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SLICE REGULAR SEMIGROUPS

RICCARDO GHILONI AND VINCENZO RECUPERO

Abstract. In this paper we introduce the notion of slice regular right linear
semigroup in a quaternionic Banach space. It is an operatorial function which
is slice regular (a noncommutative counterpart of analyticity) and which satis-
fies a noncommutative semigroup law characterizing the exponential function
in an infinite dimensional noncommutative setting. We prove that a right lin-
ear operator semigroup in a quaternionic Banach space is slice regular if and
only if its generator is spherical sectorial. This result provides a connection
between the slice regularity and the noncommutative semigroups theory and
characterizes those semigroups which can be represented by a noncommutative
Cauchy integral formula. All our results are generalized to Banach two-sided
modules having as a set of scalar any real associative *-algebra, Clifford alge-
bras Rn included.

1. Introduction

1.1. The problem of analytic semigroups in the noncommutative setting.
A linear operators group, or more generally a linear operators semigroup on a real
or complex Banach space X, is a mapping T : [0,∞[ −→ L (X) such that T(0) is
the identity and the deterministic law

(1.1) T(t+ s) = T(t)T(s) ∀t, s > 0

is satisfied, L (X) being the space of bounded linear operators on X. For the
general theory of operator semigroups we refer to [20] and we recall here that,
under the mild assumption that y := T(·)x is continuous for every x ∈ X, it is
well-known that there exists the derivative y′(0) =: Ax for every x belonging to
a dense subspace D(A) of X and y solves the Cauchy problem in y′(t) = Ay(t),
y(0) = x ∈ D(A). The linear operator A : D(A) −→ X is the so-called generator of
T. If T is also continuous from [0,∞[ into L (X), then A turns out to be a bounded
operator defined on the whole X and T(t) = etA :=

∑
n≥0(tA)

n/n!, so that (1.1)
reads

e(t+s)A = etAesA.

Linear operator semigroups are a crucial tool for several topics in mathematics,
like partial differential equations, quantum mechanics, stochastic processes, control
theory, and dynamical networks. Applications to other theoretical and applied
sciences are also important, e.g., to open quantum systems, population dynamics,
Boltzmann equations (cf. [20, Chapter VI]).
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The famous paper [46] of M.H. Stone “On one-parameter unitary groups in
Hilbert spaces” can be considered as the starting point of the modern theory of
operator semigroups, whose development is witnessed by the fundamental mono-
graphs [17, 20, 34, 36, 40, 43, 47] and by their references. Motivated by quantum
mechanics (cf. [42]), the paper of Stone, together with J. von Neumann’s paper
[41] “uber einen Satz von Herrn M.H. Stone”, is a crucial step for the definition of
the exponential map in infinite dimension.

G. Birkhoff and von Neumann in their celebrated paper [5] “The logic of quantum
mechanics” pointed out that quantum mechanics can be formulated not only in the
nowadays classical setting of complex Hilbert spaces but also on Hilbert spaces
whose set of scalars is H, the skew-field of quaternions (cf. [45] for details). This
remark originated the study of quantum mechanics in the quaternionic framework
(see, e.g., [1,6,19,21,37]), whose natural setting is a Hilbert two-sided H-module X
and where L (X) is replaced by the set L r(X) of bounded right linear operators
acting on it (all the precise definitions will be recalled in Section 2). However,
the full development of the quaternionic formulation of quantum mechanics was
prevented by the lack of a suitable quaternionic notion of spectrum (cf. [9, 26]).
A first rigorous formulation of quaternionic quantum mechanics was started only
in 2007 when the concept of spherical spectrum of a quaternionic operator was
introduced in [8]. This new concept provides the basis for a proper application
of the spectral theory to quaternionic quantum mechanics. Indeed, it permits one
to construct a noncommutative functional calculus for right linear operators on a
Banach two-sided module over H (and over a Clifford algebra as well; cf. [9–12,14,
16,26]) and to deduce spectral representation theorems for normal operators in the
quaternionic Hilbert setting (cf. [2, 27]).

The mentioned noncommutative functional calculus strongly relies on the the-
ory of slice regular functions, recently introduced in [23]. Slice regular functions
extend to quaternions the classical concept of holomorphic function of a complex
variable. They form a class of functions admitting a local power series expansion
at every point of their domain of definition (cf. [22]), including polynomials with
quaternionic coefficients on one side.

In order to recall the notion of slice regular function let us first observe the
fundamental fact that H has a “slice complex” nature. This fact can be described
as follows. If S ⊆ H is the set of square roots of −1 and if, for each j ∈ S, we
denote by Cj the Euclidean plane of H generated by 1 and j, then H =

⋃
j∈S

Cj and
Cj ∩Ck = R for every j,k ∈ S with j �= ±k. Therefore if D is an open domain of C
invariant under complex conjugation and ΩD =

⋃
j∈S

Dj, where Dj := {r+s j ∈ Cj :

r, s ∈ R, r+si ∈ D}, a function f : ΩD −→ H of class C1 is called right slice regular
(resp. left slice regular) if, for every j ∈ S, its restriction fj to Dj is holomorphic
with respect to the complex structures on Dj and on H defined by the right (resp.
left) multiplication by j, i.e., if ∂fj/∂r+ ∂fj/∂s j = 0 (resp. ∂fj/∂r+ j∂fj/∂s = 0)
on Dj. This definition is naturally extended to functions with values in any Banach
two-sided H-module, e.g., L r(X). A remarkable property of slice regular functions
is a Cauchy-type integral formula (cf. [7]). Let us consider first the left slice case.
If D is bounded with a piecewise C1 boundary and f : ΩD −→ H is left slice regular
and continuously extends on the closure of ΩD in H, then it holds that

(1.2) f(p) =
1

2π

∫
∂Dj

Cq(p) j
−1 dq f(q) ∀p ∈ ΩD, ∀j ∈ S,
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where Cq(p) denotes the (left ) noncommutative Cauchy kernel

Cq(p) := (p2 − 2Re(q)p+ |q|2)−1(q − p),

the line integral in (1.2) being defined in a natural way (see (6.7)). The noncom-
mutative Cauchy kernel Cq is a left slice regular function, while for any fixed p
the function q 	−→ Cq(p) is right slice regular. The unusual fact that the differ-
ential dq appears on the left of f(q) depends on the noncommutativity of H. If
instead f is right slice regular the noncommutative Cauchy integral formula reads
f(p) = 1

2π

∫
∂Dj

f(q) j−1 dq Cr
q(p), where Cr

q(p) := (q − p)(p2 − 2Re(q)p+ |q|2)−1.

As observed in [9,26], the classical notions of spectrum and of resolvent operator
are not useful in order to define a noncommutative functional calculus. Cauchy
integral formula (1.2) indicates a way to define new notions of spectrum and of
resolvent operator, suitable for the noncommutative case: these notions are the
spherical spectrum and the spherical resolvent operator. If A is a right linear oper-
ator on a Banach two-sided H-module X, then its spherical resolvent set is the set
of quaternions q such that the operator

Δq(A) := A2 − 2Re(q)A+ |q|2 Id

is bijective and its inverse is bounded, where Id is the identity operator on X.
Accordingly, the spherical spectrum is the complement of the spherical resolvent
set, and the spherical resolvent operator Cq(A) is defined by

Cq(A) := Δq(A)
−1q − AΔq(A)

−1

for every q in the spherical resolvent set of A.
The noncommutative functional calculus based on the spherical resolvent opera-

tor is exploited in [13] in order to prove the counterpart of the classical generation
theorems by Hille-Yosida and by Feller-Miyadera-Phillips for a strongly continu-
ous right linear semigroup, i.e., a mapping T : [0,∞[ −→ L r(X) such that T(·)x
is continuous for every x ∈ X. Their statements are analogous to the real and
complex cases: the generator of A has the same formal definition, and in particu-
lar we still have that A is bounded if and only if T is uniformly continuous, i.e.,
T ∈ C([0,∞[ ;L r(X)); in this case T(t) =

∑
n≥0(tA)

n/n!.

In paper [32] we show that the above-mentioned generation theorems for quater-
nionic right linear semigroups can actually be reduced to the classical commutative
case by means of a simple technique, so that the functional calculus is not needed
at this stage. In [32] we also introduce the class of spherical sectorial right linear
operators and we prove that such operators generate a semigroup which can be
represented by a Cauchy integral formula. Let us recall that a right linear operator
A on X is spherical sectorial with vertex ω ∈ R if its spherical resolvent set contains
a set of the form ω +Ωπ/2+δ, where

Ωπ/2+δ := {q ∈ H�{0} : arg(q) < π/2 + δ}

for some δ ∈ ]0, π/2], with arg(q) := θ ∈ ]0, π[ if q ∈ H�R and q = reθj ∈ Cj,
arg(q) := 0 if q ∈ ]0,∞[, and arg(q) := π if q ∈ ]−∞, 0[. We prove that if A has
this property and satisfies the estimate

(1.3) ‖Cq(A)‖ ≤ M

|q − ω| ∀q ∈ ω + Ωπ/2+δ
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for some M ≥ 0, then the formula

(1.4) T(t) =
1

2π

∫
γj

Cq(A) j
−1etq dq ∀t > 0

defines a strongly continuous right linear semigroup generated by A, where j is
an arbitrarily fixed element of S and γj is a suitable path of Cj, surrounding the
possibly unbounded spherical spectrum of A (in [32] we dealt with the case ω = 0,
the general case being proved in Theorem 6.9 below). As a consequence, the integral
in (1.4) is independent of j and the semigroup T(t) is analytic in time. Formula
(1.4) is clearly related to the Cauchy integral formula (1.2), where the Cauchy kernel
appears on the left: indeed the functions q 	−→ Cq(p) and q 	−→ Cq(A) turn out to
both be right slice regular. We underline that the noncommutative setting prevents
the possibility of applying the classical strategy for sectorial operators (see, e.g.,
[20, Proposition 4.3, p. 97]) and a different technique is needed (cf. [32]). We also
point out a crucial difference between the scalar and operatorial quaternionic cases:
if in (1.2) pq = qp (i.e., when p, q belong to the same Cj), then Cq(p) = (q − p)−1,
and we find again the form of the classical Cauchy kernel for holomorphic functions,
while in the operatorial case the commutation Aq = qA is in general false if q is not
real, so that the operatorial commutative and noncommutative cases are extremely
different.

At this point there arises the problem of identifying which kind of regularity
characterizes the class of semigroups generated by spherical sectorial operators.
In other terms we aim to find the class of right linear semigroups which can be
represented by the noncommutative Cauchy integral formula (1.4). A major result
in classical semigroups theory states that in the classical complex case this class
is represented by the ω-exponentially bounded analytic semigroups, i.e., mappings
z 	−→ T(z) which are holomorphic in a sector Dδ ⊆ C with limz→0 T|Dδ′ (z)x = x,

supz∈Dδ′
‖T(z)‖e−ωRe(z) < ∞ for every subsector Dδ′ , x ∈ X, and satisfying the

semigroup law

(1.5) T(z + w) = T(z)T(w)

for z, w ∈ Dδ. This result strongly connects the concept of operator semigroup to
the theory of holomorphic functions (cf., e.g., [20, 40, 47]).

The present paper is devoted to studying this problem in the noncommutative
case.

1.2. A solution of the problem. If we first consider the simpler case of a bounded
operator A ∈ L r(X), then it turns out that the proper definition for T(q) is given by
T(q) =

∑
n≥0(A

n/n!)qn since it uniquely extends T(t) in a right slice regular manner

(in the analogous theory for left linear operators we would find
∑

n≥0 q
n(An/n!)).

Anyway it turns out that T(p+q) is different from T(p)T(q) even if p and q commute,
and this occurs for any other “reasonable” extensions of T(t), i.e.,

∑
n≥0 q

n(An/n!),∑
n(Aq)

n/n!,
∑

n(qA)
n/n!.

In order to understand what the point is here and to find the proper semigroup
law in the noncommutative framework, let us consider again the concept of slice
regularity with values in H, or in L r(X), or generally in a Banach two-sided H-
algebra Y , i.e., the natural noncommutative quaternionic counterpart of a Banach
algebra (cf. Definition 3.5 below). One fundamental observation is that the point-
wise product of two right slice regular functions is not a right slice regular function.
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The proper notion of product is instead given by the slice product, which can be
easily illustrated for polynomial functions or power series. Indeed if we consider for
instance series with coefficients in Y on the left of the indeterminate q, then it is
well-known that the proper way to perform the multiplication consists of imposing
commutativity of q with the coefficients (cf. [39]). Thus if f(q) =

∑
n anq

n and
g(q) =

∑
n bnq

n, then their Cauchy product (or convolution) is defined by

(1.6) (f ∗ g)(q) :=
∑
n

( ∑
k+h=n

akbh

)
qn.

Note that this product is different from the pointwise product of f and g. This
happens even when one of the two polynomials is constant; indeed if g(q) = b0
the pointwise product is f(q)g(q) =

∑
n anq

nb0, while (f ∗ g)(q) =
∑

n anb0q
n.

The general notion of slice product between two right slice regular functions f
and g, which is given in Definition 4.10 below and will be denoted simply by f ·
g, turns out to be the natural generalization to functions of the product (1.6)
of power series. Since we are particularly interested in operator-valued functions
(e.g., T(t) =

∑
n(A

n/n!)qn if A is bounded), let us consider the case Y = L r(X)
where the product is the composition of operators. If F : ΩD −→ L r(X) and
G : ΩD −→ L r(X) are two given right slice regular operatorial functions, then the
function q 	−→ F(q)G(q) is not right slice regular in general, and the correct notion
of product turns out to be the slice product F · G, which in the special operatorial
case Y = L r(X) will be denoted by the symbol F�G. For simplicity let us consider
again the case of power series: if (An) and (Bn) are two sequences in L r(X) and if
F(q) =

∑
n Anq

n and G(q) =
∑

n Bnq
n, then we have

(F� G)(q) :=
∑
n

( ∑
k+h=n

AkBh

)
qn.

We are now in position to describe the main result of our paper. We prove that
if A is a spherical sectorial operator with vertex ω satisfying (1.3), then it gen-
erates an ω-exponentially bounded right slice regular semigroup, i.e., a mapping
T : Ωδ ∪{0} −→ L r(X) such that T|Ωδ

is right slice regular, limq→0 T|Ωδ′ (q)x = x,

supz∈Ωδ′
‖T(q)‖e−ωRe(q) < ∞ for every q ∈ Ωδ′ , δ

′ ∈ ]0, δ[, x ∈ X, and the follow-
ing noncommutative right linear operator semigroup law holds:

(1.7) T(p+ q) = T(p)�p T(q) ∀p, q ∈ Ωδ with pq = qp,

where T(p) �p T(q) means that we are considering the slice product with respect
to p, with q fixed. Vice versa we prove that if T is an ω-exponentially bounded
right slice regular semigroup, then its generator is spherical sectorial with vertex
ω. Thus we have obtained the following theorem.

