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QUOTIENTS OF DEL PEZZO SURFACES

OF HIGH DEGREE

ANDREY TREPALIN

Abstract. In this paper we study quotients of del Pezzo surfaces of degree
four and more over arbitrary field k of characteristic zero by finite groups of
automorphisms. We show that if a del Pezzo surface X contains a point defined
over the ground field and the degree of X is at least five, then the quotient is
always k-rational. If the degree of X is equal to four, then the quotient can
be non-k-rational only if the order of the group is 1, 2, or 4. For these groups
we construct examples of non-k-rational quotients.

1. Introduction

In this paper we study a question about rationality of quotients of del Pezzo sur-
faces over arbitrary field k of characteristic zero by finite groups of automorphisms.
We say that a surface S is k-rational if there exists a birational map S ��� P2

k

defined over k. If for the algebraic closure k of k such a map defined over k exists
for a surface S = S⊗k k and P2

k
, we say that S is rational. Note that in many other

papers, for these notions the authors use terms rational surface and geometrically
rational surface respectively.

Let k be any field of characteristic zero. We want to know when quotients of k-
rational surfaces by finite groups are k-rational. From results of the G-equivariant
minimal model program we know that any quotient of a k-rational surface is bi-
rationally equivalent to a quotient of a conic bundle or a del Pezzo surface by the
same group (see [Isk79, Theorem 1]).

In [Tr16] it was shown that non-k-rational quotients of k-rational surfaces form a
birationally unbounded family. But all examples considered in [Tr16] are quotients
of conic bundles.

In [Tr14] it was shown that any quotient of the projective plane (which is a del
Pezzo surface of degree 9) is k-rational. In this paper we consider quotients of del
Pezzo surfaces of degree no less than 4. We show that if the set of k-points on the
surface is non-empty, then its quotient is k-rational except for a small number of
cases. The main result of the paper is the following.

Theorem 1.1. Let k be a field of characteristic zero, let X be a del Pezzo surface
over k such that X(k) �= ∅, and let G be a finite subgroup of automorphisms of X.
If K2

X � 5, then the quotient variety X/G is k-rational. If K2
X = 4, the order of

G is equal to 1, 2, or 4, and all non-trivial elements of G have only isolated fixed
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points, then X/G can not be k-rational. In all other possibilities of G if K2
X = 4,

then X/G is k-rational.

For a surface X admitting a structure of conic bundle such that K2
X � 5 and

X(k) �= ∅ the quotient X/G is k-rational for any finite subgroup G ⊂ Aut(X) by
[Tr16, Proposition 1.6]. Therefore we have the following corollary.

Corollary 1.2. Let k be a field of characteristic zero, let X be a smooth rational
surface over k such that X(k) �= ∅, and let G be a finite subgroup of automorphisms
of X. If K2

X � 5, then the quotient variety X/G is k-rational.

Note that a minimal del Pezzo surface X of degree 4 such that X(k) �= ∅ is
not k-rational by the Iskovskikh rationality criterion (see [Isk96, Chapter 4]). This
gives us an example of a del Pezzo surface of degree 4 such that its quotient by
the trivial group is not k-rational. For groups G of order 2 and 4 we explicitly
construct examples such that X is G-minimal and k-rational and X/G is not k-
rational. Also for these groups we construct examples of non-k-rational quotients of
non-k-rational del Pezzo surfaces of degree 4, k-rational quotients of non-k-rational
del Pezzo surfaces of degree 4, and k-rational quotients of G-minimal k-rational del
Pezzo surfaces of degree 4.

To prove Theorem 1.1 we consider case-by-case del Pezzo surfaces of degrees
from 9 to 4 and study their quotients by finite groups. The cases of degrees 9 and 6
are considered in [Tr14] (see Theorems 2.21 and 2.22 below). The cases of degrees
8, 5, and 4 are considered in Propositions 3.1, 4.1 and 5.1 respectively. If the degree
is 7, then a del Pezzo surface is never G-mininal, and its quotient is birationally
equivalent to a quotient of a del Pezzo surface of degree 8 or 9. Therefore we do
not consider this case.

The plan of this paper is as follows. In Section 2 we review some notions and facts
about minimal rational surfaces, groups, singularities, and quotients. In Section 3
we study quotients of del Pezzo surfaces of degree 8 and show that they are all
k-rational. In Section 4 we study quotients of del Pezzo surfaces of degree 5 and
show that they are all k-rational. In Section 5 we show that quotients of del
Pezzo surfaces of degree 4 are k-rational for all non-trivial groups except three
cases. In Section 6 we show that for the remaining three cases the quotient of a
del Pezzo surface of degree 4 can be non-k-rational and give explicit examples of
non-k-rational quotients of k-rational surfaces.

Notation. Throughout this paper k is any field of characteristic zero, and k is its
algebraic closure. For a surface X we denoteX⊗k by X. For a surface X we denote
the Picard group (resp. G-invariant Picard group) by Pic(X) (resp. Pic(X)G). The
number ρ(X) = rkPic(X) (resp. ρ(X)G = rkPic(X)G) is the Picard number (resp.
the G-invariant Picard number) of X. If two surfaces X and Y are k-birationally
equivalent, then we write X ≈ Y . If two divisors A and B are linearly equivalent,
then we write A ∼ B. The rational ruled (Hirzebruch) surface PP1 (O ⊕O(n)) is
denoted by Fn.

2. Preliminaries

2.1. G-minimal rational surfaces. In this subsection we review main notions and
results of the G-equivariant minimal model program following the papers [Man67],
[Isk79], and [DI09]. Throughout this subsection G is a finite group.
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Definition 2.1. A rational variety X is a variety over k such that X = X ⊗ k is
birationally equivalent to Pn

k
.

A k-rational variety X is a variety over k such that X is birationally equivalent
to Pn

k .
A variety X over k is a k-unirational variety if there exists a k-rational variety

Y and a dominant rational map ϕ : Y ��� X.

Definition 2.2. A G-surface is a pair (X,G) where X is a projective surface over
k and G is a finite subgroup of Autk(X). A morphism of G-surfaces f : X → X ′ is
called a G-morphism if for each g ∈ G one has fg = gf .

A smooth G-surface (X,G) is called G-minimal if any birational morphism of
smooth G-surfaces (X,G) → (X ′, G) is an isomorphism.

Let (X,G) be a smooth G-surface. A G-minimal surface (Y,G) is called a
minimal model of (X,G) or G-minimal model of X if there exists a birational
G-morphism X → Y .

The following theorem is a classical result about the G-equivariant minimal
model program.

Theorem 2.3. Any birational G-morphism f : X → Y of smooth G-surfaces can
be factorized in the following way:

X = X0
f0−→ X1

f1−→ · · · fn−2−−−→ Xn−1
fn−1−−−→ Xn = Y,

where each fi is a contraction of a set Σi of disjoint (−1)-curves on Xi, such that
Σi is defined over k and is G-invariant. In particular,

K2
Y −K2

X � ρ(X)G − ρ(Y )G.

The classification of G-minimal rational surfaces is well-known due to V. Iskov-
skikh and Yu.Manin (see [Isk79] and [Man67]). We introduce some important
notions before surveying it.

Definition 2.4. A smooth rational G-surface (X,G) admits a conic bundle struc-
ture if there exists a G-equivariant map ϕ : X → B such that any scheme fibre is
isomorphic to a reduced conic in P2

k and B is a smooth curve.

Definition 2.5. A del Pezzo surface is a smooth projective surface X such that
the anticanonical class −KX is ample.

A singular del Pezzo surface is a normal projective surface X such that the
anticanonical class −KX is ample and all singularities of X are Du Val singularities.

The number d = K2
X is called the degree of a (singular) del Pezzo surface X.

A del Pezzo surface X over k is isomorphic to P2
k
, P1

k
× P1

k
or a blowup of P2

k
at

up to 8 points in general position (see [Man74, Theorem 2.5]). The configuration of
(−1)-curves on a del Pezzo surface plays an important role in studying its geometry.
Throughout this paper we will use the notation from the following remark.

Remark 2.6. Let X be a del Pezzo surface of degree d, 4 � d � 7. Then X can be
realized as a blowup f : X → P2

k
at n = 9− d points p1, . . ., pn in general position.

Put Ei = f−1(pi) and L = f∗(l), where l is the class of a line on P2
k
. One has

−KX ∼ 3L−
n∑

i=1

Ei.
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The (−1)-curves on X are Ei, the proper transforms Lij ∼ L− Ei − Ej of the lines
passing through a pair of points pi and pj , and for d = 4, the proper transform

Q ∼ 2L−
5∑

i=1

Ei

of the conic passing through the five points p1, p2, p3, p4, p5.
In this notation one has

Ei · Ej = 0, Ei · Lij = 1, Ei · Ljk = 0,

Lij · Lik = 0, Lij · Lkl = 1,

Ei ·Q = 1, Lij ·Q = 0,

where i, j, k, and l are different numbers from the set {1, 2, 3, 4, 5}.

