(A)| > C|E|,
where | - | denotes the Lebesque measure on Euclidean space R"™ and the absolute
value on R.

Lemma 13.2 ([5]). For any n > 1 there exists ¢,C € R and k € N with the
following property. Let E be a measurable set in M"*"(R) satisfying |F| < oo.
k

Then there exist Tt, ..., T, € E and coefficients s; € Z satisfying |s;| < ¢, Y sj =
j=1

0, such that
k 1
(1.18) det | > 5Ty || = CIE|*.
j=1
Remarks 1.

(1) Let E= E—A:={T—A:T € E} with A € M™"(R). Then by Lemma 13.2

k
there exist T4,...,Ty € E and s; € Z satistying |s;| < ¢, > s; =0, such that
j=1

1
n
)

k k
(1.19) det [ Y s;(1; — A) || = |det | 5,75 || = ClE|" = C|E
j=1 j=1

which shows that (II8]) has a translation invariance property that (LI7) lacks.
(2) Based on the translation variance property, we have an equivalent form of

Lemma 13.2: there exists ¢,C € R such that for any E C 9"*"(R) we can

always select 11, ...,T) € E and coefficients s; € Z satisfying |s;| < ¢, such that

k
det <Z sﬂ})
j=1

The equivalence is as follows. Supposing A € E, denote E = E — A. Then if
thereexist Ty =Ty — A,.... T, =T, — A€ E, where T; € E/, 1 < j <k, and there
exist s; € Z satisfying |s;| < ¢, such that

1
n

> C|E

k
det ZSJT] > C|E\%.
j=1
That is,
det (s1T) + -+ - + 85T — (s1+ -+ + s;)A)| > C|E|* = C|E|7,

which satisfies the conditions of Lemma 13.2.

More specifically, when proving Lemma 13.2 Christ [5] gave that under the same
hypothesis of Lemma 13.2, there exist A; € E and s; € {0,1}, j = 1,...,n, such
that

1
n
’

det ZsjAj Z C‘E
j=1
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which implies that for any measurable F C 91"*",

(1.20) sup |det(s1A1 + -+ 5, An)| 20 |E|7.
Al,...,AnGE
81,...,8,€{0,1}

Christ studied forms such as det(A; + --- + A,) where A; are all restricted to
belong to the same set. It is natural to remove this restriction and allow A; to
belong to F;; we do not assume all the F; are equal. In this paper we will improve

([LI7)-(LI8) as follows, mainly relying on the rearrangement inequality (LI2).

Main Theorem. There exists a finite constant C,, such that for any measurable
sets E; C IM™*™(R) of finite measure, j =1,...,n,

(1.21) ﬁ B

"2 < Ch sup |det(A; +---+ A4,)|

; A
j=1,....n

The Main Theorem implies that (LI7) holds for all compact convex sets in
M™*™(R) and extends Lemma 13.2 as described below. In particular, we see from
the Main Theorem that all the s;’s in (L20) can be taken to be 1.

Corollary A. There exists a finite constant A, such that for any measurable set
E CM*"(R) of finite measure, for any nonzero scalar A\; € R, j=1,...,n,

(1.22) (Tnie

Jj=1

7 < A, sup | det(A Ay 4 -+ A dy)).
A;eE

Corollary B. There exists a finite constant B,, such that for any measurable com-
pact conver set E C IM"*"™(R) of finite measure,

(1.23) |E|" < Bysup |det(A)].
A€EE

See Section 3 for the proof of Corollary [Bl

Remarks 2.
(1) One can easily check that
sup  |det(A)| = sup |det(A4)].
Aeco{0,E} AcE
This is because | det(AA)| = A"| det(A)| for any A € [0, 1], so we can always assume
that 0 € E. Given a measurable E C 9M™*"(R), by scaling let E = rE, 0 #r € R.
Then -~ 1 2 1 1
(IE[)» = ("™ [E])» =" E]
and
sup |det(A)| =r"sup |det(A4)].
AcE AcE
However, (L.23)) is not translation invariant.
(2) We use a counterexample to show that (L23]) fails without the convex con-
dition. Take n = 2 as an example, and let

E={(a,b,c,d):0<ad<1,0<bc<1,and 1/N <a< N,1/N <b< N}.
sup |det(A)| = sup

Then we have
a c
det
A€EE AcFE ( b d >

and |E| = (2In N)2. Let N — oo. Then we get the contradiction to (T23).

<2
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Remarks 3.

(1) An open problem is what the best constants A, B,, C, are. We prove in
this paper that balls or ellipsoids are not their optimisers.

(2) Note that inequalities of matrix type introduced in this part do not enjoy
an obvious affine invariance. Nevertheless, there is an important action of SL,,(R)
on M™*™(R) by premultiplication. That is, if T € GL,(R), 4 € MM™*"*(R), and
E Cc m™*"(R), then

det(TA) = det(T') det(A)
and
|TE| = |det(T)|"|E|.

So both matrix inequalities in this paper are invariant under premultiplication by
a matrix of unimodular determinant. We do not use the invariance of the entire
problem under the action of left-multiplication by members of SL,,(R) but instead
the facts which underly this invariance, i.e., that this action preserves determinants
of individual matrices and preserves volumes of sets. It enters as a “catalyst” in
order to obtain a measure theoretic consequence, and its presence vanishes without
trace.

The rest of this paper is organised as follows. In Section 2, we study the extremal
sets for some generalizations of (L1)-(L8)) via the Steiner symmetrisation proce-
dure together with the rearrangement inequality (LI2]). In this section, we also
prove the multilinear functional determinant rearrangement inequalities shown in
Theorem Together with the Brascamp-Lieb-Luttinger inequality, we prove the
multilinear determinant integral rearrangement inequalities in Theorem 271 Our
Main Theorem will be proved in Section 3. We remark that the main ingredient
in this paper is the rearrangement inequality (LI2]). Throughout the paper, the
letter C' stands for positive constants, not necessarily the same at each occurrence
but independent of the essential variables.

2. DETERMINANT INEQUALITIES

In this section we study the determinant inequalities discussed in the introduc-
tion. First we recall an estimate by Gressman [8] as follows.

Lemma 2.1 ([8]). There exists a finite constant C,, such that for any y € R™, for
any measurable sets E1, ..., E, in R™, and for any § > 0,

21) (1= yn) € By x o x By v det(y,yn,- - yn) < 0} < Cod [ 15,7
j=1
As an immediate consequence of ([21I), we obtain the following inequality 22)).