Theorem H. Let X be a Banach two-sided H-module, let T : [0,∞[ −→ L r(X) be
a strongly continuous right linear semigroup, and let A : D(A) −→ X be its right
linear generator. Then A is a spherical sectorial operator with vertex ω satisfying
(1.3) if and only if T extends to an ω-exponentially bounded right slice regular
semigroup.

This theorem implies that right slice regular semigroups provide the class of
semigroups which can be represented by Cauchy integral formula (1.4), namely the
infinite dimensional exponential in a noncommutative framework.
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Theorem H is a particular case of our main result, Theorem 7.1, which is valid
in a very general noncommutative setting when the set of scalars H is replaced by
an arbitrary associative real *-algebra A, including, e.g., all the Clifford algebras
Rn. Indeed the relevant subset of this kind of algebra is the so-called quadratic
cone QA, which enjoys the same slice complex nature of H; i.e., QA =

⋃
j∈SA

Cj,

where SA := {q ∈ A : q2 = −1, qc = −q}, q 	−→ qc being the operation of *-
involution (conjugation), and Cj denotes again the Euclidean plane of A generated
by 1 and j. This fact allows us to employ many arguments of the quaternionic
case, even if additional difficulties may arise, due mainly to the existence of zero-
divisors. A central point of this analysis is the introduction of the general definition
of a slice regular function with values in a Banach two-sided A-module. This new
notion requires the concept of vector stem function (see [28] for the scalar case)
and unifies all the different notions of slice regular function disseminated in the
literature (cf. [3, 15,23–25,28]). The passage to the vector framework introduces a
difficulty which is not present in the classical commutative complex case, since when
we evaluate a right slice regular operator-valued function q 	−→ F(q) at a vector
x, we obtain that q 	−→ F(q)x is not right slice regular anymore (cf. Remark 5.5
below). This difficulty is evident in handling the noncommutative counterpart of
the Laplace transform (see Section 6.2), an important tool for the proof of Theorem
H.

We point out that our results comprise the classical ones as a particular case.
Indeed, if A = C and X is a usual complex Banach space in which zx = xz for
x ∈ X and z ∈ C, then (1.7) reduces to (1.5), and (1.4) coincides with the standard
Cauchy integral formula for analytic semigroups, because Cz(A) = (z Id− A)−1.

1.3. Structure of the paper. The next section is devoted to some preliminary
notions and properties concerning real *-algebras A. In Section 3 we recall the
precise definition of Banach two-sided A-modules, we introduce the natural notion
of Banach two-sided A-algebras, and we describe an important example of this kind
of algebra, the one of bounded right linear operators acting on a Banach two-sided
A-module. In Section 4 we define the general concept of slice regular functions
with values in a Banach two-sided A-module and we prove its main properties,
while in Section 5 we provide a list of relevant examples, including right power se-
ries, noncommutative exponentials, slice compositions of operatorial functions, and
spherical resolvent operators. In Section 6 we recall the definition of right linear op-
erator semigroups and we introduce the new class of right slice regular semigroups.
The last section is devoted to proving that right slice regular semigroups represent
precisely the class of semigroups generated by a spherical sectorial operator.

2. Preliminaries

Let us assume that

(2.1) A is a nontrivial real algebra with unit 1A;

i.e., we are given a real vector space A �= {0}, endowed with a bilinear product
A× A −→ A : (p, q) 	−→ pq whose unit is 1A. The simplest examples are provided
by the set of real numbers R and by the complex plane C, but in general we will
admit that the product in A is noncommutative, as in the case of the skew-field
H of quaternions, whose precise definition will be recalled in Example 2.5 below.
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From the bilinearity of the product it follows that

(2.2) r(pq) = (rp)q = p(rq) ∀r ∈ R, ∀p, q ∈ A.

In this way we can identify the algebra of real numbers R with the subalgebra of
A generated by 1A; thus 1 = 1A, and the notation rq is not ambiguous if r ∈ R and
q ∈ A. Notice that

(2.3) rq = qr ∀r ∈ R, ∀q ∈ A.

We can therefore consider the following well-known generalization of the complex
conjugation.

Definition 2.1. Assume that (2.1) holds. We say that a mapping A −→ A : q 	−→
qc is a *-involution if it is R-linear and

(qc)c = q ∀q ∈ A,

(pq)c = qcpc ∀p, q ∈ A,

rc = r ∀r ∈ R.

If A is endowed with a *-involution, we also say that A is a real *-algebra.

In the remainder of the paper we will assume that A is associative and its real
dimension is finite. We will summarize this and the previous assumptions by saying
that

(2.4) A is a finite dimensional associative nontrivial real *-algebra with unit,

and we will endow A with the (Euclidean) topology induced by any norm on it.

Definition 2.2. Assume that (2.4) holds. The imaginary sphere in A is defined
by

(2.5) SA :=
{
q ∈ A : qc = −q, q2 = −1

}
,

and we set
Cj := {r + sj ∈ A : r, s ∈ R} , j ∈ SA;

i.e., Cj is the real vector subspace of A generated by 1 and j ∈ SA or, equivalently,
the real subalgebra of A generated by j. The quadratic cone QA is defined as follows:

(2.6) QA :=
⋃
j∈SA

Cj if SA �= ∅, and QA := R otherwise.

Finally the real part Re(q) and the imaginary part Im(q) of an element q ∈ A are
defined by

(2.7) Re(q) := (q + qc)/2, Im(q) := (q − qc)/2, q ∈ A.

Observe that QA is a real cone and that every q ∈ QA satisfies the real quadratic
equation q2 − 2Re(q)q + qqc = 0, which justifies the name “quadratic cone”. In
general, QA is not a real vector subspace of A (cf. Remark 2.6 below).

In general Re(q) and Im(q) are not real numbers, at variance with the customary
complex notation. If z ∈ C, then we set �(z) := (z + z)/2 ∈ R and �(z) :=
(z − z)/2i ∈ R.

In the remainder of the paper, except for Section 3, we will assume that

(2.8) SA �= ∅;

in particular this removes from consideration the set of real numbers R. For the
reader’s convenience, in the following proposition, we give the proof of some useful
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properties enjoyed by a real *-algebra, including the fact that definition (2.6) of a
quadratic cone is consistent with the apparently different definition given in [28].

Proposition 2.3. Assume that (2.4) and (2.8) hold. Then

(a) For every j ∈ SA we have that 1 and j are linearly independent and

r, s ∈ R, q = r + sj =⇒ qc = r − sj, qqc = qcq = r2 + s2,

p, q ∈ Cj =⇒ pq = qp.

(b) The following properties hold:

qn ∈ QA ∀q ∈ QA, ∀n ∈ N,

q ∈ QA�{0} =⇒ ∃q−1 = (qqc)−1qc ∈ QA�{0}.

(c) We have that

(2.9) Cj ∩ Ck = R ∀j,k ∈ SA, j �= ±k.

(d) The following set equalities hold:

SA = {q ∈ QA : q2 = −1},
QA = R ∪ {q ∈ A : Re(q) ∈ R, qqc ∈ R, qqc > Re(q)2}.

In particular if q ∈ QA�R,then Im(q) Im(q)c > 0, j := Im(q)/
√
Im(q) Im(q)c

∈ SA, and q = Re(q) +
√
Im(q) Im(q)c j ∈ Cj.

(e) QA = A if and only if A is (a real ∗-algebra) isomorphic to C or H. In this
case, if p, q ∈ A = QA, then

(2.10) pq = qp ⇐⇒ ∃k ∈ SA : p, q ∈ Ck.

Proof. (a) If r, s ∈ R, s �= 0, and r + sj = 0, then (r/s)2 = (−j)2 = −1, a
contradiction leading to the linear independence of 1 and j. The properties of the
*-involution yields, for r, s ∈ R, (r + sj)c = r + sjc = r − sj. The formula for qqc

and the equality pq = qp are easily verified.
(b) The two properties follow from an easy induction and a direct computation.
(c) If (Cj ∩ Ck)�R �= ∅, then there are r, s ∈ R, s �= 0, such that k = r + sj;

therefore the equality −1 = k2 = r2 − s2 + 2rsj yields r = 0 and s2 = 1. It follows
that k = ±j.

(d) If q ∈ QA and q2 = −1, then there are r, s ∈ R, j ∈ SA such that q = r + sj,
r = 0, and s2 = 1. Therefore qc = −q, and the characterization for SA is proved.
Concerning the second equality, from (a) it follows that, for every q ∈ QA�R, we
have Re(q) ∈ R, qqc ∈ R, and qqc > Re(q)2. On the other hand, if q ∈ A�R satisfies
these three conditions, then Im(q) �= 0 (otherwise q = (q + q)/2 = (q + qc)/2 ∈ R)
and qqc = q(q + qc) − q2 = (q + qc)q − q2 = qcq. Therefore Im(q) Im(q)c =

qqc−Re(q)2 > 0, j := Im(q)/
√
Im(q) Im(q)c ∈ SA, q = Re(q)+

√
Im(q) Im(q)c j ∈ Cj

and (d) is proved.
(e) By the second part of (b), if A = QA, then A is a division algebra, and hence

Frobenius’ theorem implies that A is isomorphic to C or H (cf. [18, §8.2.4]). The
converse implication and (2.10) are evident if A = C and well-known if A = H (cf.
Example 2.5 and Remark 2.6). �
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Definition 2.4. Assume that (2.4) and (2.8) hold. If j ∈ SA, we define the real
∗-algebra isomorphism φj : C −→ Cj by setting

φj(r + si) := r + sj, r, s ∈ R.

Given a subset D of C, invariant under complex conjugation, the circular set asso-
ciated to D is the subset ΩD of QA defined by

ΩD :=
⋃
j∈SA

φj(D) = {r + sj ∈ QA : r, s ∈ R, r + si ∈ D, j ∈ SA}.

A subset of QA is said to be circular if it is equal to ΩD for some set D as above.

Observe that ifD is open in C, then ΩD is a relatively open subset of QA, because
the function QA → C : q 	−→ Re(q)+i

√
Im(q) Im(q)c easily extends to a continuous

function on the whole A.
We recall that a real algebra A satisfying (2.4) is said to be Banach if it is

equipped with a (complete) norm | · | which is submultiplicative; i.e., |pq| ≤ |p||q|
for every p, q ∈ A, and |1| = 1.

In what follows, we will often assume that
(2.11)
A is Banach with a norm | · | such that, for every j ∈ SA, |pq| = |p||q| if p, q ∈ Cj.

Observe that (2.11) implies the compactness of SA. Indeed, by definition (2.5), SA
is closed in A. Moreover SA is contained in the compact sphere {q ∈ A : |q| = 1},
because |q|2 = |q2| = | − 1| = 1 if q ∈ SA. As an immediate consequence of the
compactness of SA, one obtains that QA is closed in A. We remark that (2.11) is
ensured by the following condition:

(2.12) A is Banach with a norm | · | such that |q|2 = qqc for every q ∈ QA.

Notice that under assumption (2.12) φj is an isometry. It is worth also observing
that (2.11) and (2.12) are equivalent if the norm | · | is induced by a scalar product
on A (cf. [18, §10.1]).

Example 2.5. A remarkable class of associative real ∗-algebras is the one of Clifford
algebras (cf. [33,35] and [30, Section 1]). Let p, q ∈ N, let n = p+q, and let P(n) be
the family of all subsets of {1, . . . , n}, where P(0) = ∅. Identify R with the vector
subspace R×{0} of R2n = R×R2n−1 and denote by {eK}K∈P(n) the canonical basis

of R2n , where e∅ := 1. For convenience, indicate e{k} also by ek if k ∈ {1, . . . , n}.
Let us define a real bilinear and associative product on R2n by imposing that

• 1 is the neutral element;
• e2k = 1 if k ∈ {1, . . . , p} and e2k = −1 if k ∈ {p+ 1, . . . , n};
• ekeh = −ehek if k, h ∈ {1, . . . , n} with k �= h;
• eK = ek1

· · · eks
if K ∈ P(n)�{∅} and K = {k1, . . . , ks} with k1 < · · · < ks.

This product on R2n defines the so-called Clifford algebra C 	p,q of signature (p, q),
which is denoted also by Rp,q. Evidently, such an associative real algebra is not
commutative if n ≥ 2. The Clifford conjugation of Rp,q is the ∗-involution x 	−→ x
which fixes eK if K has s elements and s ≡ 0, 3 mod 4 and sends eK into −eK if
s ≡ 1, 2 mod 4. EndowingRp,q with Clifford conjugation, we obtain a real ∗-algebra
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satisfying (2.4). However, such an algebra Rp,q does not have both properties (2.8)
and (2.11) if p ≥ 1:

• SR0,0
= ∅ (R0,0 = R indeed) and SR1,0

= ∅, so R0,0 and R1,0 do not verify
(2.8).

• SR2,0
and SR1,1

are 2-hyperboloids in R4 (recall that R2,0 and R1,1 are
isomorphic), and hence they are not compact. It follows that Rp,q does not
admit any norm with property (2.11) if p ≥ 2 or p = 1 and q ≥ 1, because
in these cases SR2,0

⊂ SRp,q
or SR1,1

⊂ SRp,q
.

Let us consider the case p = 0 and n = q ≥ 1. For simplicity, we use the
alternative notation Rn instead of R0,n. By direct inspection, one verifies that a
point x =

∑
K∈P(n) xKeK of Rn with xK ∈ R belongs to the quadratic cone QRn

of Rn if and only if it satisfies the following polynomial equations:

xK = 0 and 〈x, xeK〉 = 0 for every K ∈ P(n)�{∅} with e2K = 1,

where 〈·, ·〉 denotes the standard scalar product on Rn = R2n . On Rn we define the
following submultiplicative norm, called Clifford operator norm:

|x|C� := sup{|xa| ∈ R : |a| = 1},

where | · | indicates the Euclidean norm of Rn = R2n . It turns out that:

• QRn
= Rn if and only if n ∈ {1, 2}. In particular, R1 and R2 are division

algebras.
• |x|C� = |x| =

√
xx for every x ∈ QRn

and hence | · |C� = | · | if n ∈ {1, 2}.
If n ≥ 3, the Euclidean norm | · | of Rn is not submultiplicative (e.g.,

|(1 + e{1,2,3})
2| =

√
8 > 2 = |1 + e{1,2,3}|2), and Rn has zero divisors (e.g.,

(1 + e{1,2,3})(1− e{1,2,3}) = 0).

