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LOG-CONCAVITY PROPERTIES OF MINKOWSKI VALUATIONS

ASTRID BERG, LUKAS PARAPATITS, FRANZ E. SCHUSTER,
AND MANUEL WEBERNDORFER, WITH AN APPENDIX BY SEMYON ALESKER

Abstract. New Orlicz Brunn–Minkowski inequalities are established for rigid
motion compatible Minkowski valuations of arbitrary degree. These extend
classical log-concavity properties of intrinsic volumes and generalize seminal
results of Lutwak and others. Two different approaches which refine previously
employed techniques are explored. It is shown that both lead to the same class
of Minkowski valuations for which these inequalities hold. An appendix by
Semyon Alesker contains the proof of a new description of generalized trans-
lation invariant valuations.

1. Introduction

The fundamental log-concavity property of the volume functional is expressed
by the multiplicative form of the Brunn–Minkowski inequality:

(1.1) Vn((1− λ)K + λL) ≥ Vn(K)1−λVn(L)
λ,

where K and L are convex bodies (non-empty compact convex sets) in Rn with
non-empty interiors, 0 < λ < 1, and + denotes Minkowski addition. Equality holds
in (1.1) if and only if K and L are translates of each other. The excellent survey of
Gardner [16] gives a comprehensive overview of different aspects and consequences
of the Brunn–Minkowski inequality. Here we just mention that it directly implies
the classical Euclidean isoperimetric inequality.

Projection bodies of convex bodies were defined at the turn of the previous cen-
tury by Minkowski. In 1984 Lutwak [35] discovered that an affine isoperimetric
inequality of Petty [50] for polar projection bodies is not only significantly stronger
than the Euclidean isoperimetric inequality, but in fact an optimal version of this
classical inequality. For the tremendous impact of Petty’s inequality and its gen-
eralizations see, e.g., [25, 39, 41, 62, 67]. The problem of finding sharp bounds for
the volume of projection bodies, given the volume of the original body, remains a
central quest in convex geometric analysis. It has led, among many other results, to
the discovery of important log-concavity properties of the volume of projection bod-
ies. In fact, Lutwak [37] established not only Brunn–Minkowski type inequalities
for the volume of projection bodies, but for all the intrinsic volumes of projection
bodies of arbitrary order (see Section 2).

In the present article we investigate a common generalization of Lutwak’s Brunn–
Minkowski inequalities for projection bodies and inequality (1.1), more specifically,
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its version for all the intrinsic volumes. To be more precise, we establish new log-
concavity properties of intrinsic volumes of convex body valued valuations which
intertwine rigid motions. This line of research has its origins in the discovery of the
special place of projection bodies in affine geometry: Ludwig [30,32] characterized
the projection body operator as the unique continuous Minkowski valuation which
is invariant under translations and contravariant with respect to the general linear
group GL(n) (see [22, 31, 33, 45, 46, 56, 64] for related results).

In recent years, it has become apparent that several geometric inequalities for
projection bodies and, more generally, valuations intertwining the group of affine
transformations, in fact, hold for much larger classes of valuations intertwining
merely rigid motions. First such results were obtained in [53], where the Brunn–
Minkowski inequalities for projection bodies of Lutwak were generalized to trans-
lation invariant and SO(n) equivariant Minkowski valuations of degree n − 1.
Although considerable efforts have been invested ever since to show that these
log-concavity properties extend to Minkowski valuations of arbitrary degree (see
[9, 47, 55]), the conjectured complete family of inequalities has only partially been
obtained (compare Section 2).

For the inequalities established so far two different approaches were used. While
in [53] and [55] integral representations of (even) Minkowski valuations which are
translation invariant and SO(n) equivariant were crucial, in [47] the Hard Lefschetz
derivation operator on Minkowski valuations [4, 47], together with a symmetry
property of bivaluations [9], was the key ingredient. In this paper we show that the
Hard Lefschetz integration operator on Minkowski valuations [6,10,57] on one hand
and a recent representation theorem for Minkowski valuations [57,58] on the other
hand lead to a natural class of Minkowski valuations which exhibit log-concavity
properties. All the Brunn–Minkowski inequalities for Minkowski valuations estab-
lished before turn out to be special cases of our new results. From new monotonicity
properties of these Minkowski valuations, we are able to deduce a complete charac-
terization of equality cases without any smoothness assumptions that were required
before.

Moreover, all previously obtained and new Brunn–Minkowski inequalities for
Minkowski valuations are shown to not only hold for Minkowski addition but for
all commutative Orlicz Minkowski additions (introduced in [17]) of convex bodies.
This includes, in particular, all Lp Minkowski additions.

2. Statement of principal results

Let Kn denote the space of convex bodies in Euclidean space Rn endowed with
the Hausdorff metric. Throughout the article we assume that n ≥ 3 and we use B to
denote the Euclidean unit ball in Rn. A convex body K is uniquely determined by
its support function h(K,u) = max{u ·x : x ∈ K} for u ∈ Sn−1. For i ∈ {0, . . . , n},
let Vi(K) denote the ith intrinsic volume of K (see Section 3).

A map Φ : Kn → Kn is called a Minkowski valuation if

ΦK +ΦL = Φ(K ∪ L) + Φ(K ∩ L)

whenever K ∪ L ∈ Kn and addition on Kn is Minkowski addition.
The theory of scalar valuations has long played a prominent role in geometry

(see, e.g., [26, 28] for the history of scalar valuations and [3, 12, 15, 24, 34, 48, 65]
for more recent results). Systematic investigations of Minkowski valuations have
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only been initiated about a decade ago by Ludwig [30–32]. These valuations arise
naturally from data about projections and sections of convex bodies and form an
integral part of geometric tomography. As first examples we mention here the
projection body maps Πi : Kn → Kn of order i ∈ {1, . . . , n− 1}, defined by

h(ΠiK,u) = Vi(K|u⊥), u ∈ Sn−1.

While the entire family Πi is translation invariant and SO(n) equivariant, the
classic projection body map Πn−1 is the only one among them which intertwines
linear transformations (see [30]). In fact, there is only a small number of Minkowski
valuations which are compatible with affine transformations (see [1,2,22,32,56,64]
for their classification).

In this article we establish new log-concavity properties for the class MValj
of continuous, translation invariant and SO(n) equivariant Minkowski valuations
of a given degree j of homogeneity (by a result of McMullen [43], only integer
degrees 0 ≤ j ≤ n can occur; cf. Section 5). A first such result was obtained by
Lutwak [37, Theorem 6.2] for projection bodies of arbitrary order. In an equivalent
multiplicative form it states the following: If K,L ∈ Kn have non-empty interiors,
1 ≤ i ≤ n, and 2 ≤ j ≤ n− 1, then for all λ ∈ (0, 1),

(2.1) Vi(Πj((1− λ)K + λL)) ≥ Vi(ΠjK)1−λVi(ΠjL)
λ,

with equality if and only if K and L are translates of each other.
Inequalities (2.1) have been generalized in different directions: Abardia and

Bernig [2] extended (2.1) to the entire class of complex projection bodies. Ana-
logues of (2.1) were established in [53] for all valuations in MValn−1 and then in
[55] for even valuations in MValj in the case i = j + 1. The assumption on the
parity could later be omitted in [9]. In the Euclidean setting, the most general
result to date can be stated (in multiplicative form) as follows, where we call the
Minkowski valuation which maps every convex body to the set containing only the
origin trivial.

Theorem 1 ([47]). Let Φj ∈ MValj, 2 ≤ j ≤ n− 1, be non-trivial. If K,L ∈ Kn

and 1 ≤ i ≤ j + 1, then for all λ ∈ (0, 1),

(2.2) Vi(Φj((1− λ)K + λL)) ≥ Vi(ΦjK)1−λVi(ΦjL)
λ.

If K and L are of class C2
+, then equality holds if and only if K and L are translates

of each other.

Note that Theorem 1 establishes (2.2) only for 1 ≤ i ≤ j + 1, while in Lutwak’s
family of inequalities (2.1) the range of i does not depend on j. The proof of
Theorem 1 used ideas from [9] and the existence of a new derivation operator Λ
on Minkowski valuations established in [47] (see also Section 5). For Φ ∈ MValj ,
there exists ΛΦ ∈ MValj−1 such that

h((ΛΦ)(K), ·) = d

dt

∣∣∣∣
t=0

h(Φ(K + tB), ·).

This definition was motivated by a similar derivation operator in the theory of
scalar valued valuations, which was introduced by Alesker [4]. There it is widely
used to deduce results for valuations of degree i from those for valuations of some
degree j > i. The key to the proof of Theorem 1 was the following generalization
of a symmetry property of bivaluations obtained in [9].
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Theorem 2 ([47]). Let Φj ∈ MValj, 2 ≤ j ≤ n− 1. If 1 ≤ i ≤ j + 1, then

(2.3) Wn−i(K,ΦjL) =
(i− 1)!

j!
Wn−j−1(L, (Λ

j+1−iΦj)(K))

for every K,L ∈ Kn.

HereWm(K,L) denotes the mixed volume V (K[n−m−1], B[m], L) with n−m−1
copies of K and m copies of the Euclidean unit ball B. We will see in Section 6
that Theorem 2 follows directly from a recently obtained integral representation of
Minkowski valuations intertwining rigid motions.

An obvious idea for a proof of (2.2) for the remaining cases j + 2 ≤ i ≤ n is to
establish a counterpart of Theorem 2 for the Hard Lefschetz integration operator:
For Φ ∈ MValj , there exists LΦ ∈ MValj+1 such that

h((LΦ)(K), ·) =
∫
AGrn−1,n

h(Φ(K ∩ E), ·) dE,

where AGrn−1,n denotes the affine Grassmannian of n− 1 planes in Rn and where
we integrate with respect to the suitably normalized invariant measure on AGrn−1,n

(see Section 5). For scalar valued valuations the operator L was first defined in [6]
and used to deduce results for valuations of degree i from those for valuations of
some degree j < i. As an operator on Minkowski valuations, L was first considered
in [57].

Our first result is a version of Theorem 2 for the operator L. However, the
situation is more delicate in this case, and we will see that a full analogue of (2.3)
only holds for a subclass of Minkowski valuations. To define this class let MVal∞j
denote the set of translation invariant and SO(n) equivariant smooth Minkowski
valuations (cf. Section 5).

Definition. For 1 ≤ i, j ≤ n− 1, let MVal∞j,i ⊆ MVal∞j be defined by

MVal∞j,i =

{
Λi−j(MVal∞i ) if i > j,
MVal∞j if i ≤ j.

We writeMValj,i for the closure ofMVal∞j,i in the topology of uniform convergence
on compact subsets.

We will see in Section 5 that Λ : MVal∞j → MVal∞j−1 is injective for 2 ≤ j ≤ n.

Thus, for i > j, the inverse map (Λi−j)−1 : MVal∞j,i → MVal∞i is well defined and

will be denoted by Λj−i.
Our counterpart of Theorem 2 can now be stated as follows:

Theorem 3. Let Φj ∈ MVal∞j , 2 ≤ j ≤ n−1. For j+2 ≤ i ≤ n and every convex

body L ∈ Kn, there exists a generalized valuation γi,j(L, ·) ∈ Val−∞
1 such that

Wn−i(K,ΦjL) = γi,j(L, (L
i−j−1Φj)(K))

for every K ∈ Kn. Moreover, if Φj ∈ MVal∞j,i−1, then

γi,j(L, (L
i−j−1Φj)(K)) =

(i− 1)!

j!
Wn−1−j(L, (Λ

j+1−iΦj)(K)).

