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ON SOME DETERMINANT AND MATRIX INEQUALITIES

WITH A GEOMETRICAL FLAVOUR

TING CHEN

Abstract. In this paper we study some determinant inequalities and matrix
inequalities which have a geometrical flavour. We first examine some inequal-
ities which place work of Macbeath in a more general setting and also relate
to recent work of Gressman. In particular, we establish optimisers for these
determinant inequalities. We then use these inequalities to establish our Main
Theorem, which gives a geometric inequality of matrix type which improves
and extends some inequalities of Christ.

1. Introduction

1.1. Notation and preliminaries. Let Rn be the n-dimensional Euclidean space,
n ≥ 1. |·| denotes the Lebesgue measure on Rn and the absolute value on R. Denote
Mn×n(R) by a set of all n × n real matrices. Let B(0, r) be the ball centred at 0
with radius r. For A ⊂ Rn of finite Lebesgue measure, we define the symmetric
rearrangement of A as

A∗ := {x : |x| < r} ≡ B(0, r), with |A∗| = |A|.
That is, vnr

n = |A|, where vn is the volume of unit ball in Rn. We then define the
symmetric decreasing rearrangement of a nonnegative measurable function f as

f∗(x) :=

∫ ∞

0

χ{f>t}∗(x)dt,

where χ{f>t} is the characteristic function of the level set {x : f(x) > t}, and define
the Steiner symmetrisation of f with respect to the j-th coordinate as

Rjf(x1, . . . , xn) = f∗j(x1, . . . , xn) :=

∫ ∞

0

χ{f(x1,...,xj−1,·,xj+1,...,xn)>t}∗(xj)dt.

Let u ∈ Rn be a unit vector, and let u⊥ be its orthogonal complement. Then for
any x ∈ Rn, it can be uniquely written as x = tu+ y where y ∈ u⊥. We define the
Steiner symmetrisation of A with respect to the direction u as

Su(A) :=

{
tu+ y : A ∩ (Ru+ y) �= φ, |t| ≤ |A ∩ (Ru+ y)|

2

}
.

Obviously, RjχA is the Steiner symmetrisation of A with respect to the direction ej ,
1 ≤ j ≤ n. For simplicity, we denote SenSen−1

· · · Se1(E) by SE, where {e1, . . . , en}
is the standard orthonormal basis in Rn.
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One easily sees that for any measurable set E ⊂ Rn,

(1.1) sup
x∈E∗

|x| ≤ sup
x∈E

|x|,

and from this it is not hard to see that

(1.2) sup
x,y∈E∗

|x− y| ≤ sup
x,y∈E

|x− y|.

One way to obtain this is as follows:

(1.3) sup
x,y∈E

|x− y| = sup
z∈E−E

|z| ≥ sup
z∈(E−E)∗

|z|.

For any A,B ∈ Rn of finite Lebesgue measure, it follows from the Brunn-Minkowski
inequality that

(1.4) A∗ +B∗ ⊂ (A+B)∗.

Applying (1.4) in (1.3) implies

sup
x,y∈E

|x− y| ≥ sup
z∈(E−E)∗

|z| ≥ sup
x∈E∗,y∈E∗

|x− y|,

which completes (1.2).
Let E be a measurable set of finite volume in Rn. By the definition of the

symmetric rearrangement,

E∗ = B(0, r), with vnr
n = |E|.

Clearly,
sup
x∈E∗

|x| = r, sup
x,y∈E∗

|x− y| = 2r.

By (1.1) and (1.2) we have the following sharp inequalities:

(1.5) |E| ≤ vn sup
x∈E

|x|n,

(1.6) |E| ≤ vn
2n

sup
x,y∈E

|x− y|n.

Moreover, optimisers of both (1.5) and (1.6) are balls in Rn. Inequality (1.6) is an
isodiametric inequality; that is, amongst all sets with given diameter the ball has
maximal volume.

1.2. Macbeath’s inequalities. We now go on to study the analogues of (1.5)
and (1.6), where we replace the distance norm by a volume or determinant, so the
question becomes that of studying inequalities of the form

(1.7) |E| ≤ An sup
yj∈E

j=1,...,n

det(0, y1, . . . , yn)

and

(1.8) |E| ≤ Bn sup
yj∈E

j=1,...,n+1

det(y1, . . . , yn+1),

which are supposed to hold for any measurable set E in Rn. Here

det(y1, . . . , yn+1) := n!vol(co{y1, . . . , yn+1}).
So det(y1, . . . , yn+1) ≥ 0. The precise value of det(y1, . . . , yn+1) is the absolute value
of the determinant of the matrix (y1 − yn+1, . . . , yn− yn+1)n×n. In the special case
when n = 1, they become of the type (1.5) and (1.6) automatically. Note that both
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(1.7) and (1.8) are GLn(R) invariant, and (1.8) is translation invariant while (1.7)
is not. Actually, it is enough to study convex measurable sets in Rn, since

sup
yj∈E

j=1,...,n

det(0, y1, . . . , yn) = sup
yj∈co(E)
j=1,...,n

det(0, y1, . . . , yn)

and

sup
yj∈E

j=1,...,n+1

det(y1, . . . , yn+1) = sup
yj∈co(E)

j=1,...,n+1

det(y1, . . . , yn+1).

We are interested in the best constants An, Bn, and their optimisers. It is not
hard to deduce that the best constants An and Bn are related by

(1.9) Bn ≤ An ≤ (n+ 1)Bn.

Indeed, the translation invariance of (1.8) allows us to assume that 0 ∈ E. Then
Bn ≤ An follows immediately. On the other hand, by the basic determinant prop-
erty we have

det(y1, . . . , yn+1) ≤
n+1∑
j=1

det(0, y1, . . . , yj−1, yj+1, . . . , yn),

which implies that

sup
yj∈E

j=1,...,n+1

det(y1, . . . , yn+1) ≤ (n+ 1) sup
yj∈E

j=1,...,n

det(0, y1, . . . , yn).

That completes An ≤ (n + 1)Bn. So in the special case when n = 1, we have
A1 = 2, B1 = 1, which follows from (1.5) and (1.6).

Geometrically, the right side of (1.8) relates to the maximal volume of n-simplex
whose vertices are in E. The relationship between the maximal volume of the
n-simplex whose vertices are in E and the measure of E has been studied before
(see [10], [13]). It is well known that by compactness, given a compact convex set
E ⊂ Rn, there exists a simplex T ⊂ E of maximal volume. Let F be a facet of
T , v the opposite vertex, and H the hyperplane through v parallel to F . Then H
supports E, since otherwise one would obtain a contradiction to the maximality
of the volume of T . Since F is an arbitrary facet of T , T is contained in the
simplex −n(T − c) + c, where c is the centroid of T . See [10] for details. So
T ⊂ E ⊂ −n(T − c) + c, and thus

(1.10) |E| ≤ nn|T |,
which implies that

Bn ≤ nn, An ≤ (n+ 1)nn.

In 1950, Macbeath [13] already gave the sharp version of (1.10) and (1.8) as
follows. Given a compact convex set E ⊂ Rn, denote by Bm the set of convex
polytopes with at most m vertices in E, and denote by Cm the set of convex
polytopes with at most m vertices in E∗. Then

(1.11) sup
T ′∈Cm

|T ′| ≤ sup
T∈Bm

|T |.

So when m = n+ 1, (1.11) gives

sup
yj∈E∗

j=1,...,n+1

det(y1, . . . , yn+1) ≤ sup
yj∈E

j=1,...,n+1

det(y1, . . . , yn+1).
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Moreover the problem is clearly affine invariant; thus the extremising sets turn out
to be balls and ellipsoids for (1.8). Because the maximal simplex with vertices on
a ball is the regular simplex with all sides equal, we can obtain the corresponding
best constant Bn. However, we do not believe that the sharp value of An in (1.7)
has been given previously.

1.3. Our results. In this paper we shall give an alternative method to derive
(1.7) and (1.8) with sharp constants An, Bn. In Section 2, we will study some
rearrangement inequalities which together with some work in [4] establish this. A
key ingredient will be a rearrangement inequality of [4], stating that for any Ej ⊂ R

of finite Lebesgue measure and aj ∈ R, j = 1, . . . , l,

(1.12) sup
xj∈E∗

j

∣∣∣∣∣∣
l∑

j=1

ajxj

∣∣∣∣∣∣ ≤ sup
xj∈Ej

∣∣∣∣∣∣
l∑

j=1

ajxj

∣∣∣∣∣∣ .
See Lemma 2.2 for the proof.

We have described geometric inequalities in Section 1.1 and 1.2, and it is very
natural to consider their functional forms and generalisations. See for example
Gardner [7]. More generally, returning to the inequalities (1.1), (1.2), we see there
are functional versions. One can consider a bilinear functional rearrangement ver-
sion of (1.2). For all nonnegative measurable functions f, g defined on Rn,

(1.13) sup
x,y

f∗(x)g∗(y)|x− y| ≤ sup
x,y

f(x)g(y)|x− y|

holds. Likewise, by the same argument as in its proof we also have

(1.14) sup
x

f∗(x)|x| ≤ sup
x

f(x)|x|.

For the proof, see Section 4 in [4].
In Section 2, generalizing them we arrive at the following multilinear functional

rearrangement inequalities:

(1.15) sup
yj

n∏
j=1

f∗
j (yj) det(0, y1, . . . , yn) ≤ sup

yj

n∏
j=1

fj(yj) det(0, y1, . . . , yn)

and

(1.16) sup
yj

n+1∏
j=1

f∗
j (yj) det(y1, . . . , yn+1) ≤ sup

yj

n+1∏
j=1

fj(yj) det(y1, . . . , yn+1),

which hold for any nonnegative measurable functions vanishing at infinity fj defined
on Rn, in the sense that all its positive level sets have finite measure,

|{x : |f(x)| > t}| < ∞, for all t > 0.