Endowing Rn (n ≥ 1) with Clifford conjugation and Clifford operator norm,
we obtain a Banach real ∗-algebra satisfying (2.8) and (2.12). In what follows we
always consider Rn equipped with such a structure of Banach real ∗-algebras. The
cases n = 1 and n = 2 are very important:

• R1 coincides with C endowed with the standard conjugation if we set e1 = i.
• R2 is called algebra of quaternions. Usually it is denoted by H, and one
writes i, j, and k in place of e1, e2, and e{1,2}, respectively.

For further examples and details concerning associative *-algebras, we refer the
reader to [30, subsection 1.1] and [31, Section 2].

Remark 2.6. Two quaternions p, q ∈ H commute if and only if they belong to the
same slice Cj. Let p, q ∈ H�R and let j,k ∈ SH such that p ∈ Cj and q ∈ Ck. The
equality pq = qp is equivalent to jk = kj. Since jk−kj = (j−k)(j+k) and H has no
zero-divisors, we conclude that p and q commute if and only if j = ±k, i.e., if p and q
belong to the same slice Cj. This is not true in Rn if n ≥ 3; indeed, e3, e{1,2} ∈ SR3

,
e3 �= ±e{1,2}, but e3e{1,2} = e{1,2}e3. The reader may observe that QRn

is not a
real vector subspace of Rn if n ≥ 3. Indeed, since e3 and e{1,2} commute, e3+e{1,2}
does not belong to QR3

, because (e3 + e{1,2})(e3 + e{1,2} ) = 2 + 2e{1,2,3} �∈ R.

3. Two-sided A-algebras

In this section we recall the notion of Banach two-sided A-modules and we in-
troduce the concept of Banach two-sided A-algebras. Finally, we present a crucial
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example of this kind of algebra: the one of bounded right linear operators on a
Banach two-sided A-module.

3.1. Two-sided modules and algebras. Let us recall that if A satisfies (2.4), an
abelian group (X,+) is a left A-module if it is endowed with a left scalar multipli-
cation A×X −→ X : (q, x) 	−→ qx such that

q(x+ y) = qx+ qy ∀x, y ∈ X, ∀q ∈ A,

(p+ q)x = px+ qx ∀x ∈ X, ∀p, q ∈ A,

1x = x ∀x ∈ X,

p(qx) = (pq)x ∀x ∈ X, ∀p, q ∈ A.

An abelian subgroup Y of X is a left A-submodule if qx ∈ Y whenever x ∈ Y and
q ∈ A. If A is a field we obtain the classical notions of (left) vector space and
subspace.

The definition of right A-module is completely analogous: it is required that the
abelian group (X,+) is endowed with a right scalar multiplication X × A −→ X :
(x, q) 	−→ xq such that

(x+ y)q = xq + yq ∀x, y ∈ X, ∀q ∈ A,

x(p+ q) = xp+ xq ∀x ∈ X, ∀p, q ∈ A,

x1 = x ∀x ∈ X,

(xp)q = x(pq) ∀x ∈ X, ∀p, q ∈ A.

An abelian subgroup Y of X is a right A-submodule if xq ∈ Y whenever x ∈ Y and
q ∈ A.

Definition 3.1. Assume that (2.4) holds and let (X,+) be an abelian group. We
say that X is a two-sided A-module (or A-bimodule) if it is endowed with two scalar
multiplications A×X −→ X : (q, x) 	−→ qx and X × A −→ X : (x, q) 	−→ xq such
that X is both a left A-module and a right A-module and

p(xq) = (px)q ∀x ∈ X, ∀p, q ∈ A,

rx = xr ∀x ∈ X, ∀r ∈ R.(3.1)

An abelian subgroup Y of X is a two-sided A-submodule if it is both a left and a
right A-submodule of X.

If A were simply a ring, then (2.2) and (2.3) make no sense; thus condition (3.1)
should be omitted (see, e.g., [4, Chapter 1, Section 2, pp. 26-28]). In our case A is
an algebra, and it is natural to require (3.1).

In [4] the authors suggest a self-explanatory notation which is useful when we
consider different sets of scalars simultaneously: if X is an abelian group, then

AX means that X is considered as a left A-module,

XA means that X is considered as a right A-module.

Definition 3.2. Assume (2.4) and (2.11) hold and let X be a two-sided A-module.
A function ‖ · ‖ : X −→ [0,∞[ is called an A-norm on X if

‖x‖ = 0 ⇐⇒ x = 0,

‖x+ y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ X,

‖qx‖ ≤ |q| ‖x‖, ‖xq‖ ≤ |q| ‖x‖ ∀x ∈ X, ∀q ∈ A.(3.2)
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Equipped with this kind of norm, X is called a normed two-sided A-module, and we
endow it with the topology induced by the metric d : X ×X −→ [0,∞[ : (x, y) 	−→
‖x− y‖. Finally, we say that X is a Banach two-sided A-module if this metric d is
complete.

Observe that if q ∈ QA�{0} and x ∈ X, then (2.11) implies that ‖xq‖ ≤ ‖x‖|q| =
‖xqq−1‖|q| ≤ ‖xq‖|q−1||q| = ‖xq‖; therefore ‖xq‖ = ‖x‖|q|. A similar argument
applies to ‖qx‖; therefore we have the following result.

Lemma 3.3. Assume (2.4) and (2.11) hold, and let X be a normed two-sided
A-module. Then

‖qx‖ = ‖xq‖ = |q|‖x‖ ∀x ∈ X, ∀q ∈ QA.

Remark 3.4. If X is a normed two-sided A-module whose A-norm is ‖ · ‖, then,
since R ⊆ QA, the preceding lemma implies that ‖ · ‖ is a norm on RX in the usual
real sense. Therefore the metric on X is the one induced by ‖ · ‖ as a standard
norm on RX. Finally observe that X is a Banach two-sided A-module if and only
if RX is a real Banach space.

Definition 3.5. Assume that (2.4) holds. A two-sided A-module X is called a
(associative) two-sided A-algebra if it is endowed with an associative product X ×
X −→ X : (x, y) 	−→ xy such that

x(y + z) = xy + xz ∀x, y, z ∈ X,

(x+ y)z = xz + yz ∀x, y, z ∈ X,

q(xy) = (qx)y ∀x, y ∈ X, ∀q ∈ A,

(xy)q = x(yq) ∀x, y ∈ X, ∀q ∈ A.

If we also assume that (2.11) holds, then we say that X is a normed two-sided A-
algebra provided X is endowed with an A-norm ‖ · ‖ such that ‖xy‖ ≤ ‖x‖‖y‖ for
every x, y ∈ X. If X is complete we say that X is a Banach two-sided A-algebra. If
in addition X is nontrivial and has a unit 1X such that ‖1X‖ = 1, then X is called
a Banach two-sided A-algebra with unit.

Example 3.6. Assume A satisfies (2.4) and (2.11), e.g., A = Rn. Given a
nonempty set S, the set of bounded A-valued functions on S, equipped with
the pointwise operations of sum, of product, of left and right multiplications by
scalars in A, of ∗-involution f c(s) := (f(s))c and endowed with supremum norm
‖f‖∞ := sups∈S |f(s)|, is a Banach two-sided A-algebra with unit. In particular,
this is true for each power Am. If S has a topological structure, then the same point-
wise defined operations make the set of bounded continuous A-valued functions on
S a Banach two-sided A-algebra with unit.

3.2. The Banach two-sided A-algebra of bounded right linear operators.
Let us recall the concept of right linear operators acting on a two-sided A-module.
Assume that

A satisfies (2.4) and X is a Banach two-sided A-module.

Definition 3.7. Let D(A) be a right A-submodule of X. We say that A : D(A) −→
X is right linear if it is additive and

A(xq) = A(x)q ∀x ∈ D(A), ∀q ∈ A.
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As usual, the notation Ax is often used in place of A(x). We use the symbol
Endr(X) to denote the set of right linear operators A with D(A) = X. The identity
operator is right linear and is denoted by IdX or simply by Id if no confusion
may arise. Moreover, if X is a normed two-sided A-module, then we say that
A : D(A) −→ X is closed if its graph is closed in X ×X. As in the classical theory,
we set D(An) := {x ∈ D(An−1) : An−1x ∈ D(A)} for every n ∈ N�{0}.

Let us also recall the following definition (see, e.g., [4, Chapter 1, pp. 55-57]).

Definition 3.8. Let D(A) be a right A-submodule of X and let q ∈ A. If A :
D(A) −→ X is a right linear operator, then we define the mapping qA : D(A) −→ X
by setting

(3.3) (qA)(x) := qA(x), x ∈ D(A).

If D(A) is also a left A-submodule of X, then we can define Aq : D(A) −→ X by
setting

(3.4) (Aq)(x) := A(qx), x ∈ D(A).

The sum of operators is defined in the usual way.

It is easy to see that the operators defined in (3.3) and (3.4) are right linear.

Definition 3.9. Assume X is normed with A-norm ‖ · ‖. For every A ∈ Endr(X),
we set

(3.5) ‖A‖ := sup
x�=0

‖Ax‖
‖x‖

and we define the set

L r(X) := {A ∈ Endr(X) : ‖A‖ < ∞}.
Observe that ‖A‖ can be equivalently defined as the operatorial norm of A as an

element of End(RX). Therefore

L r(X) = {A ∈ End(RX) : A is right linear, ‖A‖ < ∞}
= {A ∈ L (RX) : A is right linear},

where L (RX) = {A ∈ End(RX) : ‖A‖ < ∞} is the usual normed R-vector
space of continuous R-linear operators on RX. The sum of operators, the scalar
multiplications (3.3) and (3.4), the composition, and (3.5) make L r(X) a normed
two-sided A-algebra with unit Id. If X is Banach, then L r(X) is Banach.

Let us recall the following lemma (cf. [32, Lemma 2.19]).

Lemma 3.10. Let X be a normed two-sided A-module with A-norm ‖ · ‖. The R-
vector subspace L r(X) of L (RX) is closed with respect to the topology of pointwise
convergence and hence with respect to the uniform operator topology of L (RX).

It is also useful to consider the following complex structures on the two-sided
A-module X.

Definition 3.11. Assume (2.8) holds and let j ∈ SA. We endow the abelian group
(X,+) with the complex scalar multiplication C×X −→ X defined by

(3.6) zx := xφj(z), x ∈ X, z ∈ C.

The resulting complex vector space will be denoted by Xj. If A : D(A) −→ X is
a right linear operator, then we define the complex subspace D(Aj) of Xj and the
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C-linear operator Aj : D(Aj) −→ Xj by setting D(Aj) := D(A) and Aj(x) := A(x)
for every x ∈ D(Aj).

Remark 3.12.
(i) Fix j ∈ SA. Since Cj ⊆ QA, if X is normed with A-norm ‖ · ‖, then Lemma

3.3 ensures that ‖ · ‖ is a norm on Xj in the usual complex sense. It is immediate
to verify that (X, ‖ · ‖) is a Banach two-sided A-module if and only if (Xj, ‖ · ‖) is
a complex Banach space.

(ii) Let j ∈ SA and let ‖ · ‖ be an A-norm on X. Denote by L (Xj) the C-
vector space of continuous C-linear operators defined on the whole Xj, equipped
with the usual pointwise operations of sum and scalar multiplication. We have
that L r(X) ⊆ L (Xj) ⊆ L (RX), the second inclusion being strict if X �= {0}. If
X �= {0} and there exists q ∈ A such that jq − qj is invertible in A (this is true if,
e.g., A = H), then the operator X → X : x 	−→ xj belongs to L (Xj)�L r(X) and
the first inclusion is strict too. Furthermore, if A coincides with the real subalgebra
generated by QA (e.g., if A is equal to some Rn), then L r(X) =

⋂
i∈SA

L (Xi).

(iii) There would be no need to introduce the notation Aj, the notion of mapping
being a set-theoretical one. Anyway this is convenient to shorten some statements
about A considered as a linear operator on a complex vector space.

4. Slice functions with values in a two-sided A-module

The aim of this section is to introduce the notion of vector-valued stem func-
tion and the corresponding concept of slice regular function. The latter concept
generalizes the one of vector-valued quaternionic slice hyperholomorphic function
introduced in [3] (cf. Remark 4.5 below).

We assume that

A is a real algebra satisfying (2.4), (2.8), and (2.11)

and that
X is a Banach two-sided A-module with A-norm ‖ · ‖.

In order to introduce the notion of X-valued slice function, we consider X as a
real vector space, i.e., RX, and we define in X ×X a structure of complex vector
space by defining the standard componentwise sum and the scalar multiplication
C× (X ×X) −→ (X ×X) : (z, v) 	−→ zv:

(4.1) (r + si)(x, y) := (rx− sy, ry + sx)

for z = r + si, v = (x, y), r, s ∈ R, x, y ∈ X. Endowing X ×X with this complex
vector space structure, we obtain the so-called complexification X ⊗R C of X. The
complex conjugation of v = (x, y) ∈ X ⊗R C is defined by

v := (x,−y).

We make X ⊗R C a real Banach space by defining ‖(x, y)‖ := max{‖x‖, ‖y‖}
for (x, y) ∈ X ⊗R C. Thus if D is a nonempty open subset of C � R2, then
C1(D;X⊗RC) will denote the set of real continuously differentiable functions from
D into X ⊗R C in the sense of differential calculus in real Banach spaces. If in
addition

X is a Banach two-sided A-algebra with unit 1X ,

the following product makes X ⊗R C a complex algebra:

(x, y)(x′, y′) := (xx′ − yy′, xy′ + yx′).
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By setting 1 := (1X , 0) ∈ X ⊗R C and i := (0, 1X) ∈ X ⊗R C, every v = (x, y) ∈
X ⊗R C can be uniquely written in the form v = x1 + yi = x + yi, and i is called
an imaginary unit : X ⊗R C = X + Xi = {v = x + yi : x, y ∈ X} and i2 = −1.
Observe that iv = iv = vi for every v ∈ X ⊗R C and the structure of real vector
space induced by the scalar multiplication (4.1) with s = 0 is the same structure of

RX × RX.

Remark 4.1. Let D be a nonempty open subset of C. Using [44, Theorem 3.31,
p. 79], the vector Cauchy integral formula and standard complex analysis arguments
for scalar functions, it is easy to check that the following statements are equivalent:

(i) F ∈ C1(D;X ⊗R C) and ∂F
∂r + i∂F∂s = 0.

(ii) F is complex differentiable in D.
(iii) z 	−→ 〈L, F (z)〉 is holomorphic in D for every C-linear continuous L :

X ⊗R C −→ C.

In the remaining part of this section, D will denote a nonempty subset of C

invariant under complex conjugation.