Generalized translation invariant valuations were introduced recently by Alesker
and Faifman [8]. We recall their definition and basic properties (in particular, of
the space Val−∞

1 ) in Section 5. A crucial ingredient in the proof of Theorem 3 is
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a new description of generalized valuations from Val−∞
1 . We are very grateful to

Semyon Alesker for communicating to us a proof of this result and his permission
to include it in an appendix of this article.

Using Theorem 3, we establish in Section 6 the main result of this article:

Theorem 4. Let 1 ≤ i ≤ n and let Φj ∈ MValj,i−1, 2 ≤ j ≤ n− 1, be non-trivial.
If K,L ∈ Kn have non-empty interiors, then for all λ ∈ (0, 1),

(2.4) Vi(Φj((1− λ)K + λL)) ≥ Vi(ΦjK)1−λVi(ΦjL)
λ,

with equality if and only if K and L are translates of each other.

Since MValj,i−1 = MValj for i ≤ j + 1, Theorem 4 includes both Lutwak’s
inequalities (2.1) and Theorem 1 as special cases. Also note that the smoothness
assumption for the bodiesK and L in the equality conditions of (2.2) is no longer re-
quired. This follows from new monotonicity properties of the Minkowski valuations
in MValj,i−1, which we prove in Section 6.

In the last part of the article we explain that our proof of Theorem 4 can be
modified to yield an even stronger result. More precisely, we show that (2.4) not
only holds for the usual Minkowski addition but, in fact, for all commutative Orlicz
Minkowski additions introduced by Gardner, Hug, and Weil [17]. In particular, this
includes all the Lp Minkowski additions.

Let Θ1 denote the set of convex functions ϕ : [0,∞) → [0,∞) satisfying ϕ(0) = 0
and ϕ(1) = 1. For ϕ ∈ Θ1 and K,L ∈ Kn containing the origin, we write K +ϕ,λ L
for the Orlicz Minkowski convex combination of K and L (see Section 3 for the
definition).

Theorem 5. Let ϕ ∈ Θ1, 1 ≤ i ≤ n, and let Φj ∈ MValj,i−1, 2 ≤ j ≤ n − 1, be
non-trivial. If K,L ∈ Kn contain the origin, then for all λ ∈ (0, 1),

(2.5) Vi(Φj(K +ϕ,λ L)) ≥ Vi(ΦjK)1−λVi(ΦjL)
λ.

When ϕ is strictly convex and K and L have non-empty interiors, equality holds if
and only if K = L.

We will explain in Section 3 that by a recent result of Gardner, Hug, and Weil [17]
(Theorem 3.1 below), inequality (2.5) holds for all commutative Orlicz Minkowski
additions.

3. Background material on convex bodies

For quick later reference we collect in this section some basic facts from convex
geometry, in particular, on additions of convex bodies and inequalities for mixed
volumes. As general reference for this material we recommend the book by Schnei-
der [52] and the article [17].

For a convex body K ∈ Kn, the definition of the support function implies that
h(ϑK, u) = h(K,ϑ−1u) holds for all u ∈ Sn−1 and ϑ ∈ SO(n). Since every C2

function on Sn−1 is a difference of support functions (see, e.g., [52, p. 49]), the
subspace spanned by support functions {h(K, ·)− h(L, ·) : K,L ∈ Kn} is dense in
C(Sn−1). The Steiner point s(K) of K ∈ Kn is defined by

s(K) =
1

κn

∫
Sn−1

h(K,u)u du.

Here and in the following we use du to denote integration with respect to spherical
Lebesgue measure and κm for the m-dimensional volume of the unit ball in Rm.
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The Steiner point map is the unique vector valued, rigid motion equivariant and
continuous valuation on Kn (see, e.g., [52, p. 363]).

For K,L ∈ Kn and s, t ≥ 0, the support function of the Minkowski combination
sK + t L is given by

h(sK + t L, ·) = s h(K, ·) + t h(L, ·).

On the set Kn
o of convex bodies containing the origin, Firey introduced in the

1960s a more general way of combining convex sets. For K,L ∈ Kn
o , s, t ≥ 0, and

1 ≤ p < ∞, the Lp Minkowski combination s ·K +p t · L is defined by

h(s ·K +p t · L, ·)p = s h(K, ·)p + t h(L, ·)p.

Initiated by Lutwak [36, 38], in the last two decades an entire Lp theory of
convex bodies was developed which represents a powerful extension of the classical
Brunn–Minkowski theory (see, e.g., [25, 39, 40, 45, 46, 59, 66]).

A still more recent extension of the Brunn–Minkowski theory goes back to two
articles of Lutwak, Yang, and Zhang [41,42] and a paper by Haberl, Lutwak, Yang,
and Zhang [23]. While these articles form the starting point of an emerging Orlicz
Brunn–Minkowski theory that generalizes the Lp theory of convex bodies in the
same way that Orlicz spaces generalize Lp spaces, the fundamental notion of an
Orlicz Minkowski combination of convex bodies was introduced later by Gardner,
Hug, and Weil [17].

As before let Θ1 be the set of convex functions ϕ : [0,∞) → [0,∞) satisfying
ϕ(0) = 0 and ϕ(1) = 1. For K,L ∈ Kn

o , s, t ≥ 0, and ϕ, ψ ∈ Θ1, the Orlicz
Minkowski combination +ϕ,ψ(K,L, s, t) is defined by

h(+ϕ,ψ(K,L, s, t), u) = inf

{
α > 0 : s ϕ

(
h(K,u)

α

)
+ t ψ

(
h(L, u)

α

)
≤ 1

}

for u ∈ Sn−1. The notation +ϕ,ψ(K,L, s, t) is necessitated by the fact that it is
not possible in general to isolate an Orlicz scalar multiplication. We note that for
ϕ(t) = ψ(t) = tp, p ≥ 1, the Orlicz Minkowski combination +ϕ,ψ(K,L, s, t) equals
the Lp Minkowski combination s ·K +p t · L.

For s = t = 1, we write K +ϕ,ψ L instead of +ϕ,ψ(K,L, 1, 1) and call this the
Orlicz Minkowski sum of K and L. In fact, Gardner, Hug, and Weil defined a more
general Orlicz addition but proved (see [17, Theorem 5.5]) that their definition
leads (essentially) to the Orlicz Minkowski addition as defined here and the L∞
Minkowski addition obtained as the Hausdorff limit of the Lp Minkowski addition;
that is, for K,L ∈ Kn

o ,

K +∞ L = lim
p→∞

K +p L = conv(K ∪ L).

While all Lp Minkowski additions are commutative, in general, the Orlicz Min-
kowski addition of convex bodies is not. A classification of those Orlicz additions
which are commutative was obtained by Gardner, Hug, and Weil.

Theorem 3.1 ([17]). Let ϕ, ψ ∈ Θ1. The addition +ϕ,ψ : Kn
o × Kn

o → Kn
o is

commutative if and only if there exists φ ∈ Θ1 such that +ϕ,ψ = +φ,φ.

In the following we will only be interested in commutative Orlicz additions. For
K,L ∈ Kn

o , ϕ ∈ Θ1, and λ ∈ (0, 1) we use K+ϕ,λL to denote the Orlicz Minkowski
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convex combination +ϕ,ϕ(K,L, (1− λ), λ). More explicitly,

h(K+ϕ,λL, u) = inf

{
α > 0: (1− λ)ϕ

(
h(K,u)

α

)
+ λϕ

(
h(L, u)

α

)
≤ 1

}

for u ∈ Sn−1. For the proof of Theorem 5 we need the following simple fact.

Lemma 3.2. If ϕ ∈ Θ1 and K,L ∈ Kn
o , then for all λ ∈ (0, 1),

(3.1) K +ϕ,λ L ⊇ (1− λ)K + λL.

Proof. For u ∈ Sn−1 choose t > h(K +ϕ,λ L, u). Then, by the convexity of ϕ and
the definition of K +ϕ,λ L, we have

ϕ

(
(1− λ)h(K,u) + λh(L, u)

t

)
≤ (1− λ)ϕ

(
h(K,u)

t

)
+ λϕ

(
h(L, u)

t

)
≤ 1.

Since every ϕ ∈ Θ1 is increasing and satisfies ϕ(1) = 1, we conclude that

(1− λ)h(K,u) + λh(L, u) ≤ t.

Now, letting t approach h(K +ϕ,λ L, u), we obtain the desired inclusion (3.1). �
By a classical result of Minkowski, the volume of a Minkowski linear combination

λ1K1+ · · ·+λmKm, where K1, . . . ,Km ∈ Kn and λ1, . . . , λm ≥ 0, can be expressed
as a homogeneous polynomial of degree n,

(3.2) Vn(λ1K1 + · · ·+ λmKm) =

m∑
j1,...,jn=1

V (Kj1 , . . . ,Kjn)λj1 · · ·λjn ,

where the coefficients V (Kj1 , . . . ,Kjn), called mixed volumes of Kj1 , . . . ,Kjn , de-
pend only on Kj1 , . . . ,Kjn and are symmetric in their arguments. For K,L ∈ Kn

and 0 ≤ i ≤ n, we denote the mixed volume with i copies of K and n − i copies
of L by V (K[i], L[n− i]). For K,K1, . . . ,Ki ∈ Kn and C = (K1, . . . ,Ki), we write
Vi(K,C) instead of V (K, . . . ,K,K1, . . . ,Ki).

The mixed volume Wi(K) := Wi(K,K) is called the ith quermassintegral of K.
The ith intrinsic volume Vi(K) of K is defined by

κn−iVi(K) =

(
n

i

)
Wn−i(K).

A special case of (3.2) is the classical Steiner formula for the volume of the parallel
set of K at distance r > 0,

V (K + rB) =

n∑
i=0

ri
(
n

i

)
Wi(K) =

n∑
i=0

rn−iκn−iVi(K).

A fundamental inequality for mixed volumes is the general Minkowski inequality
(see [52, p. 427]): If 2 ≤ i ≤ n and K,L ∈ Kn have dimension at least i, then

(3.3) Wn−i(K,L)i ≥ Wn−i(K)i−1Wn−i(L),

with equality if and only if K and L are homothetic.
A consequence of (3.3) and the homogeneity of quermassintegrals is the (multi-

plicative) Brunn–Minkowski inequality: If 2 ≤ i ≤ n and K,L ∈ Kn have dimension
at least i, then for all λ ∈ (0, 1),

(3.4) Wn−i((1− λ)K + λL) ≥ Wn−i(K)1−λWn−i(L)
λ,

with equality if and only if K and L are translates of each other.
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A further generalization of inequality (3.4) (where the equality conditions are not
yet known) is the following (see [52, p. 406]): If 0 ≤ i ≤ n−2, K,L,K1, . . . ,Ki ∈ Kn

and C = (K1, . . . ,Ki), then for all λ ∈ (0, 1),

(3.5) Vi((1− λ)K + λL,C) ≥ Vi(K,C)1−λVi(L,C)λ.