As a matter of fact, we establish much more general inequalities in Theorem 2.5
below. Then we get (1.7), (1.8) with the sharp constants by specialising to fj = χE

in (1.15)-(1.16), which also includes Macbeath’s work (1.11) when m = n+ 1.
There is another class of inequalities concerning analogues of (1.5), (1.6) where

we replace the underlying Euclidean space Rn by the space of n× n real matrices
and the Euclidean norm by | det(A)|. For example, Christ first studied this type of
inequality in [5]. Here “det” becomes ordinary determinant of a matrix.
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Sublemma 14.1 ([5]). For any n ≥ 1 there exists C ∈ R+ with the following
property. Let E ⊂ Mn×n(R) be a compact convex set satisfying |E| < ∞ and
E = −E. Then there exists A ∈ E satisfying

(1.17) | det(A)| ≥ C|E| 1
n ,

where | · | denotes the Lebesgue measure on Euclidean space Rn2

and the absolute
value on R.

Lemma 13.2 ([5]). For any n ≥ 1 there exists c, C ∈ R+ and k ∈ N with the
following property. Let E be a measurable set in Mn×n(R) satisfying |E| < ∞.

Then there exist T1, . . . , Tk ∈ E and coefficients sj ∈ Z satisfying |sj | ≤ c,
k∑

j=1

sj =

0, such that

(1.18)

∣∣∣∣∣∣det
⎛⎝ k∑

j=1

sjTj

⎞⎠∣∣∣∣∣∣ ≥ C|E| 1
n .

Remarks 1.
(1) Let Ẽ = E−A := {T−A : T ∈ E} with A ∈ Mn×n(R). Then by Lemma 13.2

there exist T1, . . . , Tk ∈ E and sj ∈ Z satisfying |sj | ≤ c,
k∑

j=1

sj = 0, such that

(1.19)

∣∣∣∣∣∣det
⎛⎝ k∑

j=1

sj(Tj −A)

⎞⎠∣∣∣∣∣∣ =
∣∣∣∣∣∣det

⎛⎝ k∑
j=1

sjTj

⎞⎠∣∣∣∣∣∣ ≥ C|E| 1
n = C|Ẽ| 1

n ,

which shows that (1.18) has a translation invariance property that (1.17) lacks.
(2) Based on the translation variance property, we have an equivalent form of

Lemma 13.2: there exists c, C ∈ R+ such that for any E ⊂ Mn×n(R) we can
always select T1, . . . , Tk ∈ E and coefficients sj ∈ Z satisfying |sj | ≤ c, such that∣∣∣∣∣det

(
k∑

j=1

sjTj

)∣∣∣∣∣ ≥ C|E| 1
n .

The equivalence is as follows. Supposing A ∈ E, denote Ẽ = E − A. Then if

there exist T1 = T1 −A, . . . , Tk = Tk −A ∈ Ẽ, where Tj ∈ E, 1 ≤ j ≤ k, and there
exist sj ∈ Z satisfying |sj | ≤ c, such that∣∣∣∣∣∣det

⎛⎝ k∑
j=1

sjTj

⎞⎠∣∣∣∣∣∣ ≥ C|Ẽ| 1
n .

That is,

|det (s1T1 + · · ·+ skTk − (s1 + · · ·+ sk)A)| ≥ C|Ẽ| 1
n = C|E| 1

n ,

which satisfies the conditions of Lemma 13.2.
More specifically, when proving Lemma 13.2 Christ [5] gave that under the same

hypothesis of Lemma 13.2, there exist Aj ∈ E and sj ∈ {0, 1}, j = 1, . . . , n, such
that ∣∣∣∣∣∣det

⎛⎝ n∑
j=1

sjAj

⎞⎠∣∣∣∣∣∣ ≥ C|E| 1
n ,
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which implies that for any measurable E ⊂ Mn×n,

(1.20) sup
A1,...,An∈E

s1,...,sn∈{0,1}

| det(s1A1 + · · ·+ snAn)| �n |E| 1
n .

Christ studied forms such as det(A1 + · · · + An) where Aj are all restricted to
belong to the same set. It is natural to remove this restriction and allow Aj to
belong to Ej ; we do not assume all the Ej are equal. In this paper we will improve
(1.17)-(1.18) as follows, mainly relying on the rearrangement inequality (1.12).

Main Theorem. There exists a finite constant Cn such that for any measurable
sets Ej ⊂ Mn×n(R) of finite measure, j = 1, . . . , n,

(1.21)

n∏
j=1

|Ej |
1
n2 ≤ Cn sup

Aj∈Ej

j=1,...,n

| det(A1 + · · ·+An)|.

The Main Theorem implies that (1.17) holds for all compact convex sets in
Mn×n(R) and extends Lemma 13.2 as described below. In particular, we see from
the Main Theorem that all the sj ’s in (1.20) can be taken to be 1.

Corollary A. There exists a finite constant An such that for any measurable set
E ⊂ Mn×n(R) of finite measure, for any nonzero scalar λj ∈ R, j = 1, . . . , n,

(1.22) (
n∏

j=1

|λj |)|E| 1
n ≤ An sup

Aj∈E
| det(λ1A1 + · · ·+ λnAn)|.

Corollary B. There exists a finite constant Bn such that for any measurable com-
pact convex set E ⊂ Mn×n(R) of finite measure,

(1.23) |E| 1
n ≤ Bn sup

A∈E
| det(A)|.

See Section 3 for the proof of Corollary B.

Remarks 2.
(1) One can easily check that

sup
A∈co{0,E}

| det(A)| = sup
A∈E

| det(A)|.

This is because | det(λA)| = λn| det(A)| for any λ ∈ [0, 1], so we can always assume

that 0 ∈ E. Given a measurable E ⊂ Mn×n(R), by scaling let Ẽ = rE, 0 �= r ∈ R.
Then

(|Ẽ|) 1
n = (rn

2 |E|) 1
n = rn|E| 1

n

and
sup
A∈Ẽ

| det(A)| = rn sup
A∈E

| det(A)|.

However, (1.23) is not translation invariant.
(2) We use a counterexample to show that (1.23) fails without the convex con-

dition. Take n = 2 as an example, and let

E = {(a, b, c, d) : 0 ≤ ad ≤ 1, 0 ≤ bc ≤ 1, and 1/N ≤ a ≤ N, 1/N ≤ b ≤ N}.
Then we have

sup
A∈E

| det(A)| = sup
A∈E

∣∣∣∣det( a c
b d

)∣∣∣∣ ≤ 2

and |E| = (2 lnN)2. Let N → ∞. Then we get the contradiction to (1.23).
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Remarks 3.
(1) An open problem is what the best constants An, Bn, Cn are. We prove in

this paper that balls or ellipsoids are not their optimisers.
(2) Note that inequalities of matrix type introduced in this part do not enjoy

an obvious affine invariance. Nevertheless, there is an important action of SLn(R)
on Mn×n(R) by premultiplication. That is, if T ∈ GLn(R), A ∈ Mn×n(R), and
E ⊂ Mn×n(R), then

det(TA) = det(T ) det(A)

and

|TE| = | det(T )|n|E|.
So both matrix inequalities in this paper are invariant under premultiplication by
a matrix of unimodular determinant. We do not use the invariance of the entire
problem under the action of left-multiplication by members of SLn(R) but instead
the facts which underly this invariance, i.e., that this action preserves determinants
of individual matrices and preserves volumes of sets. It enters as a “catalyst” in
order to obtain a measure theoretic consequence, and its presence vanishes without
trace.

The rest of this paper is organised as follows. In Section 2, we study the extremal
sets for some generalizations of (1.7)-(1.8) via the Steiner symmetrisation proce-
dure together with the rearrangement inequality (1.12). In this section, we also
prove the multilinear functional determinant rearrangement inequalities shown in
Theorem 2.5. Together with the Brascamp-Lieb-Luttinger inequality, we prove the
multilinear determinant integral rearrangement inequalities in Theorem 2.7. Our
Main Theorem will be proved in Section 3. We remark that the main ingredient
in this paper is the rearrangement inequality (1.12). Throughout the paper, the
letter C stands for positive constants, not necessarily the same at each occurrence
but independent of the essential variables.

2. Determinant inequalities

In this section we study the determinant inequalities discussed in the introduc-
tion. First we recall an estimate by Gressman [8] as follows.

Lemma 2.1 ([8]). There exists a finite constant Cn such that for any y ∈ Rn, for
any measurable sets E1, . . . , En in Rn, and for any δ > 0,

(2.1) |{(y1, . . . , yn) ∈ E1 × · · · × En : det(y, y1, . . . , yn) < δ}| ≤ Cnδ

n∏
j=1

|Ej |1−
1
n .

As an immediate consequence of (2.1), we obtain the following inequality (2.2).
With the same constant Cn, we have for any y ∈ Rn and for any measurable sets
Ej ⊂ Rn, 1 ≤ j ≤ n,

(2.2)
n∏

j=1

|Ej |
1
n ≤ Cn sup

y1∈E1,...,yn∈En

det(y, y1, . . . , yn).

One way to see this is as follows. Let y ∈ Rn and suppose that

sup
y1∈E1,...,yn∈En

det(y, y1, . . . , yn) = s < ∞.
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It follows from Lemma 2.1 that for all measurable sets Ej ⊂ Rn, 1 ≤ j ≤ n,

|{(y1, . . . , yn) ∈ E1 × · · · × En : det(y, y1, . . . , yn) ≤ s}| ≤ Cns
n∏

j=1

|Ej |1−
1
n .

