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ON GROUPS OF HÖLDER DIFFEOMORPHISMS

AND THEIR REGULARITY

DAVID NICOLAS NENNING AND ARMIN RAINER

Abstract. We study the set Dn,β(Rd) of orientation preserving diffeomor-

phisms of Rd which differ from the identity by a Hölder Cn,β
0 -mapping,

where n ∈ N≥1 and β ∈ (0, 1]. We show that Dn,β(Rd) forms a group,

but left translations in Dn,β(Rd) are in general discontinuous. The groups
Dn,β−(Rd) :=

⋂
α<β Dn,α(Rd) (with its natural Fréchet topology) and

Dn,β+(Rd) :=
⋃

α>β Dn,α(Rd) (with its natural inductive locally convex

topology) however are C0,ω Lie groups for any slowly vanishing modulus of
continuity ω. In particular, Dn,β−(Rd) is a topological group and a so-called
half-Lie group (with smooth right translations). We prove that the Hölder

spaces Cn,β
0 are ODE closed, in the sense that pointwise time-dependent Cn,β

0 -

vector fields u have unique flows Φ in Dn,β(Rd). This includes, in partic-

ular, all Bochner integrable functions u ∈ L1([0, 1], Cn,β
0 (Rd,Rd)). For the

latter and n ≥ 2, we show that the flow map L1([0, 1], Cn,β
0 (Rd,Rd)) →

C([0, 1],Dn,α(Rd)), u �→ Φ, is continuous (even C0,β−α), for every α < β.
As an application we prove that the corresponding Trouvé group Gn,β(R

d)
from image analysis coincides with the connected component of the identity
of Dn,β(Rd).

1. Introduction

Let E be a Banach space of functions f : Rd → Rd which is continuously
embedded in C1

0 (R
d,Rd), i.e., C1-mappings which vanish together with its first

derivative at infinity. Let u : [0, 1] × Rd → Rd be a pointwise time-dependent E-
vector field ; i.e., u(t, ·) ∈ E for all t, u(·, x) is measurable for all x, and t �→ ‖u(t, ·)‖E
is integrable. It is well-known that the corresponding pointwise flow

(1.1) Φ(t, x) = x+

∫ t

0

u(s,Φ(s, x)) ds, x ∈ Rd, t ∈ [0, 1],

is a C1-diffeomorphism of Rd at any t. The set of all diffeomorphisms Φ(1, ·) at
time 1 which arise in this way form a group GE , which we call the Trouvé group of
E, since this construction is due to Trouvé [27]; details can be found in the book
[28].

In general, not much is known about the Trouvé group. We are especially in-
terested in precise regularity properties of its elements. This is intimately related
to the question as to whether E is ODE closed, i.e., GE ⊆ Id+E, and if not, what
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the ODE hull of E is. We define the ODE hull to be the intersection of all ODE
closed spaces continuously embedded in C1

0 (R
d,Rd) and continuously containing E;

see Section 4.2. Here it is reasonable to allow for locally convex spaces (mutatis
mutandis) instead of just Banach spaces.

ODE closedness is closely related to stability and continuity or smoothness prop-
erties of composition of mappings. Indeed, it has been widely studied in the context
of regular infinite dimensional Lie groups; cf. [10]. Our results are not covered by
the general theory from [10]; Hölder (diffeomorphism) groups fail to be Lie groups.

In this paper we explore these questions in the case that E is a global Hölder

space Cn,β
0 (Rd,Rd), n ∈ N≥1, β ∈ (0, 1]. In search of an identification of the

elements of the corresponding Trouvé group Gn,β(R
d), it is natural to look at the

set of orientation preserving diffeomorphisms of Rd which differ from the identity

by a Cn,β
0 -mapping, i.e.,

Dn,β(Rd) :=
{
Φ ∈ Id+Cn,β

0 (Rd,Rd) : det dΦ(x) > 0 ∀x ∈ Rd
}
.

We will show that Dn,β(Rd) is a group with respect to composition, but it is not a
topological group: left translations and inversion are in general not continuous. Left
translations become continuous if the outer function is slightly more regular: φ �→
ψ ◦ (Id+φ) is continuous from Cn,α

0 (Rd,Rd) → Cn,α
0 (Rd,Rd) if ψ ∈ Cn,β

0 (Rd,Rd)

and α < β (the same holds if φ ∈ Cn,1
0 (Rd,Rd) and ψ ∈ Cn+1,β

0 (Rd,Rd)). Similarly,
Φ �→ Φ−1 is continuous from Dn,β(Rd) to Dn,α(Rd) if α < β. This motivates the
definitions

Dn,β−(Rd) :=
{
Φ ∈ Id+Cn,β−

0 (Rd,Rd) : det dΦ(x) > 0 ∀x ∈ Rd
}
,

Dn,β+(Rd) :=
{
Φ ∈ Id+Cn,β+

0 (Rd,Rd) : det dΦ(x) > 0 ∀x ∈ Rd
}
,

where Cn,β−
0 :=

⋂
{Cn,α

0 : 0 < α < β} and Cn,β+
0 :=

⋃
{Cn,α

0 : β < α < 1},
equipped with the natural projective, resp. inductive, locally convex topology. We
prove that Dn,β±(Rd) are C0,ω Lie groups (see Section 3.3) for every slowly van-
ishing modulus of continuity ω, i.e.,

lim inf
t↓0

ω(t)

tγ
> 0 for all γ > 0.

This regularity cannot be improved; see Proposition 3.13. In particular, Dn,β−(Rd)
are topological groups (this remains an open question for Dn,β+(Rd) since the
underlying locally convex topology and the c∞-topology fall apart in this case).
The right translations are bounded affine linear (in the chart representation) and
hence smooth. Consequently, Dn,β−(Rd) are also half-Lie groups as defined in [20].

In the second part of the paper we study flows of time-dependent Cn,β
0 -vector

fields. Here we distinguish between:

(1) Pointwise time-dependent Cn,β
0 -vector fields, i.e., mappings u : [0, 1]×Rd →

Rd such that u(t, ·) ∈ Cn,β
0 (Rd,Rd) for all t ∈ [0, 1], u(·, x) is measurable

for all x ∈ Rd, and t �→ ‖u(t, ·)‖n,β is integrable. (This corresponds to the
notion defined at the beginning of the introduction.)

(2) Strong time-dependent Cn,β
0 -vector fields, i.e., Bochner integrable functions

u ∈ L1([0, 1], Cn,β
0 (Rd,Rd)).

The latter notion involves strong measurability which entails that the image u([0, 1])

is essentially separable; a non-trivial condition, since the Hölder spaces Cn,β
0 are
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non-separable. If u satisfies (2), then u∧ satisfies (1); the converse is false. (For
f ∈ ZX×Y we consider f∨ ∈ (ZY )X defined by f∨(x)(y) = f(x, y), and with
g ∈ (ZY )X we associate g∧ ∈ ZX×Y with g∧(x, y) = g(x)(y).)

This deficiency has the effect that Carathéodory’s solution theory for ODEs on
Banach spaces which are Bochner integrable in time is not well suited for the Hölder
space setting. Instead we work with pointwise estimates, which has the additional
benefit that our proofs only require the weaker assumptions in (1).

We show that, for all n ∈ N≥1, β ∈ (0, 1], pointwise time-dependent Cn,β
0 -vector

fields u have unique pointwise flows Φ ∈ C([0, 1],Dn,β(Rd)); in particular, Cn,β
0 is

ODE closed (although composition in Dn,β is not continuous!). As a consequence,

for u ∈ L1([0, 1], Cn,β
0 (Rd,Rd)), the identity (1.1) lifts to an identity in Dn,α(Rd),

for each α < β (see Theorem 5.3):

Φ∨(t) = Id+

∫ t

0

u(s) ◦ Φ∨(s) ds, t ∈ [0, 1].

Furthermore, we identify the corresponding Trouvé group:

(1.2) Gn,β(R
d) = Dn,β(Rd)0,

where Dn,β(Rd)0 denotes the connected component of the identity in Dn,β(Rd).
Thus there seems to be no natural topology on Gn,β(R

d) which makes it a topological
group. On the other hand, we also get

(1.3) Gn,β−(R
d) = Dn,β−(Rd)0, Gn,β+(R

d) = Dn,β+(Rd)0,

which endow Gn,β±(R
d) with a C0,ω Lie group structure, for every slowly vanishing

modulus of continuity ω. On Gn,β−(R
d) we also get a topological group structure

and a half-Lie group structure. We wish to point out that our proof of (1.2)
subsequently shows that the equality (1.2) also holds if in the definition of the

Trouvé group Gn,β(R
d) one restricts to pointwise time-dependent Cn,β

0 -vector fields
which are piecewise Cn in time; see Remark 4.8.

In the third part we investigate the continuity of the flow map u �→ Φ. We find
that as a mapping

(1.4) L1([0, 1], Cn,β
0 (Rd,Rd)) → C([0, 1],Dn,α(Rd)),

the flow map is

• bounded, if n ∈ N≥1 and 0 < α ≤ β ≤ 1,
• continuous, even C0,β−α, if n ∈ N≥2 and 0 < α < β ≤ 1.

As a corollary we obtain that as a mapping

(1.5) L1([0, 1], Cn,β−
0 (Rd,Rd)) → C([0, 1],Dn,β−(Rd)),

the flow map is bounded for all n ≥ 1 and continuous and C0,ω if n ≥ 2 (and
arbitrary β ∈ (0, 1]), for every slowly vanishing modulus of continuity ω.

In [2] similar results were obtained in the Sobolev case E = Hs(Rd,Rd), for
s > d/2 + 1. In particular, it was shown that Hs is ODE closed and that

Gs(R
d) = Ds(Rd)0,

where Gs(R
d) denotes the corresponding Trouvé group and Ds(Rd) the group of

orientation preserving diffeomorphisms of Rd which differ from the identity by a
mapping in Hs(Rd,Rd). The methods are quite different: thanks to the fact that
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Ds(Rd) is a topological group (cf. [11]) Carathéodory’s solution theory for ODEs on
Banach spaces which are Bochner integrable in time is well suited for this setting.

The paper is structured as follows. We fix notation and present the main tech-
nical tools in Section 2. We also review some results on the composition of Hölder
functions essentially due to [3]; since we need slightly altered versions we give proofs
but relegate them to Appendix A. In Section 3 we investigate the groups Dn,β(Rd),

Dn,β−(Rd), and Dn,β+(Rd). We prove ODE closedness of Cn,β
0 and the identities

(1.2) and (1.3) in Section 4. In Section 5 we study the continuity of the flow maps
(1.4) and (1.5).

2. Definitions and preliminary results

2.1. Hölder spaces. Let k ∈ N, α ∈ (0, 1]. Let E,F be Banach spaces and let
U ⊆ E be open. We consider the global Hölder space

Ck,α
b (U, F ) :=

{
f ∈ Ck(U, F ) : ‖f‖k,α < ∞

}
,

where

‖f‖k,α := max{‖f‖k, [f ]k,α},
‖f‖k := sup{‖f (l)(x)‖Ll

: x ∈ U, 0 ≤ l ≤ k},

[f ]k,α := sup
x,y∈U, x�=y

‖f (k)(x)− f (k)(y)‖Lk

‖x− y‖α .

Here f (l) = dlf : E → Ll(E;F ) is the Fréchet derivative of order l, and Ll(E;F )
denotes the vector space of continuous l-linear mappings endowed with the operator
norm ‖ · ‖Ll

.

We denote by Ck,α
0 (E,F ) the subspace of those mappings f ∈ Ck,α

0 (E,F ) that
tend to 0 at infinity together with all their derivatives up to order k; i.e., for every
ε > 0 there is r > 0 such that ‖f (l)(x)‖Ll

≤ ε if ‖x‖ > r and 0 ≤ l ≤ k.
All these spaces are Banach spaces.
Local Hölder spaces are denoted by Ck,α, i.e., f ∈ Ck,α(U, F ) if each x ∈ U has

a neighborhood V in U such that f |V ∈ Ck,α
b (V, F ).

Let us recall interpolation and inclusion relations for Hölder spaces. In the
following Cn,0

b := Cn
b and ‖ · ‖n,0 := ‖ · ‖n.

Lemma 2.1 ([3, 3.1]). Let n ∈ N and let 0 ≤ α < β < γ ≤ 1, and set μ := γ−β
γ−α .

Then

‖f‖n,β ≤ Mα‖f‖μn,α‖f‖1−μ
n,γ , f ∈ Cn,γ

b (E,F ),

where M0 := 2 and Mα := 1 for α > 0.

Lemma 2.2 ([3, 3.7]). Let m,n ∈ N and α, β ∈ [0, 1] with m + α ≤ n + β. Then

Cn,β
b (E,F ) ⊆ Cm,α

b (E,F ) and

‖f‖m,α ≤ 2‖f‖n,β , f ∈ Cn,β
b (E,F ).

2.2. The Bochner integral (cf. [4]). Let I = [a, b] ⊆ R be a closed interval (with
the Lebesgue measure). Let E be a Banach space. A measurable function f : I → E
is Bochner integrable if there is a sequence of integrable simple functions sn : I → E



ON GROUPS OF HÖLDER DIFFEOMORPHISMS 5765

such that sn → f a.e. (i.e., f is strongly measurable) and
∫ b

a
‖f − sn‖ dt → 0. In

this case the Bochner integral is defined by∫ b

a

f dt = lim
n→∞

∫ b

a

sn dt.

