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SPHERICAL SPACE FORMS REVISITED

DANIEL ALLCOCK

Abstract. We give a simplified proof of J. A. Wolf’s classification of finite
groups that can act freely and isometrically on a round sphere of some di-
mension. We slightly improve the classification by removing some nonobvious
redundancy. The groups are the same as the Frobenius complements of finite
group theory.

In chapters 4–7 of his famous Spaces of Constant Curvature [7], J. A. Wolf
classified spherical space forms as connected Riemannian manifolds locally isometric
to the n-sphere Sn. By passing to the action of the fundamental group on the
universal covering space, this is equivalent to classifying the possible free isometric
actions of finite groups on Sn. Then, by embedding Sn in Euclidean space, this
is equivalent to classifying the real representations of finite groups that are “free”
in the sense that no element except the identity fixes any vector except 0. This
allowed Wolf to use the theory of finite groups and their representations.

Our first goal is to give a simplified proof of Wolf’s classification of the finite
groups G that can act freely and isometrically on spheres. Wolf’s main result here
was the list of presentations in theorems 6.1.11 and 6.3.1 of [7]. Our approach to
Wolf’s theorem leads to the most interesting example, the binary icosahedral group,
with very little case analysis and no character theory. (The trick consists of the
equalities (3.2) and (3.3) in the proof of Lemma 3.11. These rely on an elementary
property of the binary tetrahedral group, stated in Lemma 3.10.)

Our second goal is to remove the redundancy from Wolf’s list; this modest im-
provement appears to be new. Some groups appear repeatedly on Wolf’s list be-
cause different presentations can define isomorphic groups. See Example 5.1 for
some nonobvious isomorphisms. It would not be hard to just work out the isomor-
phisms among the groups defined by Wolf’s presentations. But it is more natural to
reformulate the classification in terms of intrinsically defined subgroups. Namely,
a finite group G acts freely and isometrically on a sphere if and only if it has one
of 6 possible “structures”, in which case it has a unique such “structure” up to
conjugation. See Theorems 1.1 and 1.2. In fact, we parameterize the possible G
without redundancy, in terms of a fairly simple set of invariants. Namely, a type
I–VI, two numbers |G| and a, and a subgroup of the unit group of the ring Z/a.
In a special case one must also specify a second such subgroup. See section 5 for
details.
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The full classification of spherical space forms requires not just the list of possible
groups, but also their irreducible free actions on real vector spaces, and how their
outer automorphism groups permute these representations. See [7, Thm 5.1.2]
for why this is the right data to tabulate and [7, Ch. 7] for the actual data for
each group. We expect that this data could be described cleanly in terms of our
descriptions of the groups, but have not worked out the details. It would remain
lengthy because of many cases and subcases to consider.

For many authors the phrase “spherical space form” means a quotient of a sphere
by a free action of a finite group of homeomorphisms or diffeomorphisms, rather
than isometries. In this paper we consider only isometric actions on round spheres.
See [6] for the rich topology and group theory involved in the more general theory.

Expecting topologists and geometers rather than group theorists as readers, we
have made the paper self-contained, with three exceptions. First, we omit proofs
of Burnside’s transfer theorem and the Schur–Zassenhaus theorem. Second, we
use the fact that SL2(F5) is the unique perfect central extension of the alternating
group A5 by Z/2, giving a citation when needed. Third, we use Aut SL2(F5) =
PGL2(F5) ∼= S5, which is just an exercise.

Finite group theorists study the same groups Wolf did, from a different per-
spective. We will sketch the connection briefly because our descriptions of the
groups may have some value in this context. A finite group G is called a Frobenius
complement if it acts “freely” on some finite group H, meaning that no element
of G except 1 fixes any element of H except 1. To our knowledge, the structure
of Frobenius complements (in terms of presentations) is due to Zassenhaus [8].
Unfortunately his paper contains an error, and the first correct proof is due to
Passman [5, Theorems 18.2 and 18.6]. See also Zassenhaus’s later paper [9]. If G
is a Frobenius complement, then after a preliminary reduction one can show that
H may be taken to be a vector space over a finite field Fp, where p is a prime not
dividing |G|. Our arguments apply with few or no changes; see Remark 3.12 and
also [4], especially Prop. 2.1.

We will continue to abuse language by speaking of free actions on vector spaces
when really we mean that the action is free away from 0. We will use the standard
notation G′ for the commutator subgroup of a group G, and O(G) for the unique
maximal-under-inclusion odd normal subgroup when G is finite.

We will also use ATLAS notation for group structures [1]. That is, if a group
G has a normal subgroup A, the quotient by which is B, then we may say “G
has structure A.B”. We sometimes write this as G ∼ A.B. This usually does not
completely describe G, because several nonisomorphic groups may have “structure
A.B”. Nevertheless it is a helpful shorthand, especially if A is characteristic. If the
group extension splits, then we may write A : B instead, and if it doesn’t, then we
may write A ·B. See Theorem 1.1 for a some examples. When we write A : B, we
will regard B as a subgroup of G rather than just a quotient. (In all our uses of
this notation, the complements to A turn out to be conjugate, so there is no real
ambiguity in choosing one of them.)

1. The groups

It is well known that the groups of orientation-preserving isometries of the tetra-
hedron, octahedron (or cube), and icosahedron (or dodecahedron) are subgroups
of SO(3) isomorphic to A4, S4, and A5. The preimages of these groups in the
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double cover of SO(3) are called the binary tetrahedral, binary octahedral, and bi-
nary icosahedral groups. They have structures 2.A4, 2.S4, and 2.A5, where we are
using another ATLAS convention: indicating a cyclic group of order n by simply
writing n; here n is 2. These are the only groups with these structures that we will
encounter in this paper. So we abbreviate them (again following ATLAS) to 2A4,
2S4, and 2A5, and specify that this notation refers to the binary polyhedral groups,
rather than some other groups with structure 2.A4, 2.S4, or 2.A5. Alternate de-
scriptions of the binary tetrahedral and binary icosahedral groups are 2A4

∼= SL2(3)
and 2A5

∼= SL2(5).
It is also well known that the double cover of SO(3) may be identified with the

unit sphere H∗ in Hamilton’s quaternions H. A finite subgroup of H∗ obviously acts
by left multiplication on H∗. So 2A4, 2S4, and 2A5 act freely on the unit sphere S3.

Similarly, SO(3) contains dihedral subgroups, and their preimages in H∗ are
called binary dihedral. If we start with the dihedral group of order 2n, then the
corresponding binary dihedral group of order 4n can be presented by〈

x, y
∣∣ x2n = 1, yxy−1 = x−1, y2 = xn

〉
.

This group may be identified with a subgroup of H∗ by taking

(1.1) x �→ (any primitive 2nth root of unity in R⊕ Ri) y �→ j.

Left multiplication by these elements of H∗ gives a free action on S3. (Replacing
the root of unity by its inverse gives an equivalent representation.) Restricting to
the case n = 2m−2, m ≥ 3, one obtains the quaternion group Q2m of order 2m.
Some authors call this a generalized quaternion group, with “quaternion group”
reserved for Q8.

Now we can state our version of Wolf’s theorems 6.1.11 and 6.3.1, supplemented
by a uniqueness theorem.

Theorem 1.1 (Groups that act freely and isometrically on spheres). Suppose G is a
finite group that acts freely and isometrically on a sphere of some dimension. Then
it has one of the following six structures, where A and B are cyclic groups whose
orders are odd and coprime, every nontrivial Sylow subgroup of B acts nontrivially
on A, and every prime-order element of B acts trivially on A.

(I) A :
(
B × (a cyclic 2-group T )

)
, where if T �= 1, then its involution fixes

A pointwise.
(II) A :

(
B × (a quaternionic group T )

)
.

(III) (Q8 × A) : (Θ × B), where Θ is a cyclic 3-group which acts nontrivially
on Q8 and whose elements of order 3 centralize A, and |A| and |B| are
prime to 3.

(IV)
(
(Q8 × A) : (Θ × B)

)
· 2, where Θ, |A|, and |B| are as in (III), and the

quotient Z/2 is the image of a subgroup Φ of G, isomorphic to Z/4, whose
elements of order 4 act by an outer automorphism on Q8, by inversion
on Θ and trivially on B.

(V) 2A5 × (A : B), where |A| and |B| are prime to 15.
(VI)

(
2A5 × (A : B)

)
· 2, where |A| and |B| are prime to 15, and the quotient

Z/2 is the image of a subgroup Φ of G, isomorphic to Z/4, whose elements
of order 4 act by an outer automorphism on 2A5 and trivially on B.

Conversely, any group with one of these structures acts freely and isometrically on
a sphere of some dimension.
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These groups are parameterized in terms of simple invariants in Theorem 5.3.
A binary dihedral group has type (I) or (II), 2A4 has type (III), 2S4 has type (IV),
and 2A5 has type (V).