Note that s = sup
y1∈E1,...,yn∈En

det(y, y1, . . . , yn), so

|{(y1, . . . , yn) ∈ E1 × · · · × En : det(y, y1, . . . , yn) ≤ s}| =
n∏

j=1

|Ej |.

Therefore,
n∏

j=1

|Ej | ≤ Cns
n∏

j=1

|Ej |1−
1
n .

That is,
n∏

j=1

|Ej |
1
n ≤ Cns = Cn sup

y1∈E1,...,yn∈En

det(y, y1, . . . , yn),

which completes (2.2).
This motivates a multilinear perspective. Later on, we will prove the sharp

version of (2.1)-(2.2). More generally, functional versions of (2.2) have been studied
in [4]. As shown in Theorem 3.1 of [4], for any nonnegative measurable functions
fj ∈ Lpj (Rn),

(2.3)

n+1∏
j=1

‖fj‖pj
≤ Cn,pj

sup
yj

n+1∏
j=1

fj(yj) det(y1, . . . , yn+1)
γ

holds if and only if pj satisfies 1
pj

< γ
n for all 1 ≤ j ≤ n + 1 and γ =

n+1∑
j=1

1

pj
.

Lemma 3.2 in [4] gives an endpoint case of the multilinear inequality (2.3). That
is, for any nonnegative measurable functions fj ∈ Lpj (Rn),

(2.4)

n∏
j=1

‖fj‖Ln,∞(Rn)‖fn+1‖L∞ ≤ Cnsup
yj

n+1∏
j=1

fj(yj) det(y1, . . . , yn+1).

It is not hard to see that (2.4) implies for any y ∈ Rn,

(2.5)
n∏

j=1

‖fj‖Ln,∞(Rn) ≤ Cnsup
yj

n∏
j=1

fj(yj) det(y, y1, . . . , yn),

which also concludes (2.2) by specialising to fj = χEj
. For the proof of (2.3)-(2.5)

and more general multilinear cases, we refer to [4].
Before studying the sharp versions of inequalities (2.2), we recall some useful

tools in [4], which were already stated in the introduction.

Lemma 2.2 ([4]). Let Ej be measurable sets in R and aj ∈ R, j = 1, . . . , l. Then

(2.6) sup
xj∈E∗

j

∣∣∣∣∣∣
l∑

j=1

ajxj

∣∣∣∣∣∣ ≤ sup
xj∈Ej

∣∣∣∣∣∣
l∑

j=1

ajxj

∣∣∣∣∣∣ .
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Proof. From the Brunn-Minkowski inequality

|E + F | ≥ |E|+ |F |,
where E,F ⊂ R, it follows that

|E1 + · · ·+ El| ≥ |E1|+ · · ·+ |El|.
Because E∗

j = (−|Ej |/2, |Ej |/2), 1 ≤ j ≤ l, then

E∗
1 + · · ·+ E∗

l =

⎛⎝−
l∑

j=1

|Ej |
2

,

l∑
j=1

|Ej |
2

⎞⎠ .

Thus we have

|(E1 + · · ·+ El)
∗| = |E1 + · · ·+ El| ≥ |E1|+ · · ·+ |El| = |E∗

1 + · · ·+ E∗
l |,

which implies that

(2.7) (E1 + · · ·+ El)
∗ ⊃ E∗

1 + · · ·+ E∗
l .

Clearly, for any nonzero a ∈ R and any measurable subset E in R,

(2.8) (aE)∗ = aE∗.

Combining with (2.7)-(2.8) we have

(2.9) (a1E1 + · · ·+ alEl)
∗ ⊃ a1E

∗
1 + · · ·+ alE

∗
l .

Applying (1.1) and (2.9), we get

sup
xj∈Ej

∣∣∣∣∣∣
l∑

j=1

ajxj

∣∣∣∣∣∣ = sup

x̄∈
l∑

j=1

ajEj

|x̄| ≥ sup

x̄∈(
l∑

j=1

ajEj)∗

|x̄| ≥ sup

x̄∈
l∑

j=1

ajE∗
j

|x̄|.

Besides,

sup

x̄∈
l∑

j=1

ajE∗
j

|x̄| = sup
xj∈ajE∗

j

∣∣∣∣∣∣
l∑

j=1

xj

∣∣∣∣∣∣ = sup
xj∈E∗

j

∣∣∣∣∣∣
l∑

j=1

ajxj

∣∣∣∣∣∣ .
Therefore,

sup
xj∈Ej

∣∣∣∣∣∣
l∑

j=1

ajxj

∣∣∣∣∣∣ ≥ sup
x∈E∗

j

∣∣∣∣∣∣
l∑

j=1

ajxj

∣∣∣∣∣∣ .
�

It follows from Lemma 2.2 that we have inequalities (2.10)-(2.12). Let E1, . . . , El

be measurable sets in Rn. Let l ≥ n and let A = {aik} be an l × n real matrix.
Then for each 1 ≤ t ≤ n,
(2.10)

sup
yj∈Set (Ej)
j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)
≤ sup

yj∈Ej

j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)
,

where {e1, . . . , en} is the standard basis for Rn.
Let l = n and let

aik =

{
1 if i = k,

0 otherwise,
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so (2.10) gives

(2.11) sup
yj∈Set (Ej)
j=1,...,n

det(0, y1, . . . , yn) ≤ sup
yj∈Ej

j=1,...,n

det(0, y1, . . . , yn).

If we set l = n+ 1 and

aik =

⎧⎪⎨⎪⎩
1 if i = k,

−1 if i = n+ 1,

0 otherwise,

then

(2.12) sup
yj∈Set (Ej)
j=1,...,n+1

det(y1, . . . , yn+1) ≤ sup
yj∈Ej

j=1,...,n+1

det(y1, . . . , yn+1).

Proof. For simplicity, we see that (2.10) holds for e1. Define the projection π:
Rn → Rn−1 by

π(x) = (x2, . . . , xn), ∀ x = (x1, . . . , xn) ∈ Rn.

For any x ∈ Rn, write x = (x1, x
′) where x′ ∈ Rn−1. For yj ∈ Ej ,

det(0, y1, . . . , yn) =

∣∣∣∣∣∣∣det
⎛⎜⎝ y11 y21 . . . yn1

...
...

...
y1n y2n . . . ynn

⎞⎟⎠
∣∣∣∣∣∣∣ = |y11A1+y21A2+· · ·+yn1An|,

where Aj depends only on {y′1, . . . , y′n}. Hence, det

(
0,

l∑
i=1

ai1yi, . . . ,
l∑

i=1

ainyi

)
is

the linear combination of y11, . . . , yl1. That is,

det

(
0,

l∑
i=1

ai1yi, . . . ,
l∑

i=1

ainyi

)
= |y11B1 + y21B2 + · · ·+ yl1Bl|,

where Bj depends only on {y′1, . . . , y′l}. For each j, fix y′j := (yj2, . . . , yjn) ∈ π(Ej),
1 ≤ j ≤ l. Let

Ej(y
′
j) = {yj1 ∈ R : (yj1, y

′
j) ∈ Ej}.

It follows from Lemma 2.2 that

(2.13) sup
yj1∈Ej(y′

j)
∗

∣∣∣∣∣∣
l∑

j=1

Bjyj1

∣∣∣∣∣∣ ≤ sup
yj1∈Ej(y′

j)

∣∣∣∣∣∣
l∑

j=1

Bjyj1

∣∣∣∣∣∣ .
Since

Se1(Ej) =
⋃

y′
j∈π(Ej)

{(yj1, y′j) : yj1 ∈ Ej(y
′
j)

∗},

together with (2.13) this gives

sup
yj∈Se1

(Ej)
j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,
l∑

i=1

ainyi

)
≤ sup

yj∈Ej

j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,
l∑

i=1

ainyi

)
.

�

More generally, together with the rotation invariance we have the following re-
arrangement theorem.
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Theorem 2.3. Let A = {aik} be an l × n real matrix with l ≥ n. Let u be a unit
vector in Rn. Then for any measurable sets Ej ⊂ Rn, 1 ≤ j ≤ l,

sup
yj∈Su(Ej)
j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)
≤ sup

yj∈Ej

j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)
.

Proof. Suppose u = ρet, where ρ is a rotation around the origin in Rn.
By definition,

Sρet(E) =

{
mρet + y : E ∩ [R(ρet) + y] �= φ, |m| ≤ |E ∩ [R(ρet) + y]|

2

}
=

{
ρ(met + ρ−1y) :ρ−1(E) ∩ (Ret + ρ−1y) �=φ, |m|≤ |ρ[ρ−1(E) ∩ (Ret + ρ−1y)]|

2

}
=

{
ρ(met + ρ−1y) : ρ−1(E) ∩ (Ret + ρ−1y) �= φ, |m| ≤ |ρ−1(E) ∩ (Ret + ρ−1y)|

2

}
.

Note that

Set(ρ
−1(E))

=

{
met + ρ−1y : ρ−1(E) ∩ (Ret + ρ−1y) �= φ, |m| ≤ |ρ−1(E) ∩ (Ret + ρ−1y)|

2

}
.

Hence we obtain

(2.14) Sρet(E) = ρ ◦ Set(ρ
−1(E)).

By the invariance under rotation ρ,

sup
yj∈Su(Ej)
j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,
l∑

i=1

ainyi

)

= sup
yj∈ρ◦Set (ρ

−1(Ej))
j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,
l∑

i=1

ainyi

)

= sup
yj∈Set (ρ

−1(Ej))
j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)
.

Applying (2.10) gives

sup
yj∈Set (ρ

−1(Ej))
j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,
l∑

i=1

ainyi

)

≤ sup
yj∈ρ−1(Ej)

j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)

= sup
yj∈Ej

j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,
l∑

i=1

ainyi

)
.
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Therefore, we conclude that

sup
yj∈Su(Ej)
j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)
= sup

yj∈Ej

j=1,...,l

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)
.