By the Pettis measurability theorem, f : I → E is strongly measurable if and only
if it is weakly measurable (i.e., λ ◦ f is measurable for all λ ∈ E∗) and essentially
separable valued (i.e., f(I \N) is separable in E for some null set N). A strongly

measurable function f : I → E is Bochner integrable if and only if
∫ b

a
‖f‖ dt < ∞.

Then the triangle inequality holds:∥∥∥ ∫ b

a

f dt
∥∥∥ ≤

∫ b

a

‖f‖ dt.

If T : E → F is a bounded linear operator into another Banach space F , then
Tf : I → F is Bochner integrable and

T

∫ b

a

f dt =

∫ b

a

Tf dt.

We will use the following version of the fundamental theorem of calculus.

Lemma 2.3. If f : [a, b] → E is continuous, then

d

dt

∫ t

a

f(s) ds = f(t),

for all t ∈ I. If f : [a, b] → E is C1, then

f(b)− f(a) =

∫ b

a

f ′(s) ds.

It is then straightforward to deduce a mean value inequality for C1-mappings
between Banach spaces.

2.3. Carathéodory type ODEs. Next we collect some results on Carathéodory
type differential equations. Those are certain ODEs on Banach spaces whose right-
hand side is not continuous in time. We refer to [1] and to the appendix in [2].

Let E be a Banach space, let U ⊆ E be some open subset, and let I = [t0, t1] be
some real interval. We say that f : I × U → E satisfies the Carathéodory property
if:

(i) For every t ∈ I the mapping f(t, ·) : U → E is continuous.
(ii) For every x ∈ U the mapping f(·, x) : I → E is strongly measurable.

Also the notion of solution of such an ODE is weakened: we say a continuous
curve Φ : I → U is a solution of the initial value problem

∂tx = f(t, x), x(t0) = x0(2.1)

if and only if s �→ f(s,Φ(s)) is Bochner integrable and

Φ(t) = x0 +

∫ t

t0

f(s,Φ(s)) ds, t ∈ I.(2.2)

This already implies that Φ : I → U is continuous. It is actually absolutely con-
tinuous in the sense that there exists a Bochner integrable γ : I → E such that
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Φ(t) = Φ(t0)+
∫ t

t0
γ(s) ds; in particular, Φ is differentiable a.e. and Φ′ = γ a.e. (see

[10, Lemma 1.28]).
The next theorem is the central existence and uniqueness result for Carathéodory

type differential equations; it is taken from [2, Thm. A.2].

Theorem 2.4. Let I = [t0, t1] and let f : I × U → E have the Carathéodory
property. Let B(x0, ε) := {x ∈ E : ‖x − x0‖ < ε} ⊆ U . In addition let m, l be
positive locally integrable functions defined on I such that the estimates

‖f(t, x1)− f(t, x2)‖ ≤ l(t)‖x1 − x2‖,
‖f(t, x)‖ ≤ m(t)

are valid for almost all t and all x, x1, x2 ∈ B(x0, ε). Let δ be such that∫ t0+δ

t0

m(s) ds < ε.

Then (2.1) has a unique solution φ : [t0, t0 + δ] → B(x0, ε) in the sense of (2.2).

If the ODE is linear, we have global existence in time:

Theorem 2.5. Let I = [t0, t1]. Let A : I → L(E) and b : I → E be Bochner
integrable. Then for all x0 ∈ E there exists a unique solution on I of

∂tx(t) = A(t) · x(t) + b(t), x(t0) = x0

in the sense of (2.2).

2.4. Composition in Hölder spaces. Let us review some regularity results for
the composition in Hölder spaces due to [3]. But in contrast to [3], we need the
results for mappings F : Rd → Rd of the form F = Id+f where f is in some Hölder

class; note that Id is unbounded and hence not a member of any Cn,β
b (Rd,Rd). For

this reason it is convenient to introduce the seminorm

[F ]n := ‖F (n)‖0 = sup
x∈Rd

‖F (n)(x)‖Ln
.

If F = Id+f and n ≥ 1, then

(2.3) [F ]n ≤ 1 + [f ]n.

It is easy to adapt the proofs in [3] to our needs; they are outlined in Appendix A
for completeness’ sake.

Proposition 2.6 ([3, 4.2]). Let E,F,G,H be Banach spaces and U ⊆ E open. Let
m ∈ N, α ∈ (0, 1], and b : F ×G → H be a bilinear continuous mapping. Then b∗ :
Cm,α

b (U, F )×Cm,α
b (U,G) → Cm,α

b (U,H), defined by b∗(f, g)(x) := b(f(x), g(x)), is
bilinear, continuous, and ‖b∗‖ ≤ 2m+1‖b‖.

The following theorem shows stability under composition and continuity of the
right translation. We will denote by f� the pull-back by Id+f , i.e., f� := (Id+f)∗.

Theorem 2.7 ([3, 6.2]). Let m ∈ N≥1 and α ∈ (0, 1]. Let f ∈ Cm,α
b (Rd,Rd) and

let g ∈ Cm,α
b (Rd, G) for some Banach space G. Then g ◦ (Id+f) ∈ Cm,α

b (Rd, G),
and there exists a constant M = M(m) ≥ 1 such that

(2.4) ‖g ◦ (Id+f)‖m,α ≤ M‖g‖m,α(1 + ‖f‖m,α)
m+α.
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In particular, for every fixed f ∈ Cm,α
b (Rd,Rd), the linear mapping

f� : Cm,α
b (Rd, G) → Cm,α

b (Rd, G), g �→ f�(g) := g ◦ (Id+f)

is continuous.

Continuity of the left translation is the content of the following theorem. We
denote by Bm,α(f, δ) := {g ∈ Cm,α

b : ‖f − g‖m,α < δ} the open ball with radius δ
centered at f . By g� we mean the push-forward by g precomposed with translation
by Id, i.e., g� := g∗ ◦ (Id+ · ).

Theorem 2.8 ([3, 6.2]). Let m ∈ N≥1 and α, β ∈ (0, 1], α < β. Let g ∈
Cm,β

b (Rd, G) where G is some Banach space. Then, for every f0 ∈ Cm,α
b (Rd,Rd),

R > 0, and f1, f2 ∈ Bm,α(f0, R),

(2.5) ‖g�(f1)− g�(f2)‖m,α ≤ M‖g‖m,β‖f1 − f2‖β−α
m,α ,

where M = M(m, ‖f0‖m,α, R). In particular,

g� : Cm,α
b (Rd,Rd) → Cm,α

b (Rd, G), f �→ g�(f) := g ◦ (Id+f)

is continuous.

It follows that composition is even jointly continuous.

Corollary 2.9. Let m ∈ N≥1, let 0 < α < β ≤ 1, and let G be some Banach space.

Then, for all f0 ∈ Cm,α
b (Rd,Rd), g0 ∈ Cm,β

b (Rd, G), R > 0, f1, f2 ∈ Bm,α(f0, R),
and g1, g2 ∈ Bm,β(g0, R),

(2.6) ‖g1 ◦ (Id+f1)− g2 ◦ (Id+f2)‖m,α ≤ M
(
‖g1 − g2‖m,α + ‖f1 − f2‖m,α

)β−α
,

where M = M(m, ‖f0‖m,α, ‖g0‖m,β, R). In particular,

comp : Cm,β
b (Rd, G)× Cm,α

b (Rd,Rd) → Cm,α
b (Rd, G), (g, f) �→ g ◦ (Id+f)

is continuous.

We will also need the following result on C1 left translations.

Theorem 2.10 ([3, 6.7]). Let m ∈ N≥1 and let α, β ∈ (0, 1], α < β. Let

g ∈ Cm+1,β
b (Rd, G) where G is some Banach space. Then g� : Cm,α

b (Rd,Rd) →
Cm,α

b (Rd, G) is continuously differentiable.

Together with Lemma 2.3, Theorem 2.10 implies Lipschitz continuity of the left
translation in the following cases, but see also Theorem 2.14 below.

Corollary 2.11. Let m ∈ N≥1 and let 0 < α < β ≤ 1. Let g ∈ Cm+1,β
b (Rd, G).

Then g� : Cm,α
b (Rd,Rd) → Cm,α

b (Rd, G) satisfies for all f1, f2 ∈ Cm,α
b (Rd,Rd),

‖g�(f1)− g�(f2)‖m,α ≤ M‖g‖m+1,β(1 + max
i=1,2

‖fi‖m,α)
m+1‖f1 − f2‖m,α.

Remark 2.12. Let us stress the fact that left translation ceases to be continuous,
resp. differentiable, if in Theorem 2.8, resp. Theorem 2.10, g is merely of class Cm,α

b ,

resp. Cm+1,α
b ; see [3] and also Lemma 3.5.

We shall make frequent use of the Faà di Bruno formula for Banach spaces: Let
E,F,G be Banach spaces, let f : E ⊇ U → F and g : F ⊇ V → G be k times



5768 DAVID NICOLAS NENNING AND ARMIN RAINER

Fréchet differentiable, and assume f(U) ⊆ V . Then g◦f : U → G is k times Fréchet
differentiable, and for all x ∈ U ,

dk(g ◦ f)(x) = sym
k∑

l=1

∑
γ∈Γ(l,k)

cγg
(l)(f(x))

(
f (γ1)(x), . . . , f (γl)(x)

)
,(2.7)

where Γ(l, k) := {γ ∈ Nl
>0 : |γ| = k}, cγ := k!

l!γ! , and sym denotes symmetrization

of multilinear mappings.
Faà di Bruno’s formula applied to a function h : U → H of the form h(x) =

b(f(x), g(x)), where f, g are k times Fréchet differentiable functions defined on a
common domain U ⊆ E and b : F ×G → H is a continuous bilinear map, gives

dkh(x) = sym

k∑
l=0

(
k

l

)
b(f (l)(x), g(k−l)(x)).(2.8)

This formula is of particular use when h(x) = dg(x)(f(x)), where f, g : Rd → Rd;
i.e., the bilinear map takes the form b : L(Rd,Rd)× Rd → Rd, (l, x) �→ l(x).

Remark 2.13. Faà di Bruno’s formula (2.7) implies that for f : Rd → Rd and
g : Rd → G both in Ck

0 , we have g ◦ (Id+f) ∈ Ck
0 (R

d, G). So the stated regularity
results for the composition hold as well for Cm,α

b , etc., replaced by Cm,α
0 , etc.

2.5. Convenient calculus. Occasionally, we shall use some tools from convenient
calculus which extends differential calculus beyond Banach spaces; the main refer-
ence is [15], see also [9] and the three appendices in [16]. Let us briefly describe the
concepts and results we will need.

Let E be a locally convex vector space. A curve c : R → E is called C∞ if all
derivatives exist and are continuous. It can be shown that the set C∞(R, E) of
C∞-curves in E does not depend on the locally convex topology of E, only on its
associated bornology.

The c∞-topology on E is the final topology with respect to C∞(R, E); equiv-
alently it is the final topology with respect to all Lipschitz curves or all Mackey-
convergent sequences in E. In general the c∞-topology is finer than the given
locally convex topology, and it is not a vector space topology; for Fréchet spaces
the topologies coincide.

A locally convex vector space E is said to be a convenient vector space if it is
Mackey-complete; equivalently, a curve c : R → E is C∞ if and only if λ ◦ c is C∞

for all continuous (equivalently bounded) linear functionals λ on E.
Let E, F , and G be convenient vector spaces, and let U ⊆ E be c∞-open. A map-

ping f : U → F is called C∞ if f◦c ∈ C∞(R, F ) for all c ∈ C∞(R, U). For mappings
on Fréchet spaces this notion of smoothness coincides with all other reasonable def-
initions. Multilinear mappings are C∞ if and only if they are bounded. The space
C∞(U, F ) with the initial structure with respect to all mappings f �→ λ ◦ f ◦ c,
c ∈ C∞(R, E), and λ ∈ E∗ is again convenient. The exponential law holds: For
c∞-open V ⊆ F ,

C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

is a linear diffeomorphism of convenient vector spaces. A linear mapping f : E →
C∞(V,G) is C∞ (bounded) if and only if evv ◦f : E → G is C∞ for all v ∈ V .

There are, however, C∞-mappings which are not continuous with respect to the
underlying locally convex topology; clearly they are continuous for the c∞-topology.
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Besides the class C∞ due to [7], [12], [13], convenient calculus was developed for
the holomorphic class [21], the real analytic class [14], and all reasonable ultradif-
ferentiable classes [16], [17], [19], [26].

For the classes Ck,α (k ∈ N, α ∈ (0, 1]) it was established in a weaker sense
(without general exponential law) by [8] (for α = 1) and by [6], [5]. Let E, F be
convenient vector spaces, and let U ⊆ E be c∞-open. A curve c : R → F is locally
α-Hölder continuous, we write c ∈ C0,α(R, F ), if for each bounded interval I ⊆ R,{c(t)− c(s)

|t− s|α : t, s ∈ I, t �= s
}

is bounded in F . A curve c : R → F is Ck,α, i.e., c ∈ Ck,α(R, F ), if all derivatives up
to order k exist and are locally α-Hölder continuous. A mapping f : U → F between
convenient vector spaces is called Ck,α if f ◦ c ∈ Ck,α(R, F ) for all c ∈ C∞(R, U).
If E and F are Banach spaces, then f is C0,α in this sense if and only if it is in
the sense of Section 2.1; i.e., ‖f(x) − f(x)‖/‖x − y‖α is locally bounded. See [5],
[15, 12.7], or [18, Lemma], and note that this is a special case of Lemma 3.9 below.