Theorem 1.2 (Uniqueness of structure). The structure in Theorem 1.1 is unique
in the following sense:

(1) Groups of different types (I)–(VI) cannot be isomorphic.
(2) Suppose G has one of the types (I)–(VI), with respect to some subgroups

A, B (and whichever of T , Q8, Θ, Φ, and 2A5 are relevant), and also with
respect to some subgroups A∗, B∗ (and T ∗, Q∗

8, Θ
∗, Φ∗, and 2A∗

5, when
relevant). Then some element of G conjugates every unstarred group to
the corresponding starred group. In particular, A∗ = A (and Q∗

8 = Q8

and 2A∗
5 = 2A5, when relevant).

Remark 1.3 (Correspondence with Wolf’s types). Our types correspond in the ob-
vious way to Wolf’s in theorems 6.1.11 and 6.3.1 of [7]. However, his generator A
might not generate our subgroup A and his generator B might not even lie in our
subgroup B.

Remark 1.4 (Implied relations). Some useful information is implicit. For example,
B acts trivially on Q8 for types (III) and (IV), because Q8 has no automorphisms
of odd order > 3. Also, Θ must act trivially on A for type (IV), because A has
an abelian automorphism group and Θ ≤ G′. In light of these remarks, one could
rewrite G’s structure for type (IV) as

(
(Q8 : Θ)× (A : B)

)
· 2. This would be more

informative, but hide the relationship to type (III).
In all cases, G has at most one involution. This is obvious except for type (II).

Then, T ’s central involution lies in T ′, which centralizes A because AutA is abelian.

At this point we will prove the easy parts of the theorems, namely that the
listed groups do act freely on spheres and that groups of different types cannot be
isomorphic. The proof that every group acting freely on a sphere has structure as
in Theorem 1.1 appears in sections 3–4, and Theorem 1.2’s uniqueness statement
is a byproduct of the proof.

Proof of “Conversely. . .” in Theorem 1.1. Define H as the normal subgroup of G
that is generated by the elements of prime order. We claim that if H has a free
action on a real vector space V , then G acts freely on its representation W induced
from V . To see this, recall that as a vector space, W is a direct sum of copies of
V , indexed by G/H. And H’s actions on these copies of V are isomorphic to the
representations obtained by precomposing H → GL(V ) by automorphisms H → H
arising from conjugation in G. In particular, H acts freely on W . We claim that
G also acts freely on W . Otherwise, some prime-order element of G would have a
fixed point. But it would also lie in H, which acts freely.

Now it suffices to determine H and show that it always has a free action. For
types (I)–(II), H is a cyclic group, and for types (V)–(VI) it is 2A5×(cyclic group of
order prime to 30). For types (III)–(IV), H is either cyclic or 2A4×(cyclic group of
order prime to 6), according to whether |Θ| > 3 or |Θ| = 3. These claims are all
easy, using the fact that G’s involution is central (if one exists) and the prime-order
elements of B and (if relevant) Θ act trivially on A.

Cyclic groups obviously admit free actions. For a product of 2A4 or 2A5 by a
cyclic group of coprime order, we identify each factor with a subgroup of H∗ and
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make 2A4 or 2A5 act on H by left multiplication and the cyclic group act by right
multiplication. If there were a nonidentity element of this group with a nonzero
fixed vector, then there would be one having prime order, hence lying in one of the
factors. But this is impossible since each factor acts freely. �

Proof of Theorem 1.2(1.2). Suppose G has one of the types (I)–(VI). Then the
subgroup H generated by A, B and the index 3 subgroup of Θ (for types (III)–
(IV)) is normal in G and has odd order. The quotient G/H is a cyclic 2-group, a
quaternionic group, 2A4, 2A4 · 2, 2A5, or 2A5 · 2 respectively. None of these has
an odd normal subgroup larger than {1}. Therefore H is all of O(G), and the
isomorphism class of G/O(G) distinguishes the types. �

2. Preparation

In this section we suppose G is a finite group. We will establish general properties
of G under hypotheses related to G having a free action on a sphere. The results
before Lemma 2.8 are standard and are included for completeness. Lemma 2.8 is a
refinement of a standard result.

Lemma 2.1 (Unique involution). Suppose G has a free action on a sphere. Then
it has at most one involution.

Proof. Choose a free (hence, faithful) action of G on a real vector space V . An
involution has eigenvalues ±1, but +1 cannot appear by freeness. So there can be
only one involution, acting by negation. �

Lemma 2.2. Suppose G has a free action on a sphere. Then every abelian subgroup
is cyclic, and so is every subgroup of order pq, where p and q are primes.

Proof. Fix a free action of G on a real vector space V , and let VC be its com-
plexification. G also acts freely on VC. Otherwise, some nontrivial element has a
nonzero fixed vector, hence has the real number 1 as an eigenvalue, and hence fixes
a nonzero real vector.

Now suppose A ≤ G is abelian, and decompose VC under A as a sum of 1-
dimensional representations. By freeness, each of these is faithful. So A is a sub-
group of the multiplicative group C − {0}, hence cyclic, proving the first claim.
Since any group of prime-squared order is abelian, this also proves the p = q case
of the second claim.

So suppose p < q are primes and consider a subgroup of G with order pq; by
discarding the rest of G we may suppose without loss that this subgroup is all of G.
Write P , resp., Q, for a Sylow p-subgroup, resp., q-subgroup. By Sylow’s theorem,
P normalizes Q. If it acts trivially on Q, then G is abelian, so suppose P acts
nontrivially on Q.

For purposes of this proof, a character of Q means a homomorphism Q → C∗. It
is standard that any complex representation of Q is the direct sum of Q’s character
spaces, meaning the subspaces on which Q acts by its various characters. Fix a
character χ of Q whose character space contains a nonzero vector v ∈ VC; χ is
faithful since Q acts freely on VC. If g ∈ P , then g(v) lies in the character space
for the character χ ◦ i−1

g : Q → C∗, where ig : x �→ gxg−1 means conjugation by

g. Since χ is faithful and P acts faithfully on Q, the various characters χ ◦ i−1
g are

all distinct. Therefore the terms in the sum
∑

g∈P g(v) are linearly independent,
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so the sum is nonzero. But this contradicts freeness since the sum is obviously
P -invariant. �

Lemma 2.3 (Sylow subgroups). Suppose all of G’s abelian subgroups are cyclic.
Then its odd Sylow subgroups are cyclic and its Sylow 2-subgroups are cyclic or
quaternionic.

Proof. It suffices to treat the case of G a p-group, say of order pn. We proceed by
induction on n, with the cases n ≤ 2 being trivial. So suppose n > 2.

First we treat the special case that G contains a cyclic group X of index p. If G
acts trivially on X, then G is abelian, hence cyclic. So we may assume that G/X
is identified with a subgroup of order p in AutX. Recall that AutX is cyclic of
order (p− 1)pn−2 if p is odd and is Z/2 times a cyclic group of order 2n−3 if p = 2.
This shows that some y ∈ G−X acts on X by the λth power map, where

λ =

{
pn−2 + 1 if p is odd,

−1 or 2n−2 ± 1 if p = 2,

with the possibilities 2n−2 ± 1 considered only if n > 3. Write X0 for the subgroup
of X centralized by y. Now, 〈X0, y〉 is abelian, hence cyclic. The index of its
subgroup X0 is p, because yp lies in X and centralizes y. Since y /∈ X0, y generates
〈X0, y〉. We write pt for the index of X0 in X, which can be worked out from y’s
action on X. Namely,

pt =

{
2n−2 if p = 2, and λ = −1 or 2n−2 − 1,

p otherwise.

We choose a generator x for X such that yp = x−pt

.
Since xy and y have the same centralizer in X, the same argument shows that

(xy)p also generates X0. Now,

(xy)p = x(yxy−1)(y2xy−2) · · · (yp−1xy1−p)yp

= x · xλ · xλ2 · · ·xλp−1 · x−pt

.

Our two descriptions 〈yp〉 and 〈(xy)p〉 of X0 ≤ X ∼= Z/pn−1 must coincide, so
μ := 1 + λ + · · · + λp−1 − pt generates the same subgroup of Z/pn−1 as pt does.
One computes

pt μ

p
(
p
2

)
pn−2 if λ = pn−2 + 1 (including the case 2n−2 + 1),

2n−2 0 if λ = 2n−2 − 1,
2n−2 2n−2 if λ = −1.

Only in the last case do pt and μ generate the same subgroup of Z/pn−1. So p = 2,
y inverts X, and y2 is the involution in X. That is, G is quaternionic. This finishes
the proof in the special case.