With the same constant C),, we have for any y € R™ and for any measurable sets

n
(2.2) I1 151+ <c. sup  det(y, y1, .- yn)-

j=1 Yy1€E1,....yn€E,

One way to see this is as follows. Let y € R™ and suppose that

sup det(y,y1,. .., yn) = 8 < 0.
Y1€EL,... . yn€E,
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It follows from Lemma 2.1l that for all measurable sets £; C R", 1 < j < n,

n
1
{1, yn) € By X -+ X By s det(y,y1,- . yn) < s} < Cous[ 1B
j=1
Note that s = sup det(y,y1,. -, Yn), SO
Y1€E1,....yn€E,
n
|{(y177yn) S El X X En : det(y7y17"'7y’n) S S}‘ = H ‘E]|
j=1

Therefore,

1 15| < Cas] T 121"
j=1 j=1
That is,

n

H\Ejﬁ <C,s=0C, sup det(y, y1, - -+ Yn)s
=1 Y1€E1,....yn€E,
which completes (2.2]).

This motivates a multilinear perspective. Later on, we will prove the sharp
version of (Z))-(22). More generally, functional versions of (2.2]) have been studied
in [4]. As shown in Theorem [BI] of [4], for any nonnegative measurable functions

fj c LPi (Rn),

n+1 n+1
(2.3) LT15ln, < Crpysup TT fi(ws) det(un, - ynia)
j=1 Yj j=1
n+1 1
holds if and only if p; satisfies 1% <X foralll <j<n+1landy= Z —.
j — pj
Jj=1

Lemma 3.2 in [4] gives an endpoint case of the multilinear inequality (23]). That
is, for any nonnegative measurable functions f; € L?i (R"),

n n+1
(2.4) HHfj”L"’“’(R")||fn+1||L°° < Cpsup H fj(yj) det(yi,. s Ynt1)-
j=1 Yj j=1

It is not hard to see that ([24) implies for any y € R,

(2.5) LTI e ey < Csup I 7i(w) det(y,vr, . ),

j=1 Yj j=1
which also concludes ([2.2) by specialising to f; = xg;. For the proof of (2.3))-(2.3])
and more general multilinear cases, we refer to [4].

Before studying the sharp versions of inequalities ([2.2)), we recall some useful
tools in [4], which were already stated in the introduction.

Lemma 2.2 ([4]). Let E; be measurable sets in R and a; € R, j =1,...,1. Then

! !
(2.6) sup Zajxj < sup Zajxj .

I]‘GE; j=1 r; €l j=1
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Proof. From the Brunn-Minkowski inequality
|E+ F| > [E|+ |F],
where E, F' C R, it follows that
|E1+ -+ El| > |Er|+ -+ |E.
Because E} = (—|E;|/2,|E;|/2), 1 < j <, then

l l
E; E.
Ei+---+E = _§ :|2]|’Z|2]‘
=1

j=1

Thus we have

(By+--+ E)*| = |Er+--+ E| > |Ey| + -+ |Ei| = |Ef +--- + Ef],
which implies that
(2.7) (B1+---+E) DE{+---+E].
Clearly, for any nonzero a € R and any measurable subset E in R,
(2.8) (aE)* = aE".
Combining with (Z71)-(Z8]) we have
(2.9) (aBr+ - +aqE) " DaE]+ - +aqE].
Applying () and @23), we get

!
sup E a;x;|= sup |T|> sup |Zz| > sup |Z|
z;€E; | l l l
! 7=t TE Y, a;E; ze( X ajEj)* TE Y. lle;
j=1 j=1 j=1
Besides,
1 1
sup |z| = sup g Tj| = sup E a;T;
l ri€a; B | T, EET |
zeY a; B I=TIG =1 J Ji|j=1
j=1
Therefore,

l l
sup Zajxj > sup Zajxj .

i €85 |55 e€BF |7

]

It follows from Lemma[Z2] that we have inequalities (Z10)-(212)). Let 1, ..., E;
be measurable sets in R™. Let | > n and let A = {a;1} be an [ X n real matrix.
Then for each 1 <t < n,

(2.10)
1 ! ! 1
sup det 07 Z Ai1Yiy - - Z AinlY; S sup det 07 Z Ai1Yiy v vy Z AinlYi |
Yi es&t (E]) i=1 i=1 _yj EEJ' i—1 =1
J=1,...,1 j=1,...,1
where {e1,...,e,} is the standard basis for R™.

Let [ = n and let

1 ifi=k,
Qi = .
0 otherwise,



5188 TING CHEN

so (2.10) gives

(2.11) sup  det(0,y1,...,yn) < sup det(0,y1,...,Yn).
Y;j €Se, (Ej) y;€E;
j=1,...,n j=1,....n

If weset l=n+1 and

1 ifi=k
a;r =< —1 ifi:n—l—l,
0 otherwise,
then
(2.12) sup  det(yr,...Ynt1) < sup  det(yr,...,Ynt1)-
Y5 €Sey (Bj) Y €E;
Jj=1,..., n+1 j=1,...,n+1

Proof. For simplicity, we see that (ZI0) holds for e;. Define the projection 7
R" — R" ! by
w(x) = (z2,...,2n), V& = (21,...,2,) € R™.

For any x € R", write z = (z1,2’) where 2’ € R"~!. For y; € E},

Y11 Y21 -+ Yni
det(0,y1,...,yn) = |det : : : = [y11Ai+yo1 Ao+ +yn1 Al
Yin Yon oo Ynn

! !
where A; depends only on {y/,...,y,}. Hence, det (O, S iUy ey Y. ainyi> is
i=1 i=1
the linear combination of y11,...,y;1- That is,

I I
det (0, Zailyi7 s Z am?/i) = [y11B1 +y21 B2 + - +yn Bl
=1 i=1

where B; depends only on {y;,...,y;}. For each j, fix ¥} := (yj2,...,yjn) € 7(Ej),
1 <5 <1 Let

E;(y;) = {yn € R: (yj1,;) € E;}.
It follows from Lemma that

l l
(2.13) sup : ZBjyjl < sup ZBjyjl :
8 st

y;1€E;5 (Y] y;1€E;(y)) j=1

Since

Se.(Bj) = |J {win,v)) sy € B;(W)" D,
yiEm(E;)

together with ([ZI3) this gives

1 l l 1
sup det | 0O, E Ai1Yiy - - s g ainy; | < sup det | 0, E Ai1Yiy -« - s E ainli | -
YjE€Seq (€J) i=1 i=1 'yjIEEjl i=1 i=1

Jj=1,..., Jj=1,...,

O

More generally, together with the rotation invariance we have the following re-
arrangement theorem.
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Theorem 2.3. Let A = {a;t} be an l X n real matriz with | > n. Let u be a unit
vector in R™. Then for any measurable sets E; CR"™, 1 < j <1,

l
sup det (0 Zallyl, .. Zam%) < sup det <0 Zaﬂyz, .. .,Zam%) .
i=1

UJES (E) i=1 UJEE
J=1,
Proof. Suppose u = pe;, where p is a rotation around the origin in R".
By definition,

Spe,(E) = {mpet +y: EN[R(pes) +y] # b, |m| < |E N [R(per) + yl| }

2

= {p(met L) o (B) 1 (Rew + pLy) 6, [m| < 2L D (2R6t +r Yl }
= {P(met +p7 ) p T HE) N (Rey + pty) # ¢, Im| < [P (E)N (Hjet +p" 1Y)l } .