�

Now we can decide the sharp versions of the determinant inequalities in this
section. It is known that, given a compact convex set K ⊂ Rn, there exists a
sequence of iterated Steiner symmetrisations of K that converges in the Hausdorff
metric to a ball of the same volume. For example, given a basis of unit directions
u1, . . . , un for Rn having mutually irrational multiple of π radian differences, the
sequence Sun

. . .Su2
Su1

(K) iterated infinitely many times to K will converge to a
ball of the same volume as K. For the convergence of Steiner symmetrisation, refer
to [1], [2], [6], [11], [15], etc.

One can easily verify that the suprema function on the right side of inequal-
ities (2.10) are continuous under the Hausdorff metric, and they do not change
if we replace each Ej by co(Ej). Therefore, applying the convergence of Steiner
symmetrisation together with Theorem 2.3 we have shown the following lemma.

Lemma 2.4. Let l ≥ n and let A = {aik} be an l × n real matrix. Then for any
measurable sets Ej ⊂ Rn, 1 ≤ j ≤ l,

sup
y1∈E∗

1 ,...,yl∈E∗
l

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)

≤ sup
y1∈E1,...,yl∈El

det

(
0,

l∑
i=1

ai1yi, . . . ,

l∑
i=1

ainyi

)
.

Obviously, it follows from Lemma 2.4 that

(2.15) sup
y1∈E∗

1 ,...,yn∈E∗
n

det(0, y1, . . . , yn) ≤ sup
y1∈E1,...,yn∈En

det(0, y1, . . . , yn)

and

(2.16) sup
y1∈E∗

1 ,...,yn+1∈E∗
n+1

det(y1, . . . , yn+1) ≤ sup
y1∈E1,...,yn+1∈En+1

det(y1, . . . , yn+1)

hold for any measurable sets Ej ⊂ Rn, 1 ≤ j ≤ n+ 1.
From Lemma 2.4 we obtain the multilinear functional rearrangement inequalities.

Theorem 2.5. Let fj be nonnegative measurable functions vanishing at infinity on
Rn. Let A = {aij} ∈ GLn(R). Then
(2.17)

sup
yj

n∏
j=1

f∗
j

(
n∑

i=1

aijyi

)
det(0, y1, . . . , yn) ≤ sup

yj

n∏
j=1

fj

(
n∑

i=1

aijyi

)
det(0, y1, . . . , yn).

Let A = {aij} ∈ GL(n+1)(R). Then
(2.18)

sup
yj

n+1∏
j=1

f∗
j

(
n+1∑
i=1

aijyi

)
det(y1, . . . , yn+1) ≤ sup

yj

n+1∏
j=1

fj

(
n+1∑
i=1

aijyi

)
det(y1, . . . , yn+1),

where the sup is the essential supremum.
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Proof. Let ỹj =
n∑

i=1

aijyi, 1 ≤ j ≤ n, so

det(0, y1, . . . , yn) = det(0, ỹ1, . . . , ỹn)| det(A)|−1.

Then for (2.17) it suffices to prove that

(2.19) sup
ỹj

n∏
j=1

f∗
j (ỹj) det(0, ỹ1, . . . , ỹn) ≤ sup

ỹj

n∏
j=1

fj(ỹj) det(0, ỹ1, . . . , ỹn).

Similarly, for (2.18) denote ỹj =
n+1∑
i=1

aijyi, 1 ≤ j ≤ n+ 1. Since(
y1 . . . yn+1

)
=
(
ỹ1 . . . ỹn+1

)
A−1,

det(y1, . . . , yn+1) can be written in the form

det

(
0,

n+1∑
i=1

ci1ỹi,

n+1∑
i=1

ci2ỹi, . . . ,

n+1∑
i=1

cinỹi

)
.

Specifically, suppose A−1 = {bij}n+1. Then by calculation we have cik = bik −
bi(n+1) with 1 ≤ k ≤ n, 1 ≤ i ≤ n+ 1. Hence (2.18) becomes

(2.20)

sup
ỹj

n+1∏
j=1

f∗
j (ỹj) det

(
0,

n+1∑
i=1

ci1ỹi,

n+1∑
i=1

ci2ỹi, . . . ,

n+1∑
i=1

cinỹi

)

≤ sup
ỹj

n+1∏
j=1

fj(ỹj) det

(
0,

n+1∑
i=1

ci1ỹi,
n+1∑
i=1

ci2ỹi, . . . ,
n+1∑
i=1

cinỹi

)
.

We claim that for any l ≥ n, for any l × n real matrix B = {cik},

sup
yj

l∏
j=1

f∗
j (yj) det

(
0,

l∑
i=1

ci1yi, . . . ,
l∑

i=1

cinyi

)

≤ sup
yj

l∏
j=1

fj(yj) det

(
0,

l∑
i=1

ci1yi, . . . ,

l∑
i=1

cinyi

)
holds. Suppose that

sup
yj

l∏
j=1

fj(yj) det

(
0,

l∑
i=1

ci1yi, . . . ,

l∑
i=1

cinyi

)
= s < ∞.

We assume for a contradiction that

sup
yj

l∏
j=1

f∗
j (yj) det

(
0,

l∑
i=1

ci1yi, . . . ,

l∑
i=1

cinyi

)
> s.

Then there exist positive ε and a set G ⊂ Rn × · · · × Rn such that |G| > 0 and for
all (x1, . . . , xl) ∈ G we have

(2.21)
l∏

j=1

f∗
j (xj) det

(
0,

l∑
i=1

ci1xi, . . . ,
l∑

i=1

cinxi

)
> s+ ε,
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which gives

(2.22) f∗
1 (x1) > (s+ ε)

⎛⎝ l∏
j=2

f∗
j (xj) det

(
0,

l∑
i=1

ci1xi, . . . ,

l∑
i=1

cinxi

)⎞⎠−1

.

Define the set

E1 :=

⎧⎪⎨⎪⎩y1 : f1(y1) > (s+ ε)

⎛⎝ l∏
j=2

f∗
j (xj) det

(
0,

l∑
i=1

ci1xi, . . . ,

l∑
i=1

cinxi

)⎞⎠−1
⎫⎪⎬⎪⎭ ,

so by the property of decreasing rearrangement together with (2.22) we have

|E1| > vn|x1|n.

From the definition of E1,

f∗
2 (x2) >

(
s+

ε

2

) ⎛⎝ inf
y1∈E1

f1(y1)

l∏
j=3

f∗
j (xj) det

(
0,

l∑
i=1

ci1xi, . . . ,

l∑
i=1

cinxi

)⎞⎠−1

.

We then define

E2={y2 : f2(y2)

>
(
s+

ε

2

)⎛⎝ inf
y1∈E1

f1(y1)
l∏

j=3

f∗
j (xj) det

(
0,

l∑
i=1

ci1xi, . . . ,
l∑

i=1

cinxi

)⎞⎠−1
⎫⎪⎬⎪⎭ ,

so

|E2| > vn|x2|n.

Overall, we can take similar arguments to define sets Et, 1 < t < l:

Et =

⎧⎨⎩yt : ft(yt)>

(
s+

ε

t

)⎛⎝t−1∏
j=1

inf
yj∈Ej

fj(yj)

l∏
j=t+1

f∗
j (xj)

×det

(
0,

l∑
i=1

ci1xi, . . . ,

l∑
i=1

cinxi

))−1
⎫⎬⎭

and

El = {yl : fl(yl)

>
(
s+

ε

l

)⎛⎝l−1∏
j=1

inf
yj∈Ej

fj(yj) det

(
0,

l∑
i=1

ci1xi, . . . ,
l∑

i=1

cinxi

)⎞⎠−1
⎫⎪⎬⎪⎭ .

It is easily seen that for each j = 1, . . . , l,

(2.23) |Ej | > vn|xj |n,
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and thus xj ∈ E∗
j . It follows from Lemma 2.4 that

sup
y1∈E∗

1 ,...,yl∈E∗
l

det

(
0,

l∑
i=1

ci1yi, . . . ,

l∑
i=1

cinyi

)

≤ sup
y1∈E1,...,yl∈El

det

(
0,

l∑
i=1

ci1yi, . . . ,

l∑
i=1

cinyi

)
.

That together with xj ∈ E∗
j , j = 1, . . . , l, implies that

(2.24)

det

(
0,

l∑
i=1

ci1xi, . . . ,

l∑
i=1

cinxi

)
≤ sup

y1∈E1,...,yn∈En

det

(
0,

l∑
i=1

ci1yi, . . . ,

l∑
i=1

cinyi

)
.

From the definition of El we have for any yj ∈ Ej , 1 ≤ j ≤ l,

l∏
j=1

fj(yj) det

(
0,

l∑
i=1

ci1yi, . . . ,

l∑
i=1

cinyi

)

>
(
s+

ε

l

)(
det

(
0,

l∑
i=1

ci1xi, . . . ,
l∑

i=1

cinxi

))−1

det

(
0,

l∑
i=1

ci1yi, . . . ,
l∑

i=1

cinyi

)
.

Therefore, together with (2.24) we obtain

s ≥ sup
y1∈E1,...,yl∈El

l∏
j=1

fj(yj) det

(
0,

l∑
i=1

ci1yi, . . . ,

l∑
i=1

cinyi

)

>
(
s+

ε

l

)(
det

(
0,

l∑
i=1

ci1xi, . . . ,

l∑
i=1

cinxi

))−1

× sup
y1∈E1,...,yl∈El

det

(
0,

l∑
i=1

ci1yi, . . . ,

l∑
i=1

cinyi

)
> s,

which gives a contradiction. That completes the proof of the claim. Therefore,
(2.19)-(2.20) hold. �

Remarks 4. We use a counterexample to show that Theorem 2.5 is false if det(A) =
0. Let f1 = χA, f2 = χB, where A,B are disjoint measurable sets in R2 with non-
zero measure. Obviously,

sup
y1,y2∈R2

f1(y1 + y2)f2(y1 + y2) det(0, y1, y2) = 0,

while

sup
y1,y2

f∗
1 (y1 + y2)f

∗
2 (y1 + y2) det(0, y1, y2) �= 0.