Now we treat the general case. Take H to be a subgroup of index p. If p is odd,
then H is cyclic by induction, so the special case shows that G is cyclic, too. So
suppose p = 2. By induction, H is cyclic or quaternionic. If it is cyclic, then the
special case shows that G is cyclic or quaternionic, as desired. So suppose H is
quaternionic and take X to be a G-invariant index 2 cyclic subgroup of H. This is
possible because H contains an odd number of cyclic subgroups of index 2 (three
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if H ∼= Q8 and one otherwise). Now we consider the action of G/X on X. If some
element of G−X acts trivially, then together with X it generates an abelian, hence
cyclic, group, and the special case applies. So G/X is 2 × 2 or 4 and embeds in
AutX. (These cases require |X| ≥ 8 or 16, respectively, or equivalently n ≥ 5 or 6.)
Furthermore, AutX contains just three involutions, and only one of them can be a
square in AutX, namely the (1+2n−2)nd power map. Therefore, either possibility
for G/X yields an element y of G which acts on X by this map and has square
in X. But then 〈X, y〉 is neither cyclic nor quaternionic, contradicting the special
case. �

Recall that a group is called perfect if its abelianization is trivial.

Lemma 2.4 (2A5 recognition). Suppose G is perfect with center Z/2, and every
noncentral cyclic subgroup has binary dihedral normalizer. Then G ∼= 2A5.

Proof. Write 2g for |G|. The hypothesis on normalizers shows that distinct maximal
cyclic subgroups of G have intersection equal to Z(G). So G is the disjoint union of
Z(G) and the subsets C−Z(G) where C varies over the maximal cyclic subgroups of
G. We choose representatives C1, . . . , Cn for the conjugacy classes of such subgroups
and write 2c1, . . . , 2cn for their orders. The numbers c1, . . . , cn are pairwise coprime
because each of C1, . . . , Cn is the centralizer of each of its subgroups of order > 2.
We number the Ci so that c1 is divisible by 2, c2 is divisible by the smallest prime
involved in g but not c1, c3 is divisible by the smallest prime involved in g but
neither c1 nor c2, and so on. In particular, ci is at least as large as the ith prime
number.

Each conjugate of Ci−Z(G) has 2ci−2 elements, and the normalizer hypothesis
tells us there are g/2ci many conjugates. Therefore (2ci − 2)g/2ci = g

(
1 − 1

ci

)
elements of G− Z(G) are conjugate into Ci − Z(G). Our partition of G gives

(2.1) 2g = 2 + g
n∑

i=1

(1− 1
ci
).

We can rewrite this as g(2−n) = 2−
∑n

i=1 g/ci. Since G has no index 2 subgroups,
each term g/ci in the sum is larger than 2. Since the right side is negative, g(2−n)
is also. So n > 2.

In fact n = 3. Otherwise, we would use c1 ≥ 2, c2 ≥ 3, c3 ≥ 5, and c4 ≥ 7 to see
that the sum on the right side of (2.1) is

(at least
1

2
) + (at least

2

3
) + (at least

4

5
) + (at least

6

7
) + · · · > 2,

which is a contradiction. Now we rewrite (2.1) as 1
c1

+ 1
c2

+ 1
c3

= 1 + 2/g. In
particular, the left side must be larger than 1, which requires c1 = 2, c2 = 3, and
c3 = 5. Then 1

2+
1
3+

1
5 = 1+2/g gives a formula for g, namely g = 60, so |G| = 120.

So G/Z(G) is nonsolvable of order 60. A Sylow’s theorem exercise rules out the
possibility that there are 15 Sylow 2-subgroups, so there must be 5, and it follows
easily that G/Z(G) ∼= A5. So G has structure 2.A5. Finally, A5 has a unique perfect
central extension by Z/2, namely the binary icosahedral group [5, Prop. 13.7]. �

Theorem 2.5 (Burnside’s transfer theorem). Suppose G is a finite group, and P
is a Sylow subgroup that is central in its normalizer. Then P maps faithfully to the
abelianization G/G′.
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Proof. See [3, Thm. 5.13], [2, Thm. 4.3], or [7, Thm 5.2.9]. �

Corollary 2.6 (Cyclic transfer). Suppose G is a finite group, p is a prime, and G’s
Sylow p-subgroups are cyclic. If some nontrivial p-group is central in its normalizer
or maps nontrivially to G/G′, then every Sylow p-subgroup maps faithfully to G/G′.
In particular, this holds if p is the smallest prime dividing |G|.

Proof. Suppose that P0 ≤ G is a p-group satisfying either of the two conditions,
and choose a Sylow p-subgroup P containing it. It is cyclic by hypothesis, so
P0 is characteristic in P , so N(P ) lies in N(P0). The automorphisms of P with
order prime to p act nontrivially on every nontrivial subquotient of P . Under either
hypothesis, P0 (hence P ) has a nontrivial subquotient on which N(P ) acts trivially.
Therefore the image of N(P ) in AutP contains no elements of order prime to p.
It contains no elements of order p either, since P is abelian. So P is central in its
normalizer and we can apply Burnside’s transfer theorem. Since P maps faithfully
to G/G′, so does every Sylow p-subgroup.

For the final statement, observe that AutP has no elements of prime order > p.
So its normalizer must act trivially on it, and we can apply the previous paragraph.

�

Theorem 2.7 (Schur-Zassenhaus). Suppose G is a group, N is a normal subgroup,
and |N | and |G/N | are coprime. Then there exists a complement to N in G, and
all complements are conjugate. �

As stated, this relies on the odd order theorem. But we only need the much
more elementary case that N is abelian (Theorem 3.5 of [3]).

In determining the structure of his groups, Wolf used a theorem of Burnside: if
all Sylow subgroups of a given group H are cyclic, then H ′ and H/H ′ are cyclic
of coprime order, H ′ has a complement, and all complements are conjugate. We
prefer the following decomposition H = A : B because of its “persistence” property
(IV). We only need this property for the imperfect case (section 4).

Lemma 2.8 (Metacyclic decomposition). Suppose H is a finite group, all of whose
Sylow subgroups are cyclic. Define A as the subgroup generated by H ′ and all of
H’s Sylow subgroups that are central. Then A has the following two properties and
is characterized by them:

(I) A is normal, and A and H/A are cyclic of coprime orders.
(II) Every nontrivial Sylow subgroup of H/A acts nontrivially on A.

Furthermore,

(III) A has a complement B, and all complements are conjugate.
(IV) Suppose a finite group G contains H as a normal subgroup, with |G/H|

coprime to |H|. Then there is a complement C to H such that the decom-
position H ∼ A : B in (III) extends to G ∼ A : (B × C). Furthermore,
all complements of H that normalize B are conjugate under NH(B).

Proof. First we show that H is solvable. If p is the smallest prime dividing |H|,
and P is a Sylow p-subgroup, then Corollary 2.6 shows that H has a quotient group
isomorphic to P . The kernel is solvable by induction, so H is too.

Now let F be the Fitting subgroup of H, i.e., the unique maximal normal nilpo-
tent subgroup. Being nilpotent, it is the product of its Sylow subgroups. Since
these are cyclic, so is F . Also, H/F acts faithfully on F , for otherwise F would lie
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in a strictly larger normal nilpotent subgroup. As a subgroup of the abelian group
AutF , H/F is abelian. Therefore the cyclic group F contains H ′, so H ′ is cyclic.

If p is a prime dividing the order of H/H ′, then Corollary 2.6 shows that every
Sylow p-subgroup meets H ′ trivially. It follows that the orders of H ′ and H/H ′

are coprime. A is obviously normal. Since A is the product of H ′ with the central
Sylow subgroups of H, we see that A and H/A also have coprime orders. Since A
contains H ′, H/A is abelian. Having cyclic Sylow subgroups, H/A is cyclic. We
have proven (I).

Because |A| and |H/A| are coprime, the Schur–Zassenhaus theorem assures us
that A has a complement B and that all complements are conjugate, proving (III).
For (II), suppose a Sylow subgroup of B acts trivially on A. Then it is central in
H, so A contains it by definition, which is a contradiction.

Next we prove the “persistence” property (IV), so we assume its hypotheses.
Since A is characteristic in H, it is normal in G. Since all complements to A
in H are conjugate in A, the Frattini argument shows that NG(B) maps onto
G/H. Applying the Schur–Zassenhaus theorem to NH(B) inside NG(B) yields a
complement C to H that normalizes B. That theorem also shows that all such
complements are conjugate under NH(B)

To prove (IV) it remains only to show that B and C commute. If C acted
nontrivially on B, then G′ would contain a nontrivial p-group for some prime p
dividing |B|. Using Corollary 2.6 as before, it follows that G′ contains a Sylow
p-subgroup P of B. Since P lies in the commutator subgroup of G, it must act
trivially on A. This contradicts (II). So B and C commute, completing the proof
of (IV). (Remark: since NH(B) = CA(B) × B, we could replace NH(B) in the
statement of (IV) by CA(B).)