2.6. An application of convenient calculus. We finish this section with a result
which is not contained in [3]: if α = β in Theorem 2.10, resp. Corollary 2.11, the
left translation g� is still locally Lipschitz. Of course, Remark 2.13 applies to this
theorem as well. In contrast to Corollary 2.11, we do not get an explicit bound for
the Lipschitz constant.

Theorem 2.14. Let m ∈ N≥1 and 0 < α ≤ 1. Let g ∈ Cm+1,α
b (Rd,Rd). Then

g� : Cm,α
b (Rd,Rd) → Cm,α

b (Rd,Rd) is locally Lipschitz.

Proof. It suffices to check that g� maps C∞-curves to C0,1-curves; cf. Section 2.5.
That t �→ f(t, ·) is C∞ in Cm,α

b (Rd,Rd) means, by [9, 4.1.19], that, for all k ∈ N,

‖∂k
t f(t, ·)‖m,α is locally bounded in t.
Let h(t, x) := g(x+ f(t, x)). Then, if F := Id+f ,

h(t, x)− h(s, x) =

∫ t

s

∂τh(τ, x) dτ =

∫ t

s

dg(F (τ, x))∂τf(τ, x) dτ,

and, by (2.8),

dkxh(t, x)− dkxh(s, x) =

∫ t

s

dkx
(
dg(F (τ, x))∂τf(τ, x)

)
dτ

= sym

k∑
j=0

(
k

j

)∫ t

s

djx
(
dg(F (τ, x))

)
∂τd

k−j
x f(τ, x) dτ.

With Faà di Bruno’s formula (2.7),

djx
(
dg(F (τ, x))

)
= sym

j∑
l=1

∑
γ∈Γ(l,j)

cγg
(l+1)(F (τ, x))

(
dγ1
x F (τ, x), . . . , dγl

x F (τ, x),�),
it is easy to see that t �→ h(t, ·) is locally Lipschitz into Cm

b (Rd,Rd).
It remains to prove that t �→ h(t, ·) is locally Lipschitz into Cm,α

b (Rd,Rd). To
this end we have to show that

[h(t, ·)− h(s, ·)]m,α

t− s
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is locally bounded; i.e., for each bounded interval I, the set{dmx h(t, x)− dmx h(t, y)− dmx h(s, x) + dmx h(s, y)

‖x− y‖α|t− s| : x �= y ∈ Rd, s �= t ∈ I
}

must be bounded. Without loss of generality we can assume that ‖x− y‖ ≤ 1 and
thus ‖x− y‖ ≤ ‖x− y‖α. If ‖x− y‖ ≥ 1, then the result follows from the fact that
t �→ h(t, ·) is locally Lipschitz into Cm

b (Rd,Rd). Let us define

Aγ,i = Aγ,i(x, y) :=
(
dγ1
x F (τ, x), . . . , dγi

x F (τ, x), dγi+1
x F (τ, y), . . . , dγl

x F (τ, y)
)

and

Bγ,h :=

{(
Aγ,l, ∂td

m−j
x f(τ, x)

)
if h = l + 1,(

Aγ,h, ∂td
m−j
x f(τ, y)

)
if h ≤ l.

Then

g(l+1)(F (τ, x))
(
Bγ,l+1

)
− g(l+1)(F (τ, y))

(
Bγ,0

)
= g(l+1)(F (τ, x))(Bγ,l+1)− g(l+1)(F (τ, y))(Bγ,l+1)

+
l+1∑
h=1

g(l+1)(F (τ, y))(Bγ,h)− g(l+1)(F (τ, y))(Bγ,h−1).

For the first summand∥∥g(l+1)(F (τ, x))(Bγ,l+1)− g(l+1)(F (τ, y))(Bγ,l+1)
∥∥
Lm

≤
∥∥g(l+1)(F (τ, x))− g(l+1)(F (τ, y))

∥∥
Ll+1

(1 + ‖f(τ, ·)‖m)m‖∂tf(τ, ·)‖m−j

≤
{
‖g‖m+1[F (τ, ·)]1‖x− y‖(1 + ‖f(τ, ·)‖m)m‖∂tf(τ, ·)‖m if l < m,

‖g‖m+1,α[F (τ, ·)]α1 ‖x− y‖α(1 + ‖f(τ, ·)‖m)m‖∂tf(τ, ·)‖m if l = m.

For the other summands we observe that, by multilinearity,

g(l+1)(F (τ, y))(Bγ,h)− g(l+1)(F (τ, y))(Bγ,h−1) = g(l+1)(F (τ, y))
(
�
)
,

where

� =
(
. . . , dγh−1

x F (τ, x), dγh
x F (τ, x)− dγh

x F (τ, y), dγh+1
x F (τ, y), . . .

)
.

Hence, if h ≤ l, then∥∥g(l+1)(F (τ, y))(Bγ,h)− g(l+1)(F (τ, y))(Bγ,h−1)
∥∥
Lm+1

≤ ‖g‖m+1(1 + ‖f(τ, ·)‖m)m−1‖f(τ, ·)‖m,α‖x− y‖α‖∂tf(τ, ·)‖m,

and, if h = l + 1, then∥∥g(l+1)(F (τ, y))(Bγ,h)− g(l+1)(F (τ, y))(Bγ,h−1)
∥∥
Lm+1

≤ ‖g‖m+1(1 + ‖f(τ, ·)‖m)m‖∂tf(τ, ·)‖m,α‖x− y‖α.

The theorem follows. �
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3. Groups of Hölder diffeomorphisms

3.1. The (non-topological) group Dn,β(Rd). Let n ∈ N≥1 and β ∈ (0, 1]. Let
us define the set of orientation preserving diffeomorphisms of Rd which differ from

the identity by a Cn,β
0 -mapping:

(3.1) Dn,β(Rd) :=
{
Φ ∈ Id+Cn,β

0 (Rd,Rd) : det dΦ(x) > 0 ∀x ∈ Rd
}
.

We will show that Dn,β(Rd) is a group (with respect to composition).
We endow Dn,β(Rd) with the topology given by the metric

d(Φ1,Φ2) := ‖Φ1 − Φ2‖n,β
and denote by Bn,β(Φ, r) the open ball of radius r and center Φ in Dn,β(Rd). We

use the same notation for balls in Cn,β
0 (Rd,Rd), which causes no problems since

Id �∈ Cn,β
0 (Rd,Rd).

Since the determinant is multiplicative, it is an easy consequence of Theorem 2.7
that Dn,β(Rd) is a monoid with respect to composition.

Lemma 3.1. Dn,β(Rd) consists of Cn-diffeomorphisms of Rd. The first n deriva-
tives of the inverse of an element of Dn,β(Rd) are again globally bounded.

Proof. Let Φ = Id+φ ∈ Dn,β(Rd). First we have to make sure that Φ is bijective.
This is an immediate consequence of [24, Cor. 4.3], which states that a C1 mapping
converging to infinity at infinity with non-vanishing jacobian determinant is already
a C1 diffeomorphism. The inverse mapping theorem shows that Φ−1 is actually Cn.
Boundedness of the first n derivatives of Φ−1−Id follows as in [22, pp. 535–536]. �

Lemma 3.2 ([22, p. 535]). The operator norm of an invertible linear operator
A : Rd → Rd satisfies ‖A−1‖ ≤ | detA|−1‖A‖d−1.

Lemma 3.3. Let Φ0 = Id+φ0 ∈ Dn,β(Rd). Then:

(1) ε := infx∈Rd det dΦ0(x) > 0.
(2) There is δ > 0 such that infx∈Rd det dΦ(x) ≥ ε/2 for all Φ ∈

Id+Bn,β(φ0, δ).
(3) There are δ, C > 0 such that supx∈Rd ‖dΦ−1(x)‖ ≤ C for all Φ ∈

Bn,β(Φ0, δ).

Proof. (1) Observe that dΦ0(x) → � as ‖x‖ → ∞. Thus det dΦ0(x) → 1 as
‖x‖ → ∞, which implies that ε := infx∈Rd det dΦ0(x) > 0.

(2) This follows from the fact that the determinant is uniformly continuous on
each ball in the space of d× d matrices.

(3) Let δ > 0 be as in (2). Then, for all Φ ∈ Bn,β(Φ0, δ),

‖dΦ−1(Φ(x))‖ = ‖(dΦ(x))−1‖ ≤‖dΦ(x)‖d−1

| det dΦ(x)| ≤ 2

ε
(‖Φ0‖n,β + δ)d−1,

by Lemma 3.2. Since Φ is bijective, the proof is complete. �

Lemma 3.3 shows that Dn,β(Rd)− Id is an open subset of Cn,β
0 (Rd,Rd). Thus,

for Φ0 = Id+φ0 ∈ Dn,β(Rd) and for sufficiently small r > 0,

Bn,β(Φ0, r) = Id+Bn,β(φ0, r).

We interpret Dn,β(Rd) as a Banach manifold modelled on Cn,β
0 (Rd,Rd) with global

chart Φ �→ Φ− Id.
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Theorem 3.4. Let n ∈ N≥1 and β ∈ (0, 1]. Then Dn,β(Rd) is a group. In general,
left translations are discontinuous.

The theorem will follow from Lemma 3.5 and Proposition 3.6.

Lemma 3.5. In general, left translations in Dn,β(Rd) are discontinuous.

Proof. The construction is taken from [3, 6.4]. We prove the claim in the case
d = 1. Let χ ∈ C∞

c (R) be 1 on [−1, 1], and set ψ(x) := xn|x|βχ(x). Then

ψ ∈ Cn,β
0 (R,R). In addition, let Φk(x) := x+ χ(x)/k. Since Dn,β(R)− Id is open,

we have Φk ∈ Dn,β(R), for sufficiently large k, and Φk → Id in Dn,β(R) as k → ∞.
It is easy to see that, for |x| < 1,

(3.2) ψ(n)(x) = (n+ β) · · · (1 + β)|x|β =: Cn,β|x|β .
Thus, for large k,

(ψ ◦ Φk)
(n)

(
− 1

k

)
= Cn,β

∣∣∣− 1

k
+

1

k

∣∣∣β = 0

and

(ψ ◦ Φk)
(n)(0) =

Cn,β

kβ
.

Hence(
(ψ ◦ Φk)

(n) − (ψ ◦ Id)(n)
)(

− 1

k

)
−

(
(ψ ◦ Φk)

(n) − (ψ ◦ Id)(n)
)
(0) = −2Cn,β

kβ
,

which immediately gives ‖ψ ◦Φk −ψ ◦ Id ‖n,β ≥ 2Cn,β . Since Dn,β(R)− Id is open,
there is some small r > 0 such that Id+rψ ∈ Dn,β(R). �

The next proposition completes the proof of Theorem 3.4.

Proposition 3.6. Dn,β(Rd) is closed under inversion. The chart representation

invc : (Dn,β(Rd)− Id) → (Dn,β(Rd)− Id), φ �→ (Id+φ)−1 − Id

is locally bounded.

Proof. For Φ = Id+φ ∈ Dn,β(Rd) and Φ−1 =: Id+τ we have (Id+τ )◦(Id+φ) = Id,
i.e.,

τ (x+ φ(x)) = −φ(x), x ∈ Rd.(3.3)

It follows that det dΦ−1(x) > 0 for all x and that τ ◦ (Id+φ) ∈ Cn,β
0 (Rd,Rd). By

Lemma 3.1, Φ−1 is n-times differentiable with globally bounded derivatives.
Let Φ0 = Id+φ0 ∈ Dn,β(Rd) and Φ−1

0 =: Id+τ0. Choose δ > 0 such that
Bn,β(φ0, δ) ⊆ (Dn,β(Rd)− Id) (recall that Dn,β(Rd)− Id is open) and such that the
conclusion of Lemma 3.3 holds.

Claim 1. invc(B
n,β(φ0, δ)) is bounded in Cn

0 (R
d,Rd).

By Lemma 3.1, we know that invc maps into Cn
b (R

d,Rd). An inspection of
Faà di Bruno’s formula (2.7) shows that it actually maps into Cn

0 (R
d,Rd). Let

φ ∈ Bn,β(φ0, δ) and τ = invc(φ) ∈ Cn
0 (R

d,Rd) so that (3.3) implies

‖τ (x+ φ(x))‖ ≤ ‖φ(x)‖ ≤ ‖φ− φ0‖n,β + ‖φ0‖n,β ≤ δ + ‖φ0‖n,β
for all x. Since Id+φ is bijective, this gives

‖ invc(φ)‖0 = ‖τ‖0 ≤ δ + ‖φ0‖n,β , φ ∈ Bn,β(φ0, δ).
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We prove by induction on k that for all k ≤ n there are constants Dk = Dk(φ0, δ)
such that

(3.4) ‖τ‖k = ‖ invc(φ)‖k ≤ Dk, φ ∈ Bn,β(φ0, δ).

By Faà di Bruno’s formula (2.7),

dk(τ ◦ Φ)(x) = τ (k)(Φ(x))(dΦ(x), . . . , dΦ(x))

+ sym

k−1∑
l=1

∑
γ∈Γ(l,k)

cγτ
(l)(Φ(x))

(
Φ(γ1)(x), . . . ,Φ(γl)(x)

)
.(3.5)

By the induction hypothesis, for φ ∈ Bn,β(φ0, δ) and l ≤ k − 1,∥∥τ (l)(Φ(x))(Φ(γ1)(x), . . . ,Φ(γl)(x)
)∥∥

Lk

≤ ‖τ (l)(Φ(x))‖Ll
‖Φ(γ1)(x)‖Lγ1

· · · ‖Φ(γl)(x)‖Lγl

≤ Dk−1(1 + ‖φ‖n,β)k

≤ Dk−1(1 + δ + ‖φ0‖n,β)k.
In addition, ‖dk(τ ◦ Φ)(x)‖Lk

≤ ‖φ‖n,β ≤ δ + ‖φ0‖n,β , by (3.3). It follows that
there is some constant Dk = Dk(φ0, δ) such that

(3.6) ‖τ (k)(Φ(x))(dΦ(x), . . . , dΦ(x))‖Lk
≤ Dk, φ ∈ Bn,β(φ0, δ), x ∈ Rd.