Theorem 2.7 ([Isk79, Theorem 1]). Let X be a G-minimal rational G-surface.
Then either X admits a G-equivariant conic bundle structure with Pic(X)G ∼= Z2

or X is a del Pezzo surface with Pic(X)G ∼= Z.

Theorem 2.8 (cf. [Isk79, Theorem 4], [Isk79, Theorem 5]). Let X admit a G-
equivariant conic bundle structure, G ⊂ Aut(X). Then:

(i) If K2
X = 3, 5, 6, 7 or X ∼= F1, then X is not G-minimal.

(ii) If K2
X = 8, then X is isomorphic to Fn, and X is G-minimal if n �= 1.

(iii) If K2
X �= 3, 5, 6, 7, 8 and ρ(X)G = 2, then X is G-minimal.

The following theorem is an important criterion of k-rationality over an arbitrary
perfect field k.

Theorem 2.9 ([Isk96, Chapter 4]). A minimal rational surface X over a perfect
field k is k-rational if and only if the following two conditions are satisfied:

(i) X(k) �= ∅;
(ii) K2

X � 5.

An important class of rational surfaces is the class of toric surfaces.

Definition 2.10. A toric variety is a normal variety over k containing an algebraic
torus as a Zariski dense subset, such that the action of the torus on itself by left
multiplication extends to the whole variety.

A variety X is called a k-form of a toric variety if X is toric.

Obviously, a k-form of a toric variety is rational.
The following lemma is well-known (see, for example, [Tr14, Lemma 2.9]).

Lemma 2.11. Let X be a G-minimal rational surface such that X(k) �= ∅. The
following are equivalent:

(i) X is a k-form of a toric surface;
(ii) K2

X � 6;
(iii) X is isomorphic to P2

k, a smooth quadric Q ⊂ P3
k, a del Pezzo surface of

degree 6, or a minimal rational ruled surface Fn (n � 2).
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Corollary 2.12. Let X be a smooth rational G-surface such that X(k) �= ∅ and
ρ(X)G +K2

X � 7. Then there exists a G-minimal model Y of X such that Y is a
k-form of a toric surface. In particular, X is k-rational.

Proof. By Theorem 2.7 there exists a birational G-morphism f : X → Z such that
ρ(Z)G � 2. By Theorem 2.3 one has

K2
Z � K2

X + ρ(X)G − ρ(Z)G � 7− ρ(Z)G.

If ρ(Z)G = 1, then K2
Z � 6 and Z is a k-form of a toric surface by Lemma 2.11.

In this case we put Y = Z.
If ρ(Z)G = 2 andK2

Z = 5, then Z is not G-minimal by Theorem 2.8(i). Therefore
there exists a minimal model Y of Z such that K2

Y � 6 and Y is a k-form of a toric
surface by Lemma 2.11.

The set X(k) is not empty. Thus Y (k) �= ∅ and X ≈ Y is k-rational by
Theorem 2.9. �

2.2. Groups. In this subsection we collect some results and notation concerning
groups used in this paper.

We use the following notation:

• Cn denotes a cyclic group of order n;
• D2n denotes a dihedral group of order 2n;
• Sn denotes a symmetric group of degree n;
• An denotes an alternating group of degree n;
• (i1i2 . . . ij) denotes a cyclic permutation of i1, . . . , ij ;
• V4 denotes a Klein group isomorphic to C2

2;
• 〈g1, . . . , gn〉 denotes a group generated by g1, . . . , gn;
• A•B is an extension of B by A; i.e., if G ∼= A•B, then there exists an exact
sequence

1 → A → G → B → 1;

• for surjective homomorphisms α : A → D and β : B → D we denote by
A�DB the diagonal product of A and B over their common homomorphic
image D that is the subgroup of A×B of pairs (a; b) such that α(a) = β(b);

• diag(a, b) =

(
a 0
0 b

)
;

• i =
√
−1;

• ξn = e
2πi
n ;

• ω = ξ3 = e
2πi
3 .

To find fixed points of groups acting on a del Pezzo surface of degree 8 we apply
the following well-known lemma. For the proof see, for example, [Tr16, Lemma
3.4].

Lemma 2.13. Elements g1, g2 ∈ PGL2

(
k
)
such that the group H = 〈g1, g2〉 is

finite have the same pair of fixed points on P1
k
if and only if the group H is cyclic.

Otherwise the elements g1 and g2 do not have a common fixed point.

The group S5 often appears as a group of automorphisms of a rational surface.
Therefore it is important to know its subgroups and normal subgroups of these
subgroups. The following lemma is an easy exercise.
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Lemma 2.14. Any non-trivial subgroup G ⊂ S5 contains a normal subgroup N
conjugate in S5 to one of the following groups:

• C2 = 〈(12)〉,
• C2 = 〈(12)(34)〉,
• C3 = 〈(123)〉,
• V4 = 〈(12)(34), (13)(24)〉,
• C5 = 〈(12345)〉,
• A5.

The following lemma is well-known.

Lemma 2.15. Let a group C3 act on P2
k
and not have curves of fixed points. Then

the group C3 has three isolated fixed points and acts on the tangent space of P2
k
at

each fixed point as diag(ω, ω2).

Proof. The action of any element of finite order n on P2
k
can be diagonalized in a

way such that the entries of the diagonal matrix corresponding to this element are
roots of unity of the n-th degree. Therefore one can choose coordinates on P2

k
in

which the action of C3 on P2
k
has form diag

(
ωa, ωb, ωc

)
, where a, b, c ∈ {0, 1, 2}.

If a = b = c, then the action is trivial, and if two of these numbers are equal, then
the group C3 has a curve of fixed points. Thus the numbers a, b, and c are distinct,
the group C3 has three isolated fixed points

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1),

and it acts on the tangent space of P2
k
at each fixed point as diag(ω, ω2). �

Remark 2.16. One can check that if we blow up a C3-fixed point p such that the
group acts on the tangent space at p as diag(ω, ω2), then on the exceptional divisor
there are two fixed points of the group C3 and the group acts on the tangent spaces
at these points as diag(ω, ω). So starting from P2

k
we can study actions of C3 on

del Pezzo surfaces.

2.3. Singularities. In this subsection we review some results about quotient sin-
gularities and their resolutions.

All singularities appearing in this paper are toric singularities. These singulari-
ties are locally isomorphic to the quotient of A2 by the cyclic group generated by
diag(ξm, ξqm). Such a singularity is denoted by 1

m (1, q). If gcd(m, q) > 1, then the
group

Cm
∼= 〈diag(ξm, ξqm)〉

contains a reflection and the quotient singularity is isomorphic to a quotient singu-
larity with smaller m.

A toric singularity can be resolved by some weighted blowups. Therefore it is
easy to describe numerical properties of a quotient singularity. We list here these
properties for singularities appearing in our paper.

Remark 2.17. Let the group Cm act on a smooth surface X and f : X → S be
the quotient map. Let p be a singular point on S of type 1

m (1, q). Let C and D

be curves passing through p such that f−1(C) and f−1(D) are Cm-invariant and
tangent vectors of these curves at the point f−1(p) are eigenvectors of the natural
action of Cm on Tf−1(p)X (the curve C corresponds to the eigenvalue ξm, and the
curve D corresponds to the eigenvalue ξqm).
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Table 1

m q K2
˜S
−K2

S π−1
∗ (C)2 − C2 π−1

∗ (D)2 −D2 E2
i

2 1 0 −1

2
−1

2
−2

3 1 −1

3
−1

3
−1

3
−3

3 2 0 −2

3
−2

3
−2, −2

4 1 −1 −1

4
−1

4
−4

4 3 0 −3

4
−3

4
−2, −2, −2

5 1 −9

5
−1

5
−1

5
−5

5 2 −2

5
−2

5
−3

5
−3, −2

5 3 −2

5
−3

5
−2

5
−2, −3

5 4 0 −4

5
−4

5
−2, −2, −2, −2

Let π : S̃ → S be the minimal resolution of the singular point p. Table 1 presents

some numerical properties of S̃ and S for the singularities with m � 5.
The exceptional divisor of π is a chain of transversally intersecting exceptional

curves Ei whose self-intersection numbers are listed in the last column of Table
1. The curves π−1

∗ (C) and π−1
∗ (D) transversally intersect at a point only the first

and the last of these curves respectively and do not intersect other components of
exceptional divisor of π.

