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ON COMPACT 3-MANIFOLDS WITH NONNEGATIVE SCALAR

CURVATURE WITH A CMC BOUNDARY COMPONENT

PENGZI MIAO AND NAQING XIE

Abstract. We apply the Riemannian Penrose inequality and the Riemann-
ian positive mass theorem to derive inequalities on the boundary of a class
of compact Riemannian 3-manifolds with nonnegative scalar curvature. The
boundary of such a manifold has a CMC component, i.e., a 2-sphere with
positive constant mean curvature; and the rest of the boundary, if nonempty,
consists of closed minimal surfaces. A key step in our proof is the construction
of a collar extension that is inspired by the method of Mantoulidis-Schoen.

1. Introduction and statement of results

In this paper, we are interested in a compact Riemannian 3-manifold Ω with
nonnegative scalar curvature, with boundary ∂Ω, such that ∂Ω has a component
Σo that is a topological 2-sphere with positive mean curvature. When ∂Ω \Σo �= ∅,
we assume that ∂Ω\Σo is the unique, closed minimal surface (possibly disconnected)
in Ω; i.e., there are no other closed minimal surfaces in Ω. In this case, we denote
∂Ω \ Σo by Σh. In a relativistic context, such an Ω represents a finite body in a
time-symmetric initial data set, surrounding the apparent horizon modeled by Σh.

Motivated by the quasi-local mass problem (cf. [18]), we want to understand
the effect of nonnegative scalar curvature and the existence of Σh on the boundary
geometry of Σo. To be more precise, let g denote the induced metric on Σo and
let H be the mean curvature of Σo in Ω. We want to understand the restriction
imposed by the scalar curvature and the horizon boundary Σh on the pair (g,H).

A special case of this question was studied in [15]. It was proved in [15] that

(Σo, g) is a round sphere ⇒
√

|Σo|
16π

[
1− 1

16π|Σo|

(∫
Σo

Hdσ

)2
]
≥
√

|Σh|
16π

,

where |Σo|, |Σh| are the area of Σo, Σh, respectively, and dσ denotes the area
element on Σo. The left side of the above inequality closely resembles the Hawking
mass [7] of Σo in Ω, given by

m
H
(Σo) =

√
|Σo|
16π

[
1− 1

16π

∫
Σo

H2 dσ

]
.
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The Hawking mass functional m
H
(·) played a key role in Huisken and Ilmanen’s

proof of the Riemannian Penrose inequality (cf. [2, 9]) when the horizon is con-
nected. In particular, by the results in [9], if a weak solution {Σt} consisting of con-
nected surfaces to the inverse mean curvature flow with initial condition Σh exists

in Ω and if Σo happens to be a leaf in {Σt}, then one would have m
H
(Σo) ≥

√
|Σh|
16π .

In general, without imposing suitable conditions on Σo, one should not expect

to have mH (Σo) ≥
√

|Σh|
16π since mH (Σo) may even fail to be positive. On the

other hand, if a 2-surface is a stable constant mean curvature (CMC) surface in a
3-manifold with nonnegative scalar curvature, Christodoulou and Yau [4] showed
that its Hawking mass is always nonnegative.

In this paper, we consider an Ω in which Σo is a CMC surface. We have

Theorem 1.1. Let Ω be a compact, orientable, Riemannian 3-manifold with bound-
ary ∂Ω. Suppose ∂Ω is the disjoint union of Σo and Σh such that

(a) Σo is a topological 2-sphere with constant mean curvature Ho > 0;
(b) Σh, which may have multiple components, is a minimal surface; and
(c) there are no other closed minimal surfaces in Ω.

Suppose Ω has nonnegative scalar curvature and the induced metric g on Σo has pos-
itive Gauss curvature. There exists a quantity 0 < η(g) ≤ ∞, uniquely determined
by (Σo, g) and invariant under scaling of g, such that if

W :=
1

16π

∫
Σo

H2
odσ < η(g),

then

(1.1)

√
|Σh|
16π

≤
[

W
η(g)−W

] 1
2

√
|Σo|
16π

+m
H
(Σo).

Here η(g) = ∞ if g is a round metric. In this case, (1.1) reduces to
√

|Σh|
16π ≤

m
H
(Σo).

Theorem 1.1 has the following analogue when ∂Ω = Σo.

Theorem 1.2. Let Ω be a compact, Riemannian 3-manifold with nonnegative scalar
curvature, with boundary Σo. Suppose Σo is a topological 2-sphere with constant
mean curvature Ho > 0. Suppose the induced metric g on Σo has positive Gauss
curvature. Let η(g) be the scaling invariant of (Σo, g) stated in Theorem 1.1. If

W :=
1

16π

∫
Σo

H2
odσ < η(g),

then

(1.2)

[
W

η(g)−W

] 1
2

√
|Σo|
16π

+m
H
(Σo) ≥ 0.

The quantity η(g) measures how far g is different from a round metric on Σo.
We will give its precise definition in Section 4. For now we give a few remarks on
Theorems 1.1 and 1.2.

Remark 1.1. For a fixed δ ∈ (0, 1), it is proved in Proposition 4.1 that

(1.3) η(g) ≥ C

||g − go||2C0,δ(Σo)
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for some positive constant C independent on g if g is C2,δ-close to a round metric
go on Σo. In particular, η(g) tends to ∞ as g approaches go in the C2,δ-norm. On
the other hand, given an Ω in Theorem 1.1, by Shi and Tam’s result [20, Theorem
1] (or, more precisely, by their proof), one has∫

Σo

Hodσ <

∫
Σo

H
E
dσ,

where H
E
is the mean curvature of the isometric embedding of Σo in R

3. Conse-
quently,

W < ω(g) :=
1

16π|Σo|

(∫
Σo

HEdσ

)2

.

Therefore, the condition W < η(g) is automatically satisfied if ω(g) ≤ η(g). By
(1.3), this is true if g is C2,δ-close to a round metric.

Remark 1.2. Given an Ω in Theorem 1.2, one knows thatW < η(g) always holds if g
is C2,δ-close to a round metric for the reason explained in Remark 1.1. Therefore,
inequality (1.2) is true for any CMC surface Σ bounding a compact 3-manifold
with nonnegative scalar curvature, provided the induced metric on Σ is sufficiently
round. This may be compared with the result of Christodoulou and Yau [4] which
gives m

H
(Σ) ≥ 0 under the extrinsic curvature condition.