Since

‖τ (k)(Φ(x))‖Lk
≤ ‖τ (k)(Φ(x))(dΦ(x), . . . , dΦ(x))‖Lk

‖(dΦ(x))−1‖kL1
,

(3.6) and Lemma 3.3 imply (3.4) and hence Claim 1.

Claim 2. invc(B
n,β(φ0, δ)) is bounded in Cn,β

0 (Rd,Rd).

Observe that, since Φ is a bijection of Rd,

[τ ]n,β = sup
x�=y

‖dnτ (Φ(x))− dnτ (Φ(y))‖Ln

‖x− y‖β
‖x− y‖β

‖Φ(x)− Φ(y)‖β

≤ sup
x�=y

‖dnτ (Φ(x))− dnτ (Φ(y))‖Ln

‖x− y‖β
(
sup
x�=y

‖x− y‖
‖Φ(x)− Φ(y)‖

)β

= sup
x�=y

‖dnτ (Φ(x))− dnτ (Φ(y))‖Ln

‖x− y‖β Lip(Φ−1)β

≤ sup
x�=y

‖dnτ (Φ(x))− dnτ (Φ(y))‖Ln

‖x− y‖β (1 +D1)
β,

for all φ ∈ Bn,β(φ0, δ), by (3.4). For k ≤ n, let

Ak = Ak(x, y) := (dΦ(x), . . . , dΦ(x)︸ ︷︷ ︸
k-times

, dΦ(y), . . . , dΦ(y)︸ ︷︷ ︸
(n−k)-times

).

Then

‖dnτ (Φ(y))(Ak)− dnτ (Φ(y))(Ak−1)‖Ln

≤ ‖dnτ (Φ(y))‖Ln
‖dΦ(x)‖k−1

L1
‖dΦ(y)‖n−k

L1
‖dφ(x)− dφ(y)‖L1

≤ ‖τ‖n(1 + ‖φ‖1)n−12‖φ‖n,β‖x− y‖β

≤ 2Dn(1 + δ + ‖φ0‖n,β)n‖x− y‖β ,

(3.7)
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where we use ‖dφ(x)− dφ(y)‖L1
≤ ‖φ‖1,β‖x− y‖β for the case n = 1 (which holds

by definition). For the case n ≥ 2 we use the mean value inequality. (If ‖x−y‖ ≤ 1,
then ‖x−y‖ ≤ ‖x−y‖β ; otherwise ‖dφ(x)−dφ(y)‖L1

≤ 2‖φ‖n,β ≤ 2‖φ‖n,β‖x−y‖.)
By Lemma 3.3,

‖dnτ (Φ(x))− dnτ (Φ(y))‖Ln
≤ ‖dnτ (Φ(x))(An)− dnτ (Φ(y))(An)‖Ln

‖dΦ(x)−1‖nL1

≤ C‖dnτ (Φ(x))(An)− dnτ (Φ(y))(A0)‖Ln

+ C

n∑
k=1

‖dnτ (Φ(y))(Ak)− dnτ (Φ(y))(Ak−1)‖Ln
.

We may use (3.7) to estimate the second term on the right-hand side. Thus, to end
the proof of Claim 2, and hence of the proposition, it remains to show the following.

Claim 3. There exists a constant C such that

‖dnτ (Φ(x))(An)− dnτ (Φ(y))(A0)‖Ln
≤ C‖x− y‖β ,

for all φ ∈ Bn,β(φ0, δ) and all x, y ∈ Rd.

For any γ ∈ Nl
>0 and 0 ≤ j ≤ l let

Aγ,j = Aγ,j(x, y) :=
(
Φ(γ1)(x), . . . ,Φ(γj)(x),Φ(γj+1)(y), . . . ,Φ(γl)(y)

)
.

Then, by Faà di Bruno’s formula (2.7),

dn(τ ◦ Φ)(x)− dn(τ ◦ Φ)(y) = τ (n)(Φ(x))(An)− τ (n)(Φ(y))(A0)

+ sym
n−1∑
l=1

∑
γ∈Γ(l,n)

cγ
(
τ (l)(Φ(x))(Aγ,l)− τ (l)(Φ(y))(Aγ,0)

)
.(3.8)

By (3.3), there is a constant C such that

‖dn(τ ◦ Φ)(x)− dn(τ ◦ Φ)(y)‖Ln
≤ C‖x− y‖β , φ ∈ Bn,β(φ0, δ).(3.9)

Moreover, ∥∥τ (l)(Φ(x))(Aγ,l)− τ (l)(Φ(y))(Aγ,0)
∥∥
Ln

≤
∥∥τ (l)(Φ(x))(Aγ,l)− τ (l)(Φ(y))(Aγ,l)

∥∥
Ln

+
l∑

k=1

∥∥τ (l)(Φ(y))(Aγ,k)− τ (l)(Φ(y))(Aγ,k−1)
∥∥
Ln

.

For the first summand, since l < n,∥∥τ (l)(Φ(x))(Aγ,l)− τ (l)(Φ(y))(Aγ,l)
∥∥
Ln

≤
∥∥τ (l)(Φ(x))− τ (l)(Φ(y))

∥∥
Ll
(1 + ‖φ‖n,β)n

≤ ‖τ‖n(1 + ‖φ‖1)‖x− y‖(1 + ‖φ‖n,β)n,

and ‖τ‖n ≤ Dn for φ ∈ Bn,β(φ0, δ), by Claim 1. For the other summands observe
that

τ (l)(Φ(y))(Aγ,k)− τ (l)(Φ(y))(Aγ,k−1)

= τ (l)(Φ(y))
(
. . . ,Φ(γk−1)(x), (Φ(γk)(x)− Φ(γk)(y)),Φ(γk+1)(y), . . .

)
,
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whence ∥∥τ (l)(Φ(y))(Aγ,k)− τ (l)(Φ(y))(Aγ,k−1)
∥∥
Ln

≤
{
‖τ‖n(1 + ‖φ‖n)n−1‖φ‖n‖x− y‖ if l > 1,

‖τ‖1‖φ‖n,β‖x− y‖β if l = 1.

Altogether this means that we find a constant K such that for all φ ∈ Bn,β(φ0, δ)
and all x, y ∈ Rd,∥∥τ (l)(Φ(x))(Aγ,l)− τ (l)(Φ(y))(Aγ,0)

∥∥
Ln

≤ K‖x− y‖β .

Indeed, if ‖x − y‖ ≤ 1, then ‖x − y‖ ≤ ‖x − y‖β ; otherwise the estimate follows
from the triangle inequality and Claim 1. Together with (3.8) and (3.9) this implies
Claim 3. �

For later use we prove the following.

Proposition 3.7. Let n ∈ N≥1 and let 0 < α < β ≤ 1. Then, for all φ0 ∈
(Dn,β(Rd) − Id) there exists δ > 0 such that for all φ1, φ2 ∈ Bn,β(φ0, δ) ⊆
(Dn,β(Rd)− Id),

(3.10) ‖ invc(φ1)− invc(φ2)‖n,α ≤ M‖φ1 − φ2‖β−α
n,α ,

where M = M(n, φ0, δ). In particular,

invc : (Dn,β(Rd)− Id) → (Dn,α(Rd)− Id), φ �→ (Id+φ)−1 − Id

is continuous.

Proof. Choose δ > 0 such that Bn,β(φ0, δ) ⊆ (Dn,β(Rd) − Id). Let φ1, φ2 ∈
Bn,β(φ0, δ). We write τi = invc(φi) and Φi = Id+φi, for i = 0, 1, 2. Then

τ1 − τ2 = Φ−1
1 ◦ Φ2 ◦ Φ−1

2 − Φ−1
1 ◦ Φ1 ◦ Φ−1

2

= φ2 ◦ (Id+τ2)− φ1 ◦ (Id+τ2)

+ τ1 ◦ (Id+φ2) ◦ (Id+τ2)− τ1 ◦ (Id+φ1) ◦ (Id+τ2).

By Theorem 2.7,

‖φ2 ◦ (Id+τ2)− φ1 ◦ (Id+τ2)‖n,α ≤ M(n)‖φ1 − φ2‖n,α(1 + ‖τ2‖n,α)n+1,

and by Theorems 2.7 and 2.8 (and Lemma 2.2),

‖τ1 ◦ (Id+φ2) ◦ (Id+τ2)− τ1 ◦ (Id+φ1) ◦ (Id+τ2)‖n,α
≤ M(n)‖τ1 ◦ (Id+φ2)− τ1 ◦ (Id+φ1)‖n,α(1 + ‖τ2‖n,α)n+1

≤ M(n, ‖φ0‖n,α, δ)‖τ1‖n,β‖φ1 − φ2‖β−α
n,α (1 + ‖τ2‖n,α)n+1.

Since ‖τi‖n,β is uniformly bounded for φi ∈ Bn,β(φ0, δ) if δ > 0 is chosen sufficiently
small, by Proposition 3.6 this implies the assertion. �
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3.2. Intermediate Hölder spaces. As we have already seen in Lemma 3.5, the
group Dn,β(Rd) is not topological (with respect to the topology given as a Banach

manifold modelled on Cn,β
0 (Rd,Rd)). Nevertheless we know that the left transla-

tions become continuous if the outer mapping is only slightly more regular than
the space it acts on. This observation motivates the following definitions.

Let E, F be Banach spaces, let U ⊆ E be open, and let n ∈ N. For β ∈ (0, 1]
define

Cn,β−
b (U, F ) :=

⋂
α∈(0,β)

Cn,α
b (U, F ),

and for β ∈ [0, 1),

Cn,β+
b (U, F ) :=

⋃
α∈(β,1)

Cn,α
b (U, F ).

If β ∈ (0, 1) we have the strict inclusions

Cn,β+
b (U, F ) � Cn,β

b (U, F ) � Cn,β−
b (U, F ).

We endow Cn,β−
b (U, F ) and Cn,β+

b (U, F ) with their natural projective and inductive
locally convex limit topologies, respectively.

Then Cn,β−
b (U, F ) is a Fréchet space with a generating system of seminorms P =

{‖ · ‖n,α : α ∈ (0, β)}, or a countable subfamily thereof, like {‖ · ‖n,β−1/k : k ≥ k0}.
The balls Bn,β−

α (f0, ε) := {f ∈ Cn,β−
b (U, F ) : ‖f − f0‖n,α < ε} satisfy

Bn,β−
α2

(f0, ε) ⊆ Bn,β−
α1

(f0, 2ε) if α1 < α2,

by Lemma 2.2. Thus {Bn,β−
α (f0, ε) : α < β, ε > 0} forms a neighborhood base of

f0 ∈ Cn,β−
b (U, F ).

In analogy we define Cn,β±
0 and Cn,β±.

Lemma 3.8. Cn,β+
b (U, F ) and Cn,β+

0 (E,F ) are compactly regular (LB)-spaces.

Proof. It suffices, by [23, Satz 1], to verify condition (M) of [25]: There ex-

ists a sequence of increasing 0-neighborhoods Bp ⊆ C
n,β+1/p
b (U, F ) such that for

each p there exists an m ≥ p for which the topologies of C
n,β+1/k
b (U, F ) and of

C
n,β+1/m
b (U, F ) coincide on Bp for all k ≥ m.
For α ≤ α′ we have ‖f‖n,α ≤ 2‖f‖n,α′ , by Lemma 2.2. It suffices to show that

for β < α2 < α1 < α, ε > 0, and f ∈ Bn,α(0, 1) there exists δ > 0 such that
Bn,α2(f, δ) ∩Bn,α(0, 1) ⊆ Bn,α1(f, ε).

Let g ∈ Bn,α2(f, δ) ∩ Bn,α(0, 1). Then ‖g − f‖n,α2
< δ and ‖g‖n,α < 1. By

Lemma 2.1,

‖g − f‖n,α1
≤ ‖g − f‖

α−α1
α−α2
n,α2 ‖g − f‖

α1−α2
α−α2
n,α < δ

α−α1
α−α2 2

α1−α2
α−α2 .

So it is clear that we may find δ as required. �

Consequently, Cn,β+
b (U, F ) and Cn,β+

0 (U, F ) are complete (thus convenient),
webbed, and ultra-bornological.
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3.3. C0,ω-mappings between convenient vector spaces. Let ω : [0,∞) →
[0,∞) be a subadditive increasing modulus of continuity (limt→0 ω(t) = ω(0) = 0).
By a C0,ω-curve c we mean a function defined on the real line with values in a
convenient vector space F such that for each bounded interval I ⊆ R,{c(t)− c(s)

ω(|t− s|) : t, s ∈ I, t �= s
}

is bounded in F . We say that a mapping between convenient vector spaces is C0,ω

if it maps C∞-curves to C0,ω-curves. The c∞-topology coincides with the final
topology of all C0,ω-curves (which follows from the proof of [15, 2.13]), and so a
C0,ω-mapping is continuous with respect to the c∞-topology. The following lemma
shows that between Banach spaces the notion of C0,ω-mapping coincides with the
usual definition.

