Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Slice regular semigroups


Authors: Riccardo Ghiloni and Vincenzo Recupero
Journal: Trans. Amer. Math. Soc. 370 (2018), 4993-5032
MSC (2010): Primary 30G35, 47D03, 47A60, 47A10
DOI: https://doi.org/10.1090/tran/7354
Published electronically: March 20, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce the notion of slice regular right linear semigroup in a quaternionic Banach space. It is an operatorial function which is slice regular (a noncommutative counterpart of analyticity) and which satisfies a noncommutative semigroup law characterizing the exponential function in an infinite dimensional noncommutative setting. We prove that a right linear operator semigroup in a quaternionic Banach space is slice regular if and only if its generator is spherical sectorial. This result provides a connection between the slice regularity and the noncommutative semigroups theory and characterizes those semigroups which can be represented by a noncommutative Cauchy integral formula. All our results are generalized to Banach two-sided modules having as a set of scalar any real associative *-algebra, Clifford algebras $ \mathbb{R}_n$ included.


References [Enhancements On Off] (What's this?)

  • [1] Stephen L. Adler, Quaternionic quantum field theory, Quantum mechanics of fundamental systems, 1 (Santiago, 1985) Ser. Cent. Estud. Cient. Santiago, Plenum, New York, 1988, pp. 1-15. MR 1117686
  • [2] Daniel Alpay, Fabrizio Colombo, and David P. Kimsey, The spectral theorem for quaternionic unbounded normal operators based on the $ S$-spectrum, J. Math. Phys. 57 (2016), no. 2, 023503, 27. MR 3450567, https://doi.org/10.1063/1.4940051
  • [3] Daniel Alpay, Fabrizio Colombo, Izchak Lewkowicz, and Irene Sabadini, Realizations of slice hyperholomorphic generalized contractive and positive functions, Milan J. Math. 83 (2015), no. 1, 91-144. MR 3347393, https://doi.org/10.1007/s00032-014-0231-9
  • [4] Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223
  • [5] Garrett Birkhoff and John von Neumann, The logic of quantum mechanics, Ann. of Math. (2) 37 (1936), no. 4, 823-843. MR 1503312, https://doi.org/10.2307/1968621
  • [6] G. Cassinelli and P. Truini, Quantum mechanics of the quaternionic Hilbert spaces based upon the imprimitivity theorem, Rep. Math. Phys. 21 (1985), no. 1, 43-64. MR 802061, https://doi.org/10.1016/0034-4877(85)90017-5
  • [7] Fabrizio Colombo, Graziano Gentili, and Irene Sabadini, A Cauchy kernel for slice regular functions, Ann. Global Anal. Geom. 37 (2010), no. 4, 361-378. MR 2601496, https://doi.org/10.1007/s10455-009-9191-7
  • [8] Fabrizio Colombo, Graziano Gentili, Irene Sabadini, and Daniele C. Struppa, A functional calculus in a noncommutative setting, Electron. Res. Announc. Math. Sci. 14 (2007), 60-68. MR 2342715
  • [9] Fabrizio Colombo, Graziano Gentili, Irene Sabadini, and Daniele C. Struppa, Non commutative functional calculus: bounded operators, Complex Anal. Oper. Theory 4 (2010), no. 4, 821-843. MR 2735309, https://doi.org/10.1007/s11785-009-0015-3
  • [10] Fabrizio Colombo, Graziano Gentili, Irene Sabadini, and Daniele C. Struppa, Non-commutative functional calculus: unbounded operators, J. Geom. Phys. 60 (2010), no. 2, 251-259. MR 2587392, https://doi.org/10.1016/j.geomphys.2009.09.011
  • [11] Fabrizio Colombo and Irene Sabadini, On some properties of the quaternionic functional calculus, J. Geom. Anal. 19 (2009), no. 3, 601-627. MR 2496568, https://doi.org/10.1007/s12220-009-9075-x
  • [12] Fabrizio Colombo and Irene Sabadini, On the formulations of the quaternionic functional calculus, J. Geom. Phys. 60 (2010), no. 10, 1490-1508. MR 2661152, https://doi.org/10.1016/j.geomphys.2010.05.014
  • [13] Fabrizio Colombo and Irene Sabadini, The quaternionic evolution operator, Adv. Math. 227 (2011), no. 5, 1772-1805. MR 2803786, https://doi.org/10.1016/j.aim.2011.04.001
  • [14] Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, A new functional calculus for noncommuting operators, J. Funct. Anal. 254 (2008), no. 8, 2255-2274. MR 2402108, https://doi.org/10.1016/j.jfa.2007.12.008
  • [15] Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Slice monogenic functions, Israel J. Math. 171 (2009), 385-403. MR 2520116, https://doi.org/10.1007/s11856-009-0055-4
  • [16] Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Noncommutative functional calculus, Theory and applications of slice hyperholomorphic functions, Progress in Mathematics, vol. 289, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2752913
  • [17] Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
  • [18] H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, and R. Remmert, Numbers, with an introduction by K. Lamotke, translated from the second German edition by H. L. S. Orde, translation edited and with a preface by J. H. Ewing, Graduate Texts in Mathematics, vol. 123, Readings in Mathematics. Springer-Verlag, New York, 1990. MR 1066206
  • [19] Gérard Emch, Mécanique quantique quaternionienne et relativité restreinte. I, Helv. Phys. Acta 36 (1963), 739-769 (French, with English summary). MR 0176811
  • [20] Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, with contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. MR 1721989
  • [21] David Finkelstein, Josef M. Jauch, Samuel Schiminovich, and David Speiser, Foundations of quaternion quantum mechanics, J. Mathematical Phys. 3 (1962), 207-220. MR 0137500, https://doi.org/10.1063/1.1703794