Associated with a convex body K ∈ Kn is a family of Borel measures Si(K, ·),
0 ≤ i ≤ n−1, on Sn−1, called the area measures of order i of K. They are uniquely
determined by the property that

(3.6) Wn−1−i(K,L) =
1

n

∫
Sn−1

h(L, u) dSi(K,u)

for all L ∈ Kn. If K ∈ Kn has non-empty interior, then, by a theorem of
Aleksandrov–Fenchel–Jessen (see, e.g., [52, p. 449]), each of the measures Si(K, ·),
1 ≤ i ≤ n− 1, determines K up to translations.

For 1 ≤ j ≤ n− 1 and r > 0, we have the Steiner type formula

Sj(K + rB, ·) =
j∑

i=0

rj−i

(
j

i

)
Si(K, ·).

A body K ∈ Kn is of class C2
+ if the boundary of K is a C2 submanifold

of Rn with everywhere positive curvature. In this case, each measure Si(K, ·),
0 ≤ i ≤ n−1, is absolutely continuous with respect to spherical Lebesgue measure,
and its density is (up to a constant) given by the ith elementary symmetric function
of the principal radii of curvature of K.

The center of mass (centroid) of every area measure of a convex body is at the
origin; that is, for every K ∈ Kn and all i ∈ {0, . . . , n− 1}, we have∫

Sn−1

u dSi(K,u) = o.

The set Si of all area measures of order i of convex bodies in Kn is dense in the set of
all non-negative finite Borel measures on Sn−1 with centroid at the origin, endowed
with the weak topology, if and only if i = n− 1. However, Si −Si, 1 ≤ i ≤ n− 1, is
dense in the set Mo(S

n−1) of all signed finite Borel measures on Sn−1 with centroid
at the origin (see, e.g., [52, p. 477]).

4. Spherical harmonics and distributions

In this section we collect facts about spherical harmonics, in particular, on the
series expansion of distributions on the sphere. We also recall C. Berg’s functions
used in his solution of the Christoffel problem, since they are closely related to
the action of the Hard Lefschetz integration operator on Minkowski valuations (see
Section 5). In the final part of this section we give a new proof of the bijectivity of
integral transforms involving C. Berg’s functions. For the background material we
refer the reader to [52, Chapter 8.3], [20], and [44].

We write ΔS for the Laplacian (or Laplace–Beltrami operator) on Sn−1. If
f, g ∈ C2(Sn−1), then we have∫

Sn−1

f(u)ΔSg(u) du =

∫
Sn−1

g(u)ΔSf(u) du.

The finite dimensional vector space of spherical harmonics of dimension n and
degree k will be denoted by Hn

k , and we write N(n, k) for its dimension. Spherical
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harmonics are eigenfunctions of ΔS ; more precisely, for Yk ∈ Hn
k ,

(4.1) ΔSYk = −k(k + n− 2)Yk.

Let L2(Sn−1) denote the Hilbert space of square-integrable functions on Sn−1

with the usual inner product ( · , · ). The spaces Hn
k are pairwise orthogonal with

respect to this inner product. If {Yk,1, . . . , Yk,N(n,k)} is an orthonormal basis of Hn
k ,

then the collection {Yk,1, . . . , Yk,N(n,k) : k ∈ N} is a complete orthonormal system

in L2(Sn−1); that is, the Fourier series

(4.2) f ∼
∞∑
k=0

πkf

converges to f in the L2 norm for every f ∈ L2(Sn−1). Here and in the following, we
use πk : L2(Sn−1) → Hn

k to denote the orthogonal projection. Since the Legendre
polynomial Pn

k ∈ C([−1, 1]) of dimension n and degree k satisfies

N(n,k)∑
i=1

Yk,i(u)Yk,i(v) =
N(n, k)

ωn
Pn
k (u · v),

where ωm denotes the surface area of the m-dimensional unit ball, we have

(4.3) (πkf)(v) =

N(n,k)∑
i=1

(f, Yk,i)Yk,i(v) =
N(n, k)

ωn

∫
Sn−1

f(u)Pn
k (u · v) du.

Throughout the article we use ē ∈ Sn−1 to denote a fixed but arbitrarily chosen
pole of the sphere and we write SO(n − 1) for the stabilizer in SO(n) of ē. A
function or measure on Sn−1 is called zonal if it is SO(n − 1) invariant. Clearly,
zonal functions depend only on the value of u · ē.

The subspace of zonal functions in Hn
k is 1-dimensional for every k ∈ N and

spanned by the function u �→ Pn
k (u · ē). Since the spaces Hn

k are invariant under
the natural action of SO(n), the functions u �→ Pn

k (u · v), for fixed v ∈ Sn−1, are
elements of Hn

k . The orthogonality of the spaces Hn
k is reflected by the fact that

the Legendre polynomials Pn
k form a complete orthogonal system with respect to

the inner product on C([−1, 1]) defined by

[p, q]n =

∫ 1

−1

p(t) q(t) (1− t2)
n−3
2 dt.

From the orthogonality property of the Legendre polynomials and (4.3), it is not
difficult to show that any function φ ∈ L2([−1, 1]) (or, equivalently, any zonal
g ∈ L2(Sn−1)) admits a series expansion

(4.4) φ ∼
∞∑
k=0

N(n, k)

ωn
ank [φ]P

n
k ,

where

(4.5) ank [φ] = ωn−1

∫ 1

−1

φ(t)Pn
k (t) (1− t2)

n−3
2 dt = ωn−1 [P

n
k , φ]n .

For the explicit calculation of integrals of the form (4.5) the following formula
of Rodrigues for the Legendre polynomials is often very useful:

(4.6) Pn
k (t) =

(−1)k

2k
(
n−1
2

)
k

(1− t2)−
n−3
2

dk

dtk
(1− t2)

n−3
2 +k,
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where, for α ∈ R and k ∈ N, we have used (α)k to abbreviate the product
α(α+ 1) · · · (α+ k− 1). Using (4.6) one can show that the derivatives of Legendre
polynomials are again Legendre polynomials. For l ≥ k, we have

(4.7)
dk

dtk
Pn
l (t) = 2k

(n

2

)
k

N(n+ 2k, l − k)

N(n, l)
Pn+2k
l−k .

Next we recall the Gegenbauer polynomials, which can be defined for α > 0 by
means of the generating function

1

(1 + r2 − 2rt)α
=

∞∑
k=0

Cα
k (t) r

k.

For n ≥ 3, their relation to Legendre polynomials can be expressed by

(4.8) C
(n−2)/2
k =

(
n+ k − 3

n− 3

)
Pn
k .

For the following well-known auxiliary result about the spherical harmonic ex-
pansion of smooth functions, see, e.g., [44, p. 36].

Lemma 4.1. If f ∈ C∞(Sn−1), then the sequence ‖πkf‖∞, k ∈ N, is rapidly
decreasing; that is, for any m ∈ N, we have sup{km‖πkf‖∞ : k ∈ N} < ∞.
Conversely, if Yk ∈ Hn

k , k ∈ N, is a sequence of spherical harmonics such that
‖Yk‖∞ is rapidly decreasing, then the function

f(u) =

∞∑
k=0

Yk(u), u ∈ Sn−1,

is C∞ and πkf = Yk for every k ∈ N.

For f ∈ C∞(Sn−1) and m ∈ N, define

(−ΔS)
m
2 f =

∞∑
k=0

(k(k + n− 2))
m
2 πkf.

Note that, by Lemma 4.1, (−ΔS)
m
2 f ∈ C∞(Sn−1).

If we endow the vector space C∞(Sn−1) with the topology defined by the family
of seminorms ‖(−ΔS)

m
2 f‖∞, m ∈ N, then C∞(Sn−1) becomes a Fréchet space.

Moreover, the spherical harmonic expansion (4.2) of any f ∈ C∞(Sn−1) converges
to f in this topology.

A distribution on Sn−1 is a continuous linear functional on C∞(Sn−1). We write
C−∞(Sn−1) for the space of distributions on Sn−1 equipped with the topology
of weak convergence and use 〈 · , · 〉 to denote the canonical bilinear pairing on
C∞(Sn−1)× C−∞(Sn−1).

A (signed) measure σ on Sn−1 defines a distribution Tσ by

〈f, Tσ〉 =
∫
Sn−1

f(u) dσ(u), f ∈ C∞(Sn−1).

Using the continuous linear injection σ �→ Tσ, we can regardM(Sn−1) as a subspace
of C−∞(Sn−1). In the same way, the spaces C∞(Sn−1), C(Sn−1), and L2(Sn−1)
can be viewed as subspaces of C−∞(Sn−1), and we have

(4.9) C∞(Sn−1) ⊆ C(Sn−1) ⊆ L2(Sn−1) ⊆ M(Sn−1) ⊆ C−∞(Sn−1).
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Since πk : L2(Sn−1) → Hn
k is self-adjoint, that is, (πkf, g) = (f, πkg) for all

f, g ∈ L2(Sn−1) and k ≥ 0, it is consistent to define the k-spherical harmonic
component πkT of T ∈ C−∞(Sn−1) as the distribution given by

〈f, πkT 〉 = 〈πkf, T 〉, f ∈ C∞(Sn−1).

Lemma 4.2 ([44, p. 38]). If T ∈ C−∞(Sn−1), then πkT ∈ Hn
k for every k ∈ N and

the sequence ‖πkT‖∞, k ∈ N, is slowly increasing. That is, there exist C > 0 and
j ∈ N such that ‖πkT‖∞ ≤ Ckj for every k ∈ N.

Conversely, if Yk ∈ Hn
k , k ∈ N, is a sequence of spherical harmonics such that

‖Yk‖∞ is slowly increasing, then

〈g, T 〉 =
∞∑
k=0

∫
Sn−1

g(u)Yk(u) du, g ∈ C∞(Sn−1),

defines a distribution T ∈ C−∞(Sn−1) for which πkT = Yk for every k ∈ N.

We can also extend the Laplacian to distributions T ∈ C−∞(Sn−1) by defining
ΔST as the distribution given by

〈f,ΔST 〉 = 〈ΔSf, T 〉, f ∈ C∞(Sn−1).

Note that, by (4.9), ΔS can now also act on continuous functions on Sn−1. This is of
particular importance for us, since the support function h(K, ·) and the first-order
area measure S1(K, ·) of a convex body K ∈ Kn are related by

(4.10) �nh(K, ·) = S1(K, ·),
where �n is the differential operator given by

�nh = h+
1

n− 1
ΔSh.

From the definition of �n and (4.1), we see that for f ∈ C∞(Sn−1) the spherical
harmonic expansion of �nf is given by

(4.11) �nf ∼
∞∑
k=0

(1− k)(k + n− 1)

n− 1
πkf.

Thus, the kernel of the linear operator �n : C∞(Sn−1) → C∞(Sn−1) is given by
Hn

1 and consists precisely of the restrictions of linear functions on Rn to Sn−1. Let
C∞

o (Sn−1) denote the Fréchet subspace of C∞(Sn−1) given by

C∞
o (Sn−1) = {f ∈ C∞(Sn−1) : π1f = 0}

and define C−∞
o (Sn−1) analogously.

Since the linear operator �n : C∞
o (Sn−1) → C∞

o (Sn−1) is an isomorphism, it is
a natural problem to find an (explicit) inversion formula. This was accomplished by
C. Berg [13] in the late 1960s and, due to (4.10), is closely related to his solution of
the classical Christoffel problem, which consists of finding necessary and sufficient
conditions for a Borel measure on Sn−1 to be the first-order area measure of a
convex body.