Lemma 3.9. Let E, F be Banach spaces, U ⊆ E open. A mapping f : U → F is
C0,ω if and only if f(x)− f(y)/ω(‖x− y‖) is locally bounded.

Proof. Suppose that there is z ∈ U and xn �= yn ∈ U such that ‖xn − z‖ ≤ 4−n,
‖yn − z‖ ≤ 4−n, and ‖f(xn) − f(yn)‖ ≥ n2nω(‖xn − yn‖). By [15, 12.2], there is
a C∞-curve c and a convergent sequence of real numbers tn such that c(t + tn) =

xn + t (yn−xn)
2n‖xn−yn‖ for all 0 ≤ t ≤ sn := 2n‖xn − yn‖. Then, by subadditivity of ω,

‖(f ◦ c)(tn + sn)− (f ◦ c)(tn)‖
ω(sn)

=
‖f(xn)− f(yn)‖
ω(2n‖xn − yn‖)

≥ n.

The converse implication follows from subadditivity and monotonicity of ω, since
C∞-curves are locally Lipschitz. �

This lemma can be found in [5], [15, 12.7], or [18, Lemma] in the Hölder (or
Lipschitz) case ω(t) = tγ .

Definition 3.10. We say that ω is a slowly vanishing modulus of continuity if ω
is increasing, subadditive, and satisfies

lim inf
t↓0

ω(t)

tγ
> 0 for all γ > 0.

For instance, ω defined by ω(t) := −(log t)−1 if 0 < t < e−2, ω(t) := 1/2 if
t ≥ e−2, and ω(0) := 0 is a slowly vanishing modulus of continuity.

3.4. The C0,ω Lie groups Dn,β−(Rd) and Dn,β+(Rd). Let n ∈ N≥1. We define

Dn,β±(Rd) :=
{
Φ ∈ Id+Cn,β±

0 (Rd,Rd) : det dΦ(x) > 0 ∀x ∈ Rd
}
,

where β ∈ (0, 1] if ± = − and β ∈ [0, 1) if ± = +. Then Dn,β±(Rd) − Id is an

open subset of Cn,β±
0 (Rd,Rd). We take this interpretation as a defining property

for the topology; i.e., V ⊆ Dn,β±(Rd) is open if and only if (V − Id) is open in

(Dn,β±(Rd)− Id) ⊆ Cn,β±
0 (Rd,Rd).

Clearly, Dn,β±(Rd) forms a group by Theorem 3.4. We will now prove that
Dn,β±(Rd) are C0,ω Lie groups for any slowly vanishing modulus of continuity ω.

Theorem 3.11. Let n ∈ N≥1. Let ω be a slowly vanishing modulus of continuity.
Then Dn,β−(Rd), for β ∈ (0, 1], and Dn,β+(Rd), for β ∈ [0, 1), are C0,ω Lie groups.
In particular, Dn,β−(Rd), for β ∈ (0, 1], is a topological group (with respect to its
natural Fréchet topology).
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Proof. Let us first consider Dn,β−(Rd), for β ∈ (0, 1]. Let g, f ∈
C∞(R, Cn,β−

0 (Rd,Rd)) and let I ⊆ R be a compact interval. Then the sets g(I),

f(I) are bounded in Cn,β−
0 (Rd,Rd) and thus in every Cn,α

0 (Rd,Rd) for α < β. If
α < α̃ < β, then, by (2.6),

‖g(t) ◦ (Id+f(t))− g(s) ◦ (Id+f(s))‖n,α
≤ M

(
‖g(t)− g(s)‖n,α + ‖f(t)− f(s)‖n,α

)α̃−α ≤ M̃ |t− s|α̃−α,

for t, s ∈ I. There is ε > 0 and C = C(α, α̃) such that |t − s|α̃−α ≤ Cω(|t − s|)
if |t − s| ≤ ε. Since ω is increasing, we may conclude that, for t �→ h(t) :=
g(t) ◦ (Id+f(t)),

(3.11)
{h(t)− h(s)

ω(|t− s|) : s �= t ∈ I
}

is bounded in Cn,α
0 (Rd,Rd). So the composition is C0,ω on Dn,β−(Rd).

Let us turn to the inversion in Dn,β−(Rd). Let f ∈ C∞(R, Cn,β−
0 (Rd,Rd)). Fix

α < α̃ < β and t0 ∈ R. Let δ > 0 be such that Bn,α̃(f(t0), δ) ⊆ (Dn,α̃(Rd) − Id).
There is a neighborhood I of t0 such that f(I) ⊆ Bn,α̃(f(t0), δ). By Proposition 3.7
(after possibly shrinking δ), for all t, s ∈ I,

‖ invc(f(t))− invc(f(s))‖n,α ≤ M‖f(t)− f(s)‖α̃−α
n,α ,

where M = M(n, f(t0), δ). Finishing the arguments in the same way as for the
composition, we conclude that the inversion is C0,ω on Dn,β−(Rd).

This implies that Dn,β−(Rd) is a topological group, since the underlying Fréchet
topology and the c∞-topology coincide. Of course, it also follows directly from
Corollary 2.9 and Proposition 3.7.

Now let us consider Dn,β+(Rd), for β ∈ [0, 1). Let g, f ∈ C∞(R, Cn,β+
0 (Rd,Rd)).

For any compact interval I ⊆ R, the images g(I), f(I) are bounded in

Cn,β+
0 (Rd,Rd). Since Cn,β+

0 (Rd,Rd) is a compactly regular (LB)-space, there is
some α0 > β such that g(I), f(I) are bounded in Cn,α0

0 (Rd,Rd), and thus also
in every Cn,α

0 (Rd,Rd), for α ∈ (β, α0]. Let α, α̃ ∈ (β, α0] with α < α̃. Then the
arguments above show that the set (3.11) is bounded in Cn,α

0 (Rd,Rd), and thus

in Cn,β+
0 (Rd,Rd). So the composition is C0,ω on Dn,β+(Rd). Similarly for the

inversion. �

Remark 3.12. We do not know whether Dn,β+(Rd) is a topological group with
respect to its natural inductive locally convex topology, since the c∞-topology is
finer in this case.

Groups with continuous left translations and smooth right translations were
dubbed half-Lie groups in [20]. The chart representations of the right translations
in Dn,β±(Rd) are affine and bounded, by Theorem 2.7, and thus smooth. Hence,
Dn,β−(Rd) is a half-Lie group.

The next result shows that the C0,ω-regularity of the group operations in
Dn,β±(Rd) is optimal.



ON GROUPS OF HÖLDER DIFFEOMORPHISMS 5779

Proposition 3.13. Let n ∈ N≥1.

(1) For all β ∈ (0, 1], Dn,β−(Rd) is a half-Lie group. There are left translations
in Dn,β−(Rd) which are not locally Hölder continuous of any order γ > 0.

(2) Let β ∈ [0, 1). For any γ > 0, there are left translations in Dn,β+(Rd)
which are not locally Hölder continuous of order γ.

Proof. (1) Let χ ∈ C∞
c (R) be 1 on [−1, 1] and satisfy χ′(x) > −1 for all x ∈ R,

and set ψ(x) := xn|x|βχ(x) ∈ Cn,β
0 (R,R) ⊆ Cn,β−

0 (R,R). We will show that
θ(t) := ψ ◦ (Id+tχ), for small t ∈ R, is not locally Hölder continuous of order γ into
Cn,α

0 (R,R) for any α > β− γ. This implies the assertion, since Id+rψ ∈ Dn,β−(R)
if r > 0 is small enough. We must show that, for any small interval I � 0, the set{θ(t)(n)(x)− θ(t)(n)(y)− θ(s)(n)(x) + θ(s)(n)(y)

|x− y|α|s− t|γ : x �= y ∈ R, s �= t ∈ I
}

is unbounded. If |x| < 1, then for small t (cf. (3.2))

θ(t)(n)(x) = ψ(n)(x+ t) = Cn,β |x+ t|β .
For t = x = 0 and |y| ≤ 1 the expression reads (up to a constant factor)

−|y|β − |s|β + |y + s|β
|y|α|s|γ ,

and upon setting y = −s, we get −2|s|β−α−γ , which is unbounded near s = 0.
(2) Let γ > 0 be given. For α > β let ψα(x) := xn|x|αχ(x). Then, as seen above,

θα(t) := ψα ◦ (Id+tχ), for small t ∈ R, is not locally Hölder continuous of order γ
into Cn,α1

0 (R,R) for any α1 ∈ (β, α) with γ > α − α1. It follows that (ψα)� is not
locally Hölder continuous of order γ, provided that α− β < γ. Indeed, if{θα(t)− θα(s)

|s− t|γ : s �= t ∈ I
}

were bounded in Cn,β+
0 (R,R), then it would be so in some step Cn,α1

0 (R,R), by
Lemma 3.8. �

The results of this section are summarized in Table 1.

Table 1. Here n ∈ N≥1 and ω is any slowly vanishing modulus of
continuity. In the first two rows β ∈ (0, 1]; in the third row β ∈
[0, 1).

group C0,ω-Lie group topological group half-Lie group Lie group

Dn,β(Rd) yes no no no no

Dn,β−(Rd) yes yes yes yes no

Dn,β+(Rd) yes yes ? ? no

4. Hölder spaces are ODE closed

4.1. Flows of time-dependent Hölder vector fields. Let n ∈ N≥1 and β ∈
(0, 1]. By a strong time-dependent Cn,β

0 -vector field we mean a Bochner integrable

function u : [0, 1] → Cn,β
0 (Rd,Rd). We will write I := [0, 1] and

‖u‖L1(I,Cn,β) :=

∫ 1

0

‖u(t)‖n,β dt.
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The space L1(I, Cn,β
0 (Rd,Rd)) of (equivalence classes with respect to a.e. coinci-

dence of) Bochner integrable function u : I → Cn,β
0 (Rd,Rd) equipped with this

norm is a Banach space.
Let α ≤ β. We say that a continuous mapping Φ : I → Dn,α(Rd) is a strong

Dn,α-flow of u if for all t ∈ I we have

(4.1) Φ(t) = Id+

∫ t

0

u(s) ◦ Φ(s) ds

in Dn,α(Rd), where the integral is the Bochner integral.
Since evaluation evx at x ∈ Rd is continuous and linear on Cn,α

0 (Rd,Rd) and it
thus commutes with the Bochner integral, (4.1) entails

(4.2) Φ∧(t, x) = x+

∫ t

0

u∧(s,Φ∧(s, x)) ds, x ∈ Rd.

We say that Φ∧ : I × Rd → Rd is the pointwise flow of u∧ if it satisfies (4.2). So,
if u has a strong Dn,α-flow Φ, then u∧ has a pointwise flow which is continuous in
t and differs from the identity by a Cn,α

0 -mapping in x. Conversely, the existence
of a pointwise flow with these properties will entail the existence of a strong Dn,α-
flow only if the Bochner integral in (4.1) exists. Since the Hölder spaces are non-
separable, strong measurability of t �→ u(t) ◦Φ(t) may fail, and the integral in (4.1)
may not exist if the left translation u(t)� is not continuous. This is exactly what
happens if β = α.

Luckily we can work with pointwise estimates which enable us to prove that

time-dependent Cn,β
0 -vector fields have unique pointwise flows Φ such that Φ∨ ∈

C(I,Dn,β(Rd)) (no loss of regularity!). The proof actually works for a wider class

of vector fields, so-called pointwise time-dependent Cn,β
0 -vector fields, which shall

be introduced in the next subsection.
We shall see in Section 5.1 that the unique pointwise flow Φ∨ ∈ C(I,Dn,β(Rd))

of a strong time-dependent Cn,β
0 -vector field u lifts to a strong Dn,α-flow, for each

α < β.

4.2. Trouvé group and ODE closedness. Let I = [0, 1] and let E be a Banach
space of mappings Rd → Rd which is continuously embedded in C1

0 (R
d,Rd).

Definition 4.1. We say that a mapping u : I × Rd → Rd is a pointwise time-
dependent E-vector field if the following conditions are satisfied.

• u(t, ·) ∈ E for every t ∈ I.
• u(·, x) is measurable for every x ∈ Rd.
• I � t → ‖u(t, ·)‖E is (Lebesgue) integrable.

Let us denote the set of all pointwise time-dependent E-vector fields by XE(I,R
d).

We remark that instead of the third condition we could also require that ‖u∨‖E be
dominated a.e. by some non-negative function m ∈ L1(I).

Clearly, u ∈ L1(I, E) implies u∧ ∈ XE(I,R
d). The converse is in general not

true, in particular, if E is non-separable and strong measurability and measurability
are not the same; see Example 4.2 below. We will continue to write

‖u∨‖L1(I,E) =

∫ 1

0

‖u∨(t)‖E dt, for u ∈ XE(I,R
d),
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even though ‖u∨‖L1(I,E) might be finite while u∨ : I → E is not Bochner integrable;
this will lead to no confusion.

Example 4.2. Let χ ∈ C∞
c (R) be 1 on [−1, 1], and let ψ(x) := xn|x|βχ(x). Then

ψ lies in Cn,β
0 (R,R) (cf. Lemma 3.5). Let u : I × R → R be defined by u(t, x) =

ψ(x − t); u is clearly a pointwise time-dependent Cn,β
0 -vector field. But u∨ �∈

L1(I, Cn,β
0 (R)): indeed, for fixed t, s ∈ I, t �= s (cf. (3.2))

[u∨(t)− u∨(s)]n,β = sup
x�=y

|ψ(n)(x− t)− ψ(n)(y − t)− ψ(n)(x− s) + ψ(n)(y − s)|
|x− y|β

≥ Cn,β sup
x,y∈I, x�=y

∣∣|x− t|β − |y − t|β − |x− s|β + |y − s|β
∣∣

|x− y|β

≥ 2Cn,β > 0 (choose x = t, y = s).