Note that
Se,(pH(E))

= {met +p i p HE)N (Rey + pty) # ¢, Im| <

lpHE) N (Rey + p~Ly)| }
. .

Hence we obtain
(214) Spet(E) :pOSet(p_l(E)).
By the invariance under rotation p,
l l
sup  det <0, > aiyi,- Y ainyi>
Ej) i=1 i=1

yj‘esu( J
7j=1,...,1

l
sup det ( Z @i1Yis - - Z am%)
H(E;))) i=1

Y5 €p0Se, (P~

7j=1,...,0
l l
= Sup det (07 Z Ai1Yiy vy Z azn:‘/z) .
yJGSet(p Y(E))) i=1 i=1

1,...,

Applying 2I0) gives

l
sup det ( Z AillYis - - Z amyl)
(E;)) i=1

Yj€Se, (p"
G=1,.1
l 1
< sup det <O, Z Ai1Yiy -+ Z ain?/i)
yi€p H(E)) i=1 i=1
G=1,.,0
l l
= sup det O,Zaﬂyi, . .,Zainyi .
y; €EE; i=1 i=1

j=1,...1
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Therefore, we conclude that

1
sup det Z ai1Yi, - - Z ainy; | = sup det Z Ai1Yiy - - -, Z ain¥i| -
Yj E'Si (El i=1 y31€ Jl =1

J i=1,...,

O

Now we can decide the sharp versions of the determinant inequalities in this
section. It is known that, given a compact convex set K C R", there exists a
sequence of iterated Steiner symmetrisations of K that converges in the Hausdorff
metric to a ball of the same volume. For example, given a basis of unit directions
U1, ..., U, for R™ having mutually irrational multiple of 7 radian differences, the
sequence S, .. .Sy, Sy, (K) iterated infinitely many times to K will converge to a
ball of the same volume as K. For the convergence of Steiner symmetrisation, refer
to [1, [2], [6], 1], [I5], etc.

One can easily verify that the suprema function on the right side of inequal-
ities ([ZI0) are continuous under the Hausdorff metric, and they do not change
if we replace each E; by €o(E;). Therefore, applying the convergence of Steiner
symmetrisation together with Theorem 23] we have shown the following lemma.

Lemma 2.4. Letl > n and let A = {a;} be an | X n real matriz. Then for any
measurable sets E; CR™, 1 <5 <1,

! 1
sup det <0, Z Ai1Yis - - Z am?/i)
i—1 i=1

Y1E€EET,...,yiEE]

! !
< sup det (0, Z @i1Yiy - s Z am%‘) .
i=1 1=1

Y1€EL,... .y €EE

Obviously, it follows from Lemma 24 that

(2.15) sup det(0,y1,...,yn) < sup det(0,y1,...,Yn)
y1€EET,. .. ,yn€E Y1€EL,... . yn€E,
and
(2.16) sup det(y1,. -, Ynt1) < sup det(y1,. -, Ynt1)
N€ET, . ynt1€E] Y1€E1, ... .Yynt1€En 11

hold for any measurable sets £; CR"™, 1 <j<n41.
From Lemma[2.4]we obtain the multilinear functional rearrangement inequalities.

Theorem 2.5. Let f; be nonnegative measurable functions vanishing at infinity on
R™. Let A= {a;;} € GL,(R). Then

(2.17)

sup H fi (Z aijyz) det(0,y1, ..., yn) < sup H fi (Z aijyz) det (0,91, .-, Yn)-
Vi j=1 i=1 Yi j=1 i=1

Let A ={a;;} € GL(p1)(R). Then

(2.18)

n+1 n+1 n+1 n+1

sup [ f; (Z azy%) det(yr, .-, yns1) <sup [] f; <Z aij?Ji) det(yr, .-, Yn+1),

Vi j=1 Yij=1 i=1

where the sup is the essential supremum.
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n
Proof. Let y; = > a;;y;, 1 < j <n, so
i=1

det(0, 1, - yn) = det(0, G, .., G| det(4)] .
Then for (ZI7) it suffices to prove that
(219)  sup [] £1(5) det(O,7r, ... 5w) < sup ] £5(75) det(0, 7, ... 7).
Yi j=1 Yi j=1

n+1
Similarly, for (ZI8)) denote y; = > @iy, 1 < j <n+ 1. Since
i=1

(v oo g )=(0 - Yopr )ATY,
det(y1,...,Yn+1) can be written in the form
n+1 n+1 n+1
det (O, Z Cilgb Z Ci227i7 ey Z Cznﬁz) .
i=1 i=1 i=1

Specifically, suppose A™' = {b;;},,+1. Then by calculation we have c;x = by, —
bitnt1) with 1 <k <n, 1 <i<n+ 1. Hence (ZI8) becomes

n+1 n+1 n+1 n+1
wup [ £ (75) det (o, S eSS e S y>
=1 =1 =1

Yi j=1

(220) n+1 n+1 n+1 n+1
< oup T 1,7 de (ozyzyzy)
=1 =1

Yi j=1 i=1

We claim that for any ! > n, for any  x n real matrix B = {c;1},

l l !
sup H i (y;) det (0, Z Ci1Yis - -+ Z Cinyi)
Yi j=1 i=1 i=1
l l !
S sup H f](y]) det (07 Z Ci1lYis -+ Z Czny2>
i=1 i=1

Yi G2

holds. Suppose that

1 1 1
sup H fj(yj) det <0,ZCi1yi, .. .,Zcm%) =5 < 0.
i=1

Yij=1 i=1

We assume for a contradiction that

! ! !
sup H f5 (y;) det (O, Z Cil¥is -« - s Z cmyi> > s.
Yi j=1 i=1 i=1
Then there exist positive € and a set G C R™ x --- x R™ such that |G| > 0 and for
all (z1,...,2;) € G we have

l l
f]’.k (x;) det (O, Z Ci1Tiy .- -, Z cmxi> > s+e,
i=1 i=1

(2.21)

l
Jj=

1
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which gives

l

-1

l l
(2.22) fi(xy) > (s+¢) H (x;)det (0, Z CilTiy - -, Z cmxl)
i=1 i=1

Jj=2

Define the set

l
Eii=qy: fl(yl) S + E H f] xj det (0 Zcﬂxi, e

j=2 =1

so by the property of decreasing rearrangement together with (222]) we have

|E1| > vpza]™.
From the definition of Ej,
- l 1
f3 (x2) > <s+ 5) u}relffﬂ filn jl:[g (z;) det (0 > eawi, .

i=1

We then define
Ey={y2 : fa(y2)
- l
> (S+§) y}gglfl(yl)u)) LL'] det( Zczlxzu
j=

SO

|E2‘ > ’Un|:L‘2|".