In order to describe C. Berg’s inversion formula for �n, let us recall the Funk–
Hecke Theorem: If φ ∈ C([−1, 1]) and Fφ is the integral transform on M(Sn−1)
defined by

(Fφσ)(u) =

∫
Sn−1

φ(u · v) dσ(v), u ∈ Sn−1,
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then the spherical harmonic expansion of Fφσ ∈ C(Sn−1) is given by

(4.12) Fφσ ∼
∞∑
k=0

ank [φ]πkσ,

where the numbers ank [φ] are given by (4.5) and called the multipliers of Fφ.
Using the theory of subharmonic functions on Sn−1, C. Berg proved that for

every n ≥ 2 there exists a uniquely determined C∞ function gn on (−1, 1) such
that the zonal function u �→ gn(u · ē) is in L1(Sn−1) and

(4.13) an1 [gn] = 0, ank [gn] =
n− 1

(1− k)(k + n− 1)
, k �= 1.

For later reference, we just state here that

(4.14) g2(t) =
1

2π

(
(π − arccos t)(1− t2)

1
2 − t

2

)

and

(4.15) g3(t) =
1

2π

(
1 + t ln(1− t) +

(
4

3
− ln 2

)
t

)
.

We note that, by (4.13), our normalization of the gn differs from C. Berg’s original
one. It follows from (4.11), (4.12), and (4.13) that

f(u) =

∫
Sn−1

gn(u · v)(�nf)(v) dv, u ∈ Sn−1,

for every f ∈ C∞
o (Sn−1), which is the desired inversion formula. However, for our

purposes we need the following more general fact.

Theorem 4.3. For 2≤j≤n, the integral transform Fgj :C
∞
o (Sn−1)→ C∞

o (Sn−1),
defined by

(Fgjf)(u) =

∫
Sn−1

gj(u · v)f(v) dv, u ∈ Sn−1,

is an isomorphism.

Theorem 4.3 can be deduced from a result of Goodey and Weil [19, Theorem 4.3].
However, we give a different and more elementary proof below that also yields
additional information required after the proof of Theorem 6.1. For this, note that,
by Lemma 4.1, it is sufficient to show that the multipliers ank [gj ] are non-zero for
k �= 1 and that they are slowly increasing. Therefore, Theorem 4.3 is a direct
consequence of the following.

Theorem 4.4. For n ≥ 2, 2 ≤ j ≤ n, and k �= 1, we have

ank [gj ] = −π
n−j
2 (j − 1)

4

Γ
(
n−j+2

2

)
Γ

(
k−1
2

)
Γ

(
j+k−1

2

)

Γ
(

n−j+k+1
2

)
Γ

(
n+k+1

2

) .

Proof. For n ≥ 2, d ≥ 0, and k �= 1, by (4.5), we have to determine

(4.16) an,dk := an+d
k [gn] = ωn+d−1

[
Pn+d
k , gn

]
n+d

,

where we know from (4.13) that

(4.17) an,0k =
n− 1

(1− k)(n− 1 + k)
.
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We start with the case d = 1. By (4.4) and (4.13), we have

gn ∼
∞∑
l=0

N(n, l)

ωn
an,0l Pn

l ,

where the sum converges in the topology induced by [ · , · ]n, which implies the
convergence in the topology induced by [ · , · ]n+1. Consequently,

(4.18) an,1k = ωn

[
Pn+1
k , gn

]
n+1

=

∞∑
l=0

N(n, l) an,0l

[
Pn+1
k , Pn

l

]
n+1

.

Since Legendre polynomials of degree k are even if k is even and odd otherwise, we
may assume that k and l have the same parity. Since

[
Pn+1
k , Pn

l

]
n+1

vanishes for

l < k (see the next calculation), let l ≥ k and put

β :=
n− 2

2
.

If β+k ≥ 1
2 , that is, (n, k) �= (2, 0), then it follows from (4.6), integration by parts,

(4.7), and (4.8) that

[
Pn+1
k , Pn

l

]
n+1

=
(−1)k

2k(β + 1)k

∫ 1

−1

(
dk

dtk
(1− t2)β+k

)
Pn
l (t) dt

=
1

2k(β + 1)k

∫ 1

−1

(1− t2)β+k

(
dk

dtk
Pn
l (t)

)
dt

=
N(n+ 2k, l − k)

N(n, l)

∫ 1

−1

(1− t2)β+k Pn+2k
l−k (t) dt

=
β + l

N(n, l)(β + k)

∫ 1

−1

(1− t2)β+k Cβ+k
l−k (t) dt.

For α ∈ 1
2N and even m, we have (cf. [18, p. 424])

cαm =

∫ 1

−1

(1− t2)αCα
m(t) dt = −

α 4α+
1
2 m! Γ

(
m
2 + α+ 1

)2
(m− 1)

(
m
2 + α

)
(m+ 2α+ 1)! Γ

(
m
2 + 1

)2 .
Plugging this into (4.18) and changing the summation index yields

an,1k =
∞∑
l=0

β + k + 2l

β + k
an,0k+2l c

β+k
2l =

(
β +

1

2

)
4β+k+1

∞∑
l=0

q(β, k, l),

where

q(β, k, l) =
2l (2l−2)! (β+k+2l) Γ(β+k+l+1)2

(k+2l−1) (2β+k+2l+1) (β+k+l) (2β+2k+2l+1)! Γ(l+1)2
.

Using Zeilberger’s algorithm (see, e.g., [49]), we find that q satisfies the following
recurrence relation:

A(β,k)q(β + 1,k,l) +B(β,k)q(β,k,l) = q(β,k,l + 1)C(β,k,l + 1)− q(β,k,l)C(β,k,l),

where

A(β,k) = 4(2β+k+4), B(β,k) = −(2β+k+1), C(β,k,l) = − l(k+2l−1)

β+k+2l
.
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If we let Q(β, k) =
∑∞

l=0 q(β, k, l), then we obtain

Q(β + 1, k) =
2β + k + 1

4(2β + k + 4)
Q(β, k)

or, in terms of the multipliers,

(4.19) an+2,1
k =

(n+ 1) (n+ k − 1)

(n− 1) (n+ k + 2)
an,1k .

The function q also satisfies the recurrence relation

D(β,k)q(β,k + 2,l) + E(β,k)q(β,k,l) = q(β,k,l + 1)F (β,k,l + 1)− q(β,k,l)F (β,k,l),

where

D(β, k) = 16(k + 2)(2β + k + 4), E(β, k) = −(k − 1)(2β + k + 1)

and

F (β, k, l) = − 1

(β + k + 2l)(2β + 2k + 2l + 3)

3∑
i=1

li pi(β, k),

with polynomials p1, p2, p3 given by

p1(β, k) = 8β3 + 16kβ2 + 20β2 + 12k2β + 26kβ + 10β + 4k3 + 9k2 + 4k + 3,

p2(β, k) = 16β2 + 24kβ + 32β + 12k2 + 24k + 4,

p3(β, k) = 8β + 8k + 12.

Summing again over all l, we arrive at

Q(β, k + 2) =
(k − 1) (2β + k + 1)

16(k + 2) (2β + k + 4)
Q(β, k).

In terms of the multipliers this means that

(4.20) an,1k+2 =
(k − 1) (n+ k − 1)

(k + 2) (n+ k + 2)
an,1k .

In order to solve (4.19) and (4.20), we need four initial values of an,1k . We also

have to calculate a2,10 , which was not covered by the above arguments. Using (4.14),
(4.15), and (4.16), elementary integration yields

(4.21) a2,10 =
π2

4
, a2,12 = −π2

32
, a2,13 = − 4

45
, a3,10 =

2π

3
, a3,13 = − π

24
.

This leads to the sequence

(4.22) an,1k = −π

8
(n− 1)

Γ
(
k−1
2

)
Γ

(
n+k−1

2

)
Γ

(
k+2
2

)
Γ

(
n+k+2

2

) ,
which satisfies (4.19), (4.20) and has the initial values (4.21).

Now let d ≥ 0 be arbitrary. For l ≥ 2, the Legendre polynomials satisfy the
recurrence relation (see, e.g., [20, Lemma 3.3.10])

(n+d+2l−2)(n+d−1)Pn+d
l = (n+d+l−2)(n+d+l−1)Pn+d+2

l −(l−1)lPn+d+2
l−2 .
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From this and the fact that Pm
0 (t) = 1, Pm

1 (t) = t for all m ≥ 1, we obtain

an,d+2
k = ωn+d+1

[
Pn+d+2
k , gn

]
n+d+2

= ωn+d+1

∞∑
l=0

N(n+ d, l)

ωn+d
an,dl

[
Pn+d+2
k , Pn+d

l

]
n+d+2

=
2π

n+ d+ 2k

(
an,dk − an,dk+2

)
.

Finally, the sequence which solves this recurrence relation and has the initial values
(4.17) and (4.22) is given by

an,dk = −π
d
2 (n− 1)

4

Γ
(
d+2
2

)
Γ

(
k−1
2

)
Γ

(
n+k−1

2

)
Γ

(
d+k+1

2

)
Γ

(
n+d+k+1

2

) , k �= 1.

�

We end this section with the following important definition, given rise to by
Theorem 4.3.

Definition. For 2 ≤ j ≤ n, let �j : C∞
o (Sn−1) → C∞

o (Sn−1) denote the linear
operator which is inverse to the integral transform Fgj .

5. Generalized valuations and Minkowski valuations

In the following we recall several results on translation invariant (scalar and
convex body valued) valuations, in particular, the product structure on smooth
valuations and the Alesker–Poincaré duality. We also discuss basic properties of the
Hard Lefschetz operators and a new isomorphism between generalized valuations of
degree one and generalized functions on the sphere. At the end of this section, we
state a recent representation theorem for Minkowski valuations intertwining rigid

motions and give an alternative description of the classes MVal
SO(n)
i,j .

A map μ defined on convex bodies in Rn and taking values in an Abelian semi-
group A is called a valuation or additive if

μ(K) + μ(L) = μ(K ∪ L) + μ(K ∩ L)

whenever K ∪ L is convex. If G is a group of affine transformations on Rn, a
valuation μ is called G-invariant if μ(gK) = μ(K) for all K ∈ Kn and g ∈ G.

Let Val denote the vector space of continuous translation invariant scalar valued
valuations. The structure theory of translation invariant valuations has its starting
point in a classical result of McMullen [43], who showed that

(5.1) Val =
⊕

0≤i≤n

Val+i ⊕Val−i ,

whereVal+i ⊆ Val denotes the subspace of even valuations (homogeneous) of degree
i, and Val−i denotes the subspace of odd valuations of degree i. The space Val
becomes a Banach space when endowed with the norm

‖μ‖ = sup{|μ(K)| : K ⊆ B}.
The general linear group GL(n) acts on the Banach space Val in a natural way:
For every A ∈ GL(n) and μ ∈ Val,

(A · μ)(K) = μ(A−1K), K ∈ Kn.
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Note that the subspaces Val±i are invariant under this GL(n)-action. In fact, a
deep result of Alesker [3], known as the Irreducibility Theorem, states that these
subspaces are also irreducible:

Theorem 5.1 (Alesker [3]). The natural representation of GL(n) on Val±i is irre-
ducible for any i ∈ {0, . . . , n}.

By Theorem 5.1, any GL(n)-invariant subspace of translation invariant continu-
ous valuations (of a given degree i and parity) is already dense in Val±i .