2.4. Quotients. In this subsection we collect some results about quotients of ra-
tional surfaces.

The following lemma is well-known; see, e.g., [Tr14, Lemma 4.2].

Lemma 2.18. Let X be an n-dimensional toric variety over a field k and let G be a
finite subgroup in Aut

(
X
)
conjugate to a subgroup of n-dimensional torus T

n ⊂ X

acting on X. Then the quotient X/G is a toric variety.
In particular, if G is a finite cyclic subgroup of the connected component of the

identity Aut0(X) ⊂ Aut(X), then the quotient X/G is a toric variety.

We use the following definition for convenience.

Definition 2.19. Let X be a G-surface, let X̃ → X be its (G-equivariant) minimal

resolution of singularities, and let Y be a G-equivariant minimal model of X̃. We
call the surface Y a G-MMP-reduction of X.
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Del Pezzo surfaces of degree 8 considered in this paper are toric surfaces. Thus
the following proposition is very useful.

Proposition 2.20 ([Tr14, Proposition 4.5]). Let a group G contain a normal sub-
group Cp, where p is prime. If X is a G-minimal k-unirational k-form of a toric
surface, then there exists a G/Cp-MMP-reduction Y of X/Cp such that Y is a k-
form of a toric surface. In particular, X/Cp is k-rational.

The quotients of del Pezzo surfaces of degrees 9 and 6 and conic bundles with
K2

X � 5 were considered in the author’s papers [Tr14] and [Tr16].

Theorem 2.21 ([Tr14, Theorem 1.3]). Let G ⊂ PGL3(k) be a finite subgroup.
Then P2

k/G is k-rational.

Theorem 2.22 ([Tr14, Corollary 1.4]). Let X be a del Pezzo surface of degree 6
over k such that X(k) �= ∅ and let G be a finite subgroup of automorphisms of X.
Then the quotient variety X/G is k-rational.

Theorem 2.23 ([Tr16, Proposition 1.6]). Let X be a conic bundle such that K2
X �

5 and X(k) �= ∅ and let G be a finite subgroup of Autk(X). Then X/G is k-rational.

2.5. Singular del Pezzo surfaces. In this subsection we explicitly construct G-
MMP-reductions for some singular del Pezzo surfaces.

Lemma 2.24. Let a finite group G act on a singular del Pezzo surface V of degree
2 with six A1 singularities. Then there exists a G-MMP-reduction Y of V such that
Y is a k-form of a toric surface.

Proof. For any del Pezzo surface V of degree 2 with at worst Du Val singularities,
the linear system | −KV | is base point free and defines a double cover

f : V → P2
k

branched over a reduced quartic B ⊂ P2
k. The singularities of V correspond to the

singularities of B. In our case from the local equations one can obtain that B has
six nodes. We are going to show that B is a union of four lines.

Consider a conic D on P2
k
passing through 5 of these nodes. Since

D ·B = 8 < 10,

the curves D and B have a common irreducible component. If this component
is an irreducible conic, then B consists either of two irreducible conics or of an
irreducible conic and two lines. In both cases the number of nodes is less than six.
So B consists of a line and a cubic. This cubic has 3 nodes; thus it consists of three
lines, and B consists of four lines l1, l2, l3, and l4, no three passing through a point.

The preimage f−1(li) is a rational curve passing through three singular points.
From the Hurwitz formula one has

f−1(li) · f−1(lj) =
1

2
.

Moreover,

KV · f−1(li) = f∗
(
KP2

k

+
B

2

)
· f

∗(li)

2
=

(
KP2

k

+
B

2

)
· li = −1.

Let π : Ṽ → V be the minimal G-equivariant resolution of singularities. Then
the proper transform π−1

∗ f−1(l1 + l2 + l3 + l4) consists of four disjoint (−1)-curves,
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Figure 1

and this quadruple is defined over k. We can G-equivariantly contract these four
curves and get a surface Y with

K2
Y = K2

˜V
+ 4 = K2

V + 4 = 6.

So Y is a k-form of a toric surface by Lemma 2.11. �
Lemma 2.25. Let a finite group G act on a singular del Pezzo surface V of degree
1 with two A4 singularities. Then there exists a G-MMP-reduction Y of V such
that Y ∼= P2

k
.

Proof. Let π : Ṽ → V be the minimal resolution of singularities. The dual graph

of curves with negative self-intersection on Ṽ is well-known (see [AN06, Table 3,
10e]).

Let us equivariantly contract the four disjoint (−1)-curves marked by ∗, then
equivariantly contract the four (−1)-curves marked by # and get a surface Y . One
has

K2
Y = K2

˜V
+ 8 = K2

V + 8 = 9.

Therefore Y is isomorphic to P2
k
by Theorem 2.7. �

3. Del Pezzo surface of degree 8

In this section we prove the following proposition.

Proposition 3.1. Let X be a del Pezzo surface of degree 8 such that X(k) �= ∅
and let G be a finite subgroup of Autk(X). Then X/G is k-rational.

We start with several auxiliary assertions.

Lemma 3.2. Let X be a del Pezzo surface of degree 8 such that X(k) �= ∅ and

let G be a finite subgroup of Autk(X). Suppose that ρ (X)G = 1. Then X is
isomorphic to a smooth quadric Q ⊂ P3

k and the group G is isomorphic to A�DA
or (A�DA)•C2, where A is one of the following groups: Cn, D2n, A4, S4, or A5,
and D is a subgroup of A.

Proof. If X is isomorphic to the blowup of P2
k
at a point, then X is not minimal.

Therefore X is isomorphic to P1
k
× P1

k
and

Aut
(
X
) ∼= (

PGL2(k)× PGL2(k)
)
� C2.



6106 ANDREY TREPALIN

Let π1 : X → P1
k
and π2 : X → P1

k
be the projections on the first and the second

factors of P1
k
× P1

k
respectively. The group Pic

(
X
) ∼= Z2 is generated by classes of

a = π−1
1 (p) and b = π−1

2 (q), where p and q are points on the first and the second
factors respectively.

The group

G0 = G ∩
(
PGL2(k)× PGL2(k)

)
preserves the bundles π1 and π2. Thus G0 naturally acts on the factors of P1

k
× P1

k
.

Let A ⊂ PGL2

(
k
)
and B ⊂ PGL2

(
k
)
be the images of G0 under the projections

of PGL2(k)× PGL2(k) onto its factors. Then the group G0 is a group A�DB for
some D. If the groups A and B are not isomorphic, then G = G0, any element
g ∈ Gal

(
k/k

)
×G preserves the factors of P1

k
×P1

k
, and one has ga ∼ a and gb ∼ b, so

that ρ (X)
G
= 2. Thus A ∼= B, and the group G0 is A�DA for some D. Therefore

the group G is A�DA or (A�DA)•C2, where A is a finite subgroup of PGL2(k),
i.e., Cn, D2n, A4, S4, or A5. �

Throughout the rest of this section we use the notation introduced in Lemma
3.2.

Lemma 3.3. Let a group G ∼= A × B act on a smooth quadric X ⊂ P3
k such that

X(k) �= ∅, let the group A act trivially on π2

(
X
)
, and let the group B act trivially

on π1

(
X
)
. Then X/G is isomorphic to a smooth quadric in P3

k.

Proof. One has

X/G ∼=
(
P1
k
× P1

k

)
/ (A×B) =

(
P1
k
/A

)
×
(
P1
k
/B

) ∼= P1
k
× P1

k
.

Thus X/G is isomorphic to a smooth quadric in P3
k. �

Lemma 3.4. If a group G ∼= Cn�DCm acts on a smooth quadric X ⊂ P3
k, then

X/G is a k-form of a toric surface.

Proof. The groups Cn and Cm are subgroups of tori T1 ⊂ Aut
(
π1

(
X
))

and T2 ⊂
Aut

(
π2

(
X
))

respectively. One has Cn × Cm ⊂ T1 × T2. Thus the group G ∼=
Cn�DCm is a subgroup of the torus T1 × T2 ⊂ Aut

(
X
)
. Therefore X/G is a

k-form of a toric surface by Lemma 2.18. �

Remark 3.5. Let a finite group H ∼= H�HH act on a smooth quadric X ⊂ P3
k

and faithfully act on both factors of X ∼= P1
k
× P1

k
. Then by Lemma 2.13 each

cyclic subgroup C of H has four isolated fixed points that are the intersection of C-
invariant fibres of π1 and π2. In the neighbourhood of these points the group C acts
as 〈diag (ξn, ξmn )〉, 〈diag

(
ξn−1
n , ξmn

)
〉, 〈diag (ξn, ξn−m

n )〉, and 〈diag
(
ξn−1
n , ξn−m

n

)
〉,

where n = ordH. If two elements g1, g2 ∈ H do not lie in a common cyclic
subgroup of H, then they do not have common fixed points by Lemma 2.13.