Remark 1.3. On an asymptotically flat 3-manifoldM , there exist foliations by CMC
spheres near infinity (cf. [5, 8, 10, 13, 16, 22]). For instance, Nerz [16] obtained the
existence and uniqueness of such a foliation without assuming asymptotic symmetry
conditions. Let {Σσ}σ>σ0

be a foliation of CMC spheres near infinity of M and
suppose ∂M consists of outermost minimal surfaces. Let Ωσ be the region bounded
by Σσ and ∂M . Let gσ be the induced metric on Σσ. If M is C2,δ

τ -asymptotically
flat with decay rate τ > 1

2 , it follows from Nerz’s work (cf. [16, Proposition 4.4])

that, upon pulling back to S2, the rescaled metric g̃σ := σ−2gσ satisfies1

||g̃σ − g∗||C2,δ(S2) ≤ Cσ−τ

for some fixed round metric g∗ of area 4π and a constant C independent on σ.
Thus, along {Σσ}, W = 1 + O(σ−τ ) while η(gσ) → ∞ by (1.3). Hence, Theorem
1.1 is applicable to Ωσ for large σ. However, our estimate of η(g) in (1.3) is not

strong enough to imply
[

W
η(g̃σ)−W

] 1
2
√

|Σσ|
16π → 0 along {Σσ}. If this could be shown,

then one would recover the Riemannian Penrose inequality by taking the limit of
(1.1), since the Hawking mass m

H
(Σσ) approaches the ADM mass [1] along {Σσ}.

When ∂Ω = Σo ∪ Σh, we have another result separate from Theorem 1.1.

Theorem 1.3. Let Ω be a compact, orientable, Riemannian 3-manifold with bound-
ary ∂Ω. Suppose ∂Ω is the disjoint union of Σo and Σh such that

(a) Σo is a topological 2-sphere with constant mean curvature Ho > 0;
(b) Σh, which may have multiple components, is a minimal surface; and
(c) there are no other closed minimal surfaces in Ω.

1We thank Christopher Nerz for explaining this estimate along the CMC foliation.
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Suppose Ω has nonnegative scalar curvature and the induced metric g on Σo has
positive Gauss curvature. There exist constants 0 < βg ≤ 1 and αg ≥ 0, determined
by (Σo, g), such that if

W :=
1

16π

∫
Σo

H2
odσ <

βg

1 + αg
,

then

(1.4)

√
|Σh|
16π

≤
[(

αgW
βg − (1 + αg)W

) 1
2

+ 1

]
mH (Σo).

If g is a round metric, one can take βg = 1 and αg = 0. In this case, (1.4) reduces

to
√

|Σh|
16π ≤ m

H
(Σo).

Remark 1.4. Similar to η(g), the constants αg and βg also measure how far g is
different from a round metric. By the proof of Proposition 4.1 in Section 4, one
can take αg → 0 and βg → 1 as g approaches a round metric. As a result, suppose
Ω is normalized so that |Σo| = 4π and the mean curvature constant Ho satisfies

Ho < 2. Then the condition W <
βg

1+αg
is always met if g is sufficiently round.

Now we outline the idea of the proof of Theorems 1.1 – 1.3. When the intrinsic
metric g on Σo is round, Theorems 1.1 and 1.3 follow from [15], and Theorem 1.2
follows from [14,20]. Thus, the major case to prove is when g is not a round metric.
In this case, our proof is inspired by the work of Mantoulidis-Schoen [12]. Suppose
(Σo, g) is not isometric to a round sphere. We want to construct a collar extension
(N, γ) of Ω, where N = [0, 1]× Σo and γ is a suitably chosen metric, such that

a) γ has nonnegative scalar curvature;
b) the induced metric from γ on Σ0 := {0} ×Σo agrees with g, and the mean

curvature of Σ0 in (N, γ) equals the mean curvature Ho of Σo in Ω; and
c) the induced metric from γ on Σ1 := {1} × Σo is a round metric, and the

Hawking mass of Σ1 in (N, γ) is suitably controlled by the pair (g,Ho).

We then attach (N, γ) to Ω (see Figure 1) to obtain a manifold Ω̂ whose (outer)

boundary Σ1 is a round sphere with constant mean curvature. Though Ω̂ may not
be smooth across Σo, conditions a) and b) above ensure that the result in [15], which
itself was proved using the Riemannian Penrose inequality [2,9], can be applied to

Ω̂ to obtain

(1.5) m
H
(Σ1) ≥

√
|Σh|
16π

.

(If Σh = ∅, we apply the positive mass theorem [19,21] instead to have m
H
(Σ1) ≥ 0.)

This, combined with c), then implies the inequalities in Theorems 1.1 – 1.3.
In the construction of (N, γ), conditions on W are imposed so that γ has non-

negative scalar curvature and the introduction of η(g), αg, and βg makes use of
results from [12].

Remark 1.5. It is worth mentioning that the method described above indeed reveals
information of the boundary component Σo in the non-CMC case as well. Without
assuming that Σo is a CMC surface, Theorems 1.1 – 1.3 remain true if one lets
Ho = minΣo

H in the expressions of W and mH (Σo). With such a choice of Ho,
the mean curvature of Σo in Ω, which is H, dominates the mean curvature of Σ0
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Σh is minimal

Ω

Σo with a nonround g

Σ0 = Σo

N

Σ1 with a round g(1)

Figure 1. A neck N is attached to Ω.

in (N, γ), which is the constant Ho (cf. Figure 1). Therefore, by employing the

techniques in [14], one knows that (1.5) (or m
H
(Σ1) ≥ 0) still holds on Ω̂.

This paper is organized as follows. In Section 2, we construct a suitable collar
extension of Σo. In Section 3, we combine the collar extension and the Riemannian
Penrose inequality (or the Riemannian positive mass theorem) to draw conclusions
on ∂Ω. In Section 4, we give the definition and estimate of η(g) and prove Theorems
1.1 – 1.3. A comparison between inequalities (1.1) and (1.4) is included in an
appendix.