Definition. A valuation μ ∈ Val is called smooth if the map GL(n) → Val defined
by A �→ A · μ is infinitely differentiable.

The subspace of smooth translation invariant valuations is denoted by Val∞,
and we write Val±,∞

i for smooth valuations in Val±i . It is well known that Val±,∞
i

is a dense GL(n) invariant subspace of Val±i (cf. [61, p. 32]). Moreover, Val∞

carries a natural Fréchet space topology, called G̊arding topology (see [61, p. 33]),
which is stronger than the topology induced from Val. Finally, we note that the
representation of GL(n) on Val∞ is continuous.

Examples.

(a) If L ∈ Kn is strictly convex with smooth boundary, then

μL : Kn → R, μL(K) = Vn(K + L),

is a smooth valuation.
(b) If f ∈ C∞

o (Sn−1) and 0 ≤ i ≤ n− 1, then νi,f : Kn → R, defined by

(5.2) νi,f (K) =

∫
Sn−1

f(u) dSi(K,u),

is a smooth valuation in Val∞i .

Before we turn to generalized valuations, we recall the definition of the Alesker
product of smooth translation invariant valuations.

Theorem 5.2 ([5]). There exists a bilinear product

Val∞ ×Val∞ → Val∞, (μ, ν) �→ μ · ν,
which is uniquely determined by the following two properties:

(i) The product is continuous in the G̊arding topology.
(ii) If L1, L2 ∈ Kn are strictly convex and smooth, then

(μL1
· μL2

)(K) = V2n(ι(K) + L1 × L2),

where ι : Rn → Rn × Rn is defined by ι(x) = (x, x).

Endowed with this multiplicative structure, Val∞ becomes an associative and com-
mutative algebra which is graded by the degree of homogeneity and with unit given
by the Euler characteristic.

The next example was computed in [5] and will be needed in the appendix.

Example. Let L1, . . . , Ln−i ∈ Kn and M1, . . . ,Mi ∈ Kn be strictly convex and
smooth. If μ ∈ Val∞i and ν ∈ Val∞n−i are defined by

μ(K) = V (K[i], L1, . . . , Ln−i) and ν(K) = V (K[n− i],M1, . . . ,Mi),
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then

(5.3) (μ · ν)(K) =

(
n

i

)−1

V (−L1, . . . ,−Ln−i,M1, . . . ,Mi)Vn(K).

The above example is just a special case of the more general fact that the Alesker
product gives rise to a non-degenerate bilinear pairing between smooth valuations
of complementary degree.

Theorem 5.3 ([5]). For every 0 ≤ i ≤ n, the continuous bilinear pairing

〈· , ·〉 : Val∞i ×Val∞n−i → Valn, (μ, ν) �→ μ · ν,
is non-degenerate. In particular, the induced Poincaré duality map

Val∞i →
(
Val∞n−i

)∗ ⊗Valn, μ �→ 〈μ, ·〉,
is continuous, injective, and has dense image with respect to the weak topology.

Here and in the following, for a Fréchet space X, we denote by X∗ its topological
dual endowed with the weak topology.

Motivated by Theorem 5.3, the notion of generalized valuations was introduced
recently [8]. Before we state the definition, recall that by a classical theorem of
Hadwiger [26, p. 79] the space Valn is spanned by the ordinary volume Vn. In
other words, if we do not refer to any Euclidean structure, then Valn ∼= D(V ),
where D(V ) denotes the vector space of all densities on an n-dimensional vector
space V (see the Appendix for details).

Definition. The space of generalized valuations is defined by

Val−∞ = (Val∞)∗ ⊗ D(V ),

and we define the space of generalized valuations of degree i ∈ {0, . . . , n} by

Val−∞
i =

(
Val∞n−i

)∗ ⊗ D(V ).

By Theorem 5.3, we have a canonical embedding with dense image

Val∞ ↪→ Val−∞.

In order to establish Theorem 3, we need the following new description of gen-
eralized valuations of degree 1. A proof of this theorem was given by Alesker and
is included in the appendix.

Theorem 5.4. The map

C∞
o (Sn−1) → Val∞1 , f �→

(
K �→

∫
Sn−1

f(u)h(K,u) du

)
,

is an isomorphism of Fréchet spaces which extends uniquely by continuity in the
weak topologies to an isomorphism

C−∞
o (Sn−1) → Val−∞

1 .

Note that, by Theorem 5.4, if γ ∈ Val−∞
1 and Tγ ∈ C−∞

o (Sn−1) is the cor-
responding distribution, then we can evaluate γ on convex bodies K ∈ Kn with
smooth support function by

γ(K) := 〈h(K, ·), Tγ〉.
Next we briefly recall the Hard Lefschetz operators on smooth translation in-

variant scalar valuations. It is well known that McMullen’s decomposition (5.1) of
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the space Val implies a general Steiner type formula for continuous translation in-
variant valuations which, in turn, gives rise to a derivation operator Λ : Val → Val
defined by

(Λμ)(K) =
d

dt

∣∣∣∣
t=0

μ(K + tB).

Note that Λ commutes with the action of O(n) and that it preserves parity. More-
over, if μ ∈ Vali, then Λμ ∈ Vali−1.

The importance of the operator Λ became evident from a Hard Lefschetz type
theorem established by Alesker [4] for even valuations and by Bernig and Bröcker [11]
for general valuations. More recently, a dual version of this fundamental result was
established in [6,7]. There, the derivation operator Λ is replaced by an integration
operator L : Val → Val defined by

(5.4) (Lμ)(K) = (V1 · μ)(K) =

∫
AGrn−1,n

μ(K ∩ E) dE,

where here and in the following AGrk,n denotes the affine Grassmannian of k planes
in Rn and integration is with respect to a (suitably normalized) invariant measure.
The original definition of L corresponds to the first equality in (5.4), and it was
proved by Bernig [10] that the second equality holds. We also note that L commutes
with the action of O(n) and that it preserves parity. Moreover, if μ ∈ Vali, then
Lμ ∈ Vali+1.

In the final part of this section we turn to Minkowski valuations. Recall that
the trivial Minkowski valuation maps every convex body to the set containing only
the origin and that, for 0 ≤ j ≤ n, we denote by MValj the set of all continuous,
translation invariant and SO(n) equivariant Minkowski valuations of degree j. In
the next lemma we state basic properties of such Minkowski valuations which are
well known (cf. [9, 47, 55]) and are needed in what follows.

Lemma 5.5. If Φj ∈ MValj, 0 ≤ j ≤ n, then the following statements hold:

(a) The Steiner point of ΦjK is at the origin; that is, s(ΦjK) = o for every
K ∈ Kn.

(b) There exists rΦj
≥ 0 such that

Wn−1(ΦjK) = rΦj
Wn−j(K)

for every K ∈ Kn. If Φj is non-trivial, then rΦj
> 0.

(c) The SO(n− 1) invariant valuation νj ∈ Valj, defined by

νj(K) = h(ΦjK, ē),

uniquely determines Φj and is called the associated real valued valuation
of Φj ∈ MValj.

Lemma 5.5(c) motivated the following definition, which first appeared in [55].

Definition. A Minkowski valuation Φj ∈ MValj , 0 ≤ j ≤ n, is called smooth if
its associated real valued valuation νj is smooth.

Recall that smooth translation invariant scalar valuations are dense in all contin-
uous translation invariant scalar valuations. However, this does not directly imply
the same for Minkowski valuations, but instead additional arguments were needed
for the proof which was given in [55] for even and in [58] for general Minkowski
valuations.
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In order to state the crucial integral representation of smooth translation in-
variant and SO(n) equivariant Minkowski valuations we have to briefly recall the
convolution between functions and measures on Sn−1. First note that since SO(n)
is a compact Lie group, the convolution σ ∗ τ of signed measures σ, τ on SO(n) can
be defined by∫

SO(n)

f(ϑ) d(σ ∗ τ )(ϑ) =
∫
SO(n)

∫
SO(n)

f(ηθ) dσ(η) dτ (θ), f ∈ C(SO(n)).

Using the identification of the sphere Sn−1 with the homogeneous space
SO(n)/SO(n− 1) leads to a one-to-one correspondence of C(Sn−1) and M(Sn−1)
with right SO(n−1) invariant functions and measures on SO(n), respectively. Using
this correspondence, the convolution of measures on SO(n) induces a convolution
product on M(Sn−1) (cf. [55] for more details).

For spherical convolution zonal functions and measures on Sn−1 play an essential
role. We denote the set of continuous zonal functions on Sn−1 by C(Sn−1, ē). For
σ ∈ M(Sn−1), f ∈ C(Sn−1, ē), and η ∈ SO(n), it is easy to check that

(5.5) (σ ∗ f)(ηē) =
∫
Sn−1

f(η−1u) dσ(u).

Note that, by (5.5), we have, for every ϑ ∈ SO(n), that

(ϑσ) ∗ f = ϑ(σ ∗ f),
where ϑσ is the image measure of σ under the rotation ϑ ∈ SO(n). Moreover, from
the obvious identification of zonal functions on Sn−1 with functions on [−1, 1], (5.5),
and the Funk–Hecke Theorem, it follows that there are ank [f ] ∈ R such that the
spherical harmonic expansion of σ ∗ f ∈ C(Sn−1) is given by

σ ∗ f ∼
∞∑
k=0

ank [f ]πkσ.

Hence, convolution from the right induces a multiplier transformation. It is also not
difficult to check from (5.5) that the convolution of zonal functions and measures
is Abelian.

Another property of spherical convolution which is going to be critical for us is the
fact that the convolution is selfadjoint; in particular, we have for all σ, τ ∈ M(Sn−1)
and every f ∈ C(Sn−1, ē),

(5.6)

∫
Sn−1

(σ ∗ f)(u) dτ (u) =
∫
Sn−1

(τ ∗ f)(u) dσ(u).

We are now in a position to state a recent Hadwiger type theorem for smooth
Minkowski valuations which is the key to the proof of Theorem 3.

Theorem 5.6 ([58]). If Φj ∈ MVal∞j , j ∈ {1, . . . , n − 1}, then there exists a

unique f ∈ C∞
o (Sn−1, ē), called the generating function of Φj, such that for every

K ∈ Kn,

(5.7) h(ΦjK, ·) = Sj(K, ·) ∗ f.

Examples.

(a) Kiderlen [27] proved (in a slightly different form) that if Φ1 ∈ MVal∞1 ,
then there exists a unique g ∈ C∞

o (Sn−1, ē) such that for every K ∈ Kn,

(5.8) h(Φ1K, ·) = h(K, ·) ∗ g.
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In order see how (5.8) is related to Theorem 5.6, we use (4.10) and the fact
that �n : C∞

o (Sn−1) → C∞
o (Sn−1) is a bijective multiplier transformation

to obtain a function f ∈ C∞
o (Sn−1, ē) with �nf = g and conclude that

h(Φ1K, ·) = h(K, ·) ∗ g = h(K, ·) ∗ �nf = �nh(K, ·) ∗ f = S1(K, ·) ∗ f.
(b) The case j = n−1 of Theorem 5.6 was first proved (in a more general form)

in [54]. Moreover, it was also shown there that Φn−1 ∈ MVal∞n−1 is even
if and only if there exists an o-symmetric body of revolution L ∈ Kn with
smooth support function such that for every K ∈ Kn,

h(Φn−1K, ·) = Sn−1(K, ·) ∗ h(L, ·).
(c) For i ∈ {1, . . . , n− 1}, the support function of the projection body map of

order i, Πi ∈ MVali, is given by

h(ΠiK,u) = Vi(K|u⊥) =
1

2

∫
Sn−1

|u · v| dSi(K, v), u ∈ Sn−1.