  • [22] Graziano Gentili and Caterina Stoppato, Power series and analyticity over the quaternions, Math. Ann. 352 (2012), no. 1, 113-131. MR 2885578, https://doi.org/10.1007/s00208-010-0631-2
  • [23] Graziano Gentili and Daniele C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007), no. 1, 279-301. MR 2353257, https://doi.org/10.1016/j.aim.2007.05.010
  • [24] Graziano Gentili and Daniele C. Struppa, Regular functions on a Clifford algebra, Complex Var. Elliptic Equ. 53 (2008), no. 5, 475-483. MR 2410345, https://doi.org/10.1080/17476930701778869
  • [25] Graziano Gentili and Daniele C. Struppa, Regular functions on the space of Cayley numbers, Rocky Mountain J. Math. 40 (2010), no. 1, 225-241. MR 2607115, https://doi.org/10.1216/RMJ-2010-40-1-225
  • [26] Riccardo Ghiloni, Valter Moretti, and Alessandro Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys. 25 (2013), no. 4, 1350006, 83. MR 3062919, https://doi.org/10.1142/S0129055X13500062
  • [27] Riccardo Ghiloni, Valter Moretti, and Alessandro Perotti, Spectral representations of normal operators in quaternionic Hilbert spaces via intertwining quaternionic PVMs, Rev. Math. Phys. 29 (2017), no. 10, 1750034, 73. MR 3720514
  • [28] R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. 226 (2011), no. 2, 1662-1691. MR 2737796, https://doi.org/10.1016/j.aim.2010.08.015
  • [29] Riccardo Ghiloni and Alessandro Perotti, Power and spherical series over real alternative $ ^*$-algebras, Indiana Univ. Math. J. 63 (2014), no. 2, 495-532. MR 3233217, https://doi.org/10.1512/iumj.2014.63.5227
  • [30] Riccardo Ghiloni, Alessandro Perotti, and Caterina Stoppato, The algebra of slice functions, Trans. Amer. Math. Soc. 369 (2017), no. 7, 4725-4762. MR 3632548, https://doi.org/10.1090/tran/6816
  • [31] Riccardo Ghiloni, Alessandro Perotti, and Caterina Stoppato, Singularities of slice regular functions over real alternative $ ^*$-algebras, Adv. Math. 305 (2017), 1085-1130. MR 3570154, https://doi.org/10.1016/j.aim.2016.10.009
  • [32] Riccardo Ghiloni and Vincenzo Recupero, Semigroups over real alternative *-algebras: generation theorems and spherical sectorial operators, Trans. Amer. Math. Soc. 368 (2016), no. 4, 2645-2678. MR 3449252, https://doi.org/10.1090/tran/6399
  • [33] John E. Gilbert and Margaret A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, Cambridge Studies in Advanced Mathematics, vol. 26, Cambridge University Press, Cambridge, 1991. MR 1130821
  • [34] Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
  • [35] Klaus Gürlebeck, Klaus Habetha, and Wolfgang Sprößig, Holomorphic functions in the plane and $ n$-dimensional space, translated from the 2006 German original, with 1 CD-ROM (Windows and UNIX), Birkhäuser Verlag, Basel, 2008. MR 2369875
  • [36] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, rev. ed, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. MR 0089373
  • [37] L. P. Horwitz and L. C. Biedenharn, Quaternion quantum mechanics: second quantization and gauge fields, Ann. Physics 157 (1984), no. 2, 432-488. MR 768240, https://doi.org/10.1016/0003-4916(84)90068-X
  • [38] Irving Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418. MR 0031193
  • [39] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 1991. MR 1125071
  • [40] Alessandra Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995. MR 1329547
  • [41] J. von Neumann, Über einen Satz von Herrn M. H. Stone, Ann. of Math. (2) 33 (1932), no. 3, 567-573 (German). MR 1503076, https://doi.org/10.2307/1968535
  • [42] Johann von Neumann, Mathematische Grundlagen der Quantenmechanik, Unveränderter Nachdruck der ersten Auflage von 1932. Die Grundlehren der mathematischen Wissenschaften, Band 38, Springer-Verlag, Berlin-New York, 1968 (German). MR 0223138
  • [43] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486
  • [44] Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
  • [45] M. P. Solèr, Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra 23 (1995), no. 1, 219-243. MR 1311786, https://doi.org/10.1080/00927879508825218
  • [46] M. H. Stone, On one-parameter unitary groups in Hilbert space, Ann. of Math. (2) 33 (1932), no. 3, 643-648. MR 1503079, https://doi.org/10.2307/1968538
  • [47] Kazuaki Taira, Analytic semigroups and semilinear initial-boundary value problems, London Mathematical Society Lecture Note Series, vol. 223, Cambridge University Press, Cambridge, 1995. MR 1369247

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 30G35, 47D03, 47A60, 47A10

Retrieve articles in all journals with MSC (2010): 30G35, 47D03, 47A60, 47A10


Additional Information

Riccardo Ghiloni
Affiliation: Dipartimento di Matematica Università di Trento Via Sommarive 14 38123 Trento Italy
Email: ghiloni@science.unitn.it

Vincenzo Recupero
Affiliation: Dipartimento di Scienze Matematiche Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
Email: vincenzo.recupero@polito.it

DOI: https://doi.org/10.1090/tran/7354
Keywords: Slice regular semigroups, analytic semigroups, functions of hypercomplex variables, quaternions, functional calculus, spectrum, resolvent
Received by editor(s): November 4, 2016
Published electronically: March 20, 2018
Additional Notes: The first author was partially supported by INFN-TIFPA and by GNSAGA of INdAM
The second author was a member of GNAMPA of INdAM
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society