It follows that the image u∨(I) is not essentially separable in Cn,β
0 (R), and so u∨

is not strongly measurable, by the Pettis measurability theorem (cf. [4, p. 42]).

It is well-known that pointwise time-dependent Cn
0 -vector fields u have unique

pointwise flows Φ = Φu : I × Rd → Rd such that Φ∨ : I → Id+Cn
0 (R

d,Rd) is
continuous, and Φ∨(t) is a Cn-diffeomorphism at any time t; see e.g. [28, 8.7, 8.8,
8.9] and the arguments in the proof of Theorem 4.6 below.

Definition 4.3. Let E be a Banach space of mappings Rd → Rd which is contin-
uously embedded in C1

0 (R
d,Rd). Then

GE :=
{
Φ∨

u(1) : u ∈ XE(I,R
d)
}

is a group with respect to composition; cf. [28, 8.14]. We call GE the Trouvé group
of E.

Definition 4.4. We say that E is ODE closed if GE ⊆ Id+E.

Remark 4.5. It is clear that, more generally, we could take (mutatis mutandis) any
locally convex space E of mappings Rd → Rd which is continuously embedded in
C1

0 (R
d,Rd) in the above definitions.

Furthermore, this leads to the notion of ODE hull of E, i.e., the intersection of all
locally convex spaces F of mappings Rd → Rd which are continuously embedded in
C1

0 (R
d,Rd) and continuously contain E, endowed with the natural projective topol-

ogy. The ODE hull is well-defined, because C1
0 is ODE-closed, and it is evidently

ODE closed.

4.3. The Trouvé group of Cn,β
0 (Rd,Rd). Let n ∈ N≥1 and β ∈ (0, 1]. In this

section we show that the Trouvé group of Cn,β
0 (Rd,Rd),

Gn,β(R
d) := GCn,β

0 (Rd,Rd),

coincides with the connected component of the identity in Dn,β(Rd). In particular,

Cn,β
0 is ODE closed. Let us use the short notation

Xn,β(I,R
d) := XCn,β

0
(I,Rd).

We want to stress that this is an example of an ODE closed space on which left
translations g� are not continuous.
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Theorem 4.6. Let n ∈ N≥1 and β ∈ (0, 1]. Let u ∈ Xn,β(I,R
d). Then u has a

unique pointwise flow Φ : I ×Rd → Rd such that Φ∨ : I → Dn,β(Rd) is continuous.

In particular, Cn,β
0 is ODE closed.

Proof. In fact (cf. [28, 8.7, 8.8, 8.9]), the pointwise flow exists, x �→ Φ(t, x) is Cn
b ,

and for all t ∈ I,

(4.3) ‖Φ(t, ·)− Id ‖n ≤ C1e
C2‖u‖L1(I,Cn

b
) .

Set Wn
x (t) := dnxΦ(t, x) and V n

x,y(t) := (Wn
x (t) − Wn

y (t))/‖x − y‖β . Then Wn
x (t)

satisfies

∂tW
n
x (t) = dnx

(
u∨(t)(Φ(t, x))

)
, Wn

x (0) =

{ � for n = 1,
0 for n ≥ 2.

Upon setting

Aγ,j(t) = Aγ,j(x, y)(t) :=
(
W γ1

x (t), . . . ,W γj
x (t),W γj+1

y (t), . . . ,W γl
y (t)

)
and using Faà di Bruno’s formula (2.7), this ODE takes the form

∂tW
n
x (t) = sym

n∑
l=1

∑
γ∈Γ(l,n)

cγu
∨(t)(l)(Φ(t, x))(Aγ,l(t)),

and analogously

∂tW
n
y (t) = sym

n∑
l=1

∑
γ∈Γ(l,n)

cγu
∨(t)(l)(Φ(t, y))(Aγ,0(t)).

It follows that V n
x,y(t) satisfies V

n
x,y(0) = 0 and

∂tV
n
x,y(t) = Ax(t) · V n

x,y(t) + bnx,y(t)

+ sym

n∑
l=2

∑
γ∈Γ(l,n)

cγ
u∨(t)(l)(Φ(t, x)) ·Aγ,l(t)− u∨(t)(l)(Φ(t, y)) ·Aγ,0(t)

‖x− y‖β ,(4.4)

where Ax(t) = du∨(t)(Φ(t, x)) and bnx,y(t) :=
Ax(t)−Ay(t)

‖x−y‖β · Wn
y (t). It can be easily

seen, using (4.3), that
(4.5)

‖Ax(t)‖L1
≤ ‖u∨(t)‖1, ‖bnx,y(t)‖L1

≤ ‖u∨(t)‖1,β[Φ∨(t)]β1 [Φ
∨(t)]n ≤ C3‖u∨(t)‖1,β .

Similar arguments (see e.g. the proof of Proposition 3.6) show that all remaining
terms in the sum can be estimated by ‖u(t)‖n,β times a constant uniformly in
x, y. An application of Gronwall’s inequality implies that [Φ∨(t)]n,β is bounded

in t, showing that Φ∨(t) ∈ Id+Cn,β
b (Rd,Rd) for all t. Finally, we may conclude,

integrating (4.4) and using similar estimates, that

[Φ∨(t)− Φ∨(t0)]n,β = sup
x�=y

‖V n
x,y(t)− V n

x,y(t0)‖Ln
≤ C4

∫ t

t0

‖u∨(s)‖n,β ds,

which tends to 0 as t → t0. In an analogous way one sees that ‖Φ∨(t)−Φ∨(t0)‖n → 0
as t → t0. This shows continuity in time.

It remains to prove that Φ∨(I) ⊆ Dn,β(Rd). For fixed x ∈ Rd, the map-
ping I � t �→ det dΦ(t, x) is continuous with image in R \ {0} (since Φ∨(t) is a
C1-diffeomorphism of Rd for each t). Since Φ∨(0) = Id, we may conclude that
det dΦ(t, x) > 0 for all x ∈ Rd and all t ∈ I.
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Finally, let us check that φ∨(t) = Φ∨(t)−Id ∈ Cn,β
0 (Rd,Rd) for all t ∈ I. Suppose

that ‖φ(t, x)‖ �→ 0 as ‖x‖ → ∞. Then there is ε > 0 and a sequence xk ∈ Rd such
that ‖xk‖ → ∞ and ‖φ(t, xk)‖ ≥ ε. Since Φ∨(s) is a diffeomorphism of Rd, for all
s ∈ I,

sup
x∈Rd

‖u(s, x+ φ(s, x))‖ = sup
y∈Rd

‖u(s, y)‖ = ‖u∨(s)‖0,

and so the dominated convergence theorem implies that

‖φ(t, xk)‖ ≤
∫ t

0

‖u(s, xk + φ(s, xk))‖ ds → 0,

because ‖xk + φ(s, xk)‖ → ∞ as k → ∞ and ‖u(s, x)‖ → 0 as ‖x‖ → ∞, for each
s ∈ I, a contradiction. To see that ‖dkxφ(t, x)‖ → 0 as ‖x‖ → ∞, for 1 ≤ k ≤ n,

we argue similarly: Since s �→ φ∨(s) is continuous into Cn,β
b (Rd,Rd), there is a

constant C such that sups∈I ‖φ∨(s)‖n,β < C. Thus Faà di Bruno’s formula (2.7)
implies that supx∈Rd ‖dkx(u(s, x + φ(s, x)))‖ is bounded above by ‖u(s)‖k times a
constant (independent of s and x) for all s ∈ I. Then the dominated convergence
theorem implies the assertion as before. �

Theorem 4.7. Let n ∈ N≥1 and β ∈ (0, 1]. Then

(4.6) Gn,β(R
d) = Dn,β(Rd)0,

where Dn,β(Rd)0 denotes the connected component of the identity in Dn,β(Rd).

Proof. The inclusion Gn,β(R
d) ⊆ Dn,β(Rd)0 follows from Theorem 4.6.

Let us prove Dn,β(Rd)0 ⊆ Gn,β(R
d). Since Dn,β(Rd)0 is connected and locally

path-connected, it is path-connected, and each Φ ∈ Dn,β(Rd)0 can be connected by
a polygon with the identity.

Let Φ = Id+φ ∈ Dn,β(Rd)0 be such that γ(t) := (1 − t) Id+tΦ ∈ Dn,β(Rd) for
all t ∈ I. Then γ(t)(x) = x+ tφ(x), and

u(t, x) := (γ′(t) ◦ γ(t)−1)(x) = φ(γ(t)−1(x))

is a time-dependent vector field such that:

• u(t, ·) ∈ Cn,β
0 (Rd,Rd) for all t ∈ I, since Dn,β(Rd) is a group, by Theo-

rem 3.4.
• u(·, x) is a Borel function for every x ∈ Rd; indeed, if γ(t)−1(x) =: x +
τ (t, x), then τ satisfies the implicit equation

τ (t, x) + tφ(x+ τ (t, x)) = 0

and is Cn by the implicit function theorem.

• We have
∫ 1

0
‖u(t, ·)‖n,β dt < ∞, since inversion is locally bounded on

Dn,β(Rd) and left translation maps bounded sets to bounded sets; see The-
orem 2.7 and Proposition 3.6.

That means that u ∈ Xn,β(I,R
d) and hence Φ ∈ Gn,β(R

d).
Suppose we are given a polygon in Dn,β(Rd) with vertices Id,Φ1, . . . ,Φn. Then

Φ1 ∈ Gn,β(R
d), by the previous paragraph. Consider the line segment γ connecting

Φ1 and Φ2. Then t �→ γ(t) ◦ Φ−1
1 connects Id with Φ2 ◦ Φ−1

1 . So, by the above,
Φ2 ◦ Φ−1

1 ∈ Gn,β(R
d) and hence Φ2 ∈ Gn,β(R

d), since Gn,β(R
d) is a group. By

iteration all vertices Φj belong to Gn,β(R
d). �
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Remark 4.8. Analyzing the proof one finds that the identity (4.6) still holds if in the
definition of the Trouvé group we restrict to u ∈ Xn,β(I,R

d) which are piecewise
Cn in time t. (Discontinuities in t guarantee that Gn,β(R

d) is a group.)

4.4. The Trouvé group of Cn,β±
0 (Rd,Rd). We define pointwise time-dependent

Cn,β±
0 -vector fields to be the elements of

Xn,β−(I,R
d) :=

⋂
α∈(0,β)

Xn,α(I,R
d), Xn,β+(I,R

d) :=
⋃

α∈(β,1)

Xn,α(I,R
d),

respectively, and the corresponding Trouvé groups by

Gn,β±(R
d) :=

{
Φ∨

u(1) : u ∈ Xn,β±(I,R
d)
}
.

Theorem 4.9. Let n ∈ N≥1. For β ∈ (0, 1], Cn,β−
0 is ODE closed and

(4.7) Gn,β−(R
d) = Dn,β−(Rd)0,

and, for β ∈ [0, 1), Cn,β+
0 is ODE closed and

(4.8) Gn,β+(R
d) = Dn,β+(Rd)0.

In particular, Gn,β±(R
d) has a C0,ω Lie group structure, for every slowly vanishing

modulus of continuity ω. Moreover, Gn,β−(R
d) has a topological group structure

and a half-Lie group structure.

Proof. This follows from Theorems 4.6, 4.7, and 3.11. To see, e.g., (4.8), note that

Gn,β+(R
d) =

⋃
α>β

Gn,α(R
d) =

⋃
α>β

Dn,α(Rd)0

is path-connected in Dn,β+(Rd) =
⋃

α>β Dn,α(Rd) and thus contained in

Dn,β+(Rd)0. The inclusion Dn,β+(Rd)0 ⊆ Gn,β+(R
d) follows from the proof of

Theorem 4.7: the line segment γ factors to some step of the inductive limit defining
Dn,β+(Rd), by Lemma 3.8. �

Clearly, Remark 4.8 also applies in this situation.
Let us summarize the results of this section in Table 2.

Table 2. Here n ∈ N≥1. In the first two rows β ∈ (0, 1]; in the
third row β ∈ [0, 1).

ODE closed Trouvé group

Cn,β
0 (Rd,Rd) yes Dn,β(Rd)0

Cn,β−
0 (Rd,Rd) yes Dn,β−(Rd)0

Cn,β+
0 (Rd,Rd) yes Dn,β+(Rd)0
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5. Continuity of the flow map

Let n ∈ N≥1 and β ∈ (0, 1]. By the results of the last section every u ∈
Xn,β(I,R

d) (thus every u∨ ∈ L1(I, Cn,β
0 (Rd,Rd))) has a unique pointwise flow Φ

with Φ∨ ∈ C(I,Dn,β(Rd)). The goal of this section is to show the following:

(1) If u∨ ∈ L1(I, Cn,β
0 (Rd,Rd)) and α < β, then Φ∨ is the unique strong Dn,α-

flow of u, i.e.,

(5.1) Φ∨(t) = Id+

∫ t

0

u∨(s) ◦ Φ∨(s) ds, t ∈ I,

in Dn,α(Rd).

(2) The flow map L1(I, Cn,β
0 (Rd,Rd)) → C(I,Dn,α(Rd)), u∨ �→ Φ∨, is bounded

for all n ≥ 1 and continuous, even C0,β−α, if n ≥ 2.