Note that Πi is continuous but not smooth. Its (merely) continuous gener-
ating function is given by f(u) = 1

2 |u · ē|, u ∈ Sn−1.
(d) For i ∈ {2, . . . , n}, the (normalized) mean section operator of order i, Mi ∈

MValn+1−i, was first defined in [18] by

h(MiK, ·) =
∫
AGri,n

h(J(K ∩ E), ·) dE.

Here, J ∈ MVal1 is defined by JK = K − s(K), where s : Kn → Rn is
the Steiner point map. Recently, Goodey and Weil [19] proved that the
generating functions of the mean section operators are up to normalization
the zonal functions ği ∈ L1(S

n−1, ē) determined by Berg’s functions gi on
[−1, 1]. More precisely,

(5.9) h(MiK, ·) = pn,i Sn+1−i(K, ·) ∗ ği,
with constants pn,i which were explicitly determined in [19].

The integration operator L on translation invariant scalar valuations can be
extended to Minkowski valuations by using (5.4):

h((LΦ)(K), ·) =
∫
AGrn−1,n

h(Φ(K ∩ E), ·) dE.

It was proved in [47] that also the derivation operator Λ can be extended to
continuous translation invariant Minkowski valuations:

h((ΛΦ)(K), ·) = d

dt

∣∣∣∣
t=0

h(Φ(K + tB), ·).

Note that in this case it is not trivial that the right hand side actually defines the
support function of a convex body; this was proved in [47].

If Φj ∈ MVal∞j , 1 ≤ j ≤ n−1, with associated real valued valuation νj ∈ Val∞j ,
then the associated real valued valuations of LΦj and ΛΦj are given by Lνj ∈
Val∞j+1 and Λνj ∈ Val∞j+1, respectively. In particular, we have LΦj ∈ MVal∞j+1

and ΛΦj ∈ MVal∞j−1.
In view of Theorem 5.6, it is a natural problem to determine the induced action

of the SO(n) equivariant operators Λ and L on the generating functions of smooth
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Minkowski valuations. This was done in [57] and is the content of the following
theorem.

Theorem 5.7 ([57]). Suppose that Φj ∈ MVal∞j and let f ∈ C∞
o (Sn−1, ē) be the

generating function of Φj.

(a) If 2 ≤ j ≤ n− 1, then the generating function of ΛΦj is given by jf .
(b) If 1 ≤ j ≤ n − 2, then there exists a constant cn,j > 0 such that the

generating function of LΦj is given by cn,j �n−j+1f ∗ ğn−j.

In particular, Λ : MVal∞j → MVal∞j−1 is injective for all 2 ≤ j ≤ n − 1, and
L : MVal∞j → MVal∞j+1 is injective for all 1 ≤ j ≤ n− 2.

The constants cn,j from Theorem 5.7(b) were explicitly determined in [57]. We
also note that, by Theorem 5.7, for i > j, the map

Λj−i : MVal∞j,i → MVal∞i

is well defined. From Theorem 5.7(a) and Examples (a) and (b) above, we can also
deduce more information about the classes MVal∞j,i.

Corollary 5.8.

(a) Suppose that 1 ≤ i, j ≤ n − 1, Φj ∈ MVal∞j , and let f ∈ C∞
o (Sn−1, ē) be

the generating function of Φj. Then Φj ∈ MVal∞j,i if and only if Si(K, ·)∗f
is a support function for every K ∈ Kn.

(b) MVal∞1,n−1 � MVal∞1 .

Proof. Statement (a) is a direct consequence of the definition of MVal∞j,i and The-
orem 5.7(a).

In order to prove (b), let Φ1 ∈ MVal∞1 be even and let f ∈ C∞
o (Sn−1, ē)

be the generating function of Φ1. Then, by (a) and Example (b) from above,
Φ1 ∈ MVal∞1,n−1 if and only if f = h(L, ·) for some o-symmetric body of revolution
L ∈ Kn. In this case, we have

h(Φ1K, ·) = S1(K, ·) ∗ h(L, ·) = �nh(K, ·) ∗ h(L, ·) = h(K, ·) ∗ s1(L, ·),
where s1(L, ·) = �nh(L, ·) is the smooth density of S1(L, ·). It was proved by
Kiderlen [27] that for any (even) non-negative g ∈ C∞

o (Sn−1, ē), (5.8) defines an
(even) Minkowski valuation in MVal∞1 . Since the set of area measures of order 1
is nowhere dense in Mo, this proves the claim. �

Note that by Corollary 5.8(b), in general MVal∞j,i � MVal∞j for i > j. Explicit
examples of Minkowski valuations in MValj with generating functions which do
not generate a Minkowski valuation in MValn−1 are provided by the mean sec-
tion operators. This follows from (5.9) and the case i = n − 1 of Theorem 5.6
for continuous Minkowski valuations established in [54], where it was proved that
Φn−1 ∈ MValn−1 is generated by a continuous function f ∈ Co(S

n−1, ē). However,
Berg’s functions gi are not continuous on [−1, 1] for i ≥ 5.

We end this section with another remark concerning Corollary 5.8(a): Generat-
ing functions or earlier versions of Theorem 5.6, respectively, were the critical tool
used in the proofs of the first Brunn–Minkowski type inequalities for Minkowski
valuations. In the next section we will see that the Hard Lefschetz operators
on Minkowski valuations (which were introduced only recently) and Theorem 5.6
both naturally lead to the same classes MValj,i for which we can establish such
inequalities.



5266 A. BERG, L. PARAPATITS, F. E. SCHUSTER, AND M. WEBERNDORFER

6. Proofs of main results

After these preparations, we are now in a position to complete the proofs of
Theorems 3, 4, and 5. We begin with Theorem 3, which we first recall.

Theorem 6.1. Let Φj ∈ MVal∞j , 2 ≤ j ≤ n − 1. For j + 2 ≤ i ≤ n and every

L ∈ Kn, there exists γi,j(L, ·) ∈ Val−∞
1 such that

Wn−i(K,ΦjL) = γi,j(L, (L
i−j−1Φj)(K))

for every K ∈ Kn. Moreover, if Φj ∈ MVal∞j,i−1, then

γi,j(L, (L
i−j−1Φj)(K)) =

(i− 1)!

j!
Wn−1−j(L, (Λ

j+1−iΦj)(K)).

Proof. First define an isomorphism Θj : C
∞
o (Sn−1) → C∞

o (Sn−1) by

Θjζ = cn,j �n−j+1ζ ∗ ğn−j = cn,j ζ ∗ �n−j+1ğn−j ,

where the constant cn,j > 0 is as in Theorem 5.7(b). Here, the second equality
follows from the fact that multiplier transformations commute and �n−j+1ğn−j is
to be understood in the sense of distributions, where we use the canonical extension
of the selfadjoint operator �n−j+1 to C−∞

o (Sn−1).
Let τē = δē − π1δē ∈ Mo(S

n−1), where δē is the Dirac measure supported at
ē ∈ Sn−1. Then, by (5.5), ζ ∗τē = ζ for every ζ ∈ C∞

o (Sn−1). Now since �kğk = τē,
it follows from Theorem 5.7(b) that if f ∈ C∞

o (Sn−1, ē) is the generating function
of Φj , then Li−j−1Φj ∈ MVal∞i−1 is generated by

(6.1) Θi−2Θi−1 · · ·Θj+1Θjf = qn,i,j �n−j+1f ∗ ğn−i+2,

where qn,i,j =
∏i−2

m=j cn,m > 0. Note that the inverse of the isomorphism (6.1) is,

for ζ ∈ C∞
o (Sn−1), given by

q−1
n,i,j �n−i+2ζ ∗ ğn−j+1.

For every L ∈ Kn we define a distribution Ti,j(L) ∈ C−∞
o (Sn−1) by

〈ζ, Ti,j(L)〉 = q−1
n,i,j

∫
Sn−1

(�n−i+2ζ ∗ ğn−j+1)(u) dSj(L, u)

for ζ ∈ C∞
o (Sn−1). Let γi,j(L, ·) ∈ Val−∞

1 be the generalized valuation correspond-
ing to Ti,j(L) determined by Theorem 5.4.

Since Li−j−1Φj is smooth, it follows that h((Li−j−1Φj)(K), ·) is smooth for every
K ∈ Kn. Hence, we can evaluate γi,j(L, ·) on (Li−j−1Φj)(K). Using that

h((Li−j−1Φj)(K), ·) = qn,i,j Si−1(K, ·) ∗ (�n−j+1f ∗ ğn−i+2),

we obtain

γi,j(L, (L
i−j−1Φj)(K)) = 〈h((Li−j−1Φj)(K), ·), Ti,j(L)〉

=

∫
Sn−1

(Si−1(K, ·) ∗ f)(u) dSj(L, u).

Now on one hand it follows from (5.6) that

γi,j(L, (L
i−j−1Φj)(K)) =

∫
Sn−1

(Sj(L, ·) ∗f)(u) dSi−1(K,u) = Wn−i(K,ΦjL).
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On the other hand, if Φj ∈ MVal∞j,i−1, then, by Theorem 5.7(a),

Si−1(K, ·) ∗ f =
(i− 1)!

j!
h((Λj+1−iΦj)(K), ·)

and, thus,

γi,j(L, (L
i−j−1Φj)(K)) =

(i− 1)!

j!
Wn−1−j(L, (Λ

j+1−iΦj)(K)),

which completes the proof. �

Note that by Theorem 4.4 and Lemma 4.2, �n−i+2ğn−j+1 ∈ C−∞
o (Sn−1) and

that if f ∈ Co(S
n−1), then also

(6.2) f ∗ �n−i+2ğn−j+1 = �n−i+2f ∗ ğn−j+1 ∈ C−∞
o (Sn−1).

However, in general (6.2) does not define a continuous function on Sn−1 if f is
merely continuous.

Next, we note that using Theorem 5.6 we can also give a new and short proof of
Theorem 2: If Φj ∈ MVal∞j , 2 ≤ j ≤ n−1, has generating function f ∈ C∞

o (Sn−1)
and 1 ≤ i ≤ j + 1, then, by (5.6) and Theorem 5.7(a),

Wn−i(K,ΦjL) =

∫
Sn−1

(Si−1(K, ·) ∗ f)(u) dSj(L, u)

=
(i− 1)!

j!
Wn−j−1(L, (Λ

j+1−iΦj)(K))

for every K,L ∈ Kn.
Putting together Theorem 2 and Theorem 6.1 we obtain the following.

Corollary 6.2. For 1 ≤ i ≤ n, 2 ≤ j ≤ n− 1, and Φj ∈ MVal∞j,i−1, we have

(6.3) Wn−i(K,ΦjL) =
(i− 1)!

j!
Wn−1−j(L, (Λ

j+1−iΦj)(K))

for every K,L ∈ Kn.

For the proof of Theorem 5 and in order to establish the equality cases in The-
orem 4, we need the following monotonicity property of Minkowski valuations:

Lemma 6.3. Suppose that 1 ≤ i ≤ n, 2 ≤ j ≤ n − 1, and let Φj ∈ MValj,i−1 be
non-trivial. If K,L ∈ Kn have non-empty interiors, then K ⊆ L implies that

(6.4) Wn−i(ΦjK) ≤ Wn−i(ΦjL)

with equality if and only if K = L. In particular, Wn−i(ΦjK) > 0 for every K ∈ Kn

with non-empty interior.