5 E Cinxi>

i=1

1
) E CinTsq
i=1

l
i E CinT;
i=1

Overall, we can take similar arguments to define sets Fy, 1 <t < I:

t—1 l
Ey=qye: fe(ye)> <S+ %) Hylng Fiw) T £ ))
j=17""" j

and

E =A{u - fily)

-1

-1

l
> (3 —+ %) H mf f_] y_] det ( Z Ci1lTijy ey Z Cinl‘i>
j=1 i=1

It is easily seen that for each j =1,...,1,

(223) |EJ‘ > ’Un|il7j|n,

-1

-1

-1
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and thus x; € E7. It follows from Lemma [2.4] that

! !
sup det (QZCilyia . '7Zcinyi>
i=1 i—1

y1€ET,... .y EEY

! !
< sup det | 0, Z Ci1Yis - - - Z CinYi | -
y€EE i=1 i=1

y1€by,...,

That together with z; € E¥, j =1,...,[, implies that

(2.24)
l

I I !
Oazcilxiw-wzcinxi> < sup det (07201‘12/1‘, = wzcinyi) :
i i=1 i=1 i=1

— Y1€EL,... . yn€E,

From the definition of Ej we have for any y; € £;, 1 <j <1,

l l l
H i) det < chyi, ce Zcmyz)

i=1 i=1

l l -t !
> (S + %) (det (O, ZC“IZ', ey ZC"LIZ>> det (O, Zcilyi7 [N

i=1 =1 =1 )

'M~

Il
—

m%) .

Therefore, together with (IZQZI) we obtain

l l
s> H fi(y;) det (O, Zcilyi, .. .,Zcmyi>

yIEEla ylEEl] 1 i=1 i=1

. -1
(s + ) (det ( 201137“ e Zcmxl))
i=1
1
X sup det <07 Z Cil¥Yis- -+ Z Cinl/i)
wek i=1 i=1

y1€E1,...,
> s,

which gives a contradiction. That completes the proof of the claim. Therefore,

@19)-(Z20) hold. O

Remarks 4. We use a counterexample to show that Theorem 25 is false if det(A) =
0. Let fi = x4, f2 = xB, where A, B are disjoint measurable sets in R? with non-
zero measure. Obviously,
sup  fi(y1 + y2) f2(y1 + y2) det(0, 41, y2) = 0,
y1,y2 €ER?
while

sup fi(y1 + v2) f5 (y1 + y2) det(0, y1,y2) # 0.
Y1,Y2

Likewise, for the same sets A, B above, let f; = x4, fo = f3 = xg. Then

sup  fi(yr +y2 +y3) f2(yr + y2 + y3) f3(y3) det(y1, y2,y3) = 0,
y1,Y2,y3 ER?
while

sup  fr(y1 +y2 +y3)fs (y1 + 2 +y3)f3(y3) det(y1, 2, y3) # 0.
y1,y2,y3 ER?
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Let A = I. From Theorem it is straightforward to see that

(225) sup H f; (y]) det(O, Yi,-0 0y yn) S sup H fj (y_]) det(oa Y1, 7yn)a

Yji j=1 Yj j=1
n+1 n+1

(2.26) sup [ /5 (ws) det(w, .- yni1) < sup [ £(w5) det(yn, -, ynga)-
Yj j=1 Yj j=1

Let f; = xg,, and let E; be measurable sets in R™. Applying ([2.25)-(Z.28]) we
obtain the following two sharp “multilinear” determinant inequalities suggested by
the multilinear perspective of ([Z2)):

1
n <A, sup det(0,y1, .-, Yn)
Y1€E1,...,.yn€E,

(2.27) ﬁ E;

and

n+1

a1
(2.28) H |E;|™T < B, sup det(y1, ..+, Ynt1)-
j=1 Y1€E1,. ... Yny1€E, 11

Moreover, they are both extremised by balls centred at 0. It follows from (2:25])-
220) that we also obtain the optimisers for (I7)) and (L8) which is the special
case when I; = E.

It should be pointed out that (Z25])-([226) improves multilinear rearrangement
inequalities (2:29), (Z30) given in [4]. For each 1 <4 < n,

(229) sup H f]*l(y]) det(07 Yiy- - 7yn) S sup H f] (y]) det(O, Y1, - ooy yn)

Yi j=1 Yioj=1
and
n+1 n+1
(230) sup H fg*z(yj) det(ylu e 7il/n+1) S sup H fj (y]) det(y1> LR yn+1)7
Yi j=1 Yij=1

where f;-‘i is the Steiner symmetrisation of f; with respect to the i-th coordinate.

Finally we give the best constant of (21I), mainly applying the Brascamp-Lieb-
Luttinger rearrangement inequality. In 1974, Brascamp, Lieb, and Luttinger [3]
proved the following inequality (2.31]), which is a generalisation of Riesz’s rearrange-
ment inequality [14].

Let f; be nonnegative measurable functions on R" that vanish at infinity, j =
1,...,m. Let &k < m and let B = {b;;} be a k x m matrix with 1 < i < k,
1 < j < m. Define

m k
I(fi,- - fm) ;:/( o 11+ (Z bijxi> dxy ... dwy.

j=1 i=1

Then
(231) I(flyafm)gl(fik7vf;1)
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Theorem 2.7. Let f; be nonnegative measurable functions vanishing at infinity on
R™. Define

J(f17~~~,fn+1)_/(Rﬂ) Hfj(yj)fn+1(det(0ay1,-~-ayn))dy1~-~dyn
et

and
n+1
G(f1,--, fas2) = / 1T £ii) fuva(det(ys, - yngr))dys - dyn i1
(Rm)n+d j=1
Then
(2.32) J(f1seos fur1) ST fost)
and
(2.33) G(fiyo o fot2) S G- fag):

Proof. By the layer cake representation, it suffices to show that for any E; of finite
volume in R, 1 < j <n+ 2,

J(Er, .., Engr) < J(ET,... B, ), G(Ey,...,Enge) <G(ET,... B ,).