Lemma 3.6. Let a finite group G act on a smooth quadric X ⊂ P3
k and let

N ∼= V4
∼= V4�V4

V4

be a normal subgroup in G acting faithfully on both factors of X ∼= P1
k
× P1

k
. Then

there exists a G/N-MMP-reduction Y of X/N such that Y is a k-form of a toric
surface.
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Proof. By Remark 3.5 there are 12 points on X each of which is fixed by a non-
trivial element of N , and no curves of fixed points for these elements. Therefore

K2
X/N =

K2
X

4
= 2,

and the surface X/N is a singular del Pezzo surface of degree 2 with six A1 singu-
larities.

By Lemma 2.24 there exists a G/N -MMP-reduction Y of X/N such that Y is a
k-form of a toric surface. �

The group A5 has two different representations in PGL2

(
k
)
up to conjugation.

Let us consider a group A5
∼= A5�A5

A5 acting faithfully on both factors of P1
k
×P1

k
.

If the actions of A5 on both factors are conjugate, then we call such an action on
P1
k
× P1

k
diagonal. If the actions of A5 on both factors are not conjugate, then we

call such an action on P1
k
× P1

k
twisted diagonal.

Lemma 3.7. Let a finite group G act on a smooth quadric X ⊂ P3
k and let

N ∼= A5
∼= A5�A5

A5

be a normal subgroup in G acting faithfully on both factors of X ∼= P1
k
× P1

k
such that

the action is diagonal and ρ(X)G = 1. Then there exists a G/N-MMP-reduction
Y of X/N such that Y is a k-form of a toric surface.

Proof. Each non-trivial cyclic subgroup in A5 is conjugate to 〈(12)(34)〉, 〈(123)〉,
or 〈(12345)〉.

There are 15 subgroups conjugate to 〈(12)(34)〉. By Remark 3.5 each of these
groups has four fixed points and acts on the neighbourhood of these points as
〈diag (−1,−1)〉. The stabilizer subgroup of each of these points has order 2. There-
fore there exist two A1 singular points on X/N .

There are 10 subgroups conjugate to 〈(123)〉. By Remark 3.5 each of these
groups has four fixed points and acts on the neighbourhood of these points as
〈diag (ω, ω)〉 or 〈diag

(
ω, ω2

)
〉. The stabilizer subgroup of each of these points has

order 3. Therefore there exist one A2 singular point and one 1
3 (1, 1) singular point

on X/N .
There are 6 subgroups conjugate to 〈(12345)〉. By Remark 3.5 each of these

groups has four fixed points and acts on the neighbourhood of these points as
〈diag (ξ5, ξ5)〉 or 〈diag

(
ξ5, ξ

4
5

)
〉 since the action is diagonal. The stabilizer subgroup

of each of these points has order 5. Therefore there exist one A4 singular point and
one 1

5 (1, 1) singular point on X/N .

Hence the set of singular points of X/N is the following: two A1 points, one A2

point, one 1
3 (1, 1) point, one A4 point, and one 1

5 (1, 1) point. Non-trivial elements
of the group N have only isolated fixed points. Thus

K2
X/N =

K2
X

60
=

2

15
, ρ(X/N)G/N = ρ(X)G = 1.

Let f : X → X/N be the quotient morphism, let r : X̃/N → X/N be the
minimal resolution of the singularities, and let F1 and F2 be C5-invariant fibres of
the projections π1 and π2 respectively. Note that there exists an element g of the
group G×Gal(k/k) such that gF1 = F2 since ρ(X)G = 1.



6108 ANDREY TREPALIN

One has

K2

X̃/N
= K2

X/N − 1

3
− 9

5
= −2, ρ(X̃/N)G/N � ρ(X/N)G/N + 6 = 7.

Moreover the curves r−1
∗ f(F1) and r−1

∗ f(F2) are two disjoint curves on X̃/N with
self-intersection numbers equal to −1 (see Table 1). One can G/N -equivariantly
contract this pair of curves and then G/N -equivariantly contract the transforms of
two (−2)-curves that are the ends of the chain of rational curves in the preimage of
the A4 singular point. We obtain a surface Z such that K2

Z = 2 and ρ(Z)G/N � 5.
By Corollary 2.12 there exists a G/N -minimal model Y of Z such that Y is a k-form
of a toric surface. �

Lemma 3.8. Let a finite group G act on a smooth quadric X ⊂ P3
k and let

N ∼= A5
∼= A5�A5

A5

be a normal subgroup in G acting faithfully on both factors of X ∼= P1
k
× P1

k
such

that the action is twisted diagonal and ρ(X)G = 1. Then there exists a G/N-MMP-
reduction Y of X/N such that Y is a k-form of a toric surface.

Proof. As in the proof of Lemma 3.7 we can apply Remark 3.5 and find the list
of singularities of X/N : two A1 points, one A2 point, one 1

3 (1, 1) point, and two
1
5 (1, 2) points.

One has

K2

X̃/N
= K2

X/N − 1

3
− 2 · 2

5
= −1, ρ(X̃/N)G/N � ρ(X/N)G/N + 5 = 6.

Moreover, for f , r, F1, F2 defined as in the proof of Lemma 3.7, the curves r−1
∗ f(F1)

and r−1
∗ f(F2) are two disjoint curves on X̃/N with self-intersection numbers equal

to −1 (see Table 1). One can G/N -equivariantly contract this pair of curves and
then G/N -equivariantly contract the transforms of two (−2)-curves which are ir-
reducible components of the preimages of the 1

5 (1, 2) singular points. We obtain a

surface Z such that K2
Z = 3 and ρ(Z)G/N � 4. By Corollary 2.12 there exists a

G/N -minimal model Y of Z such that Y is a k-form of a toric surface. �

Now we prove Proposition 3.1.

Proof of Proposition 3.1. We can assume that X ∼= P1
k
× P1

k
and ρ (X)G = 1 since

otherwise ρ (X)G = 2, so that X admits a G-equivariant conic bundle structure by
Theorem 2.7 and X/G is k-rational by Theorem 2.23.

Let f1 : G → Aut
(
P1
k

)
and f2 : G → Aut

(
P1
k

)
be homomorphisms to the groups

of automorphisms of the first and second factor of P1
k
× P1

k
respectively. Then the

group

K = Ker f1 ×Ker f2

is a normal subgroup of G. Then by Lemma 3.3 the surface X/K is a del Pezzo
surface of degree 8 and

(X/K) / (G/K) = X/G.

So we can replace X by X/K and assume that K is trivial.
Since K is trivial then by Lemma 3.2 the group G is isomorphic to A�AA or

(A�AA)•C2, where A is one of the following groups: Cn, D2n, A4, S4, or A5. For
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each of these groups we find a normal subgroup N � G such that there exists a
G/N -MMP-reduction Y of X/N that is a k-form of a toric surface.

• If G is C2, then there exists an MMP-reduction Y of X/G such that Y is a
k-form of a toric surface by Proposition 2.20.

• If G is Cn�Cn
Cn, (Cn�Cn

Cn)•C2, D2n�D2n
D2n, or (D2n�D2n

D2n)•C2,
then N is Cn�Cn

Cn. Any G/N -MMP-reduction of X/N is a k-form of a
toric surface by Lemma 3.4.

• If G is A4�A4
A4, (A4�A4

A4)•C2, S4�S4
S4, or (S4�S4

S4)•C2, then N
is V4�V4

V4. There exists a G/N -MMP-reduction Y of X/N such that Y
is a k-form of a toric surface by Lemma 3.6.

• If G is A5�A5
A5 or (A5�A5

A5)•C2, then N is A5�A5
A5. There exists a

G/N -MMP-reduction Y of X/N such that Y is a k-form of a toric surface
by Lemmas 3.7 and 3.8.

Therefore Y is a k-form of a toric surface. Moreover, Y (k) �= ∅ since X(k) �= ∅.
If the surface Y is P2

k, Fn, or a del Pezzo surface of degree 6, then

Y/(G/N) ≈ X/G

is k-rational by Theorems 2.21, 2.23, and 2.22 respectively. If the surface Y is
P1
k
×P1

k
we apply the procedure above with the smaller group G/N . As a result we

obtain that X/G is k-rational. �

4. Del Pezzo surface of degree 5

Let X be a del Pezzo surface of degree 5. The group Aut(X) is isomorphic to

W (A4) ∼= S5

(see e.g. [DI09, Subsection 6.3] or [Dol12, Theorem 8.5.8]). This group is generated
by a subgroup S4 and the element (12345). In the notation of Remark 2.6 for any
σ ∈ S4 one has σ(Ei) = Eσ(i) and σ(Lij) = Lσ(i)σ(j).