All that remains is to show that (I) and (II) characterize A; suppose A∗ ≤ H has
these properties. By (II), all the Sylow subgroups of H that act trivially on A∗ lie
in A∗. Since A∗ is cyclic, AutA∗ is abelian, so H ′ acts trivially on it. We already
saw that H ′ is the product of some of H’s Sylow subgroups, so H ′ lies in A∗. The
central Sylow subgroups of H also act trivially on A∗, so also lie in A∗. We have
shown that A∗ contains A. If A∗ were strictly larger than A, then the coprimality
of |A∗| and |H/A∗| would show that A∗ contains a Sylow subgroup of H that is not
in A. But then A∗ is nonabelian by property (II) of A, and therefore property (I)
fails for A∗. �

3. The perfect case

In this section and the next we prove Theorems 1.1 and 1.2 inductively. We
suppose throughout that G is a finite group that acts freely on a sphere of some
dimension. Under the assumption that every proper subgroup has one of the struc-
tures listed in Theorem 1.1, we will prove that G also has such a structure. In
this section we also assume G is perfect. This includes base case G = 1 of the
induction, which occurs in case (I). The only other perfect group in Theorem 1.1
is 2A5. Theorem 1.2 is trivial for G ∼= 1 or 2A5. Therefore it will suffice to prove
G ∼= 2A5 under the assumption G �= 1.

Lemma 3.1. G’s Sylow 2-subgroups are quaternionic, in particular nontrivial.

Proof. By Lemma 2.3, all the odd Sylow subgroups are cyclic. If the Sylow 2-
subgroups were too, then Corollary 2.6, applied to the smallest prime dividing |G|,



5570 DANIEL ALLCOCK

would contradict perfectness. Now Lemma 2.3 shows that the Sylow 2-subgroups
must be quaternionic. �

Lemma 3.2. G’s elements of order 4 form a single conjugacy class.

Proof. Let T be a Sylow 2-subgroup (quaternionic by the previous lemma) and let
U be a cyclic subgroup of index 2. We consider the action of G on the coset space
G/U , whose order is twice an odd number. By Lemma 2.1, G contains a unique
involution, necessarily central. Since it lies in every conjugate of U , it acts trivially
on G/U . Now let φ be any element of order 4. Since its square acts trivially, φ
acts by exchanging some points in pairs. Since G is perfect, φ must act by an
even permutation, so the number of these pairs is even. Since the size of G/U
is not divisible by 4, φ must fix some points. The stabilizers of these points are
conjugates of U , so φ is conjugate into U . Finally, the two elements of order 4 in
U are conjugate since T contains an element inverting U . �

Lemma 3.3. O(G) = 1.

Proof. Suppose otherwise. Since G’s odd Sylow subgroups are cyclic, Lemma 2.8(I)
shows that O(G) has a characteristic cyclic subgroup of prime order. Because this
subgroup has an abelian automorphism group and G is perfect, G acts trivially
on it. Now Corollary 2.6 shows that G has nontrivial abelianization, contradicting
perfectness. �

Lemma 3.4. Every maximal subgroup M of G has center of order 2.

Proof. First, M contains G’s central involution. Otherwise, adjoining it to M
would yield G by maximality. Then G would have an index 2 subgroup, contrary
to perfectness. Next we show that M has no central subgroup Y of order 4; suppose
it did. By the conjugacy of Z/4’s in G and the fact that G’s Sylow 2-subgroups
are quaternionic, N(Y ) contains an element inverting Y . So N(Y ) is strictly larger
than M and hence coincides with G, and the map G → Aut(Y ) ∼= Z/2 is nontrivial,
contrary to perfectness.

Finally we show that M has no central subgroup Y of odd prime order > 1. The
previous lemma shows that N(Y ) is strictly smaller than G. Since M normalizes Y
and is maximal, it is Y ’s full normalizer. Since Y is central in M , we see that N(Y )
acts trivially on Y . Now Corollary 2.6 shows that G/G′ is nontrivial, contradicting
perfectness. �

The next lemma is where our development diverges from Wolf’s.

Lemma 3.5 (Maximal subgroups). Every maximal subgroup M of G has one of
the following structures, with O(M) a cyclic group:

(I) O(M) : (cyclic 2-group of order > 2).
(II) O(M) : (quaternionic group).
(III) 2A4.
(IV)

(
O(M).2A4

)
· 2, where the elements of M outside O(M).2A4 act on O(M)

by inversion and on the quotient 2A4 by outer automorphisms.
(V) 2A5.
(VI)

(
O(M)× 2A5

)
· 2, where the elements of M outside O(M)× 2A5 act on

O(M) by inversion and on 2A5 by outer automorphisms.
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Furthermore, the G-normalizer of any nontrivial subgroup of O(M) is M . If M1

and M2 are nonconjugate maximal subgroups, then O(M1) and O(M2) have coprime
orders.

Remark. An alternate description ofM in case (IV) is that it has structure (O(M)×
Q).S3, where Q is quaternionic of order 8 and is the (unique) Sylow 2-subgroup of
the commutator subgroup M ′.

Proof. By induction, M has one of the structures in Theorem 1.1. In light of the
previous lemma, we keep only those with center of order 2. Here are the details. In
every case, the prime order elements of B are central in M , so they cannot exist,
so B = 1. For types (I)–(II) this leaves O(M) = A and establishes our claimed
structure for M . For type (I) we must also show that the cyclic 2-group, call it T ,
has order > 2. Otherwise, A is central in M and hence trivial, so T is all of M
and has order 2. That is, the center of G is a maximal subgroup of G, which is a
contradiction because no group can have this property.

For type (V) we have shown M ∼ 2A5×A, so A is central, and hence trivial. For
type (III) we know M ∼ (Q8 ×A) : Θ, with Θ’s elements of order 3 centralizing A.
It follows that |Θ| = 3, because otherwise Θ’s elements of order 3 would also
centralize Q8, hence be central in M . From |Θ| = 3 it follows that A is central in
M , and hence trivial. So M ∼ Q8 : 3 with the Z/3 acting nontrivially on Q8. Since
Aut(Q8) ∼= S4 has a unique class of elements of order 3, M is determined up to
isomorphism, namely M ∼= 2A4.

For type (VI) we know M ∼ (2A5×A)·2 and O(M) = A. Also, A decomposes as
the direct sum of its subgroup inverted by the nontrivial element t ofM/(2A5×A) ∼=
Z/2 and its subgroup fixed pointwise by t. The latter subgroup is central in M and
hence trivial, so t inverts A as claimed. Also, t’s image in Out 2A5 is nontrivial by
the definition of type (VI) groups.

Finally, for type (IV) we have M ∼
(
(Q8 × A) : Θ

)
· 2. By Remark 1.4, Θ and

A commute. So O(M) is cyclic and generated by A and the index 3 subgroup of
Θ, leaving M ∼ (O(M).2A4) · 2. By the argument for type (VI), the elements
of M mapping nontrivially to Z/2 must invert O(M) and act on Q8 by outer
automorphisms.

We have shown in each case that O(M) is cyclic. So its subgroups are charac-
teristic in O(M) and hence normal in M . By Lemma 3.3 and maximality, M is
the full normalizer of any nontrivial subgroup of O(M). For the last claim of the
theorem, suppose a prime p divides the orders of O(M1) and O(M2). We have just
shown that M1 is the normalizer of a cyclic group of order p and that M2 is the
normalizer of another. These cyclic groups are G-conjugate, so M1 and M2 are
also. �
Lemma 3.6 (Done if Q16 �≤ G). Suppose the Sylow 2-subgroups of G have order 8.
Then G ∼= 2A5.

Proof. Suppose M is a maximal subgroup of G. It cannot have type (IV) or (VI),
because these contain copies of Q16. If M has type (III) or (V), then M ∼= 2A4

or 2A5 by Lemma 3.5. We claim that in the remaining cases, M is binary dihedral.
If M has type (I), then it has structure O(M) : T , where T is a cyclic group

of order ≥ 4. Since this is the largest a cyclic 2-group in G can be, T has order
exactly 4. A generator for it must invert O(M), or else M ’s center would have
order > 2. We have shown that M is binary dihedral.
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Now suppose M has type (II) and hence structure O(M) : Q, where Q ∼= Q8.
If O(M) = 1, then M ∼= Q8, which is binary dihedral as claimed. So suppose
O(M) �= 1 and let P be any Sylow subgroup of O(M). Since AutP is cyclic and
Q/Q′ ∼= 2× 2, some element of order 4 in Q acts trivially on P . Since all elements
of order 4 are conjugate, the centralizer of any one of them has order divisible by
|P |. Now fix a particular element φ of order 4. Letting P vary over all Sylow
subgroups of O(M) shows that C(φ) has order divisible by |O(M)|. The only
maximal subgroup of G that could contain a cyclic group of order 4 · |O(M)| is M ,
up to conjugacy. So after conjugation we may suppose that O(M) ≤ C(φ) ≤ M .
We have shown that some element φ of order 4 in Q centralizes O(M). So Q acts
on O(M) via a quotient group of order ≤ 2. This quotient must be Z/2, acting by
negation, because otherwise M would have center larger than Z/2. It follows that
M is binary dihedral.