Proof. We first assume that i ≥ 2, that Φj is smooth, and that K and L are of
class C2

+. In this case, it was proved in [47, p. 992] that ΦjK and ΦjL also have
non-empty interiors. Moreover, by (6.3) and the monotonicity of mixed volumes,
we have for every Q ∈ Kn,

Wn−i(Q,ΦjL) =
(i− 1)!

j!
Wn−1−j(L, (Λ

j+1−iΦj)(Q))

≥ (i− 1)!

j!
Wn−1−j(K, (Λj+1−iΦj)(Q)) = Wn−i(Q,ΦjK).
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Thus, taking Q = ΦjL and using inequality (3.3) yield

Wn−i(ΦjL)
i ≥ Wn−i(ΦjL,ΦjK)i ≥ Wn−i(ΦjL)

i−1Wn−i(ΦjK),

which implies (6.4) since Wn−i(ΦjL) > 0. If Φj ∈ MValj,i−1 is not smooth and K
and L are arbitrary, (6.4) follows by approximation.

In order to establish the equality conditions, first note that by the SO(n) equiv-
ariance of Φj , the convex body ΦjB must be an o-symmetric ball. Moreover, from
Lemma 5.5(b), it follows that ΦjB = rΦj

B, where rΦj
> 0. Thus, since K and

L have non-empty interiors, (6.4) implies that Wn−i(ΦjK),Wn−i(ΦjL) > 0 or,
equivalently, that ΦjK and ΦjL have dimension at least i whenever K,L ∈ Kn

have non-empty interiors.
Assume now that equality holds in (6.4). Then, by the equality conditions of

(3.3) and Lemma 5.5(a), there exists an α > 0 such that ΦjK = αΦjL. It follows
from equality in (6.4) that α = 1. Thus, by Lemma 5.5(b), we have

(6.5) Wn−j(K) = r−1
Φj

Wn−1(ΦjK) = r−1
Φj

Wn−1(ΦjL) = Wn−j(L).

Using again the monotonicity of mixed volumes and (3.3), we obtain

Wn−j(L)
j = Wn−j(L,L)

j ≥ Wn−j(L,K)j ≥ Wn−j(L)
j−1Wn−j(K).

From (6.5) and the equality conditions of inequality (3.3), we conclude that K is a
translate of L. But since K ⊆ L, we must have K = L.

Inequality (6.4) for i = 1 follows directly from Lemma 5.5(b) and the monotonic-
ity of quermassintegrals. If equality holds in (6.4) for i = 1, then we have (6.5) and
therefore, as before, obtain that K = L. �

In contrast to Lemma 6.3, let us point out that not every Minkowski valuation
Φj ∈ MValj,i−1 is monotone with respect to set inclusion (cf. [27]). However, all
known examples of Minkowski valuations Φj ∈ MValj , 1 ≤ j ≤ n − 1, are weakly
monotone; that is, for every pair of convex bodies K,L ∈ Kn such that K ⊆ L,
there exists a vector x(K,L) ∈ Rn such that

ΦjK ⊆ ΦjL+ x(K,L).

It is an open problem whether all translation invariant and SO(n) equivariant
Minkowski valuations are weakly monotone. Using arguments as in the proof of
Lemma 6.3, we can show the following.

Proposition 6.4. Suppose that 2 ≤ j ≤ n − 1. If Φj ∈ MValj,n−1, then Φj is
weakly monotone.

Proof. Without loss of generality we may assume that Φj is smooth. If K,L ∈ Kn

such that K ⊆ L, then, as in Lemma 6.3, it follows from (6.3) and the monotonicity
of mixed volumes that for every Q ∈ Kn,

W0(Q,ΦjL) =
(n− 1)!

j!
Wn−1−j(L, (Λ

j+1−nΦj)(Q))

≥ (n− 1)!

j!
Wn−1−j(K, (Λj+1−nΦj)(Q)) = W0(Q,ΦjK).

But it is well known (cf. [54, Corollary 4.3]) that W0(Q,ΦjK) ≤ W0(Q,ΦjL) for
every Q ∈ Kn implies that ΦjK ⊆ ΦjL+ x for some x ∈ Rn. �

We return now to the proof of Theorem 4, which we also first recall.
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Theorem 6.5. Let 1 ≤ i ≤ n and let Φj ∈ MValj,i−1, 2 ≤ j ≤ n−1, be non-trivial.
If K,L ∈ Kn have non-empty interiors, then for all λ ∈ (0, 1),

(6.6) Wn−i(Φj((1− λ)K + λL)) ≥ Wn−i(ΦjK)1−λWn−i(ΦjL)
λ,

with equality if and only if K and L are translates of each other.

Proof. First we assume that i ≥ 2 and that Φj is smooth. We also use the abbre-
viations Kλ = (1− λ)K + λL and Q = ΦjKλ. Then, by (6.3),

Wn−i(ΦjKλ) = Wn−i(Q,ΦjKλ) =
(i− 1)!

j!
Wn−1−j(Kλ, (Λ

j+1−iΦj)(Q)).

From an application of inequality (3.5), we therefore obtain

Wn−i(ΦjKλ)≥
(i− 1)!

j!
Wn−1−j(K,(Λj+1−iΦj)(Q))1−λWn−1−j(L,(Λ

j+1−iΦj)(Q))λ.

Thus, using (6.3) again, we obtain

Wn−i(ΦjKλ)
i ≥ Wn−i(Q,ΦjK)i(1−λ)Wn−i(Q,ΦjL)

iλ.

Now, if Φj ∈ MValj,i−1 is not smooth, then this inequality still follows by approx-
imation. Hence, using (3.3) and the fact that, by Lemma 6.3, Wn−i(Q) > 0, we
arrive at

Wn−i(ΦjKλ)
i ≥ Wn−i(Q)i−1Wn−i(ΦjK)1−λWn−i(ΦjL)

λ,

which, by the definitions of ΦjKλ and Q, is the desired inequality (6.6).
In order to establish the equality conditions, first note that by Lemma 6.3, ΦjK,

ΦjL, and ΦjKλ all have dimension at least i. Therefore, the equality conditions of
inequality (3.3) imply that ΦjK is homothetic to ΦjKλ, which is in turn homothetic
to ΦjL. In fact, by Lemma 5.5(a), they have to be dilates of one another; that is,
there exist t1, t2 > 0 such that

t1ΦjK = ΦjKλ = t2ΦjL,

where 1 = t1−λ
1 tλ2 , by the equality in (6.6). Moreover, an application of Lemma

5.5(b) yields t1Wn−j(K) = Wn−j(Kλ) = t2Wn−j(L). Consequently, we have

Wn−j(Kλ) = Wn−j(K)1−λWn−j(L)
λ.

By the equality conditions of inequality (3.4), this is possible only if K and L are
translates. This completes the proof for i ≥ 2. If i = 1, then the statement is an
immediate consequence of Lemma 5.5(b) and (3.4). �

It remains to complete the proof of Theorem 5.

Theorem 6.6. Let ϕ ∈ Θ1, 1 ≤ i ≤ n, and let Φj ∈ MValj,i−1, 2 ≤ j ≤ n− 1, be
non-trivial. If K,L ∈ Kn contain the origin, then for all λ ∈ (0, 1),

(6.7) Wn−i(Φj(K +ϕ,λ L)) ≥ Wn−i(ΦjK)1−λWn−i(ΦjL)
λ.

When ϕ is strictly convex and K and L have non-empty interiors, equality holds if
and only if K = L.

Proof. First note that inequality (6.7) follows from Lemma 3.2, Lemma 6.3, and
Theorem 6.5.
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In order to establish the equality conditions, let ϕ be strictly convex and let
K and L have non-empty interiors. It follows from the equality conditions of
Lemma 6.3 that

(6.8) K +ϕ,λ L = (1− λ)K + λL.

We want to show that this is possible only if K = L or, equivalently, if h(K,u) =
h(L, u) for all u ∈ Sn−1. If h(K,u) = h(L, u) = 0, then there is nothing to prove.
Therefore, we may assume that h(K +ϕ,λ L, u) > 0. Now from the definition of
the Orlicz convex combination, (6.8), together with the convexity of ϕ and our
assumption that ϕ(1) = 1, we obtain

ϕ

(
(1− λ)h(K,u) + λh(L, u)

h(K +ϕ,λ L, u)

)
= 1.

By the strict convexity of ϕ, this implies that h(K,u) = h(L, u). �

Like the classical inequality (3.4), Theorem 6.5, as well as Theorem 6.6 in case
of a homogeneous addition, is equivalent to corresponding additive versions. Here
we state one such additive version for Lp Minkowski addition.

Corollary 6.7. Let p > 1, 1 ≤ i ≤ n, and let Φj ∈ MValj,i−1, 2 ≤ j ≤ n− 1, be
non-trivial. If K,L ∈ Kn contain the origin in their interiors, then

Vi(Φj((1− λ) ·K +p λ · L))
p
ij ≥ (1− λ)Vi(ΦjK)

p
ij + λVi(ΦjL)

p
ij ,

with equality if and only if K and L are dilates of each other.

We finally remark that the special case j = n − 1 of Corollary 6.7 was recently
obtained by Wang [63].

Appendix

by Semyon Alesker

The purpose of this appendix is to provide a proof of Theorem 5.4. To this end
we first show that all valuations in Val∞1 and Val∞n−1 are of the form (5.2). In
order to prove this, we want to apply the Irreducibility Theorem as well as a deep
result from representation theory by Casselmann–Wallach [14]. Therefore, we need
to rewrite the valuations ν1,f and νn−1,f in GL(n) invariant terms without referring
to a Euclidean structure.

Recall that a line bundle over a smooth manifoldM consists of a smooth manifold
E and a surjective smooth map π : E → M satisfying the following:

• For each p ∈ M , the fiber Ep = π−1(p) is a 1-dimensional vector space.
• Every p ∈ M has an open neighborhood U in M for which there exists a
diffeomorphism � : π−1(U) → U × R such that, for each q ∈ U , �(Eq) ⊆
{q} × R and �|Eq

: Eq → {q} × R is a linear isomorphism.

For more information on line bundles, in particular, the definitions of the dual of
a line bundle and the tensor product of line bundles needed in the following, see,
e.g., [60, p. 4].

A section of a line bundle π : E → M is a continuous map h : M → E such that
h(p) ∈ Ep for every p ∈ M . We denote by C(M,E) the vector space of all sections
of E and by C∞(M,E) the space of smooth sections of E endowed with the natural
locally convex topology which makes it a Fréchet space (see, e.g, [21, Chapter 3]).
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A sequence of smooth sections converges in this topology if and only if in local
coordinates all the derivatives converge uniformly on compact subsets.

Important examples of line bundles are density bundles of manifolds (see, e.g.,
[29, p. 429]). Recall that a density on an n-dimensional vector space V is a function
on the n-fold product of V , δ : V × · · · × V → R, such that if A : V → V is any
linear map, then

δ(Av1, . . . , Avn) = | detA| δ(v1, . . . , vn).
We denote by D(V ) the vector space of all densities on V and, as usual, write
Λk(V ) for the kth exterior power of V .