In this section we prove the following proposition.

Proposition 4.1. Let X be a del Pezzo surface of degree 5 such that X(k) �= ∅
and let G be a subgroup of Autk(X). Then X/G is k-rational.

To prove Proposition 4.1 we show that in all other cases either the surface X
is not G-minimal or there is a normal subgroup N � G such that there exists a
G/N -MMP-reduction Y of X/N such that Y is a k-form of a toric surface. So the
proof of Proposition 4.1 is reduced to Theorems 2.21, 2.23, 2.22, and Proposition
3.1.

Lemma 4.2. Let a finite group G act on a del Pezzo surface X of degree 5 and let
N be a non-trivial normal subgroup in G. If the group N is isomorphic to C2, C3,
or V4, then X is not G-minimal.

Proof. If N ∼= C2, then it is conjugate to 〈(12)〉 or 〈(12)(34)〉. In the first case there
are exactly four N -invariant (−1)-curves on X: E3, E4, L12, and L34. But only the
curve L34 intersects every other N -invariant (−1)-curve. Thus L34 is G-invariant
and defined over k so it can be contracted. In the second case there are exactly two
orbits consisting of disjoint (−1)-curves on X: E1 and E2, E3 and E4. Thus this
quadruple is G-invariant and defined over k so it can be contracted.
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If N ∼= C3, then it is conjugate to 〈(123)〉. There is exactly one N -invariant
(−1)-curve E4 on X. Thus this curve is G-invariant and defined over k so it can
be contracted.

If N ∼= V4, then it is conjugate to 〈(12)(34), (13)(24)〉. There is exactly one
N -orbit consisting of four disjoint (−1)-curves on X: E1, E2, E3, and E4. Thus
this quadruple is G-invariant and defined over k so it can be contracted. �
Lemma 4.3. Let the group C5 act on a del Pezzo surface of degree 5. Then the
group C5 has two fixed points on X and acts on the tangent spaces of X at these
points as 〈diag

(
ξ5, ξ

4
5

)
〉.

Proof. Let us consider the following Cremona transformation of P2
k
:

g : (x : y : z) �→ ((y − x)z : (z − x)y : yz).

The order of g is 5. This transformation is regular on a del Pezzo surface of degree
5 which is the blowup of P2

k
at four points: (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), and

(1 : 1 : 1). All del Pezzo surfaces of degree 5 are isomorphic; thus any element of
order 5 is conjugate to g in Aut

(
X
)
.

The element g has two fixed points:
(√

5− 1 : 2 :
√
5 + 1

)
and

(√
5 + 1 : −2 :√

5− 1
)
on P2

k
. One can easily check that the element g acts on the tangent spaces

of P2
k
at the fixed points as diag

(
ξ5, ξ

4
5

)
. �

Lemma 4.4. Let a finite group G act on a del Pezzo surface X of degree 5 and let
N ∼= C5 be a normal subgroup in G. Then there exists a G/N-MMP-reduction Y
of X/N such that Y ∼= P2

k
.

Proof. By Lemma 4.3 on the quotient X/N there are two A4 singularities, −KX/N

is ample, and

K2
XN

=
K2

X

5
= 1.

This means that X/N is a singular del Pezzo surface of degree 1.
By Lemma 2.25 there exists a G/N -MMP-reduction Y of X/N such that Y ∼=

P2
k
. �

Lemma 4.5. Let a finite group G act on a del Pezzo surface X of degree 5 and let
N ∼= A5 be a normal subgroup in G. Then there exists a G/N-MMP-reduction Y
of X/N that is isomorphic to F3.

Proof. Let us consider fixed points of elements of N . The stabilizer of such a point
is a subgroup of A5 having a faithful representation in GL2(k) (see e.g. [Pop14,
Lemma 4]). Any subgroup of A5 is isomorphic to C2, C3, V4, S3, A4, C5, D10, or A5.
The groups A4 and A5 do not have faithful two-dimensional representations. For
the groups V4, S3, and D10 faithful two-dimensional representations are generated
by reflections; thus images of points with such stabilizers are smooth points on the
quotient surface. All other groups are cyclic groups of prime order.

An element of order 5 has exactly two fixed points on X, and this element acts
on the tangent spaces of X at the fixed points as diag

(
ξ5, ξ

4
5

)
by Lemma 4.3.

Each element of order 3 in A5 is conjugate to 〈(123)〉. The unique (−1)-curve on
X invariant with respect to the group 〈(123)〉 is E4. Let us 〈(123)〉-equivariantly
contract the four (−1)-curves Ei and get P2

k
. The group 〈(123)〉 acts on P2

k
and has

no curves of fixed points since the line passing through p1 and p2 (see the notation of
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Remark 2.6) does not contain 〈(123)〉-fixed points. Therefore the action of 〈(123)〉
on P2

k
is conjugate to 〈diag(1, ω, ω2)〉 and it has 3 fixed points, one of which is p4

by Lemma 2.15. In the tangent space of X at the other two fixed points the group
〈(123)〉 acts as 〈diag(ω, ω2)〉. On the (−1)-curve E4 the group 〈(123)〉 has two fixed
points. This group acts on the tangent space of X at these points as 〈diag(ω, ω)〉
by Remark 2.16. There are 20 elements of order 3 in A5 and they have 20 fixed
points on (−1)-curves. The stabilizer of such a point is C3, so all these points are
permuted by the group A5.

Consider a group

V4 = 〈(12)(34), (13)(24)〉.
One can V4-equivariantly contract the four (−1)-curves Ei and get P2

k
. The group

V4 acts on P2
k
, and each non-trivial element has a line of fixed points not passing

through the points pi. Thus each of these elements has a curve of fixed points in
X whose class in Pic(X) is L.

The images of L in Pic(X) under the action of C5 are

2L−E1−E2−E3, 2L−E1−E2−E4, 2L−E1−E3−E4, and 2L−E2−E3−E4.

Thus the ramification divisor of the quotient morphism f : X → X/A5 is a member
of the linear system | − 9KX |. By the Hurwitz formula

K2
X/A5

=
1

60
(KX + 9KX)2 =

25

3
.

Moreover, there is one 1
3 (1, 1) singularity and maybe some Du Val singularities on

X/A5. Let π : Y → X/A5 be the minimal resolution of singularities. One has

K2
Y = K2

X/A5
− 1

3
= 8, ρ(Y ) = 10−K2

Y
= 2.

Therefore the only singularity on X/A5 is 1
3 (1, 1), and Y is isomorphic to F3 since

K2
Y = 8 and Y contains a (−3)-curve. �

Now we prove Proposition 4.1.

Proof of Proposition 4.1. By Lemma 2.14 each group G ⊂ S5 has a normal sub-
group N isomorphic to C2, C3, V4, C5, or A5.

If N is isomorphic to C2, C3, or V4, then X is not G-minimal by Lemma 4.2,
and X/G is k-rational by Theorems 2.21, 2.23, 2.22 and Proposition 3.1.

If N is isomorphic to C5, then there exists a G/N -MMP-reduction Y of X/N
such that Y is isomorphic to P2

k
by Lemma 4.4.

If N is isomorphic to A5, then any G/N -MMP-reduction Y of X/N is isomorphic
to F3 by Lemma 4.5.

In the last two cases one has Y (k) �= ∅ since X(k) �= ∅. Thus

Y/(G/N) ≈ X/G

is k-rational by Theorems 2.21 and 2.23 respectively. �

Now we can prove Corollary 1.2.

Proof of Corollary 1.2. Let Y be a G-minimal model of X. Then K2
Y ≥ K2

X ≥ 5
by Theorem 2.3, Y (k) �= ∅ since X(k) �= ∅, and Y is either a del Pezzo surface or
admits a conic bundle structure by Theorem 2.7.
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Therefore X/G ≈ Y/G is k-rational by Theorems 2.21, 2.23, 2.22, and Proposi-
tions 3.1 and 4.1. �

5. Del Pezzo surface of degree 4

Let X be a del Pezzo surface of degree 4. The group Aut(X) is a subgroup of
the group

W (D5) ∼= C4
2 �S5

(see e.g. [DI09, Subsection 6.4] or [Dol12, Proposition 8.6.7]). The group C4
2�S5 is

generated by subgroups S5 and C4
2. In the notation of Remark 2.6 for any σ ∈ S5

one has σ(Ei) = Eσ(i), σ(Lij) = Lσ(i)σ(j), and σ(Q) = Q.

The surface X is isomorphic to a surface of degree 4 in P4
k
given by equations

5∑
i=1

x2
i = 0,

5∑
i=1

aix
2
i = 0.