We have shown that every maximal subgroup of M is binary dihedral, binary
tetrahedral, or binary icosahedral. By examining normalizers in these groups, one
checks that every noncentral cyclic subgroup of G has binary dihedral normalizer.
So G ∼= 2A5 by Lemma 2.4. �

To prove the perfect case of Theorems 1.1 and 1.2, it now suffices to rule out the
case Q16 ≤ G. We devote the rest of this section to this.

Lemma 3.7 (Z/4 normalizers). For any subgroup Φ ∼= Z/4 of G, N(Φ) has struc-
ture (odd group).(Sylow 2-subgroup of G).

Proof. We claim first that N(Φ) has structure (odd group).(2-group). Choosing a
maximal subgroup M containing N(Φ), it suffices to show that NM (Φ) has this
structure. To prove this one considers each possible structure for M listed in
Lemma 3.5, and each subgroup Z/4 of it. To finish the proof we use the fact that
some Z/4 is normal in some Sylow 2-subgroup and that all Z/4’s are conjugate. �

Lemma 3.8 (Q8 normalizers). Suppose G contains a copy of Q16. Choose Q ≤ G
isomorphic to Q8 and write N for its normalizer. Then

(1) N ∼
(
O(N).2A4

)
· 2.

(2) Q lies in a group 2A4 if and only if 3 � |O(N)|.
(3) G has more than one conjugacy class of Q8 subgroups.
(4) G contains a subgroup 2A4.

Proof. (3.8) We begin by exhibiting some elements of N . Choose any subgroup
Φ ∼= Z/4 of Q. There exists a Sylow 2-subgroup of N(Φ) that contains Q. So Q lies
in some Q16 that normalizes Φ. This Q16 contains an element that inverts Φ and
exchanges the other two Z/4 subgroups of Q. In particular, N contains an element
that normalizes our chosen Z/4 and exchanges the other two Z/4’s in Q. It follows
that N acts by S3 on the three Z/4 subgroups of Q.

Now we fix a maximal subgroup M of G that contains N . The property of N
just established forces M to have type (IV) or (VI). That is,

M ∼
(
O(M).(2A4 or 2A5)

)
· 2

with Q lying in the index 2 subgroup M ′. In either case, N coincides with NM (Q),
which has the stated structure. Also, O(N) = O(M), which we will use later in the
proof.
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(3.8) “If” follows from the existence of a Sylow 3-subgroup isomorphic to Z/3
in N . For “only if”, suppose 3 divides |O(N)|. Then N cannot contain any 2A4

because all its elements of order 3 are central in N .
(3.8) Fix Φ ≤ Q isomorphic to Z/4. By Lemma 3.7 there is a subgroup Q∗ ∼= Q8

of N(Φ) that is not N(Φ)-conjugate to Q. We claim that Q∗ is not G-conjugate to
Q either; suppose to the contrary that some g ∈ G conjugates Q∗ to Q. By Φ ≤ Q∗

we see that g sends Φ into Q. By replacing g by its composition with an element
of N that sends Φg back to Φ, we may suppose without loss that g normalizes Φ.
That is, Q and Q∗ are conjugate in N(Φ), which is a contradiction.

(3.8) Supposing that G contains no 2A4, we will show that every subgroup
Q∗ ∼= Q8 of G is conjugate to Q, which contradicts (3.8). Applying the argument
for (3.8) to Q∗, we write N∗ for its normalizer and M∗ for a maximal subgroup
containing N∗. By (3.8) and the nonexistence of 2A4’s, 3 divides the orders of
O(N) and O(N∗). These groups are the same as O(M) and O(M∗). Since |O(M)|
and |O(M∗)| have a common factor, the last part of Lemma 3.5 shows that M and
M∗ are conjugate. So their index 2 subgroups M ′ and M∗′ are conjugate, both
of which have structure (odd group).(2A4 or 2A5). Since Q, resp., Q∗, is a Sylow
2-subgroup of M ′, resp., M∗′, it follows that Q and Q∗ are conjugate. �

Lemma 3.9 (Free actions of binary dihedral groups). Suppose H is a binary di-
hedral group, U is an irreducible fixed-point-free real representation of H, and α is
the natural map R[H] → End(U). Then α(R[H]) ∼= H. Furthermore, if J is any
binary dihedral subgroup of H, then α(R[J ]) = α(R[H]).

Proof. It is easy to see that the lemma holds for the representations (1.1), using
their description in terms of H. So it will suffice to show that U is one of them. Let
C be an index 2 cyclic subgroup of H. Under C, U decomposes as a direct sum of 2-
dimensional spaces, on each of which C acts faithfully by rotations. Fix one, say T ,
and consider the induced representation IndHC (T ), of dimension 4. Its canonical
image in U is H-invariant, hence all of U . This image is larger than 2-dimensional
because a binary dihedral group has no 2-dimensional free real representations.
(Every finite subgroup of O(2) is cyclic or dihedral.) Therefore U ∼= IndHC (T ). And
the representations in (1.1) are exactly the H-representations of this form. �

Lemma 3.10 (Free actions of the binary tetrahedral group). Assume A ∼= 2A4

acts freely on a real vector space V , and write Q for the copy of Q8 in A. Then the
image of R[A] in End(V ) is isomorphic to H and equal to the image of R[Q]. In
particular, every Q-invariant subspace is also A-invariant.

Proof. Fix an identification of A with

(3.1) 2A4 =
{
±1,±i,±j,±k, (±1± i± j ± k)/2

}
⊆ H∗.

We claim that A has a unique irreducible free real representation. It follows that
V is a direct sum of copies of A’s left-multiplication action on H, which proves the
lemma.

For the claim, fix an irreducible free A-module U . Choose a Q-submodule T
which is Q-irreducible. In the proof of Lemma 3.9 we showed that (1.1) accounts
for all irreducible free actions of binary dihedral groups. For Q8, there was only
one. So we may identify T with the real vector space underlying H, with Q =
{±1,±i,±j,±k} ⊆ A acting by left multiplication. The image of the natural map
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IndAQ(T ) → U is A-invariant, and hence all of U . By definition, IndAQ(T ) is the

real vector space underlying H3, with i ∈ Q acting by (x, y, z) �→ (ix, jy, kz) and
similarly with i, j, k cyclically permuted, and θ := (−1 + i + j + k)/2 ∈ A acting

by (x, y, z) �→ (z, x, y). Obviously the kernel of IndAQ(T ) → U contains the fixed
points of the nonidentity elements of A. For θ and i ◦ θ these are {(x, x, x)} and
{(x, jx,−ix)}, which together span an 8-dimensional subspace, hence the whole

kernel. This proves the uniqueness of U : it is the quotient of IndAQ(T ) by the
subspace generated by the fixed points of the nonidentity elements of A. �

Lemma 3.11 (The final contradiction). G contains no subgroup Q16.

Proof. Suppose otherwise, and fix an irreducible fixed-point free real representation
V of G. We write α for the natural map R[G] → EndV .

By Lemma 3.8(3.8), G has a subgroup A∗ ∼= 2A4. We write Q∗ for its Q8

subgroup. We fix a Q16-subgroup of G that contains Q∗. This is the only group
isomorphic to Q16 we will consider, so we write Q16 for it. Write Q for the other
Q8 subgroup of Q16. We will distinguish two cases, according to whether there
exists some A ∼= 2A4 containing Q. In each case we will prove α(R[G]) ∼= H, which
implies that G is isomorphic to a subgroup of H∗. We assume this for the moment.

A well-known property of H∗ is that every noncentral cyclic subgroup has H∗-
normalizer isomorphic to the “continuous binary dihedral group”, meaning the
nonsplit extension (R/Z)·2. It follows that theG-normalizer of any noncentral cyclic
subgroup is cyclic or binary dihedral. The cyclic case is ruled out by Corollary 2.6
and the perfectness of G. So Lemma 2.4 applies, proving G ∼= 2A5.