Definition 4.2. A function F = (F1, F2) : D −→ X ⊗R C is said to be a stem
function if

F (z) = F (z) ∀z ∈ D;

i.e., F1(z) = F1(z) and F2(z) = −F2(z) for every z ∈ D.
Let ΩD be the circular subset of QA associated to D and, for every j ∈ SA, let

φj : C −→ Cj be the isomorphism φj(r + si) = r + sj (cf. Definition 2.4). We
say that f : ΩD −→ X is a (X-valued) right slice function if there exists a stem
function F = (F1, F2) : D −→ X ⊗R C such that

(4.2) f(φj(z)) = F1(z) + F2(z)j ∀z ∈ D, ∀j ∈ SA.

In this case, we write f = Ir(F ). In the remainder of the paper we will set fj :=
f ◦ φj : D −→ Xj.

The right slice function f is well-defined, and it is induced by a unique stem
function. Indeed, if r ∈ R, then F2(r) = 0 (being F2(z) = −F2(z)) and f(r) = F1(r)
independently from the choice of j ∈ SA. If q ∈ QA �R, then it admits two
representations q = φj(z) = φ−j(z) with z ∈ D�R and j ∈ SA. However, f(q) is
uniquely determined by F :

f(φj(z)) = F1(z) + F2(z)j = F1(z) + F2(z)(−j) = f(φ−j(z)).

The stem function F is in turn uniquely determined by f :

(4.3) F1(z) =
1

2
(f(q) + f(qc)) , F2(z) = −1

2
(f(q)− f(qc)) j

if z ∈ D, j ∈ SA, and q = φj(z). The latter equalities imply the following represen-
tation formula for right slice functions f :

(4.4) f(r + sk) =
1

2
(f(q) + f(qc))− 1

2
(f(q)− f(qc)) jk

if q = r + sj ∈ ΩD, r, s ∈ R, and j,k ∈ SA.
We now introduce the notion of slice regularity for vector-valued mappings.



5008 RICCARDO GHILONI AND VINCENZO RECUPERO

Definition 4.3. Let D ⊆ C be open and let f : ΩD −→ X be a right slice function
with f = Ir(F ). We say that f is right slice regular if F is holomorphic in D, i.e.,
if F ∈ C1(D;X ⊗R C) and

∂F

∂r
+ i

∂F

∂s
= 0,(4.5)

where (r, s) denotes the real coordinates in C. If F = (F1, F2), then (4.5) is equiv-
alent to

(4.6)
∂F1

∂r
=

∂F2

∂s
,

∂F1

∂s
= −∂F2

∂r
.

Definition 4.4. The notions of left slice and left slice regular functions are com-
pletely analogous to the right ones. We say that f : ΩD −→ X is a left slice
function if there exists a (unique) stem function F = (F1, F2) : D −→ X⊗RC such
that f(φj(z)) = F1(z) + jF2(z) for every z ∈ D and j ∈ SA. In this case, we write
f = I�(F ). If D is open in C and F is holomorphic in D, then f is called left slice
regular.

Remark 4.5. In the case in which A = H and D is connected and intersects R, the
above notion of X-valued (left or right) slice regular function coincides with the
one of (left or right) slice hyperholomorphic function introduced in Section 3 of [3];
for a proof of this fact, see [3, Theorem 3.15].

Example 4.6.
(a) If c ∈ X, then the constant function f : ΩD −→ X : q 	−→ c is obviously

both left and right slice regular. In the remainder of the paper we will denote the
constant function by its constant value: f = c.

(b) If X is a Banach two-sided A-algebra, c ∈ X, and f : ΩD −→ X is right
slice regular with f = Ir(F ), then g : ΩD −→ X : q 	−→ cf(q) is right slice regular,
since g = Ir(G), where G(z) = cF (z) is a holomorphic stem function. On the other
hand, in general q 	−→ f(q)c is not a right slice function, but it is left slice regular
if f is.

Proposition 4.7. Let D ⊆ C be open and let f : ΩD −→ X be a right slice
function. Then the following statements are equivalent.

(i) f is right slice regular.
(ii) fj := f ◦ φj : D −→ Xj is holomorphic for every j ∈ SA.
(iii) There exists j ∈ SA such that fj : D −→ Xj is holomorphic.

Proof. Assume thatf = Ir(F ) with F = (F1, F2). Since fj(z) = f(φj(z)) = F1(z)+
F2(z)j, recalling (3.6), if f satisfies (i), then it holds that

∂fj
∂r

+ i
∂fj
∂s

=
∂F1

∂r
+

∂F2

∂r
j+

(
∂F1

∂s
+

∂F2

∂s
j

)
j

=
∂F1

∂r
+

∂F2

∂r
j+

∂F1

∂s
j− ∂F2

∂s

=
∂F1

∂r
− ∂F2

∂s
+

(
∂F2

∂r
+

∂F1

∂s

)
j = 0.

This proves (ii). The implication (ii) =⇒ (iii) is evident. Finally, suppose (iii)

holds; i.e.,
∂fj
∂r +

∂fj
∂s j = 0 for some j ∈ SA. Thanks to (4.3), we infer that

2
∂F1

∂r
(z) =

∂fj
∂r

(z) +
∂fj
∂r

(z) = −∂fj
∂s

(z)j− ∂fj
∂s

(z)j = 2
∂F2

∂s
(z)
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for every z ∈ D. Similarly, we obtain also the second equality of (4.6), and (i)
follows. �

Remark 4.8. If A = H and D ⊆ C is connected, then Proposition 4.7 entails that
a function f : ΩD −→ H is slice regular if and only if it is regular in the sense of
[23, Definition 2.2].

For X-valued slice regular functions the following extension lemma holds.

Lemma 4.9. Let D ⊆ C be open and connected, and let f : ΩD −→ X be a right
slice regular function. If f(q) = 0 for all q ∈ ΩD ∩ R, then f = 0.

Proof. Since D is connected and invariant under complex conjugation, thenD∩R �=
∅. Assume that f = Ir(F ) with F = (F1, F2). Let r ∈ D ∩ R. Since F (z) = F (z),
we have F2(r) = 0. Choose j ∈ SA. Then

0 = f(φj(r)) = F1(r) + F2(r)j = F1(r);

thus F (r) = 0 for every r ∈ D∩R. Hence F = 0 in D, and the lemma follows from
(4.2). �

If X is also a Banach two-sided A-algebra with unit, then one can perform the
pointwise product of two right slice functions. However, it is not in general a right
slice function. On the contrary, it is immediately seen that the pointwise product of
two stem functions is a stem function. Therefore it is possible to define the following
notion of slice product which generalizes the convolution product between power
series with coefficients in X.

Definition 4.10. Let X be a Banach two-sided A-algebra with unit, and let f :
ΩD −→ X and g : ΩD −→ X be two right slice functions with f = Ir(F ), g = Ir(G),
and F = F1 +F2 i, G = G1 +G2 i. The (right) slice product of f and g is the right
slice function f · g := Ir(FG), where FG is the pointwise product of F and G:

(FG)(z) :=
(
F1(z)G1(z)− F2(z)G2(z)

)
+
(
F1(z)G2(z) + F2(z)G1(z)

)
i ∀z ∈ D.

Since a real bilinear product of two holomorphic vector functions is holomorphic,
we immediately get the following result.

Proposition 4.11. The slice product of two right slice regular functions is right
slice regular.

Some more words are necessary concerning the notation for the slice product.
If we want to stress the role of the independent variable, the following notation is
convenient:

f(q) ·q g(q) := (f · g)(q).
This is especially useful when the functions f and g depend on several variables:

f(p, q) ·q g(p, q) := (f(p, ·) · g(p, ·))(q).
Dealing with slice powers, the following notation will also be used for n ∈ N:

f(p, q)·qn := f(p, q) ·q f(p, q) ·q · · · ·q f(p, q)︸ ︷︷ ︸
n times

;

i.e., this n-th power is the slice product with respect to q of f(p, q) with itself
computed n times.
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5. Examples of vector slice regular functions

In this section we consider some fundamental examples of vector-valued right
slice regular functions, which will be exploited in the remainder of the paper.
Throughout the section we assume that

A satisfies (2.4) and (2.11).

5.1. Right power series. Let (cn) be a sequence in a Banach two-sided A-module
X. Consider the series s =

∑
n≥0 cnq

n with q ∈ QA. Thanks to Proposition

2.3(b) and Lemma 3.3, we know that ‖cnqn‖ = ‖cn‖|q|n. This equality ensures the
validity of the Abel theorem for s. In other words, if R ∈ [0,+∞] is defined by

1/R := lim supn→+∞
n
√
‖cn‖ and if R > 0, then s converges totally on compact

subsets of the ball ΩR := {q ∈ QA : |q| < R}. The sum function ΩR −→ X : q 	−→∑
n≥0 cnq

n of s, which we denote again by s, is right slice regular. Indeed, if BR

is the Euclidean open ball of C centered at 0 of radius R and S1, S2 : BR −→ X
are functions defined by S1(z) :=

∑
n≥0 cn�(zn) and S2(z) :=

∑
n≥0 cn�(zn), then

S = (S1, S2) is a holomorphic stem function and s = Ir(S). We have just seen
that convergent power series with left coefficients in X are right slice regular. In
general, convergent power series with right coefficients are not right slice functions,
but they are left slice regular functions.

5.2. Noncommutative exponentials. In this subsection we introduce some non-
commutative generalizations of the complex exponential functions z 	−→ eaz, where
a is a vector of a complex Banach algebra. In what follows, we also give the defini-
tion of the “slice translation” of these exponential mappings. First we recall that
there exists a positive constant C, depending only on A, such that

|(p+ q)·qn| ≤ C
(
(Re(p) + Re(q))2 + (| Im(p)|+ | Im(q)|)2

)n/2
for every p, q ∈ QA and for every n ∈ N (cf. [29, inequality (3.2)]). Therefore the
series in the following formula (5.1) is convergent on the whole QA.

Definition 5.1. LetX be a Banach two-sided A-algebra, let x ∈ X, and let p ∈ QA.
We define the right slice regular function expxp : QA −→ X by setting

expxp(q) :=
∑
n≥0

xn

n!
(p+ q)·qn, q ∈ QA.(5.1)

For p = 0 we simply set expx := expx0 , i.e.,

expx(q) := expx0 =
∑
n≥0

xn

n!
qn, q ∈ QA.

We will also write ex := expx(1) =
∑

n≥0
xn

n! , i.e., the usual exponential function in

RX.

Here are the properties of the “noncommutative” exponential.

Lemma 5.2. Let X be a Banach two-sided A-algebra, let x ∈ X, and let p ∈ QA.
Then the following propositions hold.

(i) Let q ∈ QA with p+ q ∈ QA. If either x2 = 0 or pq = qp, then

(5.2) expxp(q) = expx(p+ q).
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A partial reverse is true. If expxtp(tq) = expx(t(p + q)) for every t ∈ R,

then either x2 = 0 or pq = qp or pq− qp is a left zero-divisor of A (that is,
pq − qp �= 0 and (pq − qp)a = 0 for some a ∈ A�{0}).

(i′) Assume xp = px. Let q ∈ QA with p+ q ∈ QA. If either x2 = 0 or pq = qp,
then

(5.3) expx(p+ q) = expx(p) expx(q).

In particular this equality holds if p, q ∈ R. A partial reverse is true. If
expx(t(p + q)) = expx(tp) expx(tq) for every t ∈ R, then either x2 = 0 or
pq = qp or pq − qp is a left zero-divisor of A.

(ii) If xq = qx for some q ∈ QA, then

(5.4) expx(q) = exq.

A partial reverse is true. If expx(tq) = extq for every t ∈ R, then either
xq = qx or x is a left zero-divisor of X.

(iii) expxp is the unique right slice regular function on QA such that expxp(t) =∑
n≥0

xn

n! (p+ t)n for every t ∈ R.

(iv) If t ∈ R, then QA −→ X : q 	−→ expxq (t) is right slice regular.

Proof. Let q ∈ QA with p+ q ∈ QA. Since

expxp(q)− expx(p+ q) =
x2

2
(pq − qp) +

∑
n≥3

xn

n!

(
(p+ q)·qn − (p+ q)n

)
,

if either x2 = 0 or pq = qp, then (5.2) holds. Suppose that E(t) := expxtp(tq) −
expx(tp+ tq) = 0 for every t ∈ R. Observe that

E(t) =
t2x2

2
(pq − qp) + t3hx(t)

for some continuous (real analytic indeed) function hx : R −→ X. Thus we have

0 = lim
R	t→0

2E(t)t−2 = x2(pq − qp).

If x2 �= 0 and p′ := pq − qp �= 0, then p′ must be a left zero-divisor. Otherwise,
being A finite dimensional, there would exist q′ ∈ A such that p′q′ = 1, and hence
x2 = (x2p′)q′ = 0, which is a contradiction. This completes the proof of point (i).

Let us prove (i′). Suppose xp = px. Thanks to this hypothesis, we have that
expx(p + q) − expx(p) expx(q) = x2y for some y ∈ X. Thus, (5.3) is satisfied if
x2 = 0. If instead p commutes with q, then

expx(p+ q)− expx(p) expx(q)

=
∑
n≥2

xn

n!

n∑
k=0

(
n

k

)
pkqn−k −

∑
n≥2

n∑
k=0

xk

k!
pk

xn−k

(n− k)!
qn−k = 0.

Suppose that F(t) := expx(tp + tq) − expx(tp) expx(tq) for every t ∈ R. We have
that

F(t) =
x2

2
(qp− pq) + t3kx(t)

for some continuous function kx : R −→ X, and hence 0 = limR	t→0 2F(t)t
−2 =

x2(qp− pq). We can now conclude as above.



5012 RICCARDO GHILONI AND VINCENZO RECUPERO

The proof of point (ii) is similar. If xq = qx, then (5.4) is evident. Suppose that
G(t) := expx(tq)− extq = 0 for every t ∈ R. Since

G(t) =
∑
n≥2

(
xnqn − (xq)n

) tn
n!

=
t2

2
x(xq − qx)q + t3	x(t)

for some continuous function 	x : R −→ X, it follows that 0 = limR	t→0 2G(t)t−2 =
x(xq − qx)q, and hence 0 = x(xq − qx) if q �= 0. Thus either xq = qx or x is a left
zero-divisor of X.

Point (iii) is a consequence of (i) and Lemma 4.9, while point (iv) follows from
(i) and (iii), being expxq (t) = expx(q + t) = expxt (q). �

5.3. Operatorial slice composition. Assume that

X is a Banach two-sided A-module.