The group C4
2 acts on P4

k
and X as a diagonal subgroup of PGL5

(
k
)
. There are

involutions of two kinds in such diagonal groups: ιijkl and ιij . These involutions
switch signs of coordinates xi, xj , xk, xl and xi, xj , respectively.

In this section we prove the following proposition.

Proposition 5.1. Let X be a del Pezzo surface of degree 4 such that X(k) �= ∅
and let G be a subgroup of Autk(X). Then X/G is k-rational if G is not conjugate
to any of the groups 〈id〉, C2 = 〈ι12〉, V4 = 〈ι12, ι13〉, or C4 = 〈(12)(34)ι15〉.

In Section 6 we will show that in the latter three cases the quotient can be
non-k-rational. Now we show that in all other cases the quotient of X is k-rational.

To prove Proposition 5.1 we show that in any of the remaining cases either
the surface X is not G-minimal or there is a normal subgroup N � G such that
there exists a G/N -MMP-reduction Y of X/N such that Y is a k-form of a toric
surface. So the proof of Proposition 5.1 is reduced to Theorems 2.21, 2.23, 2.22,
and Propositions 3.1 and 4.1.

Now we are going to prove some auxillary lemmas.
The following lemma immediately follows from the results of [DI09, Subsection

6.4]. We give the proof for the convenience of the reader.

Lemma 5.2. Let a finite group G act on a del Pezzo surface X of degree 4 and let

h : Aut(X) → S5

be the natural homomorphism. Then the group h(G) does not contain subgroups
conjugate to C2 = 〈(12)〉 and V4 = 〈(12)(34), (13)(24)〉.

Proof. The group C4
2 acts on X. The group Aut(X) ⊂ C4

2 � S5 contains a sub-
group C4

2. Therefore if the group G contains an element hg, where g ∈ S5, h ∈ C4
2,

then the group Aut(X) contains the element g. Thus it is sufficient to prove that
there are no subgroups in Aut(X) conjugate to C2 = 〈(12)〉 and V4 = 〈(12)(34),
(13)(24)〉.

Suppose that the group C2 = 〈(12)〉 acts onX. One can C2-equivariantly contract
five (−1)-curves E1, E2, E3, E4, and E5 and get P2

k
with the action of C2. The

group C2 has a unique isolated fixed point on P2
k
and a unique line of fixed points

on P2
k
. The points p3, p4, and p5 (see the notation of Remark 2.6) are fixed by
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the group C2. These three points do not lie on a line, so one of these points is the
isolated fixed point. The points p1 and p2 are permuted by the group C2. Therefore
the group C2 acts faithfully on the line passing through these two points. Thus this
line contains the isolated fixed point of C2. The proper transform of this line on X
is a (−2)-curve, but there are no (−2)-curves on a del Pezzo surface of degree 4.
Therefore the group C2 = 〈(12)〉 cannot act on X.

Suppose that the group V4 = 〈(12)(34), (13)(24)〉 acts on X. One can V4-equi-
variantly contract five (−1)-curves E1, E2, E3, E4, and E5 and get P2

k
with the

action of V4. The point p5 is fixed by the group V4. Thus this point is the unique
isolated fixed point on P2

k
of an element of V4. Therefore as above in the case of

the group C2 = 〈(12)〉 three of the points p1, p2, p3, p4, and p5 lie on a line, and
the group V4 cannot act on X. �
Lemma 5.3. Let a finite group G act on a del Pezzo surface X of degree 4 and let

N ∼= C2 = 〈(12)(34)〉
be a normal subgroup in G. Then there exists a G/N-MMP-reduction Y of X/N
such that Y is a k-form of a toric surface.

Proof. Let us N -equivariantly contract five (−1)-curves E1, E2, E3, E4, and E5 on
X and get a P2

k
with the action of N . The group N has a unique isolated fixed

point on P2
k
and a unique line of fixed points. As in the proof of Lemma 5.2 the

point p5 lies on this line. Thus on the surface X the group N has two isolated
fixed points L12 ∩L34, Q∩E5, and a curve of fixed points whose class in Pic(X) is
L− E5.

Let f : X → X/N be the quotient morphism and let

π : X̃/N → X/N

be the minimal resolution of singularities. By the Hurwitz formula

K2
X/N =

1

2
(KX − L+ E5)

2 = 4.

There are exactly two A1 singularities on X/N . The proper transforms π−1
∗ f (L12),

π−1
∗ f (L34), π

−1
∗ f (Q), and π−1

∗ f (E5) are four disjoint G/N -invariant (−1)-curves
defined over k (see Table 1). One can G/N -equivariantly contract this quadruple
and get a surface Y such that K2

Y = 8. Thus there exists a G/N -MMP-reduction
Y of X/N such that Y is a k-form of a toric surface by Lemma 2.11. �
Remark 5.4. Note that any involution in W (D5) is conjugate to (12), (12)(34),
12ι34, ι12, or ι1234. By Lemma 5.2 an element conjugate to (12) or (12)ι34 cannot
act on a del Pezzo surface of degree 4. From the proof of Lemma 5.3 one can see
that an element conjugate to (12)(34) has a curve of fixed points, and for an element
conjugate to ι1234 there exists a hyperplane section consisting of fixed points. Thus
if an involution acting on a del Pezzo surface of degree 4 does not have curves of
fixed points, then it is conjugate to ι12. For the groups of order 4 there are only
two cases for which all elements of order 2 are conjugate to ι12: either 〈ι12, ι13〉 or
〈(12)(34)ι15〉. Therefore the conditions on the group G in Proposition 5.1 are that
ordG is 1, 2, or 4, and non-trivial elements of G have only isolated fixed points.

Lemma 5.5. Let a finite group G act on a del Pezzo surface X of degree 4 and let

N ∼= C3 = 〈(123)〉
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be a normal subgroup in G. Then there exists a G/N-MMP-reduction Y of X/N
such that Y is a k-form of a toric surface.

Proof. Let σ : X → P2
k
be the N -equivariant contraction of the five (−1)-curves

E1, E2, E3, E4, and E5. The group N has three isolated fixed points on P2
k
, two

of which are p4 and p5 (see the notation of Remark 2.6). Denote the third fixed
point by p. The group N acts on the tangent space of P2

k
at these fixed points as

〈diag
(
ω, ω2

)
〉 by Lemma 2.15. Therefore there are five fixed points on X: E4∩L45,

E5 ∩ L45, E5 ∩ Q, E4 ∩ Q, and σ−1(p). The group N acts on the tangent space
of X at the point σ−1(p) as 〈diag

(
ω, ω2

)
〉 and on the tangent spaces of X at the

other fixed points as 〈diag (ω, ω)〉 by Remark 2.16.
Let C1, C2, C3, and C4 be N -invariant curves on X with classes

2L− E1 − E2 − E3 − E4, 2L− E1 − E2 − E3 − E5, L− E5, and L− E4

passing through σ−1p and another fixed point (these curves are proper transforms
of lines passing through p and p4 or p and p5 and conics passing through p, p1, p2,
p3, p4 or p, p1, p2, p3, p5).

Assume that there is another N -invariant irreducible rational curve C with self-
intersection number 0 on X whose class in Pic

(
X
)
is

aL− b (E1 + E2 + E3)− cE4 − dE5.

The curve C is irreducible; thus the numbers a, b, c, d are non-negative. One has
C2 = 0 and C(KX + C) = −2. That means that the following system of equations
holds: {

a2 − 3b2 − c2 − d2 = 0,

3a− 3b− c− d = 2.

One can check that all possibilities for the class of C are

2L− E1 − E2 − E3 − E4, 2L− E1 − E2 − E3 − E5, L− E5, and L− E4.

Therefore there are no rational curves on X with self-intersection number 0 which
differ from C1, C2, C3, and C4.

Let f : X → X/N be the quotient morphism and let

π : X̃/N → X/N

be the minimal resolution of singularities. Then there are four 1
3 (1, 1) singularities

f(E4 ∩ L45), f(E5 ∩L45), f(E5 ∩Q), f(E4 ∩Q) and one A2 singularity f
(
σ−1(p)

)
on X/N . Consider eight curves f(C1), f(C2), f(C3), f(C4), f(E4), f(L45), f(E5),
and f(Q). This eighttuple is G/N -equivariant and defined over k. The intersection
number of any two of these curves is 0, 1

3 , or
2
3 . Thus their proper transforms

on X̃/N are eight disjoint (−1)-curves (see Table 1). One can G/N -equivariantly
contract these curves and get a surface Y . Then

K2
Y = K2

X̃/N
+ 8 = K2

X/N − 4

3
+ 8 =

1

3
K2

X +
28

3
= 8.