It remains to prove α(R[G]) ∼= H. First suppose that A exists. G is generated
by A and A∗, because no maximal subgroup contains two copies of 2A4, whose Q8

subgroups generate a copy of Q16. Now fix an irreducible Q16-submodule U of V .
It is obviously Q- and Q∗-invariant, and hence A- and A∗-invariant by Lemma 3.10.
So it is G-invariant by 〈A,A∗〉 = G, and the G-irreducibility of V implies U = V .
Lemmas 3.9 and 3.10 also give us the equalities

(3.2) α(R[A]) = α(R[Q]) = α(R[Q16]) = α(R[Q∗]) = α(R[A∗])

and say that this subalgebra of End(U) is isomorphic to H. Since A and A∗ gen-
erate G, α(R[G]) also equals this copy of H, finishing the proof in the case that A
exists.

Now suppose Q lies in no copy of 2A4, and set N = NG(Q) and Φ = Q ∩Q∗ ∼=
Z/4. By (3.8) and (3.8) of Lemma 3.8 we have N ∼ (O(N).2A4) · 2 with |O(N)|
divisible by 3. By construction Q∗ normalizes Q, and by Q∗ �= Q we see that Q∗

contains an element q∗ of order 4 which lies in N but outside its index 2 subgroup
O(N).2A4. So q∗ inverts O(N). Of course, q∗ also inverts Φ. Also, O(N) commutes
withQ (hence Φ) by the known structure ofN . SoH = 〈q∗, O(N),Φ〉 = 〈Q∗, O(N)〉
is binary dihedral. The rest of the argument is similar to the previous case.

Namely, we have G = 〈H,A∗〉 because no maximal subgroup M of G contains a
copy of Q8 which normalizes one copy of Z/3 in M and is normalized by a different
copy of Z/3 inM . Now we choose an irreducible H-submodule U of V . It is trivially
Q∗-invariant. Then Lemma 3.10 shows that U is A∗-invariant, hence G-invariant,
and hence all of V . Lemmas 3.9–3.10 give the equalities

(3.3) α(R[H]) = α(R[Q∗]) = α(R[A∗])
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and say that this subalgebra of End(U) is isomorphic to H. By G = 〈H,A∗〉, this
subalgebra is also α(R[G]), finishing the proof. �

Remark 3.12 (Frobenius complements). As mentioned in the introduction, our ar-
guments adapt easily to classify the Frobenius complements, which are the same
groups. Supposing that G acts freely on a vector space over a finite field Fq, where
q is necessarily odd, we extend scalars to suppose without loss that all elements
of G are diagonalizable. Then Lemmas 3.9–3.11 and their proofs still apply with
R replaced by Fq, H (the algebra) by M2Fq, H (the module) by F2

q , and H∗ by
SL2 Fq. (Although the proof of Lemma 3.10 looks H-specific, one defines the Hur-
witz integers as the Z-span of the quaternions (3.1), and tensoring with Fq gives
M2Fq.)

4. The imperfect case

In this section we will complete the proofs of Theorems 1.1 and 1.2. We suppose
throughout that G is an imperfect finite group that acts freely and isometrically
on a sphere of some dimension, and that every proper subgroup has one of the
structures listed in the statement of Theorem 1.1. We will prove that G also has
one of these structures, in fact a unique one in the sense of Theorem 1.2. We
will prove Theorems 1.1 and 1.2 in three special cases (which don’t actually use
imperfectness), and then argue that these cases are enough.

Lemma 4.1. Suppose G/O(G) is a 2-group. Then G has type (I) or (II) from
Theorem 1.1, for a unique-up-to-conjugation triple of subgroups (A,B, T ).

Proof. We will construct A, B, and T such that G ∼ A : (B×T ) as in Theorem 1.1,
along the way observing that the construction is essentially unique. Obviously we
must choose A and B such that O(G) = A : B. Applying Lemma 2.8 to O(G)
proves the following. The required coprimality of |A| and |B|, together with the
requirement that each nontrivial Sylow subgroup of B acts nontrivially on A, can be
satisfied in a unique way. That is, A is uniquely determined, and B is determined
up to conjugacy in O(G). Using the coprimality of |O(G)| and |G/O(G)| ∼= T ,
part (IV) of Lemma 2.8 shows that the decomposition O(G) = A : B extends to a
decomposition G = A : (B × T ), where T is determined uniquely up to conjugacy
in NG(B).

This finishes the proof of uniqueness; it remains to check a few assertions of
Theorem 1.1. Lemma 2.3 says that T is cyclic or quaternionic. Lemma 2.2 assures
us that every prime-order element of B or T acts trivially on every prime-order
subgroup of A. An automorphism of the cyclic group A, of order prime to |A|, and
acting trivially on every subgroup of prime order must act trivially on all of A. So
the prime-order elements of B and T centralize A. �

Lemma 4.2. Suppose G contains a normal subgroup 2A5. Then G has type
(V) or (VI) from Theorem 1.1, for a unique-up-to-conjugation tuple of subgroups
(A,B, 2A5) or (A,B, 2A5,Φ).

Proof. We will show that there is a such a tuple, unique up to conjugation, whose
2A5 term is the given normal subgroup. The existence part of this assertion shows
that G ∼ 2A5 × (A : B) or G ∼

(
2A5 × (A : B)

)
· 2 as in Theorem 1.1. It follows

that G has a unique normal subgroup isomorphic to 2A5. So every tuple has this
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particular subgroup as its 2A5 term. The uniqueness of the tuple up to conjugacy
follows.

It remains to prove the lemma for the given 2A5 subgroup. We define I as the
subgroup of G acting on 2A5 by inner automorphisms. Since Out(2A5) = 2, I has
index 1 or 2 in G. By its definition, I is generated by 2A5 and C(2A5), whose
intersection is the group Z generated by G’s central involution. We claim that Z
is the full Sylow 2-subgroup of C(2A5). Otherwise, 2A5/Z ×

(
C(2A5)/Z

)
≤ G/Z

would contain an elementary abelian 2-group of rank 3. This is impossible because
the Sylow 2-subgroups of G/Z are dihedral. From Corollary 2.6 and the fact that
C(2A5) has cyclic Sylow 2-subgroup, we get C(2A5) = Z × O(C(2A5)). It follows
that I = 2A5 ×O(I).

Obviously we must choose A and B such that A : B = O(I). As in the previous
proof, Lemma 2.8 shows that there is an essentially unique way to satisfy the
conditions that |A| and |B| are coprime and that every Sylow subgroup of B acts
nontrivially on A. That is, A is uniquely determined and B is determined up to
conjugacy in O(I). Also, |A| and |B| are coprime to 15 because G has no subgroup
3 × 3 or 5 × 5 (Lemma 2.2). The prime-order elements of B act trivially on A by
the same argument as in the previous proof.

We have shown that I has type (V), so if I = G, then the proof is complete.
Otherwise, we know G ∼

(
2A5 × (A : B)

)
· 2 and we must construct a suitable

subgroup Φ ∼= Z/4 of G. Because all complements to A in A : B are conjugate, the
Frattini argument shows that N(B) surjects to G/A. So N(B) contains a Sylow
2-subgroup T ∼= Q16 of G. By Sylow’s theorem it is unique up to conjugacy in
N(B). Obviously T ∩ 2A5 is isomorphic to Q8. Now, T ∼= Q16 contains exactly
two subgroups isomorphic to Z/4 that lie outside T ∩ 2A5. So we must take Φ to
be one of them. They are conjugate under T ∩ 2A5, so Φ is uniquely defined up to
a conjugation that preserves each of A, B, and 2A5. It remains only to check that
Φ has the properties required for G to be a type (VI) group. It acts on 2A5 by
an outer automorphism because it does not lie in I, by construction. To see that
Φ commutes with B, suppose to the contrary. Then some subgroup of B of prime
order p would lie in G′. Then Corollary 2.6 would show that the Sylow p-subgroup
of B lies in G′. So it acts trivially on A, which is a contradiction. �

Lemma 4.3. Suppose G contains a normal subgroup Q ∼= Q8 that lies in G′. Then
G has type (III) or (IV) from Theorem 1.1, for a unique-up-to-conjugation tuple
of subgroups (A,B,Q8,Θ) or (A,B,Q8,Θ,Φ).

Proof. Mimicking the previous proof, we will show that there is a unique-up-to-
conjugation tuple of such subgroups whose Q8 term is Q. In particular, G ∼
(Q8 × A) : (B × Θ) or G ∼

(
(Q8 × A) : (B × Θ)

)
· 2 as in Theorem 1.1. This

shows that G has a unique normal subgroup isomorphic to Q8, namely Q, which
will complete the proof for the same reason as before.

To show that there is a unique-up-conjugation tuple of subgroups whose Q8 term
is Q, consider the natural map G → AutQ ∼= S4. We claim the image G contains
an element of order 3. Otherwise, G ⊆ AutQ ∼= S4 would lie in a Sylow 2-subgroup
of AutQ, which is dihedral of order 8 with a commutator subgroup of order 2.