The slice product deserves particular attention when functions take on values in
the set L r(X) whose product is the composition of operators. In order to avoid
any notational ambiguity we explicitly state the following product:

L r(X)× L r(X) −→ L r(X) : (A,B) 	−→ AB := A ◦ B,
i.e., (AB)(x) = A(Bx) for every x ∈ X, which makes L r(X) a Banach two-sided
A-algebra with unit. In this special case we will adopt a new symbol for the slice
composition of operatorial functions; i.e., the slice product of operatorial functions
q 	−→ F(q), q 	−→ G(q) will be denoted with the symbol “�” rather than the dot
“·”. For the sake of clarity we formalize this notation in the following definition.

Definition 5.3. LetD be a nonempty subset of C invariant under complex conjuga-
tion and let ΩD be the circular subset ofQA associated toD. Consider two right slice
functions F : ΩD −→ L r(X) and G : ΩD −→ L r(X) with F = Ir(F), G = Ir(G),
and F = (F1,F2), G = (G1,G2). The slice product of F and G will be called (right)
slice composition of F and G and will be denoted by F � G : ΩD −→ L r(X). In
other terms

F� G := Ir(FG),
i.e.,

(5.5) (F�G)(φj(z)) = (F1(z)◦G1(z)−F2(z)◦G2(z))+(F2(z)◦G1(z)+F1(z)◦G2(z))j

for every z ∈ D and for every j ∈ SA.

Example 5.4. Let A ∈ L r(X) and let F : ΩD −→ L r(X) be a right slice function.
We know from Example 4.6(b) that the function q 	−→ AF(q) = A ◦ F(q) is a right
slice function. In general, instead, the mapping q 	−→ F(q)A is not right slice. If we
consider A as a constant function, then the slice composition F� A is a right slice
function. Explicitly if F = Ir(F) with F = (F1,F2), then

(F� A)(φj(z)) = F1(z)A+ F2(z)A j ∀z ∈ D, ∀j ∈ SA.

In the following remark we show that, given a right slice function F : ΩD −→
L r(X) and x ∈ X, in general we cannot conclude that ΩD −→ X : q 	−→ F(q)x is
right slice (or left slice).

Remark 5.5. Let x ∈ X, let F : ΩD −→ L r(X) be a right slice function, and let
(F1,F2) be the stem function inducing F. Define Fx : ΩD −→ X by Fx(q) := F(q)x.
Therefore we have that Fx(φj(z)) = (F1(z) + F2(z)j)x = F1(z)x + F2(z)(jx) if
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z ∈ D and j ∈ SA. Given j ∈ SA, if Fx = Ir(F ) for some stem function F :
D −→ X ⊗R C with F = (F1, F2), then (4.3) implies that F1(z) = F1(z)x and
F2(z) = −F2(z)(jxj). It follows immediately that Fx is right slice if and only if, for
every z ∈ D and for every j,k ∈ SA, F2(z)(kx) = −F2(z)(jxj)k or, equivalently,
F2(z)(kxk − jxj) = 0. A concrete example in which the latter equality fails is as
follows. Denote by {1, i, j, k} the standard real vector basis of H and define A := H,
X as H with its standard structure of Banach two-sided A-module (cf. Example
3.6), x := j ∈ X = H, and the function F : H −→ L r(H) by setting F(q)p := iqp
for every p ∈ H = X. Observe that, in this case, F2(z)p = i�(z)p and hence, if
z = i ∈ C, j := j ∈ A = H, and k := k ∈ A = H, then F2(z)(kxk− jxj) = 2k �= 0.
It follows that Fx : H −→ H, Fx(q) = iqj, is not right slice. It is immediately seen
that Fx is not left slice as well.

5.4. Integrals. Here is a result on the slice regularity of integrals depending on a
parameter.

Proposition 5.6. Let X be a Banach two-sided A-module, let I be an interval of
R, let D be a nonempty open subset of C invariant under complex conjugation, and
let f : I × ΩD −→ X be a map such that f(·, q) ∈ L1(I;X) for every q ∈ ΩD

and f(t, ·) is right slice regular with f(t, ·) = Ir(F (t, ·)) for every t ∈ I. Suppose
there exist j ∈ SA and gr, gs ∈ L1(I;R) such that, if fj : I ×D −→ X denotes the
map fj(t, z) := f(t, φj(z)), ‖(∂fj/∂r)(t, z)‖ ≤ gr(t) and ‖(∂fj/∂s)(t, z)‖ ≤ gs(t) for
every t ∈ I and for every z = r + is ∈ D. Then the function h : ΩD −→ X defined
by

h(q) :=

∫
I

f(t, q) dt, q ∈ ΩD,

is right slice regular and h = Ir(H), where H(z) :=
∫
I
F (t, z) dt if z ∈ D.

Proof. If F (t, ·) = (F1(t, ·), F2(t, ·)) for every t ∈ I, then representation formulas
(4.3) imply that Fm(·, z), m = 1, 2, is integrable for every z ∈ D; therefore the
definition of H makes sense. If H = (H1, H2), then Hm(z) =

∫
I
Fm(t, z) dt for

every z ∈ D, m = 1, 2, H is a stem function, and

H1(z) +H2(z)j =

∫
I

(F1(t, z) + F2(t, z)j) dt =

∫
I

f(t, φj(z)) dt = h(φj(z))

for every j ∈ SA and every z ∈ D, i.e., h = Ir(H). Using again formulas (4.3) we also
infer that there existGr,m, Gs,m ∈ L1(I;R),m = 1, 2, such that ‖(∂Fm/∂r)(t, z)‖ ≤
Gr,m(t) and ‖(∂Fm/∂s)(t, z)‖ ≤ Gs,m(t) for every (t, z) ∈ I × D. In this way we
can perform derivatives under the sign of integral, obtaining

∂H

∂r
(z) + i

∂H

∂s
(z) =

∫
I

(
∂F

∂r
(t, z) + i

∂F

∂s
(t, z)

)
dt = 0;

therefore H is holomorphic and we are done. �

5.5. Spherical resolvent operator. The notions of spherical spectrum and of
spherical resolvent operator were given for the first time in [8] for quaternions
and in [14] for arbitrary Clifford algebras Rn. Here we consider the general case
introduced in [32, Definition 2.26].
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Assume that

A satisfies (2.4), (2.8), and (2.12), and X is a Banach two-sided A-module.

Definition 5.7. Let D(A) be a right A-submodule of X and let A : D(A) −→ X
be a closed right linear operator. Given q ∈ QA, we define the right linear operator
Δq(A) : D(A2) −→ X by setting

Δq(A) := A2 − 2Re(q)A+ |q|2 Id.
The spherical resolvent set ρs(A) of A and the spherical spectrum σs(A) of A are
the circular subsets of QA defined as follows:

ρs(A) := {q ∈ QA : Δq(A) is bijective, Δq(A)
−1 ∈ L r(X)}

and

σs(A) := QA�ρs(A).

For every q ∈ ρs(A), we define the operators Qq(A) ∈ L r(X) and Cq(A) ∈ L r(X)
by setting

Qq(A) := Δq(A)
−1

and

(5.6) Cq(A) := Qq(A)q
c − AQq(A).

The operator Cq(A) is called the spherical resolvent operator of A at q.

Observe that the boundedness of Cq(A) follows from the closed graph theorem
on L (RX) (cf. [32, Proposition 2.28]). We also mention that a definition that has
some similarities with the spherical spectrum was given in [38] in the context of
real *-algebras.

Remark 5.8. Let A = H and letX = H
2 with standard left and right multiplications

by scalars in H (cf. Example 3.6). Define A ∈ L r(H2) by setting

A

(
p
q

)
:=

(
0 i
j 0

)(
p
q

)
=

(
iq
jp

)
∀
(
p
q

)
∈ H

2.

By direct inspection, one easily verifies that λ = λ0 + λ1i + λ2j + λ3k ∈ H with
λ0, λ1, λ2, λ3 ∈ R belongs to σS(A) if and only if λ2

0 = 1
2 and λ2

1 + λ2
2 + λ2

3 = 1
2 . In

other words, we have

σs(A) =

(
− 1√

2
+

1√
2
SH

)
∪
(

1√
2
+

1√
2
SH

)
.

It is also immediate to see that the operator λ Id− A ∈ L r(H2) is not invertible if
and only if λ ∈ {μ, μc}, where μ := 1√

2
(i + j). Observe that {μ, μc} ∩ σs(A) = ∅.

This shows that in general there is no relation between the notion of spherical
spectrum and the noncommutative version of the classical concept of spectrum.
Indeed, Δμ(A) is invertible, but μ Id − A and μc Id − A are not. Moreover, if
λ = 1√

2
(1 + i), then λ Id− A and λc Id− A are invertible, but Δλ(A) is not.

It is worth recalling that, in the quaternionic matricial case, the spherical spec-
trum coincides with the set of right eigenvalues (cf. [26, Proposition 4.5]): λ ∈ σs(A)
if and only if Ax = xλ for some x ∈ H

2
�{(0, 0)}. The spherical spectrum is equal

also to the set of left eigenvalues, provided H2 is endowed with a suitable left scalar
multiplication (cf. [27, Example 7.3]).



SLICE REGULAR SEMIGROUPS 5015

In our next result, given j ∈ SA, we describe the deep connection existing between
the notions of spherical resolvent set and of spherical resolvent operator of an
operator A on X and the classical complex ones of resolvent set and of resolvent
operator of the operator Aj on Xj.

Theorem 5.9. Let A : D(A) −→ X be a closed right linear operator, j ∈ SA, and
let ρ(Aj) denote the resolvent set of the operator Aj : D(Aj) −→ Xj (cf. Definition
3.11). Then the following equivalent assertions hold.

(i) Given λ ∈ C, we have that φj(λ) ∈ ρs(A) if and only if both λ and λ belong
to ρ(Aj).

(ii) ρs(A) is equal to the circular subset of QA associated to ρ(Aj)∩ρ(Aj), where

ρ(Aj) denotes the set {λ ∈ C : λ ∈ ρ(Aj)}.
Furthermore, if λ ∈ ρ(Aj) ∩ ρ(Aj), then

(5.7) Qφj(λ)(A) = Rλ(Aj)Rλ(Aj).

Proof. The equivalence between (i) and (ii) is evident. Let us prove (i). If λ =
r + si ∈ C with r, s ∈ R and q := φj(λ) ∈ QA, then for every x ∈ D(A2) we have

(λ IdXj
− Aj)(λ IdXj

− Aj)x = ((r + si) IdXj
− Aj)((r − si) IdXj

− Aj)x

= (A2
j − 2rAj + r2 IdXj

+ s2 IdXj
)x

= A2x− Ax(2r) + x(r2 + s2) = Δq(A)x.(5.8)

Suppose that {λ, λ} ⊆ ρ(Aj). If y ∈ D(A), then there is x ∈ D(A) such that

Ajx = λx − y; therefore Ax ∈ D(A) since D(A) is a complex vector space. This

proves that (λ Id − Aj)(D(A2)) = D(A), which together with (5.8) implies that
Δq(A) is onto X. Moreover from (5.8) we also infer that Δq(A) is injective and
(5.7) holds. This also implies that Qq(A) is continuous. Moreover Qq(A) is right
linear by virtue of [32, Lemma 2.16]; thus q ∈ ρs(A). Suppose now that q ∈ ρs(A).
From (5.8) it follows that (λ IdXj

− Aj)(λ IdXj
− Aj)Qq(A)x = x for every x ∈ X;

thus λ IdXj
− Aj has a right inverse, which is provided by the operator

(λ IdXj
− Aj)(Qq(A))j.

Let us prove that it is also a left inverse. Consider a point y in D(Aj) = D(A). Since
Δq(A)(D(A3)) = D(A) and Δq(A)A = AΔq(A), we infer that AQq(A)y = Qq(A)Ay;
indeed AQq(A)y = Qq(A)Δq(A)AQq(A)y = Qq(A)AΔq(A)Qq(A)y = Qq(A)Ay. It
follows that

(λ IdXj
− Aj)(Qq(A))j(λ IdXj

− Aj)y

= (λ IdXj
− Aj)

(
(Qq(A))j(λy)− Qq(A)Ay

)
= (λ IdXj

− Aj)(λ(Qq(A)(y))− AQq(A)y)

= |λ|2Qq(A)y − λ(AQq(A)y)− λAj(Qq(A)y) + AAQq(A)y

= (|λ|2 − 2�(λ)A− A2)Qq(A)y

= (|q|2 − 2Re(q)A− A2)Qq(A)y

= Δq(A)Qq(A)y = y.

This proves that λ ∈ ρ(Aj) and (λ IdXj
− Aj)(Qq(A))j = Rλ(Aj). Interchanging λ

and λ we obtain also that λ ∈ ρ(Aj) and we are done. �
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Remark 5.10. Let A : D(A) −→ X be a closed right linear operator and let j ∈ SA.

Choose λ ∈ ρ(Aj)∩ρ(Aj) and define q := φj(λ) ∈ ρs(A). Since (λ IdXj
−Aj)Rλ(Aj) =

IdXj
, we have that AjRλ(Aj)− IdXj

= λRλ(Aj). In this way, thanks to (5.7), given
any x ∈ X, it holds that

Cq(A)x− Rλ(Aj)x = Rλ(Aj)Rλ(Aj)(q
cx)− (AjRλ(Aj)− IdXj

)Rλ(Aj)x

= Rλ(Aj)Rλ(Aj)(q
cx)− λRλ(Aj)Rλ(Aj)x

= Rλ(Aj)Rλ(Aj)(q
cx− xqc).

It follows that

∀x ∈ X : Cq(A)x = Rλ(Aj)x ⇐⇒ qcx = xqc,

Cq(A) = Rλ(Aj) ⇐⇒ qcx = xqc ∀x ∈ X.

In particular, we have that Cr(A) = Rr(Aj) for every r ∈ R.

Proposition 5.11. Let A : D(A) −→ X be a closed right linear operator such that
ρs(A) ∩ R �= ∅. Then the mapping ρs(A) −→ L r(X) : q 	−→ Cq(A) is right slice
regular.