2. Collar extensions

In this section, we let {g(t)}t∈[0,1] be a fixed, smooth path of metrics on Σ = S2,
satisfying

(2.1) K(g(t)) > 0,

where K(·) denotes the Gauss curvature of a metric, and

(2.2) trg(t)g
′(t) = 0

for all t ∈ [0, 1], where trg(t)(·) is taking trace on (Σ, g(t)). Let |Σ|g(t) be the area
of (Σ, g(t)) which is a constant by (2.2). Let ro > 0 be the corresponding constant
given by

(2.3) |Σ|g(t) = 4πr2o.

We will be interested in a metric γ on N = [0, 1]× Σ of the form

γ = A2dt2 + E(t)g(t),

where A > 0 is a constant and E(t) > 0 is a function. To make a suitable choice of
E(t), we consider part of a spatial Schwarzschild metric

(2.4) γm =
1

1− 2m
r

dr2 + r2g∗

of mass m ≤ 1
2ro defined on [ro,∞)× S2. Here g∗ denotes the standard metric on

S2 of area 4π. We emphasize that we do allow m to be negative in (2.4).
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Making a change of variable

s =

∫ r

ro

(
1− 2m

r

)− 1
2

dr,

we rewrite γm as

γm = ds2 + u2
m(s)g∗,

where s ∈ [0,∞) and um(s) = r(s), which satisfies

(2.5) um(0) = ro, u′
m(s) =

(
1− 2m

um(s)

) 1
2

, u′′
m(s) =

m

um(s)2
.

Given any constants A > 0 and k ≥ 0, we define

(2.6) E(t) = r−2
o u2

m(Akt).

With such a choice of E(t), the mean curvature H(t) of Σt := {t}×Σ with respect
to γ is

H(t) = A−1E−1E′

= 2ku−1
m

(
1− 2m

um

) 1
2(2.7)

by (2.2) and (2.5). The Hawking mass, m
H
(Σt), of Σt in (N, γ) is

m
H
(Σt) =

√
|Σt|h(t)
16π

[
1− 1

16π

∫
Σt

H(t)2dσh(t)

]

=
1

2
um(Akt)(1− k2) +mk2,

(2.8)

where h(t) := E(t)g(t) and dσh(t) is the area element on (Σt, h(t)).
Next we consider the scalar curvature of γ, denoted by R(γ). Direct calculation

gives

R(γ) = 2K(h) +A−2

[
−trhh

′′ − 1

4
(trhh

′)2 +
3

4
|h′|2h

]
,

where, by (2.2),

trhh
′ = 2E−1E′,

|h′|2h = E−2
[
2(E′)2 + E2|g′|2g

]
,

trhh
′′ = 2E−1E′′ + trgg

′′,

and

0 = [(trgg
′)]′ = trgg

′′ − |g′|2g.

Hence,

R(γ) = E−12K(g) +A−2

[
−1

4
|g′|2g − 2E−1E′′ +

1

2
E−2(E′)2

]
.(2.9)
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Plugging in E(t) = r−2
o u2

m(Akt) and using (2.5), we have

A−2

[
−2E−1E′′ +

1

2
E−2(E′)2

]
= k2

[
−2u−2

m (u′
m)2 − 4u−1

m u′′
m

]
= k2

[
−2u−2

m

(
1− 2m

um

)
− 4u−3

m m

]
= − k22u−2

m .

(2.10)

Therefore, it follows from (2.9) and (2.10) that

R(γ) = r2ou
−2
m 2K(g)− k22u−2

m − 1

4
A−2|g′|2g

= 2u−2
m

[
r2oK(g)− k2 − u2

mA−2 1

8
|g′|2g

]
.

(2.11)

Now we define two quantities associated to the path {g(t)}t∈[0,1]:

(2.12) β := min
t∈[0,1],x∈Σ

r2oK(g(t))(x)

and

(2.13) α := max
t∈[0,1],x∈Σ

1

4
|g′|2g(t, x).

Clearly, α = 0 if and only if {g(t)}t∈[0,1] is a constant path. Moreover, by the
Gauss-Bonnet theorem and (2.3),

(2.14)

∫
Σ

r2oK(g(t))dσg(t) = 4πr2o =

∫
Σ

1dσg(t), ∀ t.

Therefore,

(2.15) β ≤ 1, and β = 1 ⇐⇒ r2oK(g(t))(x) = 1, ∀ t, x.

In terms of β and α, it follows from (2.11) that

R(γ) ≥ 2u−2
m

[
β − k2 − 1

2
u2
mA−2α

]
.(2.16)

To further estimate R(γ), we consider the cases of m < 0 and m ≥ 0 separately.

Case 1 (m < 0). In this case, (2.5) and the fact that um(s) ≥ ro imply that

(2.17) u′
m(s) ≤

(
1− 2m

ro

) 1
2

,

and therefore

(2.18) um(s) ≤ ro +

(
1− 2m

ro

) 1
2

s.

Hence, by (2.16) and (2.18),

R(γ) ≥ 2u−2
m

⎧⎨
⎩β − k2 − 1

2

[(
1− 2m

ro

) 1
2

kt+ roA
−1

]2
α

⎫⎬
⎭

≥ 2u−2
m

{
β − k2 −

[(
1− 2m

ro

)
k2 + (roA

−1)2
]
α

}
.

(2.19)
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Case 2 (m ≥ 0). In this case, (2.5) implies that u′
m(s) ≤ 1 and

(2.20) um(s) ≤ ro + s.

Therefore, by (2.16) and (2.20),

R(γ) ≥ 2u−2
m

[
β − k2 − 1

2

(
kt+ roA

−1
)2

α

]
≥ 2u−2

m

[
β − k2 −

(
k2 + r2oA

−2
)
α
]
.

(2.21)

We are led to the following proposition.

Proposition 2.1. Given a smooth path of metrics {g(t)}t∈[0,1] on Σ satisfying (2.1)
and (2.2), let ro, β, and α be the constants defined by (2.3), (2.12), and (2.13),
respectively. Suppose α > 0; i.e., {g(t)}t∈[0,1] is not a constant path. Let m ≤ 1

2ro
and k ≥ 0 be two constants satisfying

(2.22) β −
[
1 +

(
1− 2m

ro

)
α

]
k2 > 0 if m < 0,

or

(2.23) β − (1 + α)k2 > 0, if m ≥ 0.