Likewise, for the same sets A,B above, let f1 = χA, f2 = f3 = χB . Then

sup
y1,y2,y3∈R2

f1(y1 + y2 + y3)f2(y1 + y2 + y3)f3(y3) det(y1, y2, y3) = 0,

while

sup
y1,y2,y3∈R2

f∗
1 (y1 + y2 + y3)f

∗
2 (y1 + y2 + y3)f

∗
3 (y3) det(y1, y2, y3) �= 0.
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Let A = I. From Theorem 2.5 it is straightforward to see that

(2.25) sup
yj

n∏
j=1

f∗
j (yj) det(0, y1, . . . , yn) ≤ sup

yj

n∏
j=1

fj(yj) det(0, y1, . . . , yn),

(2.26) sup
yj

n+1∏
j=1

f∗
j (yj) det(y1, . . . , yn+1) ≤ sup

yj

n+1∏
j=1

fj(yj) det(y1, . . . , yn+1).

Let fj = χEj
, and let Ej be measurable sets in Rn. Applying (2.25)-(2.26) we

obtain the following two sharp “multilinear” determinant inequalities suggested by
the multilinear perspective of (2.2):

(2.27)

n∏
j=1

|Ej |
1
n ≤ An sup

y1∈E1,...,yn∈En

det(0, y1, . . . , yn)

and

(2.28)
n+1∏
j=1

|Ej |
1

n+1 ≤ Bn sup
y1∈E1,...,yn+1∈En+1

det(y1, . . . , yn+1).

Moreover, they are both extremised by balls centred at 0. It follows from (2.25)-
(2.26) that we also obtain the optimisers for (1.7) and (1.8) which is the special
case when Ej = E.

It should be pointed out that (2.25)-(2.26) improves multilinear rearrangement
inequalities (2.29), (2.30) given in [4]. For each 1 ≤ i ≤ n,

(2.29) sup
yj

n∏
j=1

f∗i
j (yj) det(0, y1, . . . , yn) ≤ sup

yj

n∏
j=1

fj(yj) det(0, y1, . . . , yn)

and

(2.30) sup
yj

n+1∏
j=1

f∗i
j (yj) det(y1, . . . , yn+1) ≤ sup

yj

n+1∏
j=1

fj(yj) det(y1, . . . , yn+1),

where f∗i
j is the Steiner symmetrisation of fj with respect to the i-th coordinate.

Finally we give the best constant of (2.1), mainly applying the Brascamp-Lieb-
Luttinger rearrangement inequality. In 1974, Brascamp, Lieb, and Luttinger [3]
proved the following inequality (2.31), which is a generalisation of Riesz’s rearrange-
ment inequality [14].

Let fj be nonnegative measurable functions on Rn that vanish at infinity, j =
1, . . . ,m. Let k ≤ m and let B = {bij} be a k × m matrix with 1 ≤ i ≤ k,
1 ≤ j ≤ m. Define

I(f1, . . . , fm) :=

∫
(Rn)k

m∏
j=1

fj

(
k∑

i=1

bijxi

)
dx1 . . . dxk.

Then

(2.31) I(f1, . . . , fm) ≤ I(f∗
1 , . . . , f

∗
m).
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Theorem 2.7. Let fj be nonnegative measurable functions vanishing at infinity on
Rn. Define

J(f1, . . . , fn+1) =

∫
(Rn)n

n∏
j=1

fj(yj)fn+1(det(0, y1, . . . , yn))dy1 . . . dyn

and

G(f1, . . . , fn+2) =

∫
(Rn)n+1

n+1∏
j=1

fj(yj)fn+2(det(y1, . . . , yn+1))dy1 . . . dyn+1.

Then

(2.32) J(f1, . . . , fn+1) ≤ J(f∗
1 , . . . , f

∗
n+1)

and

(2.33) G(f1, . . . , fn+2) ≤ G(f∗
1 , . . . , f

∗
n+2).

Proof. By the layer cake representation, it suffices to show that for any Ej of finite
volume in Rn, 1 ≤ j ≤ n+ 2,

J(E1, . . . , En+1) ≤ J(E∗
1 , . . . , E

∗
n+1), G(E1, . . . , En+2) ≤ G(E∗

1 , . . . , E
∗
n+2).

For any measurable Fj ⊂ R, 1 ≤ j ≤ n+1, the Brascamp-Lieb-Luttinger rearrange-
ment inequality implies that∫

(Rn)n

n∏
j=1

χFj
(xj)χFn+1

⎛⎝ n∑
j=1

ajxj

⎞⎠ dx1 . . . dxn

≤
∫
(Rn)n

n∏
j=1

χF∗
j
(xj)χF∗

n+1

⎛⎝ n∑
j=1

ajxj

⎞⎠ dx1 . . . dxn.

As before, since det(0, y1, . . . , yn) is the linear combination of y11, . . . , yn1, similar
to the proof of (2.10) we have

(2.34) J(E1, . . . , En+1) ≤ J(Se1(E1), . . . ,Se1(En+1)).

Note that J(E1, . . . , En+1) is invariant under O(n). By the property of

Sρei(E) = ρ ◦ Sei(ρ
−1(E)),

we obtain for any u ∈ Sn−1 that is a unit vector in Rn:

(2.35) J(E1, . . . , En+1) ≤ J(Su(E1), . . . ,Su(En+1)).

Likewise, since det(y1, . . . , yn+1) can be seen as the linear combination of y11, . . . ,
y(n+1)1 and by the Brascamp-Lieb-Luttinger rearrangement inequality∫

(Rn)n+1

n+1∏
j=1

χFj
(xj)χFn+2

⎛⎝n+1∑
j=1

ajxj

⎞⎠ dx1 . . . dxn+1

≤
∫
(Rn)n+1

n+1∏
j=1

χF∗
j
(xj)χF∗

n+2

⎛⎝n+1∑
j=1

ajxj

⎞⎠ dx1 . . . dxn+1,

we also have

(2.36) G(E1, . . . , En+2) ≤ G(Se1(E1), . . . ,Se1(En+2)).
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Hence by (2.14) together with the invariance of G(E1, . . . , En+2),

(2.37) G(E1, . . . , En+2) ≤ G(Su(E1), . . . ,Su(En+2)).

Let H be the semigroup of all finite products of Su’s. Brascamp, Lieb, and Lut-
tinger [3] proved for any bounded measurable E ⊂ Rn that there exists {hm}∞m=0 ⊂
G such that Em := hm(E) converges to E∗ in symmetric difference. That is,

(2.38) lim
m→∞

|Em�E∗| = 0,

where � denotes the symmetric difference of two sets. Here we sketch the sequence
of sets {Em}. Let E0 = h0E = E. Given Em, choose unit vector u1 such that

|Su1
(Em)�E∗| < inf

u∈Sn−1
|Su(Em)�E∗|+ 1

m
.

Hence we select u2, . . . , un ∈ Sn−1 such that {u1, . . . , un} becomes an orthonormal
basis in Rn and then construct

Em+1 = hm+1(E) = Sun
Sun−1

. . .Su1
(Em).

The sequence of sets {Em} constructed above converges to E∗ in symmetric differ-
ence. See [3] for the detailed proof. Therefore, we apply the convergence of Steiner
symmetrisation together with (2.35) and (2.37) to conclude that

J(E1, . . . , En+1) ≤ J(E∗
1 , . . . , E

∗
n+1)

and

G(E1, . . . , En+2) ≤ G(E∗
1 , . . . , E

∗
n+2).

Lastly, applying the layer cake representation for fj together with Fubini’s theorem
gives

J(f1, . . . , fn+1) =

∫ ∞

0

· · ·
∫ ∞

0

J(χ{f1>t1}, . . . , χ{fn+1>tn+1})dt1 . . . dtn+1.

Since (2.32)-(2.33) hold for characteristic functions of sets of finite Lebesgue mea-
sure, for any tj , 1 ≤ j ≤ n+ 1,

(2.39) J(χ{f1>t1}, . . . , χ{fn+1>tn+1}) ≤ J(χ∗
{f1>t1}, . . . , χ

∗
{fn+1>tn+1}).

Thus

J(f1, . . . , fn+1) ≤
∫ ∞

0

· · ·
∫ ∞

0

J(χ∗
{f1>t1}, . . . , χ

∗
{fn+1>tn+1})dt1 . . . dtn+1

= J(f∗
1 , . . . , f

∗
n+1).

Similarly,

G(f1, . . . , fn+2) ≤ G(f∗
1 , . . . , f

∗
n+2).

This completes Theorem 2.7. �

Let fj = χEj
, 1 ≤ j ≤ n, and fn+1 = χ(|·|<δ). Theorem 2.7 gives that

|{(y1, . . . , yn) ∈ E1 × · · · × En : det(0, y1, . . . , yn) < δ}|
≤ |{(y1, . . . , yn) ∈ E∗

1 × · · · × E∗
n : det(0, y1, . . . , yn) < δ}|.

This implies that inequality (2.1) is extremised by balls centred at y, where y ∈ Rn.
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Let fn+2 = | · |−1. Then Theorem 2.7 implies that∫
(Rn)n+1

n+1∏
j=1

fj(yj) det(y1, . . . , yn+1)
−1dy1 . . . dyn+1

≤
∫
(Rn)n+1

n+1∏
j=1

f∗
j (yj) det(y1, . . . , yn+1)

−1dy1 . . . dyn+1.