Thus there exists a G/N -MMP-reduction Y of X/N such that Y is a k-form of a
toric surface by Lemma 2.11. �
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Lemma 5.6. Let a finite group G act on a del Pezzo surface X of degree 4 and let

N ∼= C5 = 〈(12345)〉
be a normal subgroup in G. Then X is not G-minimal.

Proof. The group N has a unique invariant (−1)-curve Q on X. Thus this curve is
G-invariant and defined over k so it can be contracted. �
Lemma 5.7. Let a finite group G act on a del Pezzo surface X of degree 4 and
contain an element conjugate to ι1234. Then there exists a normal subgroup N �G
such that a G/N-MMP-reduction Y of X/N is a k-form of a toric surface.

Proof. Note that the set of fixed points of an element conjugate to ι1234 is a hyper-
plane section of X in P4

k.
Let N be a subgroup of G generated by elements conjugate to ι1234. Note that

each element conjugate to ι1234 has a curve of fixed points on X that is a member
of the linear system | −KX |. The group N is normal, and one of the following
possibilities holds:

• If N is generated by one element conjugate to ι1234, then N ∼= C2 and by
the Hurwitz formula

K2
X/N =

1

2
(2KX)

2
= 8.

• If N is generated by two elements conjugate to ι1234, then N ∼= C2
2 and by

the Hurwitz formula

K2
X/N =

1

4
(3KX)2 = 9.

• If N is generated by three elements conjugate to ι1234, then N ∼= C3
2 and

by the Hurwitz formula

K2
X/N =

1

8
(4KX)

2
= 8.

• If N is generated by four elements conjugate to ι1234, then N contains the
fifth element conjugate to ι1234. One has N ∼= C4

2 and by the Hurwitz
formula

K2
X/N =

1

16
(6KX)

2
= 9.

The surface X/N has at worst Du Val singularities. Hence for any G/N -MMP-
reduction Y of X/N one has K2

Y � K2
X/N � 8. Thus Y is a k-form of a toric

surface by Lemma 2.11. �
Lemma 5.8. Let a finite group G act on a del Pezzo surface X of degree 4 and let

N ∼= V4 = 〈ι12, ι13〉
be a normal subgroup in G. Then the surface X/N is G/N-birationally equivalent
to a del Pezzo surface Y of degree 4. If ρ(X)G = 1 and for each non-trivial element
of N all its fixed points are in one orbit of the group G × Gal

(
k/k

)
, then Y is

G/N-minimal.

Proof. Each non-trivial element of N has 4 fixed points on X. The hyperplane
sections x1 = 0, x2 = 0, and x3 = 0 cut out from X elliptic curves C1, C2, and C3

defined over k. Each of these curves contains 8 points each of which is fixed by a
non-trivial element of N .
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Let f : X → X/N be the quotient map and let

π : X̃/N → X/N

be the minimal resolution of singularities. Then f (Ci) is a rational curve containing
four A1 singularities. One has

f (Ci) · f (Cj) =
1

4
Ci · Cj =

1

4
K2

X = 1.

Thus π−1
∗ f (C1), π

−1
∗ f (C2), and π−1

∗ f (C3) are three disjoint (−1)-curves defined
over k (see Table 1). We can contract these three curves and get a surface Y such
that

K2
Y = K2

X̃/N
+ 3 = K2

X/N + 3 =
1

4
K2

X + 3 = 4.

Note that the curves π−1
∗ f (C1), π

−1
∗ f (C2), and π−1

∗ f (C3) intersect all (−2)-curves

on X̃/N , since the curves f (C1), f (C2), and f (C3) pass through all A1 singular
points on X/N . Therefore Y does not contain curves with self-intersection less than
−1. Thus Y is a del Pezzo surface of degree 4.

Suppose that ρ(X)G = 1 and for each non-trivial element of N all its fixed points
are in one orbit of the group G × Gal

(
k/k

)
. Let k be the number of conjugacy

classes in G containing non-trivial elements of N . Then the fixed points of non-
trivial elements of N lie in k orbits of the group G×Gal

(
k/k

)
and curves C1, C2,

and C3 form k orbits of the group G × Gal
(
k/k

)
(so that in particular k � 3).

Therefore

ρ(Y )G/N = ρ
(
X̃/N

)G/N

− k = ρ (X/N)G/N = ρ(X)G = 1.

Thus Y is G/N -minimal. �

Now we prove Proposition 5.1.

Proof of Proposition 5.1. If the group G contains an element conjugate to ι1234,
then by Lemma 5.7 there exists a normal subgroup N �G such that a G/N -MMP-
reduction Y of X/N is a k-form of a toric surface.

If the group G ∩ C4
2 is conjugate to the group V4 = 〈ι12, ι13〉, then the group G

is conjugate to a subgroup of

V4 � (S3 × C2) = 〈ι12, ι13, (123), (12), (45)〉.
Such a group G cannot contain a subgroup conjugate to C2 = 〈(12)〉 by Lemma 5.2.
If the group G does not contain an element of order 3, then either G = V4 or G
contains a normal subgroup conjugate to N = 〈(12)(45)〉 and there exists a G/N -
MMP-reduction Y of X/N such that Y is a k-form of a toric surface by Lemma
5.3. Otherwise by Lemma 5.8 the quotient X/N is G/N -birationally equivalent to
a del Pezzo surface Z of degree 4, and the group G/N contains an element of order
3. So we can replace X by Z, G by G/N , and start the proof from the beginning
with a smaller group.

If the group G ∩ C4
2 is conjugate to the group C2 = 〈ι12〉, then the group G is

conjugate to a subgroup of

C2 × (C2 ×S3) = 〈ι12, (12), (345), (34)〉.
Such a group G cannot contain a subgroup conjugate to C2 = 〈(12)〉 by Lemma
5.2. If such a group G contains a subgroup conjugate to N = 〈(345)〉, then this
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group is normal and there exists a G/N -MMP-reduction Y of X/N such that Y is a
k-form of a toric surface by Lemma 5.5. Otherwise either the group G is conjugate
to 〈ι12〉 or 〈ι15(12)(34)〉 or the group G contains a normal subgroup conjugate to
N = 〈(12)(34)〉, and there exists a G/N -MMP-reduction Y of X/N such that Y is
a k-form of a toric surface by Lemma 5.3.

If the group G ∩ C4
2 is trivial, then G is isomorphic to a subgroup of S5. By

Lemma 5.2 the group G cannot contain subgroups conjugate to C2 = 〈(12)〉, V4,
and A5. Thus by Lemma 2.14 the group G contains a normal subgroup N conjugate
to C2 = 〈(12)(34)〉, C3 = 〈(123)〉, or C5 = 〈(12345)〉. In the last case the surface X
is not G-minimal by Lemma 5.6, and the quotient X/G is k-rational by Theorems
2.21, 2.23, 2.22, and Propositions 3.1 and 4.1. In the other two cases there exists
a G/N -MMP-reduction Y of X/N such that Y is a k-form of a toric surface by
Lemmas 5.3 and 5.5.

In all cases Y (k) �= ∅ since X(k) �= ∅. Thus

Y/(G/N) ≈ X/G

is k-rational by Theorems 2.21, 2.23, 2.22, and Proposition 3.1. �

6. Examples of non-rational quotients

In this section we show that for the groups C2 = 〈ι12〉, V4 = 〈ι12, ι13〉 and C4 =
〈(12)(34)ι15〉 acting on a del Pezzo surface of degree 4 the quotient may be non-k-
rational. We use the notation of Section 5.

We start with the quotients of a del Pezzo surface of degree 4 by the group
C2 = 〈ι12〉.

Lemma 6.1. Let a finite group G act on a del Pezzo surface X of degree 4 and let

N ∼= C2 = 〈ι12〉
be a normal subgroup in G. Then the surface X/N is G/N-birationally equivalent
to a conic bundle Y with K2

Y = 2. If ρ(X)G = 1 and all fixed points of ι12 are in

one orbit of the group G×Gal
(
k/k

)
, then Y is G/N-minimal.

Proof. The element ι12 has four fixed points on X cut out by the plane x1 = x2 = 0.
Let C be a one-dimensional linear subsystem of |−KX | spanned by the curves x1 = 0
and x2 = 0. A general member of C is an N -invariant elliptic curve passing through
all fixed points of N .

Let f : X → X/N be the quotient morphism and let π : Y → X/N be the
minimal resolution of singularities. A general member of the linear system f∗C is
a smooth conic passing through four A1 singularities of X/N . Therefore the linear
system π−1

∗ f∗C gives a conic bundle structure

ϕπ−1
∗ f∗C : Y → P1

k.