Let Ao > 0 be the constant given by

(2.24) Ao = ro

⎡
⎣ α

β −
[
1 +

(
1− 2m

ro

)
α
]
k2

⎤
⎦

1
2

if m < 0,

or

(2.25) Ao = ro

[
α

β − (1 + α)k2

] 1
2

if m ≥ 0.

Let um(s) be the function defined by (2.5). Then, for any constant A ≥ Ao, the
metric

(2.26) γ = A2dt2 + r−2
o u2

m(Akt)g(t)

on N = [0, 1]× Σ satisfies

(i) R(γ) ≥ 0, where R(γ) is the scalar curvature of γ;
(ii) the induced metric on Σ0 := {0}×Σ is g(0), and the mean curvature of Σ0

is H(0) = 2kr−1
o (1− 2m

ro
)

1
2 ; and

(iii) Σt := {t} × Σ has positive constant mean curvature for each t, and its
Hawking mass is

m
H
(Σt) =

1

2
[um(Akt)− ro] (1− k2) +m

H
(Σ0).

Proof. (i) is a direct corollary of (2.19) and (2.21). (ii) follows from (2.7) and the
fact that um(0) = ro. (iii) is implied by (2.7) and (2.8). �

Remark 2.1. In Proposition 2.1, one indeed has R(γ) > 0 on [0, 1) × Σ. This
is because in both (2.19) and (2.21), the second inequality is a strict inequality
unless t = 1. Now suppose g(1) is a round metric and g(0) is not round. Then
r2oK(g(1)) = 1 and β < 1 by (2.15). Thus, by (2.11), the inequality in (2.16) is
strict at t = 1. Therefore, in this case, R(γ) > 0 everywhere on N .
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Remark 2.2. When α = 0, by (2.16), it suffices to require β ≥ k2 for γ to have
R(γ) ≥ 0. In particular, if {g(t)}t∈[0,1] consists of a fixed round metric and k2 =
β = 1, then γ reduces to the Schwarzschild metric γm.

3. Application

In this section, we let Ω be a compact Riemannian 3-manifold with the following
properties:

• Ω has nonnegative scalar curvature;
• ∂Ω is the disjoint union of Σo and Σh, where Σo is a topological 2-sphere
and Σh, if nonempty, is the unique, closed minimal surface (possibly dis-
connected) in Ω;

• the mean curvature of Σo in Ω is a positive constant Ho; and
• there exists a smooth path of metrics {g(t)}t∈[0,1] on Σ := Σo satisfying
(2.1) and (2.2) such that g(0) = g, which is the induced metric on Σ from
Ω, and g(1) is a round metric.

We will apply a suitable collar extension constructed in Proposition 2.1 and the
Riemannian Penrose inequality (or the positive mass theorem) to draw information
on the geometry of Σo.

First, we consider a result obtained by applying Proposition 2.1 with parameters
m < 0. In this case, we impose a condition

(3.1)

(
1

4
H2

o r
2
o

)
α < β

on Σo, where ro is the area radius of (Σo, g) and β, α are the constants, associated
to the path {g(t)}t∈[0,1], defined in (2.12), (2.13), respectively.

Theorem 3.1. If (3.1) holds, then

(3.2)
1

2
ro

[ 1
4H

2
o r

2
oα

β − 1
4H

2
o r

2
oα

] 1
2

+mH (Σo) ≥
√

|Σh|
16π

.

Proof. If α = 0, then g is a round metric. In this case, the claim reduces to

m
H
(Σo) ≥

√
|Σh|
16π , which follows from [15, Theorem 1]. Therefore, it suffices to

consider the case in which g is not round, i.e., α > 0.
We will construct a suitable metric γ on N = Σ × [0, 1] and attach (N, γ) to Ω

along Σo. To do so, note that (3.1) implies there are constants m < 0 satisfying

(3.3) β − 1

4
H2

o r
2
oα− 1

4
H2

o r
2
o

(
1− 2m

ro

)−1

> 0.

For any such m, define

(3.4) k =
1

2
Horo

(
1− 2m

ro

)− 1
2

.

Then (3.3) gives

(3.5) β −
[
1 +

(
1− 2m

ro

)
α

]
k2 > 0.
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Now let

(3.6) Ao = ro

⎡
⎣ α

β −
[
1 +

(
1− 2m

ro

)
α
]
k2

⎤
⎦

1
2

and consider the metric

(3.7) γ = A2
odt

2 + r−2
o u2

m(Aokt)g(t)

on N . Let Σt := {t}×Σ. It follows from (3.5), (3.6), and Proposition 2.1 that (N, γ)
has nonnegative scalar curvature, each Σt has positive constant mean curvature,
the induced metric from γ on Σ0 agrees with g, the mean curvature H(0) of Σ0

equals Ho, and the Hawking mass of Σ1 in (N, γ) and the Hawking mass of Σo in
Ω are related by

m
H
(Σ1) =

1

2
[um(Aok)− ro] (1− k2) +m

H
(Σ0).(3.8)

Now we glue (N, γ) and Ω along their common boundary component Σ0 = Σo

to obtain a Riemannian manifold Ω̂. The metric ĝ on Ω̂ is Lipschitz across Σo and
smooth everywhere else, it has nonnegative scalar curvature away from Σo, and the
mean curvature of Σo from both sides in Ω̂ agree. Moreover, ∂Ω̂ = Σh ∪ Σ1 where
Σ1 is isometric to a round sphere and has constant mean curvature. Therefore,
applying the mollification method used in [14,15] which smooths out the corner of

ĝ at Σo, we know that [15, Theorem 1] applies to Ω̂ to give

(3.9) m
H
(Σ1) ≥

√
|Σh|
16π

.

(A more precise and direct way to derive (3.9) is as follows. Since Σ1 is both round

and has constant mean curvature, we can again attach to Ω̂, along Σ1, a manifold
N∞ =

(
[r1,∞)× S2, γm

)
with 4πr21 = |Σ1|, γm given by (2.4) and m = m

H
(Σ1).