3. Matrix inequalities

Now we turn to see the analogues of (1.5) and (1.6) replacing the Euclidean space
Rn by the space of n× n real matrices. We remark that the proof of Theorem 3.1
mainly relies on the rearrangement inequality (2.6) and an invariance under the
action of O(n) by premultiplication as described in the introduction.

Theorem 3.1. There exists a finite constant Cn such that for any measurable set
Ej ⊂ Mn×n of finite measure, j = 1, . . . , n,

(3.1)
n∏

j=1

|Ej |
1
n2 ≤ Cn sup

Aj∈Ej

j=1,...,n

| det(A1 + · · ·+An)|,

where | · | denotes the Lebesgue measure on Euclidean space Rn2

and the absolute
value on R.

Proof. Suppose that

sup
Aj∈Ej

j=1,...,n

| det(A1 + · · ·+An)| = s < ∞.

First we give some definitions and notation. Let F ⊂ Mn×m and define

v(F ) =

⎧⎪⎨⎪⎩
⎛⎜⎝ a11 a21 . . . a(m−1)1

...
...

...
a1n a2n . . . a(m−1)n

⎞⎟⎠ : ∃

⎛⎜⎝ am1

...
amn

⎞⎟⎠ such that

⎛⎜⎝ a11 . . . am1

...
...

a1n . . . amn

⎞⎟⎠ ∈ F

⎫⎪⎬⎪⎭ ,

so v(F ) ⊂ Mn×(m−1). For any n-by-(m− 1) matrix

x =

⎛⎜⎝ a11 a21 . . . a(m−1)1

...
...

...
a1n a2n . . . a(m−1)n

⎞⎟⎠ ∈ v(F ),

we denote

F x =

⎧⎪⎨⎪⎩
⎛⎜⎝ am1

...
amn

⎞⎟⎠ :

⎛⎜⎝ a11 . . . am1

...
...

a1n . . . amn

⎞⎟⎠ ∈ F

⎫⎪⎬⎪⎭ ⊂ M
n×1.

Let E ⊂ Mn×n. For any rotation around the origin T in Rn, consider

ΦT : A �→ TA, ∀ A ∈ E,
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where T is an n-by-n matrix with det(T ) = 1. Note that ΦT does not change |E|
and sup

A∈E
| det(A)|. This is because

(3.2) sup
A∈ΦT (E)

| det(A)| = sup
A∈E

| det(TA)| = sup
A∈E

| det(A)|.

Besides, if we see the matrix A =

⎛⎜⎝ a11 . . . an1
...

...
a1n . . . ann

⎞⎟⎠ ∈ E as a vector

(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) ∈ Rn2

,

then the matrix ΦT (A) becomes⎛⎜⎜⎜⎝
T

T
. . .

T

⎞⎟⎟⎟⎠
⎛⎜⎝ a11

...
ann

⎞⎟⎠ .

Thus

(3.3) |ΦT (E)| = |T |n|E| = |E|.
From |E| =

∫
v(E)

|Ex|dx it follows that there always exists x ∈ v(E) such that

(3.4) |v(E)||Ex| �n |E|.
By the John ellipsoid, for any compact convex G ⊂ Rn there exists an ellipsoid
G′ ⊂ G such that

(3.5) |G′| �n |G|.
For the John ellipsoid G′, we choose a rotation T ∈ O(n) such that TG′ is an
ellipsoid with principal axes parallel to the coordinate axes. As is well known, for
every ellipsoid TG′ with principal axes parallel to the coordinate axes, there exists
an axis-parallel rectangle H ⊂ TG′ such that

(3.6) |H| �n |TG′|.
Hence if Ex is convex, from (3.5)-(3.6) we may assume that there exists T ∈ O(n)
such that Ex is an axis-parallel rectangle in Rn.

Take n = 2. By (3.4) there exists x10 ∈ v(E1) ⊂ M2×1, x20 ∈ v(E2) ⊂ M2×1

such that

(3.7) |v(E1)||Ex10
1 | � |E1|, |v(E2)||Ex20

2 | � |E2|.
Then

max{|v(E2)||Ex10
1 |, |v(E1)||Ex20

2 |} � (|E1||E2|)1/2.
For simplicity, suppose that

(3.8) |v(E2)||Ex10
1 | � (|E1||E2|)1/2.

To study the suprema, we consider the 2-by-2 matrix

A1 :=
(
(x10)1 (x10)2

)
∈ E1

with

(x10)1 = x10 ∈ Mn×1 and (x10)2 ∈ Ex10
1 .
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For any A2 :=
(
x1 x2

)
∈ E2, for any constructed A1 above,

s ≥ | det(A1 +A2)|
= | det

(
x1 + (x10)1 x2 + (x10)2

)
|.

So fixing the first column, we have for any x1 ∈ v(E2), x2 ∈ Ex1
2 ,

(3.9) s ≥ sup
(x10)2∈E

x10
1

| det
(
x1 + (x10)1 x2 + (x10)2

)
|.

Because we fix all the columns except one, the | det | function is the convex function
of the remaining column. Thus

(3.10) s ≥ sup
(x10)2∈coE

x10
1

| det
(
x1 + (x10)1 x2 + (x10)2

)
|.

By (3.5) we may assume coEx10
1 is an ellipsoid in R2. Choose a rotation T0 ∈ O(2)

such that T0coE
x10
1 is an ellipsoid with principal axes parallel to the coordinate

axes. From (3.6) we may assume T0coE
x10
1 is an axis-parallel rectangle. Note that

(3.10) is invariant under O(2) as discussed in (3.2), so

(3.11)

s ≥ sup
(x10)2∈coE

x10
1

| det
(
x1 + (x10)1 x2 + (x10)2

)
|

= sup
(x10)2∈coE

x10
1

| det
(
T0x1 + T0(x10)1 T0x2 + T0(x10)2

)
|.

Since T0coE
x10
1 is an axis-parallel rectangle in R2, it can be written as A1 × A2,

where A1, A2 are intervals in R, and then

S(T0coE
x10
1 ) = S(T0coE

x10
1 + T0x2) = A∗

1 ×A∗
2, ∀ x2 ∈ Ex1

2 .

Similar to the proof of (2.10), applying (2.6) gives for any x1 ∈ v(E2)

(3.12) s ≥ sup
(x10)2∈S(T0coE

x10
1 )

| det
(
T0x1 + T0(x10)1 (x10)2

)
|.

Therefore, by (2.2) we deduce that

s ≥ C|T0v(E2) + T0(x10)1|1/2|S(T0coE
x10
1 )|1/2 = C|v(E2)|1/2|coEx10

1 |1/2.
This together with (3.8) implies that

s ≥ C|v(E2)|1/2|coEx10
1 |1/2 ≥ C|v(E2)|1/2|Ex10

1 |1/2 ≥ C(|E1||E2|)1/4,
which completes (3.1) for n = 2.

Take n = 3. By (3.4) for each Ej there exists xj0 ∈ v(Ej) ⊂ M3×2 such that

(3.13) |v(Ej)||Exj0

j | � |Ej |, 1 ≤ j ≤ 3.

Denote Fj = v(Ej) ⊂ M3×2. There exists fixed xj1 ∈ v(Fj) ⊂ M3×1 such that

(3.14) |v(Fj)||F xj1

j | � |Fj | = v(Ej).

From (3.13)-(3.14), we have xj0 ∈ v(Ej), xj1 ∈ v(Fj), and

(3.15) |v(Fj)||F xj1

j ||Exj0

j | � |Ej |, 1 ≤ j ≤ 3.

It is not hard to see there exists {i1, i2, i3} with i1 �= i2 �= i3 such that

(3.16) (v(Fi3)||F
xi21

i2
||Exi10

i1
|)3 ≥

3∏
j=1

(|v(Fj)||F xj1

j ||Exj0

j |) �
3∏

j=1

|Ej |.
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For simplicity, suppose that

(3.17) |v(F3)||F x21
2 ||Ex10

1 | � (|E1||E2||E3|)1/3.
Now we consider 3-by-3 matrices

A1 :=
(
(x10)1 (x10)2 (x10)3

)
∈ E1

with
(
(x10)1 (x10)2

)
= x10 ∈ M3×2 and (x10)3 ∈ Ex10

1 ;

A2 :=
(
(x21)1 (x21)2 (x21)3

)
∈ E2

with the condition

(x21)1 = x21 ∈ M3×1 and (x21)2 ∈ F x21
2 .

For any A3 :=
(
x1 x2 x3

)
∈ E3, for any constructed A1, A2 above,

s ≥ | det(A1 +A2 +A3)|
= | det

(
x1 + (x10)1 + (x21)1 x2 + (x10)2 + (x21)2 x3 + (x10)3 + (x21)3

)
|.

So fixing all columns except the third column, we have

s ≥ sup
(x10)3∈E

x10
1

| det
(
x1 + (x10)1 + (x21)1 x2 + (x10)2 + (x21)2

x3 + (x10)3 + (x21)3
)
|.

Obviously,

s ≥ sup
(x10)3∈coE

x10
1

| det
(
x1 + (x10)1 + (x21)1 x2 + (x10)2 + (x21)2

x3 + (x10)3 + (x21)3
)
|.

As before, by (3.5) we assume there exists T0coE
x10
1 , an ellipsoid with principal

axes parallel to the coordinate axes in R3. From (3.6) we may assume T0coE
x10
1 is

an axis-parallel rectangle. Because of the invariance under O(3),

s ≥ sup
(x10)3∈coE

x10
1

| det
(
x1 + (x10)1 + (x21)1 x2 + (x10)2 + (x21)2

x3 + (x10)3 + (x21)3
)
|

= sup
(x10)3∈coE

x10
1

| det
(
T0(x1 + (x10)1 + (x21)1) T0(x2 + (x10)2 + (x21)2)

T0(x3 + (x10)3 + (x21)3)
)
|.