Proof. Following the proof of Lemma 2.36 of [32], one obtains that if λ ∈ ρs(A)∩R,
B := −Cλ(A) ∈ L r(X), and Φ : QA�{λ} −→ QA�{λ} is the inversion map
Φ(q) := (q− λ)−1, then Φ(ρs(A)�{λ}) = ρs(B)�{λ} and Cq(A) = −BCΦ(q)(B)Φ(q)
for every q ∈ ρs(A) \ {λ}. Since [32, Lemma 2.31] ensures that ρs(B) is nonempty
and open in QA, we infer that ρs(A) is a nonempty open circular subset of QA. Let
D be the nonempty open subset of C invariant under complex conjugation such
that ΩD = ρs(A). Fix j ∈ SA and define the stem function F = (F1,F2) : D −→
L r(X)⊗R C as follows:

F1(z) := Qφj(z)(A)�(z)− AQφj(z)(A),(5.9)

F2(z) := −Qφj(z)(A)�(z).(5.10)

For every z ∈ D, we have that F(z) = F(z) and

F1(z) + F2(z)j = Qφj(z)(A)�(z)− AQφj(z)(A)− Qφj(z)(A)�(z)j
= Qφj(z)(A)φj(z)

c − AQφj(z)(A) = Cφj(z)(A);(5.11)

therefore q 	−→ Cq(A) is right slice. From [32, Lemma 2.32] it follows that the map
D −→ (L r(X))j : z 	−→ Cφj(z)(B) is holomorphic. Since Cq(A) = −BCΦ(q)(B)Φ(q),

the map z 	−→ Cφj(z)(A) is holomorphic as well. Now we can conclude by invoking
Proposition 4.7. �

A straightforward computation shows that if ω ∈ R, then Δq(A−ω Id) = Δq+ω(A)
for every q ∈ QA. Therefore we can relate the spherical resolvent operators of A
and of A− ω Id as in the classical case (this is not true if ω is not real).

Lemma 5.12. If ω ∈ R, then Δq(A − ω Id) = Δq+ω(A) for every q ∈ QA and
ρs(A − ω Id) = ρs(A) − ω. Moreover Qq(A − ω Id) = Qq+ω(A) and Cq(A − ω Id) =
Cq+ω(A) for every q ∈ ρs(A− ω Id).

6. Right linear operator semigroups

Throughout this section, we will assume that

A satisfies (2.4), (2.8), and (2.12), and X is a Banach two-sided A-module.
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6.1. Strongly continuous semigroups. We first recall the natural definition of
right linear operator semigroup (cf. [13] for the quaternionic case and [32] for the
general case).

Definition 6.1. A mapping T : [0,∞[ −→ L r(X) is called a (right linear operator)
semigroup if

T(t+ s) = T(t)T(s) ∀t, s > 0,

T(0) = Id.

A semigroup T is called uniformly continuous if T ∈ C([0,∞[ ;L r(X)). A semi-
group T is called strongly continuous if T(·)x ∈ C([0,∞[ ;X) for every x ∈ X. The
generator of T is the right linear operator A : D(A) −→ X defined by

D(A) :=
{
x ∈ X : ∃ lim

h→0
(1/h)(T(h)x− x) = (d/ dt)T(t)x

∣∣
t=0

}
,

Ax := lim
h→0

1

h
(T(h)x− x), x ∈ D(A).

Remark 6.2. By Lemma 3.10, we could also say that T is a uniformly continuous
(resp. strongly continuous) semigroup in X if and only if T is L r(X)-valued and
T is a uniformly continuous (resp. strongly continuous) semigroup in RX.

Here is the generation theorem relating generators and semigroups (cf. [13,
Section 4] for the quaternionic case and [32, Theorem 4.5] for the general case).

Theorem 6.3. The following assertions hold.

(a) Let A : D(A) −→ X be a closed right linear operator with D(A) dense in
X. Suppose that there are constants M ∈ [1,∞[ and ω ∈ R such that
]ω,∞[ ⊆ ρs(A) and

(6.1) ‖Cλ(A)
n‖ ≤ M

(λ− ω)n
∀n ∈ N, ∀λ > ω.

Then A is the generator of the strongly continuous semigroup T : [0,∞[ −→
L r(X) defined by

T(t)x = lim
n→∞

etAnx, x ∈ X, where An := nACn(A) ∈ L r(X).

Moreover, ‖T(t)‖ ≤ Meωt for all t ≥ 0.
(b) Let T : [0,∞[ −→ L r(X) be a strongly continuous semigroup such that

there are constants M ∈ [1,∞[ and ω ∈ R with the following property:
‖T(t)‖ ≤ Metω for all t ≥ 0. Then the generator A of T is closed, D(A) is
dense in X, ]ω,∞[ ⊆ ρs(A), and ‖Cλ(A)

n‖ ≤ M
(λ−ω)n for all n ∈ N and for

all λ > ω.

In both cases (a) and (b), we have that

Cλ(A)x =

∫ ∞

0

e−tλT(t)x dt ∀λ > ω, ∀x ∈ X.

6.2. Noncommutative Laplace transform. In the noncommutative setting a
natural notion of argument of a number is provided by the following definition (cf.
[32, Definition 5.1]) that we will use also in the complex case.
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Definition 6.4. Define the argument function arg : QA�{0} −→ [0, π] on QA as
follows. If q ∈ QA�R, then there exist, and are unique, j ∈ SA, ρ ∈ ]0,∞[, and
θ ∈ ]0, π[ such that q = ρeθj ∈ Cj. Thus, we define arg(q) := θ. Moreover we set
arg(q) := 0 if q ∈ ]0,∞[ and arg(q) := π if q ∈ ]−∞, 0[.

We need to introduce the following classes of open subsets of C and of QA.

Definition 6.5. If η ∈ ]0, π] we define

Dη := {z ∈ C�{0} : arg(z) < η}
and the associated circular set

Ωη := ΩDη
=

{
q ∈ QA�{0} : arg(q) < η

}
.

Now we prove that the spherical resolvent operator can be written as a suitable
Laplace transform. This result is stated in [13, Theorem 4.2] in the quaternionic
setting and for n = 1; in that paper, the proof is based on the invertibility of
A− q Id, A being the generator of a given semigroup T and q belonging to ω+Ωπ/2,

where supt≥0 ‖T(t)‖e−ωt < ∞. However it is not clear to us why the operator
A − q Id is invertible; therefore we provide a different proof which also allows us
to get an integral representation for all the integer slice powers of the resolvent
operator, confirming the central role of the slice composition defined in Definition
5.3. It is worth noting that Proposition 5.6 does not apply since the mapping
q 	−→ (T(t)e−tq)x is not right slice regular even if q 	−→ T(t)e−tq is (cf. Remark
5.5).

Theorem 6.6. Let T : [0,∞[ −→ L r(X) be a strongly continuous semigroup.
Suppose there exist M ∈ [1,∞[ and ω ∈ R such that ‖T(t)‖ ≤ Meωt for all t ≥ 0.
If A is the generator of T, then ω +Ωπ/2 ⊆ ρs(A), and, for every n ∈ N, we have

(6.2) (Cq(A)
�n

q )x =
1

(n− 1)!

∫ ∞

0

(T(t)tn−1e−tq)x dt ∀q ∈ ω+Ωπ/2, ∀x ∈ X.

In particular

(6.3) ‖Cq(A)
�n

q ‖ ≤ M

(Re(q)− ω)n
∀q ∈ ω +Ωπ/2, ∀n ∈ N.

Proof. Fix j ∈ SA and let Sj : [0,∞[ −→ L (Xj) be defined by Sj(t) := T(t). It
follows that Sj is a strongly continuous semigroup satisfying the estimate ‖Sj(t)‖ ≤
Meωt for every t ≥ 0 and its generator is the operator Aj : D(Aj) −→ Xj defined
by D(Aj) := D(A) and Ajx := Ax for every x ∈ D(Aj). Therefore from the classical
theory we have that ω+Dπ/2 ⊆ ρ(Aj), the resolvent set of Aj; hence ω+Ωπ/2 ⊆ ρs(A)
by virtue of Theorem 5.9.

If n ∈ N, q ∈ ω + Ωπ/2, and x ∈ X are fixed, then a standard 2ε-argument

shows that t 	−→ (T(t)tn−1e−tq)x = T(t)(tn−1e−tqx) is continuous. Moreover we
have that ‖T(t)(tn−1e−tqx)‖ ≤ Mtn−1et(ω−Re(q))‖x‖ for every t ≥ 0. Therefore we
can define the following X-valued Lebesgue integral:

(6.4) Ln(q)x :=

∫ ∞

0

(T(t)tn−1e−tq)x dt, q ∈ ω +Ωπ/2, x ∈ X.

Now we show that (6.4) defines a right slice regular function Ln : ω + Ωπ/2 −→
L r(X). From the right linearity of T(t) and from the definition of X-valued
Lebesgue integral it follows that Ln(q) is right linear; moreover ‖Ln(q)x‖ ≤
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∫∞
0

‖T(t)tn−1e−tqx‖ dt ≤ ‖x‖M
∫∞
0

tn−1et(ω−Re(q)) dt. Thus actually Ln(q) ∈
L (RX) for every q ∈ ω +Ωπ/2. By a direct computation, it is immediate to verify

that
∫∞
0

tn−1et(ω−Re(q)) dt ≤ (n− 1)!(Re(q)− ω)−n. In particular, we have that

(6.5) ‖Ln(q)‖ ≤ M(n− 1)!

(Re(q)− ω)n
.

For every fixed t ∈ ]0,∞[, let F t
n = (F t

n,1, F
t
n,2) : C −→ A ⊗R C be the stem

function such that tn−1 exp−t = Ir(F
t
n): Fn,1(z) := tn−1e−t�(z) cos(t�(z)) and

Fn,2(z) := −tn−1e−t�(z) sin(t�(z)). Thanks to (4.3) it makes sense to define Ln,k :
ω +Dπ/2 −→ L r(X), k = 1, 2, by

Ln,k(z)x :=

∫ ∞

0

(T(t)F t
n,k(z))x dt, z ∈ ω +Dπ/2, x ∈ X.

Then Ln := (Ln,1,Ln,2) is a stem function and for every j ∈ SA, z ∈ ω+Dπ/2, and
x ∈ X, we have that

(Ln,1(z) + Ln,2(z)j)x =

∫ ∞

0

(
T(t)F t

n,1(z)x+ T(t)F t
n,2(z)jx

)
dt

=

∫ ∞

0

T(t)(F t
n,1(z) + F t

n,2(z)j)x dt

=

∫ ∞

0

T(t)tn−1e−tφj(z)x dt = Ln(φj(z))x.

Therefore Ln = Ir(Ln) is a right slice function.
Consider j ∈ SA and the map (Ln)j : ω +Dπ/2 −→ (L r(X))j defined by setting

(Ln)j := Ln ◦ φj. Let us show that (Ln)j is of class C1. Denote by (r, s) the
real coordinates in C and by ∂r and ∂s the partial derivatives ∂/∂r and ∂/∂s,
respectively. Observe that since C −→ C : z 	−→ e−tz is holomorphic, we have that
∂re

−tφj(z) + ∂se
−tφj(z)j = 0 for every z ∈ C. Define the mappings Dn,j,r,Dn,j,s :

ω +Dπ/2 −→ (L r(X))j by setting

Dn,j,r(z)x :=

∫ ∞

0

T(t)tn−1(∂re
−tφj(z))x dt,

Dn,j,s(z)x :=

∫ ∞

0

T(t)tn−1(∂se
−tφj(z))x dt,

for all x ∈ X, z ∈ ω +Dπ/2. A 2ε-argument shows again that Dn,j,r and Dn,j,s are
continuous. Moreover, for every z ∈ ω +Dπ/2 and for every h ∈ R�{0} such that
z + h ∈ ω +Dπ/2, we find that∥∥∥∥ (Ln)j(z + h)− (Ln)j(z)

h
− Dn,j,r(z)

∥∥∥∥
= sup

‖x‖≤1

∥∥∥∥
∫ ∞

0

T(t)tn−1

(
e−tφj(z+h) − e−tφj(z)

h
− ∂re

−tφj(z)

)
x dt

∥∥∥∥
≤ sup

‖x‖≤1

∫ ∞

0

∥∥∥∥T(t)tn−1

(
e−tφj(z+h) − e−tφj(z)

h
− ∂re

−tφj(z)

)
x

∥∥∥∥dt
≤

∫ ∞

0

Mtn−1eωt

∣∣∣∣e
−tφj(z+h) − e−tφj(z)

h
− ∂re

−tφj(z)

∣∣∣∣ dt,(6.6)
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where the last integral is finite because

Mtn−1eωt

∣∣∣∣e
−t(r+h+sj) − e−t(r+sj)

h
− ∂re

−t(r+sj)

∣∣∣∣
= Mtn−1eωt|e−t(r+sj)|

∣∣∣∣e
−th − 1

h
+ t

∣∣∣∣ ≤ Mtn−1etωe−tr2t = 2Mtnet(r−ω).

Moreover the last integrand in (6.6) converges to zero as h → 0; therefore we
can apply the dominated convergence theorem, obtaining that ∂r(Ln)j = Dn,j,r.
The proof that ∂s(Ln)j = Dn,j,s is entirely analogous. It follows that (Ln)j ∈
C1(ω +Dπ/2; (L

r(X))j). Moreover, for every x ∈ X, we have(
∂r(Ln)j(z) + i∂s(Ln)j(z)

)
x = ∂r(Ln)j(z)x+ ∂s(Ln)j(z)(jx) = Dn,j,rx+ Dn,j,s(jx)

=

∫ ∞

0

(
T(t)tn−1(∂re

−tφj(z) + ∂se
−tφj(z)j)x

)
dt = 0.

From Proposition 4.7 we infer that Ln is right slice regular. Thanks to Proposition
5.11 the function q 	−→ Cq(A)

�n
q is right slice regular as well, and from [32, Theorem

4.5] we have that Cr(A) = Rr(A) = L1(r) for every r > ω. Furthermore, from (5.9),

(5.10), (5.11), and (5.5), it follows that the value of Cq(A)
�n

q at q = r, which we

denote by Cr(A)
�n

r , coincides with Cr(A)
n for every r > ω. From the classical

semigroup theory applied to T : [0,∞[ −→ L (RX), we know that (n−1)!Rr(A)
n =

Ln(r) (cf. Remark 6.2 and [20, Corollary 1.11, p. 56]). Therefore (n−1)!Cr(A)
�n

r =

Ln(r) for every r > ω; thus Lemma 4.9 implies (6.2), i.e., (n− 1)!Cq(A)
�n

q = Ln(q).
Estimate (6.3) is now an immediate consequence of (6.5). �

6.3. Uniformly continuous semigroups. Strongly continuous semigroups are
somehow the less regular class of semigroups. At the other extreme there are the
uniformly continuous semigroups. We have the following result.

Theorem 6.7. Let T : [0,∞[ −→ L r(X) be a strongly continuous semigroup
and let A be its generator. Then T is a uniformly continuous semigroup if and
only if A ∈ L r(X). In this case T(t) = etA for every t ≥ 0, and the mapping
expA : QA −→ L r(X) defined by

expA(q) :=
∑
n≥0

An

n!
qn, q ∈ QA,

is the unique right slice regular extension of T.