Indeed, N∞ is the region that is exterior to a rotationally symmetric sphere with
area |Σ1| in the spatial Schwarzschild manifold whose mass is mH (Σ1). We denote

the resulting manifold by M̂ , which consists of three pieces: Ω, N , and N∞. The
metric on M̂ satisfies the mean curvature matching condition across both Σo and
Σ1. Therefore, one can repeat the same proof in [15], starting from Lemma 3 on
page 278 and ending at equation (47) on page 280, to conclude that the Riemannian

Penrose inequality still holds on such an M̂ , which proves (3.9).)
To proceed, we note that (3.8) and (3.9) imply that

(3.10)
1

2
[um(Aok)− ro] (1− k2) +mH (Σo) ≥

√
|Σh|
16π

.

By (3.5) and (2.15),

(3.11) k2 < β ≤ 1,

and, by (2.18),

um(Aok)− ro ≤
(
1− 2m

ro

) 1
2

Aok

=
1

2
HoroAo.

(3.12)
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Therefore, (3.10) – (3.12) imply that

(3.13)
1

4
HoroAo(1− k2) +m

H
(Σo) ≥

√
|Σh|
16π

,

where

1

4
HoroAo =

1

2
ro

[
1
4H

2
o r

2
oα(

β − 1
4H

2
o r

2
oα
)
− k2

] 1
2

.(3.14)

In summary, we have proved that

(3.15)
1

2
ro

[
1
4H

2
o r

2
oα(

β − 1
4H

2
o r

2
oα
)
− k2

] 1
2

(1− k2) +mH (Σo) ≥
√

|Σh|
16π

for any m < 0 satisfying (3.3).
To obtain a result that does not involve m or k, we can let m → −∞ and (3.4)

shows that

(3.16) lim
m→−∞

k = 0.

It follows from (3.15) and (3.16) that

(3.17)
1

2
ro

[ 1
4H

2
o r

2
oα

β − 1
4H

2
o r

2
oα

] 1
2

+mH (Σo) ≥
√

|Σh|
16π

,

which proves the theorem. �

Remark 3.1. If Σh = ∅, i.e., if Ω is merely a compact 3-manifold with nonnegative
scalar curvature, with boundary ∂Ω = Σo, then replacing the Riemannian Penrose
inequality by the Riemannian positive mass theorem in the proof, one has m

H
(Σ1) ≥

0 (cf. [14, 20]). In this case, the result becomes

(3.18)
1

2
ro

[ 1
4H

2
o r

2
oα

β − 1
4H

2
o r

2
oα

] 1
2

+m
H
(Σo) ≥ 0.

Next, we consider a corresponding result obtained by applying Proposition 2.1
with parameters m ≥ 0. In this case, we assume a condition

(3.19)
1

4
H2

o r
2
o <

β

1 + α
.

Theorem 3.2. Suppose (3.19) holds. Given any constant m ∈
[
0, 1

2ro
)
satisfying

(3.20)
1

4
H2

o r
2
o <

β

1 + α

(
1− 2m

ro

)
,

define

(3.21) k =
1

2
Horo

(
1− 2m

ro

)− 1
2

, Ao = ro

[
α

β − (1 + α) k2

] 1
2

.

Then

1

2
Aok(1− k2) +m

H
(Σo) ≥

√
|Σh|
16π

.
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In particular, if one chooses m = 0, then

(3.22)

[
α
(
1
4H

2
o r

2
o

)
β − (1 + α)

(
1
4H

2
o r

2
o

)
] 1

2

m
H
(Σo) +m

H
(Σo) ≥

√
|Σh|
16π

,

and consequently

(3.23)

[
1
4H

2
o r

2
o

β
(1+α) −

1
4H

2
o r

2
o

] 1
2

mH (Σo) +mH (Σo) ≥
√

|Σh|
16π

.

Proof. Again, it suffices to assume α > 0. By (3.20) and (3.21),

β − (1 + α) k2

= β − (1 + α)
1

4
H2

o r
2
o

(
1− 2m

ro

)−1

> 0.

(3.24)

Consider the metric

γ = A2
odt

2 + r−2
o u2

m(Aokt)g(t)

on N = [0, 1]×Σ. Let Σt := {t}×Σ. It follows from (3.21), (3.24), and Proposition
2.1 that (N, γ) has nonnegative scalar curvature, the induced metric from γ on Σ0

agrees with g, the mean curvature H(0) of Σ0 equals Ho, and the Hawking mass of
Σ1 in (N, γ) and the Hawking mass of Σo in Ω are related by

m
H
(Σ1) =

1

2
[um(Aok)− ro] (1− k2) +m

H
(Σo).(3.25)

Attaching (N, γ) to Ω, we have

(3.26) m
H
(Σ1) ≥

√
|Σh|
16π

by the reason explained in the proof of Theorem 3.1. It follows from (3.25) and
(3.26) that

(3.27)
1

2
[um(Aok)− ro] (1− k2) +m

H
(Σo) ≥

√
|Σh|
16π

.

Again, since β ≤ 1, (3.24) implies that k2 < 1. Also, (2.20) shows that

um(Aok)− ro ≤ Aok.

Therefore, (3.27) implies that

(3.28)
1

2
Aok(1− k2) +mH (Σo) ≥

√
|Σh|
16π

,

where

(3.29) Aok = ro

[
αk2

β − (1 + α) k2

] 1
2

.

Thus, we have proved that

(3.30)
1

2
ro

[
αk2

β − (1 + α) k2

] 1
2

(1− k2) +m
H
(Σo) ≥

√
|Σh|
16π

for any m ∈ [0, 1
2ro) satisfying (3.20).
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To obtain a result that does not involve m or k, we can take m = 0. In this case,
k = 1

2Horo and (3.30) becomes

[
α 1

4H
2
o r

2
o

β − (1 + α) 1
4H

2
o r

2
o

] 1
2

mH (Σo) +mH (Σo) ≥
√

|Σh|
16π

,(3.31)

which proves (3.22). Inequality (3.23) follows from (3.22) simply by the fact that
α

1+α ≤ 1. This completes the proof. �

Remark 3.2. In the derivation of Theorems 3.1 and 3.2, besides taking m = −∞
and m = 0, one can minimize the first term in (3.15) and (3.30), subject to the
constraint m satisfies (3.3) and (3.20), respectively. We leave this calculation in
Appendix A.