We recall that the Bochner integral in (5.1) might not exist if α = β, because
strong measurability of s �→ u∨(s) ◦ Φ∨(s) may fail if u∨(s)� is not continuous; see
Remark 5.2 below.

5.1. Existence of the strong Dn,α-flow. First we show that the Bochner integral
in (5.1) exists if β > α.

Lemma 5.1. Let n ∈ N≥1 and let 0 < α < β ≤ 1. Let u ∈ L1(I, Cn,β
0 (Rd,Rd)),

and let Φ : I → Dn,α(Rd) be continuous. Then:

(i) The mapping I × Cn,α
0 (Rd,Rd) → Cn,α

0 (Rd,Rd), (t, φ) �→ u(t) ◦ (Id+φ),
has the Carathéodory property. The function t �→ u(t) ◦ Φ(t) belongs to
L1(I, Cn,α

0 (Rd,Rd)).
(ii) If evx Φ(t) =: Φ∧(t, x) is the pointwise flow of u for the initial condition

Φ∧(0, x) = x for all x, then Φ is the strong Dn,α-flow of u.

Proof. (i) That (t, φ) �→ u(t)◦ (Id+φ) has the Carathéodory property follows easily
from Theorems 2.7 and 2.8. Together with continuity of Φ, an application of [1,
Lemma 2.2] yields strong measurability of t �→ u(t) ◦ Φ(t). Integrability follows
from Theorem 2.7.

(ii) Recall that evx is continuous and linear on Cn,α
0 (Rd,Rd) and thus commutes

with the Bochner integral. Observe also that s �→ u(s) ◦Φ(s) is Bochner integrable
in Cn,α

0 (Rd,Rd) by (i). Since Φ∧(t, x) is the pointwise flow, we have

evx Φ(t) = Φ∧(t, x) = x+

∫ t

0

u(s)(Φ∧(s, x)) ds = evx

(
Id+

∫ t

0

u(s) ◦ Φ(s) ds
)
.

Since the family of evaluation maps is point separating on Cn,α
0 (Rd,Rd), we are

done. �

Remark 5.2. In general, the function t �→ u(t) ◦ Φ(t) cannot belong to

L1(I, Cn,β
0 (Rd,Rd)), even if u is a constant and Φ is continuous into DN,1(Rd) for

all N ≥ n. Indeed: Let χ ∈ C∞
c (R) be 1 on [−1, 1], and let ψ(x) := xn|x|βχ(x) be

the Cn,β
0 -function from the proof of Lemma 3.5 and Example 4.2. Taking u(t) := ψ

and Φ(t)(x) := x + tχ(x) we get (u(t) ◦ Φ(t))(x) = ψ(x + t) if x ∈ [−1, 1]. So
Example 4.2 shows that t �→ u(t) ◦ Φ(t) is not strongly measurable.

Theorem 5.3. Let n ∈ N≥1 and 0 < α < β ≤ 1. Let u ∈ L1(I, Cn,β
0 (Rd,Rd)).

Then u has a unique strong Dn,α-flow Φ.
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Proof. By Theorem 4.6, u has a unique pointwise flow Φ : I × Rd → Rd such that
Φ∨ ∈ C(I,Dn,β(Rd)). For α < β, we have Φ∨ ∈ C(I,Dn,α(Rd)). By Lemma 5.1,
Φ∨ is the unique strong Dn,α-flow of u; i.e., it satisfies (5.1). �

Remark 5.4. One can use Carathéodory’s solution theory for ODEs on Banach
spaces which are Bochner integrable in time (cf. Section 2.3) to give an alternative
proof which, however, does not work for n = 1! Indeed, using Lemma 5.1, Corol-
lary 2.11, and Theorem 2.4 one can show that u has a unique strong Dn−1,α-flow
Φ. That the flow Φ = Id+φ is actually strongly Dn,α-valued follows from the
observation that dφ satisfies the linear ODE

dφ(t) = d

∫ t

0

u(s) ◦ (Id+φ(s)) ds =

∫ t

0

du(s) ◦ (Id + φ(s)) · (�+ dφ)(s) ds,

and from Theorem 2.5.

5.2. Continuity of the flow map. First we prove that the flow map is bounded.

Proposition 5.5. Let n ∈ N≥1 and β ∈ (0, 1]. The flow map L1(I, Cn,β
0 (Rd,Rd))

→ C(I,Dn,β(Rd)), u �→ Φ, is bounded.

In the proof we use only pointwise estimates; thus the result still holds if u∧

varies in Xn,β(I,R
d) endowed with the norm ‖u‖L1(I,Cn,β

b ).

Proof. We first claim that u �→ φ := Φ − Id is bounded into C(I, Cn
b (R

d,Rd)).
We proceed by induction on n. For simplicity of notation we simply write φ(t, x)
instead of φ∧(t, x), etc. Clearly

‖φ(t, x)‖ ≤
∫ t

0

‖u(s,Φ(s, x))‖ ds ≤ ‖u‖L1(I,Cn,β
b ),

and hence

‖φ‖C(I,C0
b )

≤ ‖u‖L1(I,Cn,β
b ).

Assume that u �→ φ is bounded into C(I, Cn−1
b (Rd,Rd)). By Faà di Bruno’s formula

(2.7),

dnx(u(s) ◦ Φ(s))(x) = dxu(s)(Φ(s, x))(d
n
xΦ(s, x))

+ sym

n∑
l=2

∑
γ∈Γ(l,n)

cγu(s)
(l)(Φ(s, x))

(
dγ1
x Φ(s, x), . . . , dγl

x Φ(s, x)
)
.

Hence

‖dnx(u(s) ◦ Φ(s))‖0

≤ ‖u(s)‖1[Φ(s)]n +
n∑

l=2

∑
γ∈Γ(l,n)

cγ‖u(s)‖l[Φ(s)]γ1
· · · [Φ(s)]γl

,

and so, by the induction hypothesis and since [Φ(s)]n ≤ 1 + [φ(s)]n,

[φ(t)]n ≤
∫ t

0

‖dnx(u(s) ◦ Φ(s))‖0 ds

≤
∫ t

0

‖u(s)‖1[φ(s)]n ds+ C‖u‖L1(I,Cn,β
b ).
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Gronwall’s lemma implies that

‖φ‖C(I,Cn
b ) ≤ C‖u‖L1(I,Cn,β

b ) exp(‖u‖L1(I,Cn,β
b )),

and the claim is proved.
It remains to show that u �→ φ is bounded into C(I, Cn,α

b (Rd,Rd)). To this end
consider

dnx(u(s) ◦ Φ(s))(x)− dnx(u(s) ◦ Φ(s))(y)

=sym

n∑
l=1

∑
γ∈Γ(l,n)

cγ
(
u(s)(l)(Φ(s, x))(Aγ,l(x, y))− u(s)(l)(Φ(s, y))(Aγ,0(x, y))

)
,

where

Aγ,j = Aγ,j(x, y) :=
(
dγ1
x Φ(s, x), . . . , dγj

x Φ(s, x), dγj+1
x Φ(s, y), . . . , dγl

x Φ(s, y)
)
.

Then ∥∥u(s)(l)(Φ(s, x))(Aγ,l)− u(s)(l)(Φ(s, y))(Aγ,0)
∥∥
Ln

≤
∥∥u(s)(l)(Φ(s, x))(Aγ,l)− u(s)(l)(Φ(s, y))(Aγ,l)

∥∥
Ln

+
l∑

k=1

∥∥u(s)(l)(Φ(s, y))(Aγ,k)− u(s)(l)(Φ(s, y))(Aγ,k−1)
∥∥
Ln

.

For the first summand∥∥u(s)(l)(Φ(s, x))(Aγ,l)− u(s)(l)(Φ(s, y))(Aγ,l)
∥∥
Ln

≤
∥∥u(s)(l)(Φ(s, x))− u(s)(l)(Φ(s, y))

∥∥
Ln

(1 + ‖φ(s)‖n)n

≤
{
‖u(s)‖n[Φ(s)]1‖x− y‖(1 + ‖φ(s)‖n)n if l < n,

‖u(s)‖n,β[Φ(s)]β1‖x− y‖β(1 + ‖φ(s)‖n)n if l = n.

For the other summands observe that

u(s)(l)(Φ(s, y))(Aγ,k)− u(s)(l)(Φ(s, y))(Aγ,k−1)

= u(s)(l)(Φ(s, y))
(
. . . , dγk−1

x Φ(s, x), dγk
x Φ(s, x)− dγk

x Φ(s, y), dγk+1
x Φ(s, y), . . .

)
,

whence, if l ≥ 2 and hence γk ≤ n− 1,∥∥u(s)(l)(Φ(s, y))(Aγ,k)− u(s)(l)(Φ(s, y))(Aγ,k−1)
∥∥
Ln

≤ ‖u(s)‖n(1 + ‖φ(s)‖n)n−1‖φ(s)‖n‖x− y‖.
For l = 1, we have∥∥du(s)(Φ(s, y))(dnxΦ(s, x))− du(s)(Φ(s, y))(dnxΦ(s, y))

∥∥
Ln

≤ ‖u(s)‖n‖φ(s)‖n,β‖x− y‖β .
These estimates, together with the fact that u �→ φ is bounded into
C(I, Cn

b (R
d,Rd)), imply that

‖φ(t)‖n,β ≤
∫ t

0

‖u(s) ◦ Φ(s)‖n,β ds

≤ C

∫ t

0

‖u(s)‖n,β‖φ(s)‖n,β ds+ C‖u‖L1(I,Cn,β
b ),

and Gronwall’s inequality yields the assertion. �
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Theorem 5.6. Let n ∈ N≥2 and 0 < α < β ≤ 1. Then the flow map

L1(I, Cn,β
0 (Rd,Rd)) → C(I,Dn,α(Rd)), u �→ Φ, is continuous, even C0,β−α.

We do not know if the theorem also holds for n = 1 or for α = β.

Proof. Fix u0 ∈ L1(I, Cn,β
0 (Rd,Rd)) and let u, v ∈ L1(I, Cn,β

0 (Rd,Rd)) be in the

ball with radius δ > 0 and center u0 in L1(I, Cn,β
0 (Rd,Rd)). Consider the corre-

sponding flows Φ = Id+φ,Ψ = Id+ψ ∈ C(I,Dn,α(Rd)). By Proposition 5.5, there
is a constant C = C(u0, δ) > 0 such that

‖φ‖C(I,Cn,α
b ) ≤ C, ‖ψ‖C(I,Cn,α

b ) ≤ C.

By Corollary 2.11, Theorem 2.7, and Theorem 5.3,

‖φ(t)− ψ(t)‖n−1,α ≤
∫ t

0

‖u(s) ◦ Φ(s)− v(s) ◦Ψ(s)‖n−1,α ds

≤
∫ t

0

‖u(s) ◦ Φ(s)− u(s) ◦Ψ(s)‖n−1,α + ‖(u(s)− v(s)) ◦Ψ(s)‖n−1,α ds

≤ C1

∫ t

0

‖u(s)‖n,β‖φ(s)− ψ(s)‖n−1,α + ‖u(s)− v(s)‖n−1,α ds,

and so, by Gronwall’s lemma (and Lemma 2.2),

‖φ(t)− ψ(t)‖n−1,α ≤ C1‖u− v‖L1(I,Cn,β
b ) exp(C1‖u‖L1(I,Cn,β

b ))

=: C2‖u− v‖L1(I,Cn,β
b ).(5.2)

This proves that u �→ Φ is continuous into C(I,Dn−1,α(Rd)). Applying d = dx,

‖dφ(t)− dψ(t)‖n−1,α ≤
∫ t

0

‖(du(s) ◦ Φ(s))dΦ(s)− (dv(s) ◦Ψ(s))dΨ(s)‖n−1,α ds

≤
∫ t

0

‖(du(s) ◦ Φ(s))(dΦ(s)− dΨ(s))‖n−1,α ds

+

∫ t

0

‖(du(s) ◦ Φ(s)− dv(s) ◦Ψ(s))dΨ(s)‖n−1,α ds.

By Proposition 2.6 and Theorem 2.7,

‖(du(s) ◦ Φ(s))(dΦ(s)− dΨ(s))‖n−1,α

≤ 2n‖du(s) ◦ Φ(s)‖n−1,α‖dΦ(s)− dΨ(s)‖n−1,α

≤ 2nM‖du(s)‖n−1,α(1 + ‖φ(s)‖n−1,α)
n‖dΦ(s)− dΨ(s)‖n−1,α

≤ C3‖u(s)‖n,β‖dΦ(s)− dΨ(s)‖n−1,α,

and

‖(du(s) ◦ Φ(s)− dv(s) ◦Ψ(s))dΨ(s)‖n−1,α

≤ 2n‖du(s) ◦ Φ(s)− dv(s) ◦Ψ(s)‖n−1,α‖dΨ(s)‖n−1,α

≤ C4‖du(s) ◦ Φ(s)− dv(s) ◦Ψ(s)‖n−1,α.
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By Theorem 2.7, Theorem 2.8, and (5.2),

‖du(s) ◦ Φ(s)− dv(s) ◦Ψ(s)‖n−1,α

≤ ‖(du(s)− dv(s)) ◦ Φ(s)‖n−1,α + ‖dv(s) ◦ Φ(s)− dv(s) ◦Ψ(s)‖n−1,α

≤ M
(
‖du(s)− dv(s)‖n−1,α(1 + ‖φ(s)‖n−1,α)

n + ‖v(s)‖n,β‖φ(s)− ψ(s)‖β−α
n−1,α

)
≤ C5

(
‖u(s)− v(s)‖n,β + ‖v(s)‖n,β‖φ(s)− ψ(s)‖β−α

n−1,α

)
.