Proposition A.1 ([29, p. 428]). The vector space D(V ) is 1-dimensional and
spanned by |ω| for any non-zero ω ∈ Λn(V ∗).

The density bundle π : DM → M of a smooth manifold M is defined by

DM =
∐
p∈M

D(TpM),

where π is the natural projection map taking each element of D(TpM) to p.
A density on M is a section of DM . By Proposition A.1, any non-vanishing n-

form ω on M determines a positive density |ω| on M . In fact, if ω is a non-vanishing
n-form on an open subset U ⊆ M , then any density δ on U is of the form δ = f |ω|
for some continuous function f on U . From this, it is straightforward to define the
integral over M of a compactly supported density on M . We refer to [29, p. 431ff.]
for the details.

If M is a compact smooth manifold and π : E → M a line bundle over M , then,
using integration of densities on M , one can define a canonical and non-degenerate
bilinear pairing

(A.1) 〈 · , · 〉 : C(M,E)× C(M,E∗ ⊗ DM) → R, (f, g) �→
∫
M

[f, g].

Here, C(M,E∗ ⊗ DM) is the space of sections of the line bundle

E∗ ⊗ DM ∼= Hom(E,DM),

whose fiber at p ∈ M is the space of all linear maps Ep → D(TpM), and

[ · , · ] : C(M,E)× C(M,E∗ ⊗ DM) → C(M,DM)

is pointwise just the evaluation map.
Now let V be an n-dimensional vector space and denote by P+(V

∗) the oriented
projectivized cotangent bundle, that is, the compact smooth manifold given by

P+(V
∗) = (V ∗\{0})/R+.

In the following we write [ξ] := span ξ for the 1-dimensional linear span of ξ ∈
V ∗\{0} and we use [ξ]+ to denote the elements of P+(V

∗). Note that if we choose
a Euclidean structure on V , then we can identify V ∗ with V , and P+(V

∗) is diffeo-
morphic to Sn−1. However, in contrast to Sn−1, we have a natural GL(V ) action
on P+(V

∗) given by

A · [ξ]+ = [A · ξ]+, A ∈ GL(V ),

where A · ξ ∈ V ∗ is defined by (A · ξ)(v) = ξ(A−1v) for v ∈ V . Also note that
GL(V ) acts naturally on D(V ) by

(A · δ)(v1, . . . , vn) = δ(A−1v1, . . . , A
−1vn), A ∈ GL(V ), vj ∈ V.
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Theorem A.2.

(a) The map C∞
o (Sn−1) → Val∞1 , f �→ ν1,f , where

(A.2) ν1,f (K) =

∫
Sn−1

f(u) dS1(K,u),

is an isomorphism of Fréchet spaces.
(b) The map C∞

o (Sn−1) → Val∞n−1, f �→ νn−1,f , where

(A.3) νn−1,f (K) =

∫
Sn−1

f(u) dSn−1(K,u),

is an isomorphism of Fréchet spaces.

Proof. First we note that, by the density properties of area measures, both maps
f �→ ν1,f and f �→ νn−1,f are injective. Moreover, it is not difficult to show that
they are also both continuous in the respective Fréchet topologies.

In order to prove (a), we use (4.10) and the fact that �n is selfadjoint to rewrite
(A.2) to

ν1,f (K) =

∫
Sn−1

�nf(u)h(K,u) du.

Since �n : C∞
o (Sn−1) → C∞

o (Sn−1) is an isomorphism, it suffices to show that

(A.4) f �→
(
K �→

∫
Sn−1

f(u)h(K,u) du

)

is an isomorphism between C∞
o (Sn−1) and Val∞1 . To this end, recall that the

support function of a convex body K ∈ Kn is a 1-homogeneous function on V ∗

and, thus, can be identified with a section of a line bundle E over P+(V
∗) whose

fiber over [ξ]+ ∈ P+(V
∗) is given by E[ξ]+ = D([ξ]). To be more precise, we identify

h(K, ·) with the section h̄(K, ·) ∈ C(P+(V
∗), E) defined by

h̄(K, [ξ]+)(cξ) = |c|h(K, ξ), ξ ∈ V ∗, c ∈ R.

Note that if we choose a Euclidean structure on V , then C(P+(V
∗), E) can be

identified with C(Sn−1). In the same way, the Fréchet space of smooth sections
C∞(P+(V

∗), E∗ ⊗ D P+(V
∗)) is isomorphic to C∞(Sn−1) and we let

C∞
o (P+(V

∗), E∗ ⊗ D P+(V
∗))

denote the subspace isomorphic to C∞
o (Sn−1).

Using these identifications and the pairing defined in (A.1), the integral in (A.4)
can be rewritten as

(A.5)

∫
Sn−1

f(u)h(K,u) du =

∫
P+(V ∗)

[h̄(K, ·), f̄ ] = 〈h̄(K, ·), f̄〉,

where f̄ ∈ C∞
o (P+(V

∗), E∗ ⊗ D P+(V
∗)) denotes the section corresponding to f ∈

C∞
o (Sn−1). Finally, note that the group GL(V ) acts on the spaces C(P+(V

∗), E)
and C∞

o (P+(V
∗), E∗ ⊗ D P+(V

∗)) by left translation; that is,

(A · f̄)([ξ]+) = f̄(A−1 · [ξ]+), A ∈ GL(V ), [ξ]+ ∈ P+(V
∗),

and the pairing (A.5) is invariant under these actions. Thus, the map

(A.6) C∞
o (P+(V

∗), E∗ ⊗ D P+(V
∗)) → Val∞1 , f̄ �→ 〈h̄(K, ·), f̄〉
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is GL(V ) equivariant. Hence, its image is a GL(V ) invariant subspace of Val∞1
and, therefore, dense by the Irreducibility Theorem. However, by the Casselmann–
Wallach theorem [14], this image is also closed, which proves (a).

For the proof of (b), first note that if P ∈ Kn is a polytope, then by the definition
of Sn−1(P, ·), we have

(A.7) νn−1,f (P ) =
∑

F∈Fn−1(P )

f(uF ) voln−1(F ),

where Fn−1(P ) is the set of all facets of P and uF is the outer unit normal vector of
the facet F . Conversely, it is well known that if f ∈ Co(S

n−1), then any function on
polytopes in Rn of the form (A.7) has a unique extension to a valuation in Valn−1

(see, e.g., [52, Chapter 6.4]). Moreover, if f ∈ C∞
o (Sn−1), then this valuation is

smooth and given by (A.3). In order to rewrite νn−1,f in GL(V ) invariant terms,
it therefore suffices to rewrite (A.7).

To this end, let P∨
+(V ) denote the compact manifold of all cooriented (n − 1)-

dimensional subspaces in V . (Recall that if H is such a subspace, an orientation of
V/H is called a coorientation of H.) Note that there is a natural diffeomorphism
between P∨

+(V ) and P+(V
∗) which is equivariant under the action of GL(V ) on both

manifolds. Let S denote the line bundle over P∨
+(V ) whose fiber over H ∈ P∨

+(V ) is
given by SH = D(H). If we choose a Euclidean structure, C∞(P∨

+(V ), S) is clearly
isomorphic to C∞(Sn−1), and we write again C∞

o (P∨
+(V ), S) for the subspace iso-

morphic to C∞
o (Sn−1).

We now rewrite (A.7) in the form

(A.8) νn−1,f (P ) =
∑

F∈Fn−1(P )

∫
F̂

f̄(F̂ ),

where f̄ ∈ C∞
o (P∨

+(V ), S) is the section corresponding to f ∈ C∞
o (Sn−1) and F̂ is

the cooriented subspace parallel to the facet F . Using the identification of P∨
+(V )

with P+(V
∗), we can identify the line bundle S over P∨

+(V ) with the line bundle
E⊗D(V ) over P+(V

∗), where E is the line bundle from part (a) of the proof. Thus,
there is a canonical isomorphism of Fréchet spaces

(A.9) C∞
o (P+(V

∗), E)⊗ D(V ) → C∞
o (P∨

+(V ), S)

which is GL(V ) equivariant. Together, (A.8) and (A.9) determine a continuous
GL(V ) equivariant map

(A.10) C∞
o (P+(V

∗), E)⊗ D(V ) → Val∞n−1

whose image is dense by the Irreducibility Theorem and closed by the Casselmann–
Wallach theorem [14]. �

Now let M again be a compact smooth manifold and let π : E → M be a line
bundle over M . In the same way the Poincaré duality map motivated the definition
of generalized valuations, the pairing (A.1) motivates the following definition of the
space of generalized sections of E:

C−∞(M,E) = C∞(M,E∗ ⊗ DM)∗.

Note that the pairing (A.1) yields a canonical embedding

(A.11) C∞(M,E) ↪→ C−∞(M,E).

Finally, we are in a position to prove the main result of this appendix.
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Proof of Theorem 5.4. The first part of the statement was already established in
the proof of Theorem A.2. In order to prove the second statement, we first compute
explicitly the Poincaré duality map Val∞1 → Val−∞

1 . To this end, let μ ∈ Val∞1
and ν ∈ Val∞n−1 be given by

μ(K) = V (K,L, . . . , L) and ν(K) = V (K, . . . ,K,M)

for some strictly convex bodies L,M ∈ Kn with smooth boundary. By the Ir-
reducibility Theorem, linear combinations of valuations of this form are dense in
Val∞1 and Val∞n−1, respectively. From (5.3), it follows that

〈μ, ν〉 = 1

n
V (−L, . . . ,−L,M)Vn =

Vn

n2

∫
Sn−1

h(M,u) dSn−1(−L, u).

Thus, if f̄ ∈ C∞
o (P+(V

∗), E∗ ⊗ D P+(V
∗)) is the section corresponding to the

valuation μ ∈ Val∞1 according to (A.6) and ḡ ∈ C∞
o (P+(V

∗), E) ⊗ D(V ) is the
section corresponding to ν ∈ Val∞n−1 according to (A.10), then∫

Sn−1

h(M,u) dSn−1(−L, u) =

∫
P+(V ∗)

[f̄ ◦ a, ḡ],

where a : P+(V
∗) → P+(V

∗) denotes the antipodal involution on P+(V
∗), that is,

the change of orientation. Since, by (A.10) and the fact that D(V )∗ ⊗ D(V ) is
trivial,

Val−∞
1 =

(
Val∞n−1

)∗ ⊗ D(V ) ∼= C−∞
o (P+(V

∗), E∗ ⊗ D P+(V
∗)),

and using again the isomorphism (A.6), we see that the Poincaré duality map
induces a map C∞

o (P+(V
∗), E∗ ⊗ D P+(V

∗)) → C−∞
o (P+(V

∗), E∗ ⊗ D P+(V
∗)),

given by

f̄ �→ 1

n2
f̄ ◦ a.

Here we have used the embedding (A.11). This map obviously extends to an iso-
morphism of topological vector spaces equipped with weak topologies

C−∞
o (P+(V

∗), E∗ ⊗ D P+(V
∗)) → C−∞

o (P+(V
∗), E∗ ⊗ D P+(V

∗)) ∼= Val−∞
1 .

However, if we endow V with a Euclidean structure, this map becomes an isomor-
phism

C−∞
o (Sn−1) → Val−∞

1 ,

which, when restricted to smooth functions, is just given by

f �→
(
K �→ 1

n2

∫
Sn−1

f(−u)h(K,u) du

)
.

Clearly, this implies the desired statement. �
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