For any measurable F; C R, 1 < j < n+1, the Brascamp-Lieb-Luttinger rearrange-
ment inequality implies that

/ l_IXFj(UCj)XFn+1 Zajxj dxi...dz,
®)™ j=1 j=1

n n
S/ HXF;(%)XF;+1 > aja; | day .. day,.

R)™ 52
As before, since det(0,y1,...,¥yn) is the linear combination of y11,...,yn1, similar
to the proof of (2I0) we have

(2.34) J(E, ... ,Eni1) < J(Se;(E1), -y Sey (Bny1))-

Note that J(Ey,..., E,41) is invariant under O(n). By the property of
Spe, (E)=poS, (p_l(E))’

we obtain for any « € S*~! that is a unit vector in R":

(2.35) J(E1, ..., Eni1) < J(Su(F1)s- o, Su(Fnt1))-

Likewise, since det(yi,...,yn+1) can be seen as the linear combination of yi1, ...,
Y(n+1)1 and by the Brascamp-Lieb-Luttinger rearrangement inequality

n+1 n+1

/( - H XF; (T5)XFpis Zajxj dzy ...dxp4
mynt i =

n+1 n+1
< /( oo s | S | oo,
J J=

o
we also have

(2.36) G(Er,..., Epi2) < G(Se,(E1), ... Se; (Bnyz)).
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Hence by ([2.I4) together with the invariance of G(E, ..., Ent2),
(2.37) G(E1, ..., Eni2) < G(Su(EL), ..., Su(Eni2)).

Let H be the semigroup of all finite products of S,,’s. Brascamp, Lieb, and Lut-
tinger [3] proved for any bounded measurable E C R™ that there exists {h,, }59_, C
G such that E,, := h,,(E) converges to E* in symmetric difference. That is,

(2.38) lim |E,AE*| =0,

m—0o0
where /A denotes the symmetric difference of two sets. Here we sketch the sequence
of sets {F,,}. Let Eg = hoFE = E. Given E,,, choose unit vector u; such that

1

1Su, (Bm) AE*| < inf  [Su(Em)AE*| + —.
Sn—1 m

uesn—

Hence we select ug, ..., u, € S*! such that {uy,...,u,} becomes an orthonormal
basis in R™ and then construct

Bt = hins1(E) = Sy Su, - Suy(Enm).

The sequence of sets {F,,, } constructed above converges to E* in symmetric differ-
ence. See [3] for the detailed proof. Therefore, we apply the convergence of Steiner
symmetrisation together with (2358 and 237 to conclude that

J(Ev, ..., Enp) < J(ET,...,E} L)

and
G(El, sy En+2) < G(ET, ey E:L+2)'

Lastly, applying the layer cake representation for f; together with Fubini’s theorem
gives

J(fl,...,f7L+1) :A [) J(X{f1>t1}a-~-7X{f"+1>tn+1})dt1---dtn—i-l-

Since ([Z32)-(233)) hold for characteristic functions of sets of finite Lebesgue mea-
sure, for any ¢;, 1 <j <n+1,

(2.39) J(X{f1>t1}’ s 7X{fn+1>tn+1}) < J(X?f1>t1}’ R X?fn,+1>tn+1})'
Thus
J(fla"'vfn+1)§/0 /0 TG0y X s>t dbng
:J(fik77 ;:-1-1)'

Similarly,

G(frs o fra2) SGfL5-- o faga)-
This completes Theorem 2.7 O

Let f; = xp,, 1 <j <n,and foy1 = X(|.|<5)- Theorem L7 gives that

|{(y1’ayn) EEl Xoees XETL:det(Ovyla"'ayn) <6}|
<H(y1,---,yn) € EY X -+ x E - det(0,y1,...,yn) <O}

This implies that inequality (2] is extremised by balls centred at y, where y € R™.
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Let fnoi2 = |-|~!. Then Theorem 27 implies that

n+1
/( o Hfj(yj)det(yl,---;yn+1)71dy1...dynH
J

1

n+1
< /(R - 11 £ @) det(wr, -, yngr) "y - dynyga.

Jj=1
3. MATRIX INEQUALITIES

Now we turn to see the analogues of (LH)) and (L)) replacing the Euclidean space
R™ by the space of n x n real matrices. We remark that the proof of Theorem [3.]
mainly relies on the rearrangement inequality (Z€) and an invariance under the
action of O(n) by premultiplication as described in the introduction.

Theorem 3.1. There exists a finite constant C,, such that for any measurable set
E; C ™™ of finite measure, j =1,...,n,

(3.1) [T1Ei17 <C. sup |det(A; + -+ A4,)],
j=1

i €E;
j=1,....n

where | - | denotes the Lebesque measure on Euclidean space R"* and the absolute
value on R.

Proof. Suppose that

sup |det(A1+ -+ A4,)] =5 < .
A]‘GE]‘
i=l,.m

First we give some definitions and notation. Let F' C 9"*™ and define

ailr  a21 ... G(m—1)1 am1
v(F) = : : : 3 : such that
Ain  A2n  -..  Q(m-1)n Amn
a1 ce am1
eFy,
A1p .- Amn

so v(F) c M* =1 For any n-by-(m — 1) matrix

ai; @21 ... Q@n-1)1
x = e v(F),
Ain  a2n ... A(m—1)n
we denote
am1 a11 s am1
F® = : : : : € F ot
Amn Aip .- Amn

Let E C 9™*™. For any rotation around the origin 7" in R", consider

dr: A TA YV AcE,
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where T is an n-by-n matrix with det(T") = 1. Note that &7 does not change |F]
and sup | det(A)|. This is because
A€E

(3.2) sup |det(A)| = sup |det(TA)| = sup | det(A4)].
Acdr(E) A€E ACE
ail e an1
Besides, if we see the matrix A = € FE as a vector
Alp .- Apn
2
(a117"'70‘17130/217"'70‘27“"'70/711)'"?a/nn) E Rn 9

then the matrix ®1(A) becomes

T
T aii
T ann
Thus
(3.3) |27 (E)| = |T|"|E| = |E|.

From |E| = fU(E) |E¥|dx it follows that there always exists T € v(E) such that

(3.4) [(E)||E®| Zn |E].

By the John ellipsoid, for any compact convex G C R"™ there exists an ellipsoid
G’ C G such that

(3.5) 1G] 2 |G

For the John ellipsoid G’, we choose a rotation T € O(n) such that TG’ is an
ellipsoid with principal axes parallel to the coordinate axes. As is well known, for

every ellipsoid T'G’ with principal axes parallel to the coordinate axes, there exists
an axis-parallel rectangle H C TG’ such that

(3.6) [H| Zn |TG|.