Proof. The fact that A is bounded if and only if T(t) = etA for every t ≥ 0 is proved
in [32, Theorem 4.3]. The last statement follows immediately from Lemma 5.2(i′)
and Lemma 4.9. �

6.4. Slice regular semigroups. While uniformly continuous semigroups admit a
power series representation by means of the exponential function, in the strongly
continuous case this representation is not possible, since the generator is not bound-
ed. As in the classical complex case it is possible to develop a quaternionic func-
tional calculus (cf. [14]) that allows us to represent etA via a Cauchy integral
formula if A is bounded. However the counterpart of this functional calculus for
unbounded operators (cf. [10]) does not apply to the exponential function etA,
i.e., to semigroups. Nevertheless in [32] we show that a Cauchy integral formula
representation is possible if the generator of the semigroup is spherical sectorial,
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a natural quaternionic generalization of complex sectorial operators. Now we re-
call the definition of spherical sectorial operator and in the next section we are
going to prove that the semigroups generated by spherical sectorial operators are
exactly those that can be extended to a right slice regular operatorial function on a
spherical sector of A. Moreover this extension satisfies a suitable “noncommutative
semigroup law”, originating what we call the class of right slice regular semigroup.
This result provides a link between the theory of semigroups on Banach two-sided
A-modules and the theory of slice regular (operatorial) functions.

Definition 6.8. Let A : D(A) −→ X be a closed right linear operator, let δ ∈
]0, π/2], and let ω ∈ R. We say that A is a spherical δ-sectorial operator with vertex
ω if

ω +Ωπ/2+δ =
{
q ∈ QA�{ω} : arg(q − ω) < π/2 + δ

}
⊆ ρs(A).

If A is a spherical δ-sectorial operator with vertex ω for some δ ∈ ]0, π/2], then we
say that A is a spherical sectorial operator with vertex ω. If in addition ω = 0, we
simply say that A is a spherical sectorial operator.

The starting point of our analysis is the next result (cf. [32, Theorem 5.6]),
where we prove that a spherical sectorial operator generates a strongly continuous
semigroup represented by a suitable noncommutative Cauchy integral formula. We
state this theorem here in a form which is slightly more general than in [32]. In
order to do this, we need some preparations.

Let j ∈ SA. Recall that, given an interval I of R, a C1-path γ : I −→ Cj, a
map f : γ(I) −→ X, and a function g : γ(I) −→ A, one can define the integral∫
γ
f(α) dα g(α) ∈ X (if it exists) by setting

(6.7)

∫
γ

f(α) dα g(α) :=

∫
I

f(γ(t))γ′(t)g(γ(t)) dt.

If {γ� : I� −→ Cj}n�=1 is a finite family of C1-paths of Cj, Γ is the formal sum∑n
�=1 γi, and f and g are defined on

⋃n
�=1 γ�(I�), then we define

∫
Γ
f(α) dα g(α)

:=
∑n

�=1

∫
γ�
f(α) dα g(α). If the image of g is contained in Cj, then we write∫

Γ
f(α)g(α) dα in place of

∫
Γ
f(α) dα g(α), because γ′

�(t) and g(γ�(t)) commute for
every 	 ∈ {1, . . . , n} and for every t ∈ I�. We refer the reader to [32, Section 6] for
more details concerning this kind of integral.

Let r ∈ ]0,∞[ and let η ∈ ]0, π[. Denote by R−(j ; r;−η) : ]−∞,−r] −→ Cj,
C (j ; r; η) : [−η, η] −→ Cj, and R+(j ; r; η) : ]r,∞] −→ Cj the C1-paths of Cj given
by

R−(j ; r;−η)(t) := −te−ηj ∀t ∈ ]−∞,−r] ,

C (j ; r; η)(t) := retj ∀t ∈ [−η, η],

R+(j ; r; η)(t) := teηj ∀t ∈ [r,∞[ .

Define Γ(j ; r; η) as the following formal sum of C1-paths of Cj:

Γ(j ; r; η) := R−(j ; r;−η) + C (j ; r; η) + R+(j ; r; η).

The previously mentioned slightly more general version of [32, Theorem 5.6]
reads as follows.
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Theorem 6.9. Let A : D(A) −→ X be a spherical δ-sectorial operator with vertex
ω. Suppose that D(A) is dense in X and there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

If j ∈ SA, r ∈ ]0,∞[, and η ∈ ]π/2, π/2 + δ[, then the integral

(6.8) T(t) :=
1

2π

∫
ω+Γ(j ;r;η)

Cα(A) j
−1etα dα ∀t > 0

is convergent in L r(X) and is independent of j, r, and η. If we set T(0) := Id,
then (6.8) defines a strongly continuous semigroup T : [0,∞[ −→ L r(X) which is
real analytic in ]0,∞[ and whose generator is A.

Proof. Here we show how to reduce to the case ω = 0, which is dealt with in
[32, Theorem 5.6]. Define B := A − ω Id. By Lemma 5.12, we know that Cq(A −
ω Id) = Cq+ω(A) for every q ∈ ρs(A−ω Id) = ρs(A)−ω. In particular we get that B is
spherical sectorial and ‖Cq(B)‖ ≤ K/|q| for every q ∈ Ωπ/2+δ. Thus [32, Theorem
5.6] applies, and we get that B generates the strongly continuous semigroup S :
[0,∞[ −→ L r(X) defined by S(0) = Id and S(t) := (1/2π)

∫
Γ(j ;r,η)

Cα(B) j
−1eαt dα

for t > 0 and real analytic in ]0,∞[, where the integral is independent of j, r, and
η. Therefore, since eωt ∈ R, we obtain that [0,∞[ −→ L r(X) : t 	−→ eωtS(t) is a
strongly continuous semigroup generated by B+ ω Id = A and we have

eωtS(t) = eωt 1

2π

∫
Γ(j ;r;η)

Cα(B) j
−1eαt dα =

1

2π

∫
ω+Γ(j ;r;η)

Cα(A) j
−1eαt dα = T(t)

for all t > 0. This completes the proof. �

In the next result we introduce a class of line integrals which extend (6.8) to
suitable spherical sectors of A and allow us to infer the noncommutative semigroup
law (1.7).

Lemma 6.10. Let A : D(A) −→ X be a spherical δ-sectorial operator with vertex
ω such that D(A) is dense in X and there exists K > 0 with

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

If j ∈ SA, r ∈ ]0,∞[, η ∈ ]π/2, π/2 + δ[ and p, q ∈ Ωδ, then the integral

Tp(j ; r; η, q) :=
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expαp (q)
)

is absolutely convergent and defines a right slice regular function Tp(j ; r; η, ·) :
Ωδ −→ L r(X) such that
(6.9)

∀δ′ ∈ ]0, δ[ ∃Mδ′ ∈ [1,∞[ : ‖Tp(j ; r; η, q)‖ ≤ Mδ′e
ωRe(p+q) ∀p, q ∈ Ωδ′

(Mδ′ is independent of q). Moreover Tp(j ; r; η, q) does not depend on j ∈ SA, r
in ]0,∞[, and η ∈ ]π/2, π/2 + δ[.
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Proof. If α, p, q ∈ Cj, then points (i) and (ii) of Lemma 5.2 imply that expαp (q) =

expα(p+q) = eα(p+q) ∈ Cj. Thus, if γ : ]0, 1[ −→ Cj is a piecewise C1 reparametri-
zation of Γ(j ; r; η), we have∫ 1

0

∥∥∥Cω+γ(t)(A) j
−1γ′(t) expω+γ(t)

p (q)
∥∥∥dt≤eωRe(p+q)

∫ 1

0

K

|γ(t)| |γ
′(t)|eRe(γ(t)(p+q)) dt;

hence the absolute convergence of Tp(j ; r; η, q) and (6.9) follow from the same
argument of the complex case (see, e.g., [20, Proposition 4.3, p. 97]). Now we
assume that p = p1 + p2k ∈ Ck and q = q1 + q2h ∈ Ch for some k,h ∈ SA,
pm, qm ∈ R, m = 1, 2. Let us set pj := p1 + p1j ∈ Cj, qj := q1 + q2j ∈ Cj, and
qk := q1 + q2k ∈ Ck. Since expαp is a right slice function, we can apply (4.4) twice
and we find constants bm, cm, dm ∈ A, m = 1, 2, such that

expαp (q) = expαp (qk)b1 + expαp (q
c
k)b2

= expα(p+ qk)b1 + expα(p+ qck)b2

= expα(pj + qj)c1 + expα(pcj + qcj )d1 + expα(pj + qcj )c2 + expα(pcj + qj)d2,

= eα(pj+qj)c1 + eα(p
c
j+qcj )d1 + eα(pj+qcj )c2 + eα(p

c
j+qj)d2.

This formula allows us to reduce to the previous case when p, q ∈ Cj. Thus the
absolute convergence of Tp(j ; r; η, q) and estimate (6.9) are completely proved.

Fix s ∈ ]0,∞[. Let us show that Ωδ −→ L r(X) : p 	−→ Tp(j ; r; η, s) is right
slice regular. Consider the map fs : ]0, 1[ × Ωδ −→ L r(X) defined by

fs(t, p) :=Cω+γ(t)(A) j
−1γ′(t) expω+γ(t)

p (s)=
(
Cω+γ(t)(A) j

−1γ′(t)
)
◦
(
Id expω+γ(t)

p (s)
)
.

By Lemma 5.2(iv), the function p 	−→ exp
ω+γ(t)
p (s) is right slice regular for every

t ∈ ]0, 1[. It follows immediately that for every t ∈ ]0, 1[, p 	−→ Id exp
ω+γ(t)
p (s)

is right slice regular and hence the same is true for fs(t, ·) (cf. Example 4.6(b)).
Thanks to Proposition 5.6, we infer that p 	−→ Tp(j ; r; η, s) is right slice regular as
well. Observe that

Tt(j ; r; η; s) = T0(j ; r; η, t+ s) =
1

2π

∫
ω+Γ(j ;r;η)

Cα(A) j
−1eα(t+s) dα ∀t > 0.

Thanks to Theorem 6.9, we know that T0(j ; r; η, t+ s) is independent of j, r, and
η. Therefore, by Lemma 4.9, for every s ∈ ]0,∞[ and for every p ∈ Ωδ, we get that
Tp(j ; r; η, s) is independent of j, r, and η. Now we fix p ∈ Ωδ. Since expαp is right
slice regular for every α, proceeding as above, we obtain that q 	−→ Tp(j ; r; η, q)
is right slice regular. Furthermore, we proved that Tp(j ; r; η, q) is independent of
j, r, and η when q ∈ ]0,∞[. Thus, by Lemma 4.9, we get that Tp(j ; r; η, q) is
independent of j, r, and η for every p, q ∈ Ωδ. �

The previous Lemma 6.10 allows us to give the following definition.

Definition 6.11. Let A : D(A) −→ X be a spherical δ-sectorial operator of vertex
ω. Suppose that D(A) is dense in X and there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

For every p ∈ Ωδ ∪ {0}, we define Tp : Ωδ −→ L r(X) by setting

Tp(q) :=
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expαp (q)
)
, q ∈ Ωδ,



5024 RICCARDO GHILONI AND VINCENZO RECUPERO

where j ∈ SA, r ∈ ]0,∞[, and η ∈ ]π/2, π/2 + δ[ are arbitrarily chosen. Moreover
we set T := T0, i.e.,

T(q) := T0(q) =
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expα(q)
)
, q ∈ Ωδ.

Since in general Cα(A)j �= jCα(A) and Cα(A) exp
α(q) �= expα(q)Cα(A), the clas-

sical semigroup law fails for T. In the following definition we introduce a new
noncommutative semigroup law.

Definition 6.12. If δ ∈ ]0, π/2], then we say that T : Ωδ ∪ {0} −→ L r(X) is a
right slice regular semigroup (of angle δ) if the restriction T|Ωδ

: Ωδ −→ L r(X) is
right slice regular and

T(p+ q) = T(p)�p T(q) ∀p, q ∈ Ωδ with p+ q ∈ Ωδ and pq = qp,

T(0) = Id,

lim
q→0

T|Ωδ′ (q)x = x ∀δ′ ∈ ]0, δ[ , ∀x ∈ X.(6.10)

If T is a slice regular semigroup of angle δ for some δ ∈ ]0, π/2], then we say that
T is a right slice regular semigroup. Moreover we say that a right slice regular
semigroup T of angle δ is bounded if

∀δ′ ∈ ]0, δ[ ∃Mδ′ ∈ [1,∞[ : sup
q∈Ωδ′

‖T(q)‖ ≤ Mδ′ .

Lemma 6.13. If T : Ωδ ∪ {0} −→ L r(X) is a right slice regular semigroup, then
its restriction T|[0,∞[ is a strongly continuous semigroup.

Proof. Let T = (T1, T2) : Dδ −→ L r(X)⊗R C be such that T = Ir(T ). Since T is
right slice we have that T2(s) = 0 for every s > 0; thus we get, if j ∈ SA,

T(t+ s) = T(t)�t T(s) = (T� T(s))(t) = (T� T(s))(φj(t))

= T1(t)T(s) + T2(t)T(s)j = T1(t)T(s)
= (T1(t) + T2(t)j)T(s) = T(t)T(s).

The continuity of T|[0,∞[ (·)x for x ∈ X follows from (6.10). �

Thanks to the latter lemma, we can give the following definition.

Definition 6.14. Given a right slice regular semigroup T : Ωδ ∪ {0} −→ L r(X),
we say that an operator A : D(A) −→ X is the generator of T if it is the generator
of the strongly continuous semigroup T|[0,∞[ . We say also that A generates T.

7. Spherical sectorial operators and slice regular semigroups

Throughout this section, we will assume that

A satisfies (2.4), (2.8), and (2.12) and X is a Banach two-sided A-module.

The main result of this paper reads as follows.

Theorem 7.1. The following assertions hold.

(a) Let A : D(A) −→ X be a spherical δ-sectorial operator with vertex ω.
Suppose that D(A) is dense in X and there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.
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Then A generates a right slice regular semigroup T : Ωδ ∪ {0} −→ L r(X)
such that

∀δ′ ∈ ]0, δ[ ∃Mδ′ ∈ [1,∞[ : ‖T(q)‖ ≤ Mδ′e
ωRe(q) ∀q ∈ Ωδ′ .

(b) Let T : Ωδ ∪ {0} −→ L r(X) be a right slice regular semigroup and let
A : D(A) −→ L r(X) be its generator. Suppose there exist δ′ ∈ ]0, δ], M ∈
[1,∞[, and ω ∈ R such that ‖T(q)‖ ≤ MeωRe(q) for every q ∈ Ωδ′ . Then
A is a spherical η-sectorial operator with vertex ω for some η ∈ ]0, π/2].
Moreover, there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+η.

Notice that bounded right slice semigroups are exactly those generated by spher-
ical sectorial operators with vertex ω = 0. We will give the proof of this result in
the following two subsections.