Remark 3.3. If g is not a round metric, i.e., α > 0, the collar (N, γ) that we attached
to Ω indeed has strictly positive scalar curvature by Remark 2.1. Therefore, by
the rigidity statement of the Riemannian Penrose inequality, one naturally would
expect that inequalities in (3.10) and (3.27) are indeed strict. Therefore, equalities
in Theorems 3.1 and 3.2 should hold only if α = 0, i.e., when g is a round metric
on Σo. However, we do not have a rigorous proof of this claim.

4. Definition of η(g)

In this section, we define the quantity η(g) and prove Theorems 1.1 – 1.3. Given
a metric g with positive Gauss curvature on Σ = S2, let {h(t)}t∈[0,1] denote a
smooth path of metrics on Σ such that

(i) h(0) is isometric to g and h(1) is a round metric;
(ii) h(t) has positive Gauss curvature, i.e., K(h(t)) > 0, ∀ t; and

(iii’) |Σ|h(t) = |Σ|g, i.e., the area of (Σ, h(t)) is a constant, ∀ t.

There are various ways to construct such a path. For instance, one may apply the
uniformization theorem to write g = e2wgo for some function w and a round metric
go and to define h(t) = e2(1−t)wgo (cf. [17]), followed by an area normalization.

Given such a path {h(t)}t∈[0,1], applying the proof of Lemma 1.2 in [12] to
{h(t)}t∈[0,1], one can construct a new path of metrics {g(t)}t∈[0,1] satisfying (i) and
(ii), with h(t) replaced by g(t), together with the following property that is stronger
than (iii’):

(iii) d
dtdσg(t) = 0 or equivalently trg(t)g

′(t) = 0, ∀ t. Here dσg(t) is the area form
of g(t).

We include this construction of {g(t)}t∈[0,1] by Mantoulidis and Schoen in the
lemma below for the purpose of later obtaining estimates on η(g).

Lemma 4.1 ([12]). Given {h(t)}t∈[0,1] satisfying (i), (ii), and (iii’) above, there
exists {g(t)}t∈[0,1] satisfying (i), (ii), and (iii).

Proof. Let∇h(t), Δh(t) denote the gradient, the Laplacian on (Σ, h(t)), respectively.
Given a 1-parameter family of diffeomorphisms {φt} on Σ, define g(t) := φ∗

t (h(t)).
Then

(4.1) g′(t) = φ∗
t (h

′(t)) + φ∗
t (LXh(t)) ,

(4.2) trg(t)g
′(t) = φ∗

t

(
trh(t) (h

′(t) + LXh(t))
)
,
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where X = X(x, t) is the vector field satisfying d
dtφt = X(φt, t) and L denotes the

Lie derivative on Σ. Thus, to satisfy (iii), it suffices to demand trh(t)LXh(t) =
−trh(t)h

′(t), i.e.,

(4.3) divh(t)X = −1

2
trh(t)h

′(t).

A way to pick such an X is to assume that X = ∇h(t)u for some function u = u(x, t)
satisfying

(4.4) Δh(t)u = −1

2
trh(t)h

′(t) and

∫
Σ

u dσh(t) = 0.

Since ∫
Σ

trh(t)h
′(t)dσh(t) = 0

by (iii’), (4.4) has a unique solution u that depends smoothly on t whenever h(t) is
smooth on t. This finishes the proof. �

Given any smooth path {g(t)}t∈[0,1] with properties (i), (ii), and (iii), let

β{g(t)} := min
t∈[0,1],x∈Σ

1

4π
|Σ|g(t)K(g(t))(x)

and

α{g(t)} := max
t∈[0,1],x∈Σ

1

4
|g′|2g(t, x),

where |g′|2g denotes the square norm of g′(t) with respect to g(t).

Definition 4.1. Given a metric g with positive Gauss curvature on Σ = S2, define

η(g) := sup
{g(t)}

β{g(t)}
α{g(t)}

,

where the supremum is taken over all paths {g(t)}t∈[0,1] satisfying (i), (ii), and (iii).
Similarly, one may also define

κ(g) := sup
{g(t)}

β{g(t)}
1 + α{g(t)}

.

Clearly, η(g) and κ(g) satisfy

0 < η(g) ≤ ∞ and 0 < κ(g) ≤ 1,

where the second inequality follows from (2.15). Moreover, for constant c > 0, it is
straightforward to check that

(4.5) η(c2g) = η(g) and κ(c2g) = κ(g).

If g = go is a round metric, by taking {g(t)} to be a constant path, one has
α{g(t)} = 0 and β{g(t)} = 1; hence

(4.6) η(go) = ∞ and κ(go) = 1.

Below, we give a lower bound of η(g) and κ(g) for g that is close to a round metric.
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Proposition 4.1. Let g∗ be the standard metric of area 4π on Σ = S2. There
exists a constant ε0 > 0 such that if ||g − g∗||C2,δ(Σ) < ε0, then

(4.7) η(g) ≥ C

||g − g∗||2C0,δ(Σ)

and κ(g) ≥ 1− C||g − g∗||C2,δ(Σ).

Here C is some positive constant that is independent on g, and || · ||Ck,δ(Σ) is the

Ck,δ norm on (Σ, g∗) for an integer k ≥ 0 and a constant δ ∈ (0, 1).

Proof. Given any ε > 0, let Uε be the set of metrics g satisfying ||g−g∗||C2,δ(Σ) < ε.
First, choose a small ε0 so that elements in Uε0 all have positive Gauss curvature.

Given any g ∈ Uε0 , let τ = g − g∗. Then ||τ ||C2,δ(Σ) < ε0. For each t ∈ [0, 1],

define h̃(t), a(t), and h(t), respectively, by

(4.8) h̃(t) = g∗ + (1− t)τ, |Σ|h̃(t) = a(t)|Σ|g, h(t) = a−1(t)h̃(t).