Hence if E¥ is convex, from (B.5)-([3.6) we may assume that there exists 7' € O(n)
such that E% is an axis-parallel rectangle in R™.

Take n = 2. By (B.4) there exists x19 € v(E1) C M?*L, x99 € v(Ey) C M?*!
such that

(3.7) [(EDIET] Z [Erl, [0(E2)||E™| Z [E.

Then
max{[v(Ey)||E7*|, [v(E1)|[E5> [} 2 (1B Eal) /2.

For simplicity, suppose that

(3.8) [0(B2)|| BT 2 (| Ev||[Bal) 2.

To study the suprema, we consider the 2-by-2 matrix
A= (z10)1 (z10)2 ) € By

with

(710)1 = 10 € ML and  (x10)2 € ET*°.
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For any Ay := ( T, X9 ) € E,, for any constructed A; above,
s > |det(A; + As)|
= | det ( 1+ (z10)1 @2+ (z10)2 ) |
So fixing the first column, we have for any =1 € v(Es), x2 € E3*,

(3.9) 5> sup  |det ( 1+ (z10)1 22+ (z10)2 ) |

(9010)2€Ef10
Because we fix all the columns except one, the | det | function is the convex function
of the remaining column. Thus

(3.10) s> sup | det ( x1+ (z10)1 @2+ (z10)2 ) |

(Ilo)QECOElwlo
By (B3] we may assume coE7'° is an ellipsoid in R?. Choose a rotation Ty € O(2)
such that TocoET™ is an ellipsoid with principal axes parallel to the coordinate

axes. From (B.6) we may assume TpcoE{"° is an axis-parallel rectangle. Note that
(BI0) is invariant under O(2) as discussed in [B2), so

s > sup |det (21 + (z10)1 @2+ (z10)2 ) |
(3.11) (et
’ = sup |det ( Toxy + TO(xlO)l Toxs + To(xlo)z ) |
(110)2€c0ET10

Since TycoE{'° is an axis-parallel rectangle in R?, it can be written as A; x Aj,
where Ay, Ay are intervals in R, and then

S(T()COETIO) = S(TQCOETIO + Tol‘g) = Aik X A;, Vxg € E;;l
Similar to the proof of ([2Z.I0), applying ([2.6]) gives for any z1 € v(E>)

(312) s> sup |det ( Tox1 + To(xlo)l (l‘lo)g ) |
(110)2€$(T000Ef10)

Therefore, by ([Z2]) we deduce that
s > C|Tov(E2) + To(z10)1]"?|S(TocoE ) |V/? = Clu(Es)|*/?|co By 0|2
This together with (3.8]) implies that
s = Clu(E)|[coET V2 = Clo(By)[V2 BT V2 = C(| B || E2 )Y,

which completes B1) for n = 2.
Take n = 3. By (B4) for each E; there exists z;o € v(E;) C M3*? such that

(3.13) (EDIE;"| 2 B, 1 <5 <3

Denote F; = v(E;) C 9MM3*2. There exists fixed zj; € v(F;) C M3*! such that
(3.14) [(EIE | 2 |Fy] = v(E;).

From BI3)-BI4), we have zo € v(Ej),z;1 € v(F}), and

(3.15) [(FDIFIE " 2 1Bl 1 <5 < 3.

It is not hard to see there exists {i1, i, i3} with i1 # 49 # i3 such that

(3.16) (0(Fy,)||F2t | B0y H F)|EF™ || ES) >H|E|

j=1 Jj=1
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For simplicity, suppose that
(3.17) [o(E)||F52 | EF*°] Z (| Ev] B || Es ).
Now we consider 3-by-3 matrices
A= (z10)1 (z10)2 (210)3 ) € B4
with ( (z10)1 (210)2 ) =z19 € M3*? and (z19)3 € E7*;

Ayi=( (zn)r (#21)2 (221)3 ) € B

with the condition
(m21)1 = 21 € ML and  (291)2 € Fy'.
For any Aj := ( 1 Toy T3 ) € Es, for any constructed A;, A; above,
s > |det(A; + Az + A3)|
= |det ( @14 (z10)1 + (221)1 22+ (210)2 + (T21)2 3+ (T10)3 + (221)3 ) |.
So fixing all columns except the third column, we have
s> sup |det(z1+ (z10)1 + (z21)1 @2 + (w10)2 + (21)2
(z10)3€ET10
x5+ (210)3 + (221)3)]-
Obviously,
s 2 sup |det (21 + (210)1 + (z21)1 @2 + (T10)2 + (221)2
(z10)3E€COET 10
x5+ (710)3 + (221)3)]-

As before, by (BE) we assume there exists TocoE7'?, an ellipsoid with principal
axes parallel to the coordinate axes in R3. From (B.6]) we may assume TypcoE7" is
an axis-parallel rectangle. Because of the invariance under O(3),

5> sup |det (z1 + (w10)1 + (z21)1 @2 + (T10)2 + (@21)2

(zlo)gecoEflo
x3 + (z10)3 + ($21)3)|
= sup | det (To(fﬂl + (z10)1 + (w21)1)  To(w2 + (210)2 + (721)2)

(z10)3EcOE 0
To(zs + (z10)3 + (221)3))]-

Since TocoE7™° is an axis-parallel rectangle in R3, it can be written as A x Aa x A3,
where Ay, Ay, Az are intervals in R. Similar to the proof of (ZI0) together with

S(TocoEP0) = S(TocoET™ + h) = A} x Ay x A5, V h € R,
applying ([Z8) gives for any ( #1 z2 ) € v(E3),
s> sup |det(To(z1 + (v10)1 + (v21)1) To(w2 + (w10)2 + (721)2)  (10)3) |-
esTeoi")
Then fixing all columns except the second column, we have that

5> (Su]);) |det (To(z1 + (z10)1 + (221)1) To(z2 + (z10)2 + (221)2)  (210)3) |
x21)2
eyt
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holds for any (z19)s € S(TocoET*°). Similarly, by the convex property of |det |
function when fixing other columns

5> (su[)) |det (To(z1 + (z10)1 + (w21)1) To(x2 + (z10)2 + (z21)2)  (Z10)3) |-
Ecoz}l';221

By @3) we may assume that TpcoFy? is an ellipsoid in R®. Choose a rotation
T) € O(3) such that T3 TycoFy?" is an ellipsoid with principal axes parallel to the

coordinate axes. From ([B) we may assume that T)TpcoFy?' is an axis-parallel
rectangle. By the invariance of O(3),

s> sup |det(To(x1 + (z10)1 + (21)1) To(z2 + (z10)2 + (221)2) (210)3) |

(z21)2
EcoF;21

= sup |det (T1To(x1 + (z10)1 + (z21)1) TiTo(x2 + (T10)2 + (T21)2)