Since T0coE
x10
1 is an axis-parallel rectangle in R3, it can be written as A1×A2×A3,

where A1, A2, A3 are intervals in R. Similar to the proof of (2.10) together with

S(T0coE
x10
1 ) = S(T0coE

x10
1 + h) = A∗

1 ×A∗
2 ×A∗

3, ∀ h ∈ R3,

applying (2.6) gives for any
(
x1 x2

)
∈ v(E3),

s ≥ sup
(x10)3

∈S(T0coE
x10
1 )

| det (T0(x1 + (x10)1 + (x21)1) T0(x2 + (x10)2 + (x21)2) (x10)3) |.

Then fixing all columns except the second column, we have that

s ≥ sup
(x21)2
∈F

x21
2

| det (T0(x1 + (x10)1 + (x21)1) T0(x2 + (x10)2 + (x21)2) (x10)3) |
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holds for any (x10)3 ∈ S(T0coE
x10
1 ). Similarly, by the convex property of | det |

function when fixing other columns

s ≥ sup
(x21)2

∈coF
x21
2

| det (T0(x1 + (x10)1 + (x21)1) T0(x2 + (x10)2 + (x21)2) (x10)3) |.

By (3.5) we may assume that T0coF
x21
2 is an ellipsoid in R3. Choose a rotation

T1 ∈ O(3) such that T1T0coF
x21
2 is an ellipsoid with principal axes parallel to the

coordinate axes. From (3.6) we may assume that T1T0coF
x21
2 is an axis-parallel

rectangle. By the invariance of O(3),

s ≥ sup
(x21)2

∈coF
x21
2

| det (T0(x1 + (x10)1 + (x21)1) T0(x2 + (x10)2 + (x21)2) (x10)3) |

= sup
(x21)2

∈coF
x21
2

| det (T1T0(x1 + (x10)1 + (x21)1) T1T0(x2 + (x10)2 + (x21)2)

T1(x10)3) |.

Since T1T0coF
x21
2 is an axis-parallel rectangle, together with

S(T1T0coF
x21
2 ) = S(T1T0coF

x21
2 + h), ∀ h ∈ R3,

apply inequality (2.6) again to obtain that

s ≥ sup
(x10)3∈S(T0coE

x10
1 )

(x21)2∈S(T1T0coF
x21
2 )

| det
(
T1T0(x1 + (x10)1 + (x21)1) (x21)2 T1(x10)3

)
|

holds for any x1 ∈ v(F3) ⊂ M3×1.
Lastly, applying (2.2) we conclude that

s ≥ C|T1T0v(F3) + T1T0(x10)1

+ T1T0(x21)1|1/3|S(T1T0coF
x21
2 )|1/3|T1S(T0coE

x10
1 )|1/3

= C|v(F3)|1/3|coF x21
2 )|1/3|coEx10

1 )|1/3.

This together with (3.17) implies that

s ≥ C|v(F3)|1/3|coF x21
2 |1/3|coEx10

1 |1/3

≥ C|v(F3)|1/3|F x21
2 |1/3|Ex10

1 |1/3

≥ C(|E1||E2||E3|)1/9.

This completes (3.1) for n = 3.
For the general n, for each Ej , denote Fj0 = Ej , 1 ≤ j ≤ n. Given 1 ≤ k ≤ n−2,

let

Fjk = v(Fj(k−1)) ⊂ M
n×(n−k).

Then by (3.4) there exists fixed xjk ∈ v(Fjk) ⊂ Mn×(n−k−1), 0 ≤ k ≤ n− 2, such
that

(3.18) |v(Fjk)||F xjk

jk | � |Fjk| = |v(Fj(k−1))|.

That is, for each Ej there exist {xj0, . . . , xj(n−2)} such that for each k = 0, . . . , n−2,

xjk ∈ v(Fjk) ⊂ Mn×(n−k−1)
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and

(3.19) |v(Fj(n−2))||F
xj(n−2)

j(n−2) ||F
xj(n−3)

j(n−3) | . . . |F
xj1

j1 ||F xj0

j0 | �n |Ej |.

It is not hard to see that there exist {ij}nj=1 with 1 ≤ ij ≤ n and ij �= ik for j �= k
such that

(|v(Fin(n−2))||F
xin−1(n−2)

in−1(n−2) ||F
xin−2(n−3)

in−2(n−3) | . . . |F
xi21

i21
||F xi10

i10
|)n

≥
n∏

j=1

(|v(Fj(n−2))||F
xj(n−2)

j(n−2) ||F
xj(n−3)

j(n−3) | . . . |F
xj1

j1 ||F xj0

j0 |) �n

n∏
j=1

|Ej |.

For simplicity, suppose ij = j, 1 ≤ j ≤ n. That is,

(3.20) |v(Fn(n−2))||F
x(n−1)(n−2)

(n−1)(n−2) ||F
x(n−2)(n−3)

(n−2)(n−3) | . . . |F
x21
21 ||F x10

10 | �n

n∏
j=1

|Ej |1/n.

To study the suprema, we consider the n-by-n matrices

A1 :=
(
(x10)1 . . . (x10)n

)
∈ E1

with
(
(x10)1 . . . (x10)(n−1)

)
= x10 ∈ Mn×(n−1) and (x10)n ∈ F x10

10 and

A2 :=
(
(x21)1 . . . (x21)n

)
∈ E2

with
(
(x21)1 . . . (x21)(n−2)

)
= x21 ∈ Mn×(n−2) and (x21)n−1 ∈ F x21

21 . That

is, construct {A1, . . . , An−1} such that for each 1 ≤ k ≤ n− 1,

Ak :=
(
(xk(k−1))1 . . . (xk(k−1))n

)
∈ Ek,

with the condition that(
(xk(k−1))1 . . . (xk(k−1))n−k

)
= xk(k−1) ∈ M

n×(n−k), (xk(k−1))n−k+1 ∈ F
xk(k−1)

k(k−1) .

For any An :=
(
x1 . . . xn

)
∈ En, for any constructed A1, . . . , An−1 above,

s ≥ | det(A1 + · · ·+An−1 +An)|

= | det
(

x1 +
n−1∑
k=1

(xk(k−1))1 . . . xn +
n−1∑
k=1

(xk(k−1))n

)
|.

Taking the same arguments as in the case n = 3, there exist T0, T1 ∈ O(n),

(3.21) s ≥ sup
(x10)n∈S(T0coF

x10
10 )

(x21)(n−1)∈S(T1T0coF
x21
21 )

| det
(
B B′ ) |,

where

B = T1T0

(
x1 +

n−1∑
k=1

(xk(k−1))1 . . . xn−2 +
n−1∑
k=1

(xk(k−1))n−2

)
∈ Mn×(n−2),

B′ =
(
(x21)(n−1) T1(x10)n

)
∈ Mn×2.

Applying the same arguments again to (3.21), there exist T2 ∈ O(n),

(3.22) s ≥ sup
(x10)n∈S(T0coF

x10
10 )

(x21)(n−1)∈S(T1T0coF
x21
21 )

(x32)n−2∈S(T2T1T0coF
x32
32 )

| det
(
C C ′ ) |,
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where

C = T2T1T0

(
x1 +

n−1∑
k=1

(xk(k−1))1 . . . xn−3 +
n−1∑
k=1

(xk(k−1))n−3

)
∈ M

n×(n−3),

C ′ =
(
(x32)(n−2) T2(x21)(n−1) T2T1(x10)n

)
∈ Mn×3.

Keep repeating the same arguments above, and finally we have that there exists
T0, . . . , Tn−2 ∈ O(n), such that for any x1 ∈ v(Fn(n−2)) ⊂ M1,

(3.23) s ≥ sup
(x10)n∈S(T0coF

x10
10 )

(x21)(n−1)∈S(T1T0coF
x21
21 )

......

(x(n−1)(n−2))2∈S(Tn−2Tn−3...T0coF
x(n−1)(n−2)

(n−1)(n−2)
)

| det
(
D D′ ) |,

where D ∈ Mn×1, D′ ∈ Mn×(n−1):

D = (Tn−2 . . . T0)(x1 +

n−1∑
k=1

(xk(k−1))1),

D′ =
(
(x(n−1)(n−2))2 Tn−2(x(n−2)(n−3))3 (Tn−2Tn−3)(x(n−3)(n−4))4 . . .

(Tn−2 . . . T1)(x10)n) .

It follows from (2.2) together with the invariance under O(n) that

s≥C|v(Fn(n−2))|1/n|coF
xn−1)(n−2)

(n−1)(n−2)|
1/n|coF x(n−2)(n−3)

(n−2)(n−3) |
1/n . . . |coF x21

21 |1/n|coF x10
10 |1/n.

Obviously,

|coF xk(k−1)

k(k−1) | ≥ |F xk(k−1)

k(k−1) |, 1 ≤ k ≤ n− 1.

This together with (3.20) implies that

s ≥ C(|v(Fn(n−2))||coF
x(n−1)(n−2)

(n−1)(n−2) ||coF
x(n−2)(n−3)

(n−2)(n−3) | . . . |coF
x21
21 ||F x10

10 |)1/n

≥ C(|v(Fn(n−2))||F
x(n−1)(n−2)

(n−1)(n−2) ||F
x(n−2)(n−3)

(n−2)(n−3) | . . . |F
x21
21 ||F x10

10 |)1/n ≥ C

n∏
j=1

|Ej |
1
n2 .