Then |Σ|h(t) = a−1(t)|Σ|h̃(t) = |Σ|g. Hence, {h(t)}t∈[0,1] is a path satisfying prop-

erties (i), (ii), and (iii’). Moreover,

(4.9) ||h̃(t)− g∗||C2,δ(Σ) ≤ ||τ ||C2,δ(Σ), |a(t)− 1| ≤ C1||τ ||C2,δ(Σ),

and

||h(t)− g∗||C2,δ(Σ)

= ||a−1(t)(1− t)τ + (a−1(t)− 1)g∗||C2,δ(Σ)

≤ C2||τ ||C2,δ(Σ).

(4.10)

Here and below, C1, C2, . . . always denote constants that do not depend on τ
and t.

Now let {g(t)}t∈[0,1] be the path of metrics constructed from {h(t)}t∈[0,1] in the
proof of Lemma 4.1. It follows from (4.10) and the fact that g(t) = φ∗

t (h(t)) that

(4.11) β{g(t)} =
|Σ|g
4π

min
t∈[0,1],x∈Σ

K(h(t))(x) ≥ 1− C3||τ ||C2,δ(Σ).

We next estimate α{g(t)}. By (4.1), g′(t) = φ∗
t (H(t)), where

H(t) = h′(t) + LXh(t).

Hence, |g′|2g = φ∗
t (|H|2h). Therefore,

α{g(t)} = max
t∈[0,1],x∈Σ

1

4
|H|2h(t, x)

≤ max
t∈[0,1],x∈Σ

1

2

[
|h′|2h + |LXh(t)|2h

]
(t, x).

(4.12)

Plugging in X = ∇h(t)u, we have

(4.13) LXh(t) = 2∇2
h(t)u,

where ∇2
h(t) denotes the Hessian on (Σ, h(t)). By (4.4), (4.10), and the standard

linear elliptic estimates, we have

(4.14) ||u||C2,δ(Σ) ≤ C4||trh(t)h′(t)||C0,δ(Σ).

Therefore, by (4.13) and (4.14),

(4.15) |LXh(t)|h ≤ C5||trh(t)h′(t)||C0,δ(Σ).



5902 PENGZI MIAO AND NAQING XIE

It follows from (4.12) and (4.15) that

(4.16) α{g(t)} ≤ max
t∈[0,1],x∈Σ

1

2
|h′|2h(t, x) + max

t∈[0,1]
C6||trh(t)h′(t)||2C0,δ(Σ).

By (4.8), we have

(4.17) trh(t)h
′(t) = −2a−1a′ − trh̃(t)τ,

|h′|2h = 2a−2(a′)2 + |τ |2
h̃
+ 2a−1a′trh̃(t)τ,(4.18)

(4.19) a′(t) = − 1

2|Σ|g

∫
Σ

trh̃(t)τdσh̃(t).

Thus, by (4.9) and (4.17) – (4.19), we have

(4.20) |h′|2h ≤ C7||τ ||2C0(Σ) and ||trh(t)h′(t)||2C0,δ(Σ) ≤ C8||τ ||2C0,δ(Σ).

Finally, by (4.16) and (4.20), we conclude that

(4.21) α{g(t)} ≤ C9||τ ||2C0,δ(Σ).

Estimate (4.7) then follows readily from (4.11) and (4.21). �

We now give the proof of Theorems 1.1 – 1.3.

Proof of Theorems 1.1 and 1.2. It suffices to assume that g is not a round metric.
Let {g(j)(t)}t∈[0,1], j = 1, 2, . . ., be a sequence of paths of metrics satisfying (i), (ii),
and (iii), such that

β{g(j)(t)}
α{g(j)(t)}

→ η(g), as j → ∞.

Suppose W < η(g). Then

W <
β{g(j)(t)}
α{g(j)(t)}

, for large j.

For these j, by Theorem 3.1 and Remark 3.1,

1

2
ro

[
W

α{g(j)(t)}
−1β{g(j)(t)} −W

] 1
2

+m
H
(Σo) ≥

√
|Σh|
16π

when Σh �= ∅,

and

1

2
ro

[
W

α{g(j)(t)}
−1β{g(j)(t)} −W

] 1
2

+mH (Σo) ≥ 0 when ∂Ω = Σo.

Taking j → ∞, Theorems 1.1 and 1.2 follow. �

Proof of Theorem 1.3. Assume that g is not a round metric. Pick any path
{g(t)}t∈[0,1] used in Section 3 and choose αg, βg to be α, β associated to that path,
respectively. Theorem 1.3 then follows directly from (3.22) in Theorem 3.2. �

It would be desirable to improve Theorem 1.3 in a way that Theorem 1.1 is
proved from Theorem 3.1. However, due to the fact that (3.22) involves both β

1+α

and α
1+α , we can only replace β

1+α by κ(g) at the expense of giving up α
1+α . We

record the following theorem.
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Theorem 4.1. Let Ω be a compact, orientable, Riemannian 3-manifold with bound-
ary ∂Ω. Suppose ∂Ω is the disjoint union of Σo and Σh such that

(a) Σo is a topological 2-sphere with constant mean curvature Ho > 0;
(b) Σh, which may have multiple components, is a minimal surface; and
(c) there are no other closed minimal surfaces in Ω.

Suppose Ω has nonnegative scalar curvature and the induced metric g on Σo has
positive Gauss curvature. Let 0 < κ(g) ≤ 1 be the scaling invariant of (Σo, g)
defined in Definition 4.1. If

W :=
1

16π

∫
Σo

H2
odσ < κ(g),

then

(4.22)

√
|Σh|
16π

≤
[(

W
κ(g)−W

) 1
2

+ 1

]
mH (Σo).

Proof. If g is round, we have
√

|Σh|
16π ≤ m

H
(Σo); in particular (4.22) holds. So we

assume that g is not a round metric. Similar to the proof of Theorem 1.1 above,
let {g(j)(t)}t∈[0,1], j = 1, 2, . . ., be a sequence of paths of metrics satisfying (i), (ii),
and (iii), with

β{g(j)(t)}
1 + α{g(j)(t)}

→ κ(g) as j → ∞.

Suppose W < κ(g). Then

W <
β{g(j)(t)}

1 + α{g(j)(t)}
for large j.