(w21)2

EcoFy 2
T1(10)3) |-
Since T1TocoF5?' is an axis-parallel rectangle, together with
S(TyTocoFy?') = S(ThTocoFy* + h), ¥V h € R?,
apply inequality (2.6]) again to obtain that
s> sup |det ( TiTo(21 + (z10)1 + (T21)1)  (221)2 Ti(w10)3 ) |

(z10)3 GS(TOCOEflo)
(JEQI)QES(TITOCOF;zl)

holds for any z1 € v(F3) C IM3*1L.
Lastly, applying ([2:2]) we conclude that

s > CITYTyv(F3) + ThTo(x10)1
+ Ty To(221)1 Y3 S (Ty Toco FE21) | V3| Ty S (Tyco EX0) | H/3
= Clo(F) [ co g™ /¥co o) /2,
This together with (BIT) implies that
s = Clo(F3)[?|coFg2 V3 ]coBY e[/
> Olo(Fy)[V/2|Fg= V3| Epe )/
> C(|B1||Eaf | E3))'°.

This completes [B.1]) for n = 3.
For the general n, for each E;, denote Fjo = E;, 1 < j <n. Given 1 <k <n-2,
let

ij = U(Fj(k—l)) C Dﬁnx(n_k).

Then by ([B4) there exists fixed x;;, € v(Fjz) € M =F=1 0 <k < n -2, such
that

(3.18) [(EIF" 2 | Fiel = [0(Fjge-1))]-
That is, for each E; there exist {z;o, ..., %;(n—2)} such that for each k = 0,...,n—2,

Tk € ’U(ij) C imnx(”_k_l)
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and

(3.19) [0 I3 ) N sy | [F G | 2 |-

It is not hard to see that there exist {z] _, with 1 <¢; <nand i; # i for j # £k
such that

n—1(n—2) z,, (n—3) x, z;
(LR [Tl [P v PO o o RV

S

H ) IE D NEL B ER D) 2o [ 1B

For simph(nty, suppose i; = j,1 < 7 < n. That is,

L (n n L (n n x T
(320)  [o(Fuuog)IFL e 2] g [ 2 T 1B

To study the suprema, we consider the n-by-n matrices

A= (z10)1 -~ (z10)n ) € B4
with ( (r10)1 -+ (%10)(n—1) ) =x19 € MY and (x19), € Fi3° and
Ay = (z21)1 ... (z21)n ) € B
with ( (21)1 -+ (T21)(n—2) ) = 291 € M2 and (291),_1 € F32*. That

is, construct {Ay,..., A, 1} such that for each 1 <k <n —1,

A= @eg-1)1 - @kg-1))n ) € Bk,
with the condition that

Lh(k—1)

((xk(k—l))l e (xk(k—l))nfk) = Tk(k-1) € fmnx(n_k), (fk(k—l))nfk+1 € Fk(k,l) .
For any A, := ( Ty ... Ip ) € B, for any constructed A, ..., A,_; above,

s> |det(Ay + -+ Ap_1 + Ay

n—1 n—1
= |det ( x| + Z (xk(k,l))l e Ty + Z (xk(kfl))n ) |
k=1 k=1

Taking the same arguments as in the case n = 3, there exist Ty, Ty € O(n),

(3.21) 5> sup |det ( B B" )],
(210)n €S(TocoFy°
(%21) (n—1)ES(T1 TocoFy21)
where

n—1 n—1

B = T1T0 ( T+ Z (xk(k—l))l . Tp—2 + Z (zk(k—l))n—Q > € mnx(n72)’
k=1 k=1

B'=( (z21)(n-1) Ti(z10)n ) € M2,
Applying the same arguments again to ([B21]), there exist T, € O(n),
(322) S Z sup |det( C Cl ) |7
(z10)n €S(TocoFy3°

(z21) (n—1) ES(TlTOCOF;f)l)
(z32)n—2€S(T2T1 TocoFys?
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where
—1

n—1 n
C =TT ( T4 Y (@Tege—))1 oo Tz D (Tr—1))n-3 ) e mrx (=),
k=1 k=1

C'=( (#2)n-2) To(z21)(n-1) ToTi(z10)n ) € M.

Keep repeating the same arguments above, and finally we have that there exists
To, - .., Tn—2 € O(n), such that for any @1 € v(F,(,—2)) C M*,

(3.23) s> sup |det ( D D' )],
(zlo)nes(ToCOFfolo
(221) (n—1)ES(Ti TocoFy 2t )

w"L* n—
(I(nfl)(n72))2€S(Tn—2Tn—3-~TOC0F( D(n-2))

(n=1)(n-2)
where D € M**1, D' e mrx(n—1).
n—1
D= (T,—2...To)(x1+ Z('/Ek(kfl))l)a
k=1

D' = ((#(m—1)(n-2))2 Tn—2(@(n—2)(n-3))3 (Tn-2Tn—3)(T(n—3)n-1))4---
(Tn,Q e Tl)(xlo)n) .
It follows from (Z2)) together with the invariance under O(n) that

n Tp—1)(n— n T(n—2)(n— n T n T n
§>Clo(Fpn_2))|" |coF(n_11)>én_22))|1/ ‘COF(H(_SE;_;))‘U .. JcoFgz | Y co o L/m,

Obviously,
lcoF ) I = 1B )l 1<k <n—1.

This together with ([B220) implies that

s > C([v(Fym-g)llcoF "0 leoF L o[ oy || Ffge])
> Co(Fana) IF e N s 1P ) > ¢ T 1By
j=1
This completes Theorem [B.11 |
Corollary 3.2. There exists a finite constant A, B, such that for any measurable
set E C M " of finite measure, for any nonzero scalar A\; € R, j=1,...,n,
(3.24) (ﬁ INDIET < A, sup [det(A\ Ay + - 4 A Ay
7=l j=1,.m

If E is a compact convex set in IM"*"™, then

(3.25) |E|" < Bysup |det(A)].
A€EE

Proof. To see [B.24), let E; = A\;E. Applying Theorem Bl gives

A;EE
Jj=1,....,n

[TINER <Coosup  [det(MAs + -+ XAy,
j=1
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which implies (3:224)). In particular, if F C 9"*"™ is a compact convex set, setting
Nj=2 j=1,...,n, it follows from (3.24) that

n

1
—|EIY" < A, sup
. <
n A€EE
j=1,....,n

1 1
det(—A1+-~-+—An>‘.
n n

On the other hand, since F is convex,

sup|det(A4)] > sup
A€E AjEE
Jj=1,...,n

1 1
o (L 1)