This completes Theorem 3.1. �

Corollary 3.2. There exists a finite constant An,Bn such that for any measurable
set E ⊂ Mn×n of finite measure, for any nonzero scalar λj ∈ R, j = 1, . . . , n,

(3.24) (
n∏

j=1

|λj |)|E| 1
n ≤ An sup

Aj∈E
j=1,...,n

| det(λ1A1 + · · ·+ λnAn)|.

If E is a compact convex set in Mn×n, then

(3.25) |E| 1
n ≤ Bn sup

A∈E
| det(A)|.

Proof. To see (3.24), let Ej = λjE. Applying Theorem 3.1 gives

n∏
j=1

|λjE| 1
n2 ≤ Cn sup

Aj∈E
j=1,...,n

| det(λ1A1 + · · ·+ λnAn)|,
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which implies (3.24). In particular, if E ⊂ Mn×n is a compact convex set, setting
λj =

1
n , j = 1, . . . , n, it follows from (3.24) that

1

nn
|E|1/n ≤ An sup

Aj∈E
j=1,...,n

∣∣∣∣det( 1

n
A1 + · · ·+ 1

n
An

)∣∣∣∣ .
On the other hand, since E is convex,

sup
A∈E

| det(A)| ≥ sup
Aj∈E

j=1,...,n

∣∣∣∣det( 1

n
A1 + · · ·+ 1

n
An

)∣∣∣∣ .
Thus we get (3.25). �

Here we give a direct way to see Lemma 13.2 of [5], which follows from (3.25).
Let E ⊂ Mn×n be a measurable set. The inequality (1.18) in Lemma 13.2 has
translation invariance property, so we assume that 0 ∈ E. Given any matrices
A1, . . . , An2 in E, from (3.25) it follows that

(3.26) |co{0, A1, . . . , An2}| 1
n �n sup

A∈co{0,A1,...,An2}
| det(A)|.

By (2.2), there exist A1, . . . , An2 such that

|E| �n |co{0, A1, . . . , An2}|;

together with (3.26) we obtain that

(3.27) |E| 1
n �n sup

A∈co{0,A1,...,An2}
| det(A)|.

For any convex set F ⊂ Mn×n,

sup
A∈co{0,F}

| det(A)| = sup
A∈F

| det(A)|,

since | det(λA)| = λn| det(A)| ≤ | det(A)| for any λ ∈ [0, 1]. So

(3.28) sup
A∈co{0,A1,...,An2}

| det(A)| = sup
A∈co{A1,...,An2}

| det(A)|.

Denote A(k) by the k-th column vector of the matrix A, 1 ≤ k ≤ n. Then there

exist Ã1, . . . , Ãn ∈ {A1, . . . , An2} (Ãi, Ãj might be the same matrix), such that

for any {λ1, . . . , λn2} satisfying
n2∑
j=1

λj = 1 and 0 ≤ λj ≤ 1,

(3.29) | det(λ1A1 + · · ·+ λn2An2)| ≤

∣∣∣∣∣∣∣∣
∑

ij∈{1,...,n}
ij 	=ik,∀j 	=k

det
(
Ã

(1)
i1

, . . . , Ã
(n)
in

)∣∣∣∣∣∣∣∣
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holds. This is because∑
1≤l1,...,ln≤n2

λl1 . . . λln ≤
∑

1≤l1,...,ln−1≤n2

λl1 . . . λln−1

≤ · · · ≤
∑

1≤l1,l2≤n2

λl1λl2

≤
∑

1≤l1≤n2

λl1 = 1.

Hence from (3.27)-(3.29)

(3.30) |E| 1
n �n

∣∣∣∣∣∣∣∣
∑

ij∈{1,...,n}
ij 	=ik,∀j 	=k

det
(
Ã

(1)
i1

, . . . , Ã
(n)
in

)∣∣∣∣∣∣∣∣ .
As mentioned in the proof of Lemma 13.2 of [5],

∑
ij∈{1,...,n}
ij 	=ik,∀j 	=k

det
(
Ã

(1)
i1

, . . . , Ã
(n)
in

)
is a

Z-linear combination of

{
det

(
n∑

j=1

sjÃj

)
: sj ∈ {0, 1}

}
. This gives (1.20):

|E| 1
n �n sup

A1,...,An∈E
s1,...,sn∈{0,1}

| det(s1A1 + · · ·+ snAn)|.

Obviously, (3.25) is not affine invariant. The following example shows that balls
or ellipsoids are not the optimisers.

Example 3.3.

(i) Let n = 2, E = B(0, r), A =

(
a c
b d

)
∈ E.

Then sup
A∈E

| det(A)| = r2

2 by calculation. Consider the ellipsoid F in R4 with |F | =

|B(0, r)|,

F =

{(
a c
b d

)
:
a2

l21
+

b2

l22
+

c2

l23
+

d2

l24
≤ 1

}
.

It is easy to obtain sup
A∈F

| det(A)| ≥ l1l4+l2l3
4 ≥ r2

2 by GM-AM inequality.

(ii) Let r = 1. Since A �→ | det(A)| is a continuous function on E = B(0, 1)
under the natural topology on Euclidean space R4, there exists 0 < δ < 1

25 such

that | det(A)| ≤ 1
4 for all A ∈ E satisfying∣∣∣∣A−

(
1 0
0 0

)∣∣∣∣ = (a− 1)2 + b2 + c2 + d2 ≤ 2δ.

Then for all A ∈ E satisfying
√
1− δ ≤ a ≤ 1, we have

b2 + c2 + d2 ≤ 1− a2 ≤ 1− (1− δ) = δ.

Thus ∣∣∣∣A−
(

1 0
0 0

)∣∣∣∣ = (a− 1)2 + b2 + c2 + d2 ≤ (1−
√
1− δ)2 + δ ≤ 2δ,

which implies that | det(A)| ≤ 1
4 for any A ∈ E satisfying

√
1− δ ≤ a ≤ 1.
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Let P =

(
0 0
0 p

)
with p = 1√

1−δ
and then consider sup

A∈co{P∪E}
| det(A)|:

sup
A∈co{P∪E}

| det(A)| = sup
A∈E,λ∈[0,1]

| det(λA+ (1− λ)P )|

= sup
A∈E,λ∈[0,1]

∣∣∣∣det( λa λc
λb λd+ (1− λ)p

)∣∣∣∣
= sup

A∈E,λ∈[0,1]

∣∣∣∣det( λa λc
λb λd

)
+ det

(
λa 0
λb (1− λ)p

)∣∣∣∣ .
When a �∈ [

√
1− δ, 1],

sup
A∈E,λ∈[0,1]

∣∣∣∣det( λa λc
λb λd

)
+ det

(
λa 0
λb (1− λ)p

)∣∣∣∣
≤ sup

λ∈[0,1]

λ2 1

2
+ λ(1− λ)ap

≤ sup
λ∈[0,1]

λ2 1

2
+ λ(1− λ)

√
1− δ

1√
1− δ

= sup
λ∈[0,1]

λ2 1

2
+ λ(1− λ) ≤ 1

2
.

When a ∈ [
√
1− δ, 1],

sup
A∈E,λ∈[0,1]

∣∣∣∣det( λa λc
λb λd

)
+ det

(
λa 0
λb (1− λ)p

)∣∣∣∣
≤ sup

λ∈[0,1]

λ2 1

4
+ λ(1− λ)p

= sup
λ∈[0,1]

λ2 1

4
+ λ(1− λ)

1√
1− δ

.

It is easy to see that for 0 < δ < 1
25 given above

sup
λ∈[0,1]

λ2 1

4
+ λ(1− λ)

1√
1− δ

≤ 1

2
.

Therefore,

sup
A∈co{P∪E}

| det(A)| = sup
A∈E

| det(A)|,

which implies that balls cannot be the optimisers.

Remarks 5. Let E ⊂ Mn×n be a compact convex set. If we compare the max-
imal volume of simplicies sup

A0,...,An2∈E
vol(co{A0, . . . , An2}) contained in E with

sup
A∈E

| det(A)|, it follows from (3.25) that

(3.31) sup
A0,...,An2∈E

vol(co{A0, . . . , An2}) �n sup
A∈E

| det(A)|n.
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Indeed by John ellipsoids, it is enough to consider the case when E is a ellipsoid in
Mn×n. For any ellpsoid

E ≡

⎧⎨⎩x ∈ Rn2

:

n2∑
i

|〈x− x0, ωi〉|2
l2i

≤ 1

⎫⎬⎭ ,

where x0 ∈ Rn2

, {ωi} is an orthonormal basis in Rn2

. By the affine invariance of
sup

A0,...,An2∈E
vol(co{A0, . . . , An2}), it is enough to see balls centred at 0. Apply the

Hadamard inequality for any Aj ∈ B(0, r) ⊂ Rn2

, j = 0, . . . , n2,

vol(co{A0, . . . , An2}) ≤ |A0 −A1||A0 −A2| . . . |A0 −An2 | �n rn
2 ∼ |B(0, r)|.

Hence for any ellipsoid E ⊂ Rn2

,

sup
A0,...,An2∈E

vol(co{A0, . . . , An2}) �n |E|.

On the other hand, by (3.25)

|E| �n sup
A∈E

| det(A)|n.

Therefore, we have the following relation:

sup
A0,...,An2∈E

vol(co{A0, . . . , An2}) �n sup
A∈E

| det(A)|n.

Similarly, we have

(3.32) sup
A1,...,An2∈E

vol(co{0, A1, . . . , An2}) �n sup
A∈E

| det(A)|n.

If 0 ∈ E, this is true, which is mainly due to the Hadamard inequality and the
GLn(R) invariance of sup

A1,...,An2∈E
vol(co{0, A1, . . . , An2}). If 0 �∈ E, the relation

above still holds because of the fact that

sup
A∈E

| det(A)|n = sup
A∈co{0,E}

| det(A)|n.
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