For these j, by (3.23) in Theorem 3.2,

(4.23)

⎡
⎢⎣ W

β{g(j)(t)}
1+α{g(j)(t)}

−W

⎤
⎥⎦

1
2

m
H
(Σo) +m

H
(Σo) ≥

√
|Σh|
16π

.

Taking j → ∞, Theorem 4.1 follows. �

To end this paper, we remark that, besides employing the construction of Man-
toulidis and Schoen in Lemma 4.1, there are other methods to obtain {g(t)}t∈[0,1]

satisfying (i), (ii), and (iii) used in Definition 4.1. For instance, one may apply
Hamilton’s modified Ricci flow [6] on closed surfaces. Using results from [3,6], Lin
and Sormani [11] introduced a concept of asphericity mass for a CMC surface nor-
malized to have area 4π and used it to obtain upper bounds of the surface’s Bartnik
mass. It would be interesting to understand the relation between η(g) or κ(g) and
the asphericity mass, since they are all determined solely by the intrinsic metric on
the surface. It is also conceivably possible that the modified Ricci flow [6] may be
used to obtain refined estimates of η(g) and κ(g). We leave these for the interested
reader.
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Appendix A

In this appendix, we give the calculation, stated in Remark 3.2, which minimizes
the left side of (3.15) and (3.30), subject to the condition m satisfies (3.3) and
(3.20), respectively.

We first consider the context of Theorem 3.2. Suppose α > 0. Let W = 1
4H

2
o r

2
o

and define

(A.1) κ :=
β

1 + α
∈ (0, 1).

Condition (3.19) becomes W < κ, and the constraint (3.20) is

(A.2) W < κ

(
1− 2m

ro

)
, m ∈ [0,

1

2
ro).

The quantity that we want to minimize is

Φ :=
1

2
ro

[
αk2

β − (1 + α) k2

] 1
2

(1− k2)

=
1

2
ro

(
α

1 + α

) 1
2
[

x

κ− x

] 1
2

(1− x),

(A.3)

where x := k2 = W
(
1− 2m

ro

)−1

. In terms of x, the constraint (A.2) translates into

W ≤ x < κ. The solution to this calculus problem can be derived by considering

(A.4) f(x) :=

(
x

κ− x

)
(1− x)2,

whose derivative is f ′(x) = (1−x)
(κ−x)2

(
2x2 − 3κx+ κ

)
. We therefore have

Theorem 3.2’. In the setting of Theorem 3.2, suppose α > 0 and let κ be given

by (A.1). Then minW≤x<κ Φ(x) +m
H
(Σo) ≥

√
|Σh|
16π , where

(a) if κ ≤ 8
9 or if κ > 8

9 and x2 := 3κ+
√
9κ2−8κ
4 ≤ W, then minW≤x<κ Φ(x) =

Φ|x=W ;

(b) if κ > 8
9 and x1 := 3κ−

√
9κ2−8κ
4 ≤ W < x2, then minW≤x<κ Φ(x) = Φ|x=x2

;

(c) if κ > 8
9 and W < x1, then minW≤x<κ Φ(x) = min {Φ|x=W , Φ|x=x2

} . In
particular, since Φ|x=x2

is determined only by α and β, minW≤x<κ Φ(x) =
Φ|x=W for small W.

Here x1, x2 ∈ (0, κ) are the roots to 2x2 − 3κx+ κ = 0, and

Φ|x=W = Φ|m=0 =

[
α 1

4H
2
o r

2
o

β − (1 + α) 1
4H

2
o r

2
o

] 1
2

m
H
(Σo).

Next we consider the context of Theorem 3.1. Suppose α > 0. Define

(A.5) b := β − αW ∈ (0, 1),

where W = 1
4H

2
o r

2
o. The condition (3.1) becomes b > 0, and the constraint (3.3) is

(A.6) b > W
(
1− 2m

ro

)−1

, m < 0.
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The quantity that we want to minimize is

Ψ :=
1

2
ro

[
αW

(β − αW)− k2

] 1
2

(1− k2)

=
1

2
ro (αW)

1
2

[
1

b− x

] 1
2

(1− x),

(A.7)

where x := k2 = W
(
1− 2m

ro

)−1

. There are two cases to consider when interpreting

the constraint. If b < W , (A.6) translates into 0 < x < b. If W ≤ b, (A.6) translates
into 0 < x < W . In either case, the solution to this calculus problem can be derived
by considering

(A.8) f̃(x) :=

(
1

b− x

)
(1− x)2,

whose derivative is f̃ ′(x) = (1−x)
(b−x)2 [x− (2b− 1)] . We therefore have

Theorem 3.1’. In the setting of Theorem 3.1, suppose α > 0 and let b be given by
(A.5).

(1) If b < W, then min0<x<b Ψ+m
H
(Σo) ≥

√
|Σh|
16π , where

(a) if b ≤ 1
2 , min0<x<b Ψ = Ψ|x=0+;

(b) if b > 1
2 , min0<x<b Ψ(x) = Ψ|x=2b−1.

(2) If W ≤ b, then min0<x<W Ψ+mH (Σo) ≥
√

|Σh|
16π , where

(a) if b ≤ 1
2 , min0<x<W Ψ = Ψ|x=0+;

(b) if 1
2 < b < 1+W

2 , min0<x<W Ψ(x) = Ψ|x=2b−1;

(c) if b ≥ 1+W
2 , min0<x<W Ψ(x) = Ψ|x=W−.

Here

Ψ|x=0+ := lim
x→0+

Ψ = lim
m→−∞

Ψ =
1

2
ro

[ 1
4H

2
o r

2
oα

β − 1
4H

2
o r

2
oα

] 1
2

,

and

Ψ|x=W− := lim
x→W−

Ψ = lim
m→0−

Ψ =

[
α 1

4H
2
o r

2
o

β − (1 + α) 1
4H

2
o r

2
o

] 1
2

m
H
(Σo).

It follows from Theorem 3.1’ and Theorem 3.2’(2) that if W < β
1+α , there are

cases, depending on W , α, and β, in which the optimal values of Φ and Ψ both
occur at m = 0 and they agree.
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