Thus we get ([B.23]). O

Here we give a direct way to see Lemma 13.2 of [5], which follows from (B25).
Let E C 9MM"™*" be a measurable set. The inequality (II8)) in Lemma 13.2 has
translation invariance property, so we assume that 0 € E. Given any matrices
Ai,..., A2 in E, from (328]) it follows that

1
* ) 2000 n ~n M
(3.26) |co{0, Ay A} S sup | det(A)]
A€co{0,A1,...,A 2}

n

By ([22), there exist Ay, ..., A,z such that
|E| <p |co{0, Ay, ..., A2}
together with ([B:26]) we obtain that

(3.27) El" Sn sup | det(A)]
A€co{0,A1,...,A 2}

For any convex set F' C 91"*"™,

sup  |det(A)] = sup |det(4)],
Ae€co{0,F} A€F

since | det(AA)] = A"| det(A)| < |det(A)| for any A € [0, 1]. So

(3.28) sup | det(A)] = sup | det(A)|.
A€co{0,A1,...,A, 2} A€co{Ar,..., A2}

n n

Denote AF) by the k-th column vector of the matrix A, 1 < k < n. Then there

exist Ay, .. .,gn € {Ay,..., A2} (AZ, A; might be the same matrix), such that
’I’LQ

for any {A1,..., Ay} satisfying >° A\j =1and 0 < \; <1,
j=1

(3.29) [detOuAr -+ Aede) < | Y det (A;”,...,EE”))

i;€{1,...,n}
ijFie,ViF#k
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holds. This is because

Z )\l1 ce >\ln < Z )\ll v >\ln_1

1<yl <n2 1<l o ly— 1 <n?

<Y N

1<1y,l2<n?

doa =1

1<l <n?

IN

IN

Hence from (3.27))-(B.29)

(3.30) Blv S| >0 det (Eﬁf), . Eﬁj)) .
ijE{l ..... n}
i AR ViFtk
As mentioned in the proof of Lemma 13.2 of [5], > det (2511), cee A’En)) isa
i;€{1,...,n}
iy i itk
n ~
Z-linear combination of {det (Z sjAj> : 55 €40, 1}} This gives (L.20):
j=1

|E|" <, sup  |det(spA1 4+ s,A40)|.

Obviously, (323 is not affine invariant. The following example shows that balls
or ellipsoids are not the optimisers.

Example 3.3.

(i) Let n =2, E = B(0,r), A= ( Z ; > €E.
Then f‘up | det(A)| = g by calculation. Consider the ellipsoid F' in R* with |F| =
BOL

2 2 2 2
a c a b c d

F = et =4+ =+ =<17.

{<b d) l%+l%+l§+li_}

It is easy to obtain ffé}} | det(A)| > % > é by GM-AM inequality.

(ii) Let » = 1. Since A — |det(A)| is a continuous function on E = B(0,1)
under the natural topology on Euclidean space R*, there exists 0 < § < % such
that |det(A)| < § for all A € E satisfying

10
-(00)
Then for all A € E satisfying v1 — 40 < a < 1, we have
P+ +d><1-a?><1-(1-6)=4.

=(a—1)*+b*+c*+d* <20

Thus

‘A—<(1) 8)‘_(a—1)2+b2+c2+d2§(1—\/1—5)2+6§26,

which implies that |det(A)| < § for any A € E satisfying v1 -6 <a < 1.
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0 0
Let P = with p = L_ and then consider sup det(A)[:
( 0 p ) Vi=9 A€cco{ PUE} | ( )l
sup |det(A)|= sup |det(AA+ (1 —N)P)]
A€co{PUE} A€E,\€(0,1]
Aa Ac
= su det
AEE,)\IG)[O,I] ( Ab A+ (1= A)p > ‘
Aa e Aa 0
= su det + det < > ’ .
AEE,)\IG)[O,I] ( Ab - Ad ) Ab (1 - )\)P

When a ¢ [v1—6,1],
Aa  Ac Aa 0
det( Ab )\d>+det< A (1= A)p >’

< sup )\21 +A(1 = X)ap

sup
A€E,\€[0,1]

A€[0,1]
1 1
< sup M A1=MV1-6
re0,1] 2 ( ) V1-90
1 1
= sup M-+ A1-)) <.
re,1] 2 2

When a € [v1—6,1],

Aa  Ae \a 0
su det + det < > ’
AeE7>\E[0,1] < Ab A ) A (1=MN)p
1
< sup A= +A(1—=N)p
A€[0,1]

1 1
= sup M= 4+ A1-\
aelo,] 4 ( ) 1-0

It is easy to see that for 0 < § < % given above

1 1
sup A2= 4+ A\(1— A —.
ae0,] 4 ( ) 1-6 7 2

Therefore,

sup  |det(A)| = sup |det(A)|,
A€co{PUE} A€E

which implies that balls cannot be the optimisers.

Remarks 5. Let E C 9MM"™*™ be a compact convex set. If we compare the max-

imal volume of simplicies sup  vol(co{Aog,...,A,2}) contained in F with
Aoy, A 2€EE

sup |det(A)|, it follows from (B.20]) that
A€E

(3.31) sup  vol(co{Ao,...,A,2}) S, sup |det(A4)|".
Ao,...7An2€E A€EFE
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Indeed by John ellipsoids, it is enough to consider the case when E is a ellipsoid in
M"*". For any ellpsoid

2
E=!{zeR" Z| xo,wz)| <1},

where xg € R”z, {w;} is an orthonormal basis in R". By the affine invariance of
sup vol(co{ Ao, ..., An2}), it is enough to see balls centred at 0. Apply the
Ao,...,AnszE

Hadamard inequality for any A; € B(0,r) C R"2, j=0,...,n2
VOI(CO{AO7 ey Anz}) S |A0 - AlHAO - AQ‘ ce |A0 - An2| S/ﬂ 7""2 ~ |B(0, ’I“)‘
Hence for any ellipsoid E C R"z,

sup  vol(co{Ao,...,An2}) S |E-
Aoy A 2€EE

On the other hand, by (325)
|E| <, sup |det(A4)|"
AcE

Therefore, we have the following relation:

sup  vol(co{Ao,..., A,2}) Sa sup | det(A)|™.
Ao,...,AnQGE

Similarly, we have

(3.32) sup  vol(co{0, Ay,..., A,2}) <, sup |det(A)|™.
Ay, A 2 €EE A€E
If 0 € FE, this is true, which is mainly due to the Hadamard inequality and the

GL,(R) invariance of sup  vol(co{0,A1,...,A,2}). If 0 € E, the relation
Al,...,AnQGE

above still holds because of the fact that

sup |det(A)|" = sup |det(A4)|"
A€E A€co{0,E}
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