Together with (5.2) this gives∫ t

0

‖du(s) ◦ Φ(s)− dv(s) ◦Ψ(s)‖n−1,α ds

≤ C6

(
‖u− v‖L1(I,Cn,β

b ) + ‖u− v‖β−α

L1(I,Cn,β
b )

)
≤ C7‖u− v‖β−α

L1(I,Cn,β
b )

,

provided that ‖u− v‖L1(I,Cn,β
b ) ≤ 1. Consequently,

‖dφ(t)− dψ(t)‖n−1,α ≤ C3

∫ t

0

‖u(s)‖n,β‖dφ(s)− dψ(s)‖n−1,α ds

+ C7‖u− v‖β−α

L1(I,Cn,β
b )

.

Then Gronwall’s inequality implies that

‖dφ(t)− dψ(t)‖n−1,α ≤ C7‖u− v‖β−α

L1(I,Cn,β
b )

exp(C3‖u‖L1(I,Cn,β
b ))

≤ C8‖u− v‖β−α

L1(I,Cn,β
b )

,

for all t ∈ I, and the assertion follows. �

5.3. Flows of strong time-dependent Cn,β−
0 -vector fields. Let n ∈ N≥1.

By a strong time-dependent Cn,β−
0 -vector field, for β ∈ (0, 1], we mean a function

u : I → Cn,β−
0 (Rd,Rd) such that u ∈ L1(I, Cn,α

0 (Rd,Rd)) for all α < β. We denote

the space of all strong time-dependent Cn,β−
0 -vector fields by L1(I, Cn,β−

0 (Rd,Rd))
and equip it with the fundamental system of seminorms {‖ · ‖L1(I,Cn,α

b ) : α < β}.
Clearly, for every strong time-dependent Cn,β−

0 -vector field u, u∧ is a pointwise

time-dependent Cn,β−
0 -vector field (as defined in Section 4.4); the converse is not

true in general.

By Proposition 5.5, the flow map L1(I, Cn,β−
0 (Rd,Rd)) → C(I,Dn,β−(Rd)) is

bounded, for all n ∈ N≥1, β ∈ (0, 1].

Theorem 5.7. Let n ∈ N≥2. For β ∈ (0, 1], the flow map L1(I, Cn,β−
0 (Rd,Rd)) →

C(I,Dn,β−(Rd)), u �→ Φ, is continuous and C0,ω, for any slowly vanishing modulus
of continuity ω.

Proof. This is immediate from Theorem 5.6 and from the estimates in its proof. �

Remark 5.8. One could define strong time-dependent Cn,β+
0 -vector fields, for β ∈

[0, 1), to be the elements of the (LB)-space
⋃

α∈(β,1) L
1(I, Cn,α

0 (Rd,Rd)). Then, by

Theorem 4.6, we have a flow map⋃
α∈(β,1)

L1(I, Cn,α
0 (Rd,Rd)) →

⋃
α∈(β,1)

C(I, Cn,α
0 (Rd,Rd)) ⊆ C(I, Cn,β+

0 (Rd,Rd)).
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Note that this is not clear for u ∈ L1(I, Cn,β+
0 (Rd,Rd)), since such u may not factor

to some step in the inductive limit defining Cn,β+
0 (Rd,Rd). Is this flow map C0,ω,

for slowly vanishing moduli of continuity ω? This would follow from Theorem 5.6
if the (LB)-space

⋃
α∈(β,1) L

1(I, Cn,α
0 (Rd,Rd)) were regular.

Appendix A. Proofs for Section 2.4

Proposition 2.6 is precisely [3, 4.2].

Proof of Theorem 2.7. We prove the assertion by induction on m. First observe
that d(g ◦ (Id+f)) = dg ◦ (Id+f) · (�+ df) = dg ◦ (Id+f) + dg ◦ (Id+f) · df . We
have

‖dg(x+ f(x))− dg(y + f(y))‖L1
≤ ‖dg‖0,α‖x− y + f(x)− f(y)‖α

≤ ‖g‖1,α(1 + ‖f‖1)α‖x− y‖α(A.1)

and

‖dg(x+ f(x)) · df(x)− dg(y + f(y)) · df(y)‖L1

≤ ‖dg(x+ f(x)) · df(x)− dg(x+ f(x)) · df(y)‖L1

+ ‖dg(x+ f(x)) · df(y)− dg(y + f(y)) · df(y)‖L1

≤ ‖dg(x+ f(x))‖L1
‖df(x)− df(y)‖L1

+ ‖dg(x+ f(x))− dg(y + f(y))‖L1
‖df(y)‖L1

≤ ‖g‖1,α‖f‖1,α‖x− y‖α + ‖g‖1,α(1 + ‖f‖1)α‖x− y‖α‖f‖1,α.
Thus,

‖dg ◦ (Id + f) · df‖0,α ≤ 2‖g‖1,α(1 + ‖f‖1,α)1+α,

and since the same bound is trivially also valid for ‖g ◦ (Id+f)‖0, the case m = 1
is proved.

Now assume the statement holds for m− 1. Then

‖d(g ◦ (Id+f))‖m−1,α ≤ ‖dg ◦ (Id+f)‖m−1,α + ‖dg ◦ (Id+f) · df‖m−1,α.

The inductive assumption implies that

‖dg ◦ (Id+f)‖m−1,α ≤ M‖dg‖m−1,α(1 + ‖f‖m−1,α)
m−1+α,

and using Proposition 2.6, we get

‖dg ◦ (Id+f) · df‖m−1,α ≤ 2m‖dg ◦ (Id+f)‖m−1,α · ‖df‖m−1,α,

which now adds up to (2.4). �

Proof of Theorem 2.8. We proceed by induction on m. First observe that we have

‖g�(f1)− g�(f2)‖0 ≤ ‖g‖1‖f1 − f2‖0.
Moreover, by Proposition 2.6,

‖d(g�(f1))− d(g�(f2))‖0,α
= ‖dg ◦ (Id+f1) · (�+ df1)− dg ◦ (Id+f2) · (�+ df2)‖0,α
= ‖dg ◦ (Id+f1) · (df1 − df2)− (dg ◦ (Id+f2)− dg ◦ (Id+f1)) · (�+ df2)‖0,α
≤ 2‖dg ◦ (Id+f1)‖0,α‖df1 − df2‖0,α
+ ‖dg ◦ (Id+f2)− dg ◦ (Id+f1)‖0,α(1 + 2‖df2‖0,α).
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As an intermediate step we use Lemma 2.1 and (A.1) to estimate

‖dg ◦ (Id+f2)− dg ◦ (Id+f1)‖0,α

≤ ‖dg ◦ (Id+f2)− dg ◦ (Id+f1)‖
β−α
β

0 ‖dg ◦ (Id+f2)− dg ◦ (Id+f1)‖
α
β

0,β

≤ (‖g‖1,β‖f1 − f2‖β0 )
β−α
β (‖dg ◦ (Id+f1)‖0,β + ‖dg ◦ (Id+f2)‖0,β)

α
β

≤ (‖g‖1,β‖f1 − f2‖β0 )
β−α
β (‖g‖1,β((1 + ‖f1‖1)β + (1 + ‖f2‖1)β))

α
β

≤ ‖g‖1,β(2 + ‖f1‖1 + ‖f2‖1)‖f1 − f2‖β−α
0 .

Consequently, if R > 0, f1, f2 ∈ B1,α(f0, R), and hence

‖f1 − f2‖1,α ≤ (1 + 2R)‖f1 − f2‖β−α
1,α ,

then

‖d(g�(f1))− d(g�(f2))‖0,α ≤ M‖g‖1,β‖f1 − f2‖β−α
1,α ,

where M = M(‖f0‖1,α, R), and hence

‖g�(f1)− g�(f2)‖1,α ≤ M‖g‖1,β‖f1 − f2‖β−α
1,α ,

which proves the case m = 1.
Now assume we have already proven the desired result for m − 1. Then, as in

the case m = 1, we have

‖d(g�(f1))− d(g�(f2))‖m−1,α

≤ 2m‖dg ◦ (Id+f1)‖m−1,α‖df1 − df2‖m−1,α

+ ‖dg ◦ (Id+f2)− dg ◦ (Id+f1)‖m−1,α(1 + 2m‖df2‖m−1,α).

By the inductive assumption,

‖dg ◦ (Id+f2)− dg ◦ (Id+f1)‖m−1,α ≤ M‖g‖m,β‖f1 − f2‖β−α
m−1,α.

Together with Theorem 2.7, which makes it possible to extract ‖g‖m,β from the
term ‖dg ◦ (Id+f1)‖m−1,α, and using that ‖f1 − f2‖m,α ≤ (1 + 2R)‖f1 − f2‖β−α

m,α

for f1, f2 ∈ Bm,α(f0, R) , we may conclude (2.5). �

Proof of Corollary 2.9. This follows easily from Theorem 2.7, Theorem 2.8, and

g1 ◦ (Id+f1)− g2 ◦ (Id+f2) = f�
1 (g1 − g2) + (g2)�(f1)− (g2)�(f2). �

Proof of Theorem 2.10. By Theorem 2.8, the mapping (dg)� : Cm,α
b (Rd,Rd) →

Cm,α
b (Rd, L(Rd,Rd)), φ �→ dg ◦ (Id+φ) is continuous. Consider the mapping

l : Cm,α
b (Rd, L(Rd,Rd)) → L(Cm,α

b (Rd,Rd), Cm,α
b (Rd,Rd))

u �→ l(u)(η) := (x �→ u(x)(η(x))),

which is continuous and linear. We claim that d(g�) exists and satisfies d(g�) =
l ◦ (dg)�. This implies the proposition.

First note that for ψ0 ∈ Cm,α
b (Rd,Rd) and φ ∈ Cm,α

b (Rd,Rd),

(l ◦ (dg)�)(ψ0)(φ)(x) = dg ◦ (Id+ψ0)(x) · φ(x),
where · denotes the action of the linear map dg ◦ (Id+ψ0)(x) ∈ L(Rd,Rd) to the
vector φ(x) ∈ Rd.
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Take φ ∈ Cm,α
b (Rd,Rd) with ‖φ‖m,α ≤ 1. By Theorem 2.8 (applied to dg), for

ψ1 ∈ Bm,α(ψ0, 1),

(A.2) ‖(dg)�(ψ0)− (dg)�(ψ1)‖m,α ≤ M‖g‖m+1,β‖ψ0 − ψ1‖β−α
m,α .

For ε < 1 we have ψ0 + εφ ∈ Bm,α(ψ0, 1) for all φ ∈ Bm,α(0, 1). Now, by Proposi-
tion 2.6 and (A.2),

1

ε
‖g�(ψ0 + εφ)− g�(ψ0)− (l ◦ (dg)�)(ψ0)(εφ)‖m,α

=
1

ε
‖g ◦ (Id+ψ0 + εφ)− g ◦ (Id+ψ0)− ε(dg ◦ (Id+ψ0)) · φ‖m,α

=
∥∥∥ ∫ 1

0

(dg ◦ (Id+ψ0 + sεφ)− dg ◦ (Id+ψ0)) · φ ds
∥∥∥
m,α

≤
∫ 1

0

2‖dg ◦ (Id+ψ0 + sεφ)− dg ◦ (Id+ψ0)‖m,α‖φ‖m,α ds

≤
∫ 1

0

2M‖g‖m+1,β‖εsφ‖β−α
m,α ds

≤ 2M‖g‖m+1,βε
β−α,

which tends to 0 uniformly in φ ∈ Bm,α(0, 1) as ε → 0. The claim is proved. �

Proof of Corollary 2.11. Let γ(s) := (1−s)f1+sf2 for s ∈ [0, 1]. Using Lemma 2.3
and Theorem 2.10, we get

g�(f1)− g�(f2) =

∫ 1

0

d

ds
(g� ◦ γ)(s) ds =

∫ 1

0

d(g�)(γ(s)) · γ′(s) ds

=

∫ 1

0

dg ◦ (Id+γ(s)) · (f2 − f1) ds.

Thus, by Proposition 2.6 and Theorem 2.7,

‖g�(f1)− g�(f2)‖m,α

≤
∫ 1

0

‖dg ◦ (Id+γ(s)) · (f2 − f1)‖m,α ds

≤
∫ 1

0

M‖dg‖m,β(1 + ‖γ(s)‖m,α)
m+1‖f2 − f1‖m,α ds

≤ M‖g‖m+1,β(1 + max
i=1,2

‖fi‖m,α)
m+1‖f2 − f1‖m,α.

�
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of unbounded operators, Math. Ann. 353 (2012), no. 2, 519–522, DOI 10.1007/s00208-011-
0693-9. MR2915546

[19] Andreas Kriegl, Peter W. Michor, and Armin Rainer, The convenient setting for Denjoy-
Carleman differentiable mappings of Beurling and Roumieu type, Rev. Mat. Complut. 28
(2015), no. 3, 549–597, DOI 10.1007/s13163-014-0167-1. MR3379039

[20] Andreas Kriegl, Peter W. Michor, and Armin Rainer, An exotic zoo of diffeomorphism groups
on Rn, Ann. Global Anal. Geom. 47 (2015), no. 2, 179–222, DOI 10.1007/s10455-014-9442-0.
MR3313140

[21] A. Kriegl and L. D. Nel, A convenient setting for holomorphy (English, with French sum-
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