7.1. From spherical sectoriality to slice regularity. Let us show that a spher-
ical sectorial operator with vertex ω generates an exponentially bounded right slice
regular semigroup.

Theorem 7.2. Let A : D(A) −→ X be a spherical δ-sectorial operator with vertex
ω. Suppose that D(A) is dense in X and there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

Let Tp : Ωδ −→ L r(X) be as in Definition 6.11. Then Tp is right slice regular for
every p ∈ Ωδ ∪ {0} and

Tp(q) = T(q)�q T(p) ∀p, q ∈ Ωδ.

The function T = T0 is the unique right slice regular function from Ωδ to L r(X)
which coincides with the semigroup generated by A on ]0,∞[. Moreover, it holds
that

T(p+ q) = T(p)�p T(q) = T(q)�q T(p) ∀p, q ∈ Ωδ with p+ q ∈ Ωδ and pq = qp;

i.e.,

T(p+q) = (T�T(q))(p) = (T�T(p))(q) ∀p, q ∈ Ωδ with p+ q ∈ Ωδ and pq = qp,

where in the second term T(q) is the constant function p 	−→ T(q) and in the last
term T(p) is the constant function q 	−→ T(p).

Proof. We already proved in Lemma 6.10 that Tp is a right slice regular function.
Let us explicitly write its stem function in the particular case p = 0. Given α ∈ A,
we define Eα = (Eα

1 , E
α
2 ) : Dδ −→ L r(X)⊗RC by setting Eα

1 (z) :=
∑

n≥0
αn

n! �(zn)
and Eα

2 (z) :=
∑

n≥0
αn

n! �(zn). It follows immediately that expα0 = expα = Ir(E
α).

Then, from Proposition 5.6 and Example 4.6(b), we obtain that T = T0 = Ir(T ),
where T = (T1, T2) and

Tm(z) :=
1

2π

∫
ω+Γ(j ;r,η)

(
Cα(A) j

−1 dαEα
m(z)

)
∀z ∈ Dδ, m = 1, 2,
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for some fixed j ∈ SA, r ]0,∞[, and η ∈ ]π/2, π/2 + δ[. Thanks to Lemma 5.2(ii),
we have

T(t) =
1

2π

∫
ω+Γ(j ;r;η)

Cα(A) j
−1eαt dα ∀t > 0;

therefore from Theorem 6.9 it follows that

(7.1) T(t+ s) = T(t)T(s) = T(s)T(t) ∀t, s > 0.

Now for any t > 0 let us consider the mappings

Tt = T(t+ ·) : Ωδ −→ L r(X) : p 	−→ T(t+ p)

(cf. formula (5.2)) and

Ut := T(t)T(·) : Ωδ −→ L r(X) : p 	−→ T(t)T(p).

Clearly Ut is right slice regular (cf. Example 4.6(b)), and from (7.1) it follows that
Tt(s) = Ut(s) for every s > 0. Therefore, since Tt is right slice regular by Lemma
6.10, we obtain that Tt = Ut; hence

T(p+ t) = T(t)T(p) ∀p ∈ Ωδ, ∀t > 0.

Now we fix p and consider the slice right regular function Tp : Ωδ −→ L r(X). If
p, q ∈ Ωδ with p+ q ∈ Ωδ and pq = qp, then Lemma 5.2(i) implies that

Tp(q) =
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expαp (q)
)

=
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expα(p+ q)
)
= T(p+ q);(7.2)

in particular Tp(t) = T(p+ t) for every t > 0. Thus from (7.1) we obtain

Tp(t) = T(t)T(p) ∀p ∈ Ωδ, ∀t > 0.

For every p ∈ Ωδ, define the right slice regular function Vp : Ωδ −→ L r(X) by
setting

Vp := T� T(p)

(according to our notation T(p) here is the constant function q 	−→ T(p)). If z ∈ Dδ

and q := φj(z), then we have

Eα
1 (z)T(p) + Eα

2 (z)T(p)j =
∑
n≥0

αn

n!
�(zn)T(p) +

∑
n≥0

αn

n!
�(zn)T(p)j

=
∑
n≥0

αn

n!
T(p)�(zn) +

∑
n≥0

αn

n!
T(p)�(zn)j

=
∑
n≥0

αn

n!
T(p)(�(zn) + �(zn)j) =

∑
n≥0

αn

n!
T(p)qn;
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hence

(T� T(p))(q) = T1(z)T(p) + T2(z)T(p)j

=
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dαEα
1 (z)T(p)

)

+
1

2π

∫
ω+Γ(j ;r;η)

Cα(A) j
−1 dαEα

2 (z)T(p)j

=
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα (Eα
1 (z)T(p) + Eα

2 (z)T(p)j)
)

=
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα
∑
n≥0

αn

n!
T(p)qn

)
.

Therefore if t > 0 we get

(T� T(p))(t) =
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα
∑
n≥0

αn

n!
T(p)tn

)

=
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα
∑
n≥0

αn

n!
tnT(p)

)

=
1

2π

∫
ω+Γ(j ;r;η)

(
Cα(A) j

−1 dα expα(t)
)
T(p)

= T(t)T(p);

thus

Vp(t) = Tp(t) ∀t > 0.

Since Vp and Tp are both right slice regular, Lemma 4.9 yields

Tp(q) = (T� T(p))(q) ∀p, q ∈ Ωδ,

and, by virtue of (7.2),

T(p+ q) = (T� T(p))(q) ∀p, q ∈ Ωδ with p+ q ∈ Ωδ and pq = qp.

This completes the proof. �

7.2. From slice regularity to spherical sectoriality. Our final task is proving
that a right slice regular semigroup is generated by a spherical sectorial operator.
We need the following lemma providing the estimate (7.3) for the spherical resolvent
operator of the generator of a semigroup. As in the classical case, the Laplace
transform (6.2) is a crucial tool for this proof, but in our noncommutative framework
things are complicated by the fact that q 	−→ (T(t)e−tq)x is not right slice regular
even if q 	−→ T(t)e−tq is (cf. Remark 5.5).

Lemma 7.3. Let δ ∈ ]0, π/2[ and let T : Ωδ ∪ {0} −→ L r(X) be a function
such that T|Ωδ

is right slice regular and T|[0,∞[ is a strongly continuous semigroup.

Suppose there exist δ′ ∈ ]0, δ], M ∈ [1,∞[, and ω ∈ R such that ‖T(q)‖ ≤ MeωRe(q)

for every q ∈ Ωδ′ . If A is the generator of T, then ρs(A) ⊆ ω + Ωπ/2, and there
exists K > 0 such that

(7.3) ‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2.
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Proof. Thanks to Theorem 6.6, we know that ρs(A) ⊆ ω+Ωπ/2 and (7.3) is true for
q ∈ ]ω,∞[. Fix q ∈ (ω +Ωπ/2)�R. Let j ∈ SA and r, s ∈ R be such that s > 0 and
q = r+ sj. Define λ ∈ Dδ by λ := r+ is; thus q = φj(λ). The function Tj : Dη −→
(L r(X))j is holomorphic by Proposition 4.7; hence T|[ε,∞[ ∈ C([ε,∞[ ;L r(X)) for
every ε > 0. Using again Theorem 6.6, we infer that

Cq(A)x =

∫ ε

0

(T(t)e−tq)x dt+

∫ ∞

ε

(T(t)e−tq)x dt

=

∫ ε

0

(T(t)e−tq)x dt+

(∫ ∞

ε

T(t)e−tq dt

)
x

=

∫ ε

0

(T(t)e−tq)x dt+

(∫ ∞

ε

e−tλTj(t) dt

)
x.(7.4)

The mapping z 	−→ e−zλTj(z) is holomorphic from Dδ into (L r(X))j; hence a
standard argument allows us to change the path of integration in the last integral
in (7.4) from [ε,∞[ into γε : [0,∞[ −→ C : ρ 	−→ ε+ρeθi where θ is a fixed element
of ]−δ′, 0[. Therefore we get∫ ∞

ε

e−tλTj(t) dt =

∫
γε

e−zλTj(z) dz =

∫ ∞

0

eθie−λ(ε+ρeθi)Tj(ε+ ρeθi) dρ.

Thus, if C := −M/ sin θ, then the following standard estimate can be obtained on
the interval [ε,∞[ (rather than on [0,∞[):∥∥∥∥

∫ ∞

ε

e−tλTj(t) dt

∥∥∥∥ ≤
∫ ∞

0

Me−ε(Re(λ)−ω)e−Re((λ−ω)ρeθi) dρ

≤
∫ ∞

0

Me−ρ((r−ω) cos θ−s sin θ) dρ

=
M

(r − ω) cos θ − s sin θ
≤ M

−s sin θ
=

C

s
=

C

| Im(q)| .

In this way, for every x ∈ X, we find that

‖Cq(A)x‖ ≤
∫ ε

0

‖(T(t)e−tq)x‖ dt+ C

| Im(q)| ‖x‖

≤ M

∫ ε

0

et(ω−Re(q))‖x‖ dt+ C

| Im(q)|‖x‖

=

(
M

1− eε(ω−Re(q))

Re(q)− ω
+

C

| Im(q)|

)
‖x‖;

hence, by the arbitrariness of ε, we obtain

‖Cq(A)‖ ≤ C

| Im(q)| .(7.5)

Collecting together (6.3) with (7.5) we find (7.3). �

Theorem 7.4. Let A : D(A) −→ X be a closed right linear operator with D(A)
dense in X. Suppose that A generates a strongly continuous semigroup T : [0,∞[
−→ L r(X) and there exist M ∈ [1,∞[, ω ∈ R, and L > 0 such that ‖T(t)‖ ≤ Meωt

for all t ≥ 0, and

(7.6) ‖Cq(A)‖ ≤ L

| Im(q)| ∀q ∈ ω +Ωπ/2.
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Then A is a spherical δ-sectorial operator with vertex ω for some δ ∈ ]0, π/2].
Moreover, there exists K > 0 such that

‖Cq(A)‖ ≤ K

|q − ω| ∀q ∈ ω +Ωπ/2+δ.

Proof. If B := A−ω Id, then B generates the strongly continuous semigroup S(t) =
e−ωtT(t) statisfying the estimate ‖S(t)‖ ≤ M . Therefore Ωπ/2 ⊆ ρs(B) and (7.6)
yield

(7.7) ‖Cq(B)‖ = ‖Cq+ω(A)‖ ≤ L

| Im(q)| ∀q ∈ Ωπ/2.

Moreover, thanks to (6.3), for every q ∈ Ωπ/2 we have ‖Cq(B)‖ ≤ M/Re(q), which
together with (7.7) yields

(7.8) ‖Cq(B)‖ ≤ C

|q| ∀q ∈ Ωπ/2

for some C > 0. Fix p ∈ Ωπ/2. By definition of spherical resolvent operator we have
Cp(B) = Qp(B)p

c −BQp(B) and Cpc(B) = Qpc(B)p−BQpc(B) = Qp(B)p−BQp(B).
Hence, subtracting the two identities, we get Cpc(B) − Cp(B) = Qp(B)(p − pc) =
Qp(B)2 Im(p). Therefore if Im(p) �= 0, then

Qp(B) = (Cpc(B)− Cp(B))(2 Im(p))−1.

Therefore it follows that

(7.9) ‖Qp(B)‖ ≤ 1

2| Im(p)|(‖Cpc(B)‖ + ‖Cp(B)‖) ≤
C

| Im(p)||p| .

Now fix x ∈ X, j ∈ SA, and let μ ∈ C be such that φj(μ) = p. From (5.6) and (5.7),
we infer the following chain of equalities:

Rμ(Bj)x = (μ IdXj
− Bj)Qp(B)x

= μQp(B)x− BjQp(B)x

= (Qp(B)x)p
c − B(Qp(B)x)

= Qp(B)(xp
c) + Cp(B)x− Qp(B)(p

cx).

Therefore from (7.8) and (7.9) we get

‖Rμ(Bj)x‖ ≤ ‖Qp(B)(xp
c)‖ + ‖Cp(B)x‖ + ‖Qp(B)(p

cx)‖
≤ ‖Qp(B)‖‖xpc‖ + ‖Cp(B)‖‖x‖ + ‖Qp(B)‖‖pcx‖
= ‖Qp(B)‖‖x‖|p|+ ‖Cp(B)‖‖x‖ + ‖Qp(B)‖‖x‖|p|

≤
(

C|p|
| Im(p)||p| +

C

|p| +
C|p|

| Im(p)||p|

)
‖x‖ ≤ 3C

| Im(p)|‖x‖ =
3C

| Im(μ)|‖x‖.

Hence, by the arbitrariness of p ∈ Ωπ/2 and of x ∈ X, we have proved that

‖Rμ(Bj)‖ ≤ 3C

| Im(μ)| ∀μ ∈ Dπ/2.

Therefore the classical complex theory of analytic semigroups (see, e.g., [20, The-
orem 4.6]) applies to Bj, and we find that there exists δj ∈ ]0, π/2] such that
Dπ/2+δj ⊆ ρ(Bj), the resolvent set of Bj. This fact allows us to apply Theo-
rem 5.9 and to deduce that B is spherical sectorial of angle δ := supj∈SA

δj, i.e.,
Ωπ/2+δ ⊆ ρs(B). Moreover, we have that Dπ/2+δ ⊆ ρ(Bj) for all j ∈ SA (in other
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words, we can assume that δj does not depend on j ∈ SA). Now let q ∈ Ωπ/2+δ and
let λ ∈ Dπ/2+δ be such that q = φj(λ). From the classical theory we also have that
there is a constant N > 0 such that ‖Rλ(Bj)‖ ≤ N/|λ| = N/|q|; hence (5.7) yields

‖Qq(B)‖ ≤ ‖Rλ(Bj)‖‖Rλ(Bj)‖ ≤ N

|λ|2 =
N

|q|2 .

Therefore, observing that BRz(Bj) = BjRz(Bj) = zRz(Bj)− IdXj
for every z ∈ ρ(Bj),

we get

‖Cq(B)‖ = ‖Qq(B)q
c − BQq(B)‖ ≤ ‖Qq(B)q

c‖ + ‖BQq(B)‖
= ‖Qq(B)q

c‖ + ‖BRλ(Bj)Rλ(Bj)‖
= ‖Qq(B)‖|qc|+ ‖(λRλ(Bj)− IdXj

)Rλ(Bj)‖
≤ ‖Qq(B)‖|qc|+ |λ|‖Rλ(Bj)Rλ(Bj)‖ + ‖Rλ(Bj)‖

≤ N |qc|
|q|2 +

N |q|
|q2| +

N

|q| =
3N

|q| .

Now we conclude by invoking the equalities ρs(A) = ω+ρs(B) and Cq(A) = Cq−ω(B).
�
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