Therefore |G′| would have order ≤ 2. But this is a contradiction because Q lies in
G′ and Q ∼= 2 × 2. We have shown that the nontrivial 3-subgroup of OutQ ∼= S3

lies in the image of G. (Now we can discard G.)
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Let J be the preimage in G of this copy of Z/3. So G ∼ J.(1 or 2). Obviously
we must choose A, B, and Θ so that J = (Q×A) : (B×Θ). By construction, J has
a nontrivial map to Z/3. So Corollary 2.6 assures us that J ’s Sylow 3-subgroups
map faithfully to J ’s abelianization. In particular, J = I.(cyclic 3-group), where
|I| is prime to 3. Mimicking the previous proof shows that I = Q × O(I). So we
must choose A and B so that A : B = O(I).

Continuing to follow the previous proof shows that there is an essentially unique
way to satisfy the conditions that |A| and |B| are coprime and that every Sylow
subgroup of B acts nontrivially on A. That is, A is uniquely determined and B is
determined up to conjugacy in O(I). The prime-order elements of B act trivially
on A for the same reason as before. We have shown

G ∼
I︷ ︸︸ ︷(

Q× (A : B)
)
.(nontrivial cyclic 3-group)︸ ︷︷ ︸

J

.(1 or 2).

Having worked our way to the “middle” of G, we now work outwards and construct
Θ and (if required) Φ. Using the conjugacy of complements to A in A : B, the
Frattini argument shows that NJ (B) maps onto J/(A : B). So NJ (B) contains a
Sylow 3-subgroup of J , indeed a unique one up to conjugacy in NJ (B). So there is
an essentially unique possibility for Θ. As observed above, Θ acts nontrivially on Q.
Its elements of order 3 act trivially on A for the same reason that B’s prime-order
elements do. Finally, Θ commutes with B. Otherwise, some Sylow subgroup of B
would lie in G′, and hence act trivially on A, contrary to B’s construction.

We have shown that J has type (III), so if J = G, then we are done. Otherwise,
mimicking the previous proof shows that there exists a group Φ ∼= Z/4 in N(B×Θ)
that does not lie in J , and that such a group is unique up to conjugacy in N(B×Θ).
Also as before, Φ commutes with B. By Φ �≤ J , Φ’s elements of order 4 act on Q by
outer automorphisms. Since the images of Φ and Θ in OutQ ∼= S3 do not commute,
Φ cannot commute with Θ. Therefore Φ’s elements of order 4 must invert Θ. So G
has type (IV) and the proof is complete. �

To finish the proofs of Theorems 1.1 and 1.2 we will show that G satisfies the
hypotheses of one of Lemmas 4.1–4.3. By imperfectness, G has a normal subgroup
M of prime index p. By induction, M has one of the structures (I)–(VI). We will
examine the various cases and see that one of the lemmas applies.

If M has type (V) or (VI), then it contains a unique subgroup 2A5, which is
therefore normal in G, so Lemma 4.2 applies. If M has type (III) or (IV), then it
contains a unique normal subgroup Q8, which is therefore normal in G. Also, this
Q8 lies in M ′, and hence G′, so Lemma 4.3 applies. Finally, suppose M has type
(I) or (II), so M ∼ A :

(
B × (2-group T )

)
. If p = 2 then O(G) = O(M) = A : B

and G/O(G) is a 2-group, so Lemma 4.1 applies.
So suppose p > 2, and observe that G/O(M) has structure T.p. Choose a

subgroup P of order p inG/O(M). If it acts trivially on T , then we have G/O(M) ∼=
T × p, so G/O(G) ∼= T and Lemma 4.1 applies. So suppose P acts nontrivially on
T . The automorphism group of any cyclic or quaternionic 2-group is a 2-group,
except for AutQ8

∼= S4. Since P acts nontrivially, we must have T ∼= Q8 and p = 3.
The nontriviality of P ’s action also implies T < G′. From this and the fact that
AutA is abelian, it follows that T acts trivially on A. So T is normal in M . As M ’s
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unique Sylow 2-subgroup, it is normal in G. So Lemma 4.3 applies. This completes
the proofs of Theorems 1.1 and 1.2.

5. Irredundant enumeration

The uniqueness expressed in Theorem 1.2 makes the isomorphism classification
of groups in Theorem 1.1 fairly simple. Namely, one specifies such a group G up
to isomorphism by choosing its type (I)–(VI), a suitable number a for the order of
A, a suitable subgroup G of the unit group (Z/a)∗ of the ring Z/a, and a suitable
number g for the order of G. In a special case one must also specify a suitable
subgroup G0 of G. Before developing this, we illustrate some redundancy in Wolf’s
list.

Example 5.1 (Duplication). Wolf’s presentations of type II in [7, theorem 6.1.11]
have generators A, B, and R and relations

Am = Bn = 1 BAB−1 = Ar

R2 = Bn/2 RAR−1 = Al RBR−1 = Bk,

where (m,n, r, k, l) are numerical parameters satisfying nine conditions. It turns out
that the six choices (3, 20,−1,−1,±1), (5, 12,−1,−1,±1) and (15, 4,−1,−1, 4 or
11) give isomorphic groups, namely (3 × 5) : Q8. Here one class of elements of
order 4 in Q8 inverts just the Z/3 factor, another class inverts just the Z/5 factor,
and the third class inverts both. Wolf decomposes this group by choosing an index 2
subgroup (call it H) with a cyclic Sylow 2-subgroup, taking A to generate H ′ and
taking B to generate a complement to H ′ in H (which always exists). Then he
takes R to be an element of order 4 outside of H that normalizes 〈B〉. There
are three ways to choose H, corresponding to the three Z/4’s in Q8. After H is
chosen, there are essentially unique choices for 〈A〉 and 〈B〉, but two choices for
〈R〉. These choices lead to the six different presentations. Our form of this group
is A : (B × Q8) = 15 : (1 × Q8) = 15 : Q8. (Our A and B are subgroups, while
Wolf’s A and B are elements.)

A minor additional source of redundancy is that replacing Wolf’s B by a different
generator of 〈B〉 can change the parameter r in the presentation above.

Given a group G from Theorem 1.1, we record the following invariants. First
we record its type (I)–(VI), which is well-defined by the easy part of Theorem 1.2,
proven in section 1. Second we record g := |G|, a := |A|, and G, where bars will
indicate images in AutA. Finally, and only if G has type (II) and its order is
divisible by 16, we record G0, where G0 is the unique index 2 subgroup of G with
cyclic Sylow 2-subgroups.

AutA is canonically isomorphic to the group of units (Z/a)∗ of the ring Z/a,
with u ∈ (Z/a)∗ corresponding to the uth power map. Therefore we will regard G
and G0 as subgroups of (Z/a)∗. This is useful when comparing two groups G, G∗

as follows.

Theorem 5.2 (Isomorphism recognition). Two finite groups G and G∗, that act
freely and isometrically on spheres of some dimensions, are isomorphic if and only

if they have the same type and satisfy g = g∗, a = a∗, G = G
∗
, and (if they are

defined) G0 = G
∗
0.
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Proof. First suppose G ∼= G∗. We have already mentioned that they have the
same type, and they obviously have the same order. By the uniqueness of A and
A∗ (Theorem 1.2), any isomorphism G → G∗ identifies A with A∗. In particular,
a = a∗, and the action of G on A corresponds to that of G∗ on A∗. So we must

have G = G
∗
and (when defined) G0 = G

∗
0.

Now suppose G and G∗ have the same invariants; we must construct an isomor-
phism between them. Case analysis seems unavoidable, but the ideas are uniform
and only the details vary.

Type (I). Since A and A∗ are cyclic of the same order, we may choose an
isomorphism A ∼= A∗. By order considerations we have |B| = |B∗| and |T | = |T ∗|.
Again by order considerations, the identification of G with G

∗
under the canonical

isomorphism AutA = AutA∗ identifies B with B
∗
and T with T

∗
. Because B

and B∗ are cyclic of the same order, we may lift the identification B ∼= B
∗
to an

isomorphism B ∼= B∗, and similarly for T and T ∗. Together with A ∼= A∗, these
give an isomorphism G ∼= G∗.

Type (II) when 16 divides |G| = |G∗|. Because G0 is identified with G
∗
0, the

previous case gives an isomorphism G0
∼= G∗

0 that identifies A with A∗, B with B∗,
and the cyclic 2-group T0 := T ∩ G0 with T ∗

0 := T ∗ ∩ G∗
0. We will extend this to

an isomorphism G ∼= G∗. Choose an element φ of T − T0. By the identification of

T with T
∗
and T 0 with T

∗
0, there exists an element φ∗ of T ∗ − T ∗

0 whose action on
A∗ corresponds to φ’s action on A. As elements of T − T0 and T ∗ − T ∗

0 , φ and φ∗

have order 4. They commute with B and B∗, respectively. Their squares are the
unique involutions in T0 and T ∗

0 , which we have already identified with each other.

So identifying φ with φ∗ extends our isomorphism G0
∼= G

∗
0 to G ∼= G

∗
.

Type (II) when 16 does not divide |G| = |G∗|. The argument for type (I) identifies
A with A∗ and B with B∗. Both G and G∗ have Sylow 2-subgroups isomorphic
to Q8. T is the Sylow 2-subgroup of G and is elementary abelian of rank ≤ 2

because Q8/Q
′
8
∼= 2 × 2. The identification of G with G

∗
identifies T with T

∗
.

Because AutQ8 acts as S3 on Q8/Q
′
8, it is possible to lift the identification T ∼= T

∗

to an isomorphism T ∼= T ∗. Now our identifications A ∼= A∗, B ∼= B∗, and T ∼= T ∗

fit together to give an isomorphism G ∼= G∗.
Type (III). Choose an isomorphism A ∼= A∗. By |G| = |G∗| we get |B| = |B∗|

and |Θ| = |Θ∗|. The identification of G ≤ AutA withG
∗ ≤ AutA∗ identifies Θ with

Θ
∗
and B with B

∗
. These identifications can be lifted to isomorphisms Θ ∼= Θ∗

and B ∼= B∗ by the same reasoning as before. Because all elements of order 3
in AutQ8

∼= S4 are conjugate, it is possible to choose an isomorphism Q8
∼= Q∗

8

compatible with our isomorphism Θ ∼= Θ∗ and the homomorphisms Θ → AutQ8

and Θ∗ → AutQ∗
8. Now our identifications A ∼= A∗, B ∼= B∗, Θ ∼= Θ∗, and Q8

∼= Q∗
8

fit together to give an isomorphism G ∼= G∗.
Type (IV). Identify A, B, and Θ with A∗, B∗, and Θ∗ as in the previous

case. Choose generators φ and φ∗ for Φ and Φ∗. Their actions on A and A∗

correspond because they act by the unique involutions in G and G
∗
if these exist,

and trivially otherwise. The image of φ in AutQ8
∼= S4 normalizes the image of Θ,

so together they generate a copy of S3, and similarly for their starred versions. Any
isomorphism from one S3 in AutQ8 to another is induced by some conjugation in
AutQ8. (One checks this using AutQ8

∼= S4.) Therefore it is possible to identify Q8

with Q∗
8 such that the actions of Θ and Θ∗ on them correspond and the actions of φ
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and φ∗ also correspond. Using this, and identifying φ with φ∗, gives an isomorphism
G ∼= G∗.

Type (V). Identify A and B with A∗ and B∗ as in the previous cases, and 2A5

with 2A∗
5 however one likes.

Type (VI). Identify A and B with A∗ and B∗ as before, and choose generators
φ and φ∗ for Φ and Φ∗. As in the type (IV) case, their actions on A and A∗

correspond. Next, φ and φ∗ act on 2A5 and 2A∗
5 by involutions which are not inner

automorphisms. All such automorphisms of 2A5 are conjugate in Aut(2A5). (They
correspond to the involutions in S5−A5.) So we may identify 2A5 with 2A∗

5 in such
a way that the actions of φ and φ∗ on them correspond. Using this, and identifying
φ with φ∗, gives an isomorphism G ∼= G∗. �

We can now parameterize the isomorphism classes of finite groups G that admit
free actions on spheres. First one specifies a type (I)–(VI). Then one specifies a
positive integer a, a subgroup G of (Z/a)∗, and possibly a subgroup G0 of G, all
satisfying some constraints. Then one chooses one or more auxiliary parameters,
constrained in terms of properties of G. Together with a, these specify g, and
hence the isomorphism type of G. The following theorem is proven by combining
Theorem 5.2 with an analysis of what possibilities can actually arise. We will write
the parameters a, G, and g in the order one chooses them, rather than in the order
used in Theorem 5.2.

The constraints on the choices of parameters are difficult to express uniformly.
But the constraint on one auxiliary parameter, called b, is uniform. For each type
we obtain a positive integer b from the structure of G, and b must be the product of
b and nontrivial powers of all the primes dividing b. We will express this by saying
“b is as above”.

Theorem 5.3 (Irredundant enumeration). Suppose G is a finite group admit-
ting a free and isometric action on a sphere. Then there is exactly one tuple
((I)—(VI), a,G, g) or ((II), a,G,G0, g) listed below, whose corresponding group (de-
fined at the end) is isomorphic to G. �

(Type (I), a,G, g = abt), where

(1) a is odd.
(2) G is a cyclic subgroup of (Z/a)∗ of order prime to a. Define b and t as

the odd and 2-power parts of |G|.
(3) b is as above and t is a power of 2, larger than t if t �= 1.

(Type (II), a,G, g = abt) or (Type (II), a,G,G0, g = abt), where

(1) a is odd.
(2) G is a subgroup of (Z/a)∗ which is the direct product of a cyclic group of

order prime to 2a and an elementary abelian 2-group of rank ≤ 2. Define
b and t as the orders of these factors.

(3) G0, if specified, is a subgroup of G of index 2 (if t = 4) or index ≤ 2
(otherwise).

(4) b is as above and t = 8, unless G0 was specified, in which case t is a power
of 2, larger than 8.

(Type (III), a,G, g = 8abθ), where

(1) a is prime to 6.
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(2) G is a subgroup of (Z/a)∗ which is the direct product of a cyclic 3-group
and a cyclic group of order prime to 6a. Define θ̄ and b as the orders of
these factors.

(3) b is as above and θ is a power of 3, larger than θ̄.

(Type (IV), a,G, g = 16abθ), where

(1) a is prime to 6.
(2) G is a subgroup of (Z/a)∗, which is the direct product of a cyclic group

of order prime to 6a and a group of order 1 or 2. Define b as the order of
the first factor.

(3) b is as above and θ is a nontrivial power of 3.

(Type (V), a,G, g = 120ab), where

(1) a is prime to 30.
(2) G is a cyclic subgroup of (Z/a)∗ of order prime to 30a. Define b as its

order.
(3) b is as above.

(Type (VI), a,G, g = 240ab), where

(1) a is prime to 30.
(2) G is a subgroup of (Z/a)∗, which is the direct product of a cyclic group

of order prime to 30a and a group of order 1 or 2. Define b as the order
of the first factor.

(3) b is as above.

Here are instructions for building G. In a sense this is a constructive version of
the proof of Theorem 5.2. For all types, start by taking cyclic groups A, B with
orders a, b. Up to isomorphism of the domain, B has a unique surjection to the
subgroup of G ⊆ AutA of order b. Form the corresponding semidirect product
A : B. Now we consider the six cases.

The easiest is type (V)—just set G = 2A5 × (A : B).
For type (I), we take a cyclic group T of order t. Just as for B, there is an

essentially unique surjection from T to the subgroup of G of order t. Then G is the
semidirect product A : (B × T ).

For type (III) one takes a cyclic group Θ of order θ. Just as for B, there is
an essentially unique surjection from Θ to the subgroup of G of order θ̄. We also
take Θ to act nontrivially on Q8. (Up to conjugacy in AutQ8 there is a unique
nontrivial action.) Then G is the semidirect product (Q8 × A) : (B × Θ). B acts
trivially on Q8; this is forced since |B| is prime to 6.

A type (IV) or (VI) group is obtained from a type (III) or (V) group by adjoining
a suitable element φ of order 4. In both cases, φ squares to the central involution,
centralizes B, and acts on A by the nontrivial involution in G (if one exists) or
trivially (otherwise). For type (VI), φ acts on 2A5 by an outer automorphism of
order 2, which is unique up to Aut 2A5. For type (IV), φ inverts Θ and acts on Q8

by an involution that inverts the action of Θ. Such an automorphism is unique up
to an automorphism of Q8 that respects the Θ-action.

One can describe type (II) groups in terms of type (I) in a similar way, but it
is easier to build them directly. Take T to be a quaternion group of order t. First
suppose t = 8. Then we did not specify G0. Up to automorphism of the domain
there is a unique surjection from T to the subgroup T of G of order t. We take
G = A : (B × T ). On the other hand, suppose t > 8, in which case we did specify
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G0. We write T0 for the index 2 cyclic subgroup of T . Up to automorphism of the
domain, there is a unique surjection from T to T which carries T0 onto the 2-part
of G0 (which has order 1 or 2). And again G = A : (B × T ).
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