One has

K2
Y = K2

X/N =
1

2
K2

X = 2.

If all fixed points of ι12 are in one orbit of the group G×Gal
(
k/k

)
, then

ρ(Y )G/N = ρ(X/N)G/N + 1 = ρ(X)G + 1.

Thus if ρ(X)G = 1, then ρ(Y )G/N = 2 and Y is G/N -minimal by Theorem 2.8(iii).
�
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Remark 6.2. Note that in Lemma 6.1 if one of the ι12-fixed points p ∈ X is defined
over k and G-fixed, then π−1 (f(p)) is a section E of the conic bundle Y → P1

k

defined over k such that E2 = −2. The conic bundle Y → P1
k has 6 singular

fibres since K2
Y = 2. Therefore one can G/N -equivariantly contract 6 components

of singular fibres meeting E and get a surface of degree 8 which is k-rational by
Theorem 2.9.

Now we construct an explicit example satisfying the conditions of Lemma 6.1.

Example 6.3. Consider a surface X in P4
k given by the equations

(6.4) x2
1 + x2

3 − x2
4 − x2

5 = 0, −x2
2 + 2x2

3 − x2
4 − 4x2

5 = 0.

Note that X(k) �= ∅ since the k-point (0 : 1 : 1 : 1 : 0) lies on X.
The normal subgroup C4

2 of W (D5) acts on X by switching signs of coordi-
nates: elements ιij and ιijkl switch signs of coordinates xi, xj and xi, xj , xk, xl,
respectively. In particular, the group G = 〈ι12〉 acts on P4

k and switches signs of

coordinates x1 and x2. The group G has four fixed points
(
0 : 0 : ±

√
3 : ±

√
2 : 1

)
on X.

One can check that sixteen (−1)-curves on the surface X are given by the fol-
lowing parametrization:(

± (αx+ y) : ±
(
i
(
1 +

√
6
)
x+ i

(
2
√
2 +

√
3
)
y
)
: ± (x− αy) : ± (αx− y) :

± (x+ αy)
)

where α =
√
2 +

√
3. These curves are defined over any field containing i,

√
2, and√

3.

Example 6.5. Suppose that in Example 6.3 the field k does not contain i,
√
2,

and
√
3, and

Gal
(
k
(
i,
√
2,
√
3
)
/k

)
∼= C

3
2.

For instance, this holds for k = Q. In this case the image of the group
Gal

(
k
(
i,
√
2,
√
3
)
/k

)
in W (D5) is 〈ι1345, ι15, ι45〉. The surface X admits a struc-

ture of a minimal conic bundle by Theorem 2.8(iii), since ρ(X) = 2. Thus the
surface X is not k-rational by Theorem 2.9. One has ρ(X)G = 1, and the four fixed
points of G on X are permuted by the Galois group. Thus the surface Y admits
a structure of a minimal conic bundle with K2

Y = 2 by Lemma 6.1 and Y is not
k-rational by Theorem 2.9. This gives us an example of a non-k-rational quotient
of a (G-minimal) non-k-rational del Pezzo surface of degree 4 by the group C2.

Now assume that in Example 6.3 the field k contains i
√
2 but does not contain√

2,
√
3, and

√
6. In this case the image of the Galois group

Gal
(
k
(√

2,
√
3
)
/k

)
∼= C2

2

in W (D5) is 〈ι34, ι45〉. The quadruple of (−1)-curves E1, E5, L23, E4 is defined
over k. Thus one can Galois-equivariantly contract this quadruple and get a del
Pezzo surface of degree 8. Therefore X is k-rational by Theorem 2.9. One has
ρ(X)G = 1, and the four fixed points of G on X are permuted by the Galois group.
Also the surface Y admits a structure of a minimal conic bundle with K2

Y = 2 by
Lemma 6.1 and Y is not k-rational by Theorem 2.9. This gives us an example of
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a non-k-rational quotient of a (G-minimal) k-rational del Pezzo surface of degree 4
by the group C2.

If the field k contains
√
2 and

√
3 but does not contain i, then the image of the

Galois group
Gal (k (i) /k) ∼= C2

in W (D5) is 〈ι1345〉. The surface X admits a structure of a minimal conic bundle by
Theorem 2.8(iii), since ρ(X) = 2. Thus the surface X is not k-rational by Theorem
2.9. One has ρ(X)G = 1. But on the conic bundle Y → P1

k all sections with self-
intersection −2 are defined over k. Therefore we can Galois-equivariantly contract
six components of the singular fibres intersecting one section of the conic bundle
Y → P1

k with self-intersection −2 and get a del Pezzo surface of degree 8 which is
k-rational by Theorem 2.9. This gives us an example of a k-rational quotient of a
G-minimal non-k-rational del Pezzo surface of degree 4 by the group C2.

Now assume that in Example 6.3 the field k contains i
√
2 and

√
3 but does not

contain
√
2. In this case the image of the Galois group

Gal
(
k
(√

2
)
/k

)
∼= C2

in W (D5) is 〈ι34〉. The pair of (−1)-curves E1 and L25 is defined over k. Thus one
can Galois-equivariantly contract this pair and get a del Pezzo surface of degree 6.
Therefore X is k-rational by Theorem 2.9. One has ρ(X)G = 2; therefore X admits
a structure of a G-minimal conic bundle by Theorem 2.8(iii). Note that singular
fibres of the conic bundle Y → P1

k correspond to reducible members of the linear
system spanned by the curves x1 = 0 and x2 = 0. One has K2

Y = 2; therefore the
conic bundle Y → P1

k has six singular fibres. The proper transforms of these six

fibres are cut out from X ⊂ P4
k
by the following six hyperplanes:

x2 = ±ix1, x2 = ±i
√
2x1, x2 = ±2ix1.

On the conic bundle Y → P1
k we can Galois-equivariantly contract four components

of the singular fibres corresponding to the hyperplane sections x2 = ±ix1, x2 =
±2ix1 and get a del Pezzo surface of degree 6 which is k-rational by Theorem 2.9.
This gives us an example of a k-rational quotient of a G-minimal k-rational del
Pezzo surface of degree 4 by the group C2.

Now we show that the quotient of a del Pezzo surface of degree 4 by a group V4

can be non-k-rational.

Example 6.6. Let us consider the quotient of the surface X given by equa-
tions (6.4) by the group G = 〈ι12, ι13〉. The element ι12 has four fixed points(
0 : 0 : ±

√
3 : ±

√
2 : 1

)
, the element ι13 has four fixed points

(
0 : ±i

√
3 : 0 : ±i : 1

)
,

and the element ι23 has four fixed points
(
±i

√
3 : 0 : 0 : ±2i : 1

)
.

Suppose that in Example 6.3 the field k does not contain i,
√
2, and

√
3, and

Gal
(
k
(
i,
√
2,
√
3
)
/k

)
∼= C

3
2.

As in Example 6.3 the sixteen (−1)-curves on X are defined over the field

k
(
i,
√
2,
√
3
)
. The image of the group Gal

(
k
(
i,
√
2,
√
3
)
/k

)
in W (D5) is

〈ι1345, ι15, ι45〉. In this case ρ(X) = 2, and X admits a structure of a minimal
conic bundle by Theorem 2.8(iii). Thus the surface X is not k-rational by Theorem
2.9. One has ρ(X)G = 1, and for each non-trivial element in G its four fixed points
are permuted by the Galois group. Thus the quotient surface X/G is birationally
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equivalent to a minimal del Pezzo surface Y of degree 4 by Lemma 5.8. The surface
Y is not k-rational by Theorem 2.9. This gives us an example of a non-k-rational
quotient of a (G-minimal) non-k-rational del Pezzo surface of degree 4 by the group
V4.

Now assume that in Example 6.3 the field k contains i
√
2 but does not contain√

2,
√
3, and

√
6. In this case the image of the Galois group

Gal
(
k
(√

2,
√
3
)
/k

)
∼= C

2
2

in W (D5) is 〈ι34, ι45〉. The quadruple of (−1)-curves E1, E5, L23, E4 is defined
over k. Thus one can Galois-equivariantly contract this quadruple and get a del
Pezzo surface of degree 8. Therefore X is k-rational by Theorem 2.9. One has
ρ(X)G = 1, and for each non-trivial element in G its four fixed points are permuted
by the group G × Gal

(
k/k

)
. Thus by Lemma 5.8 the quotient surface X/G is

birationally equivalent to a minimal del Pezzo surface Y of degree 4 and Y is not
k-rational by Theorem 2.9. This gives us an example of a non-k-rational quotient
of a G-minimal k-rational del Pezzo surface of degree 4 by the group V4.

Now assume that in Example 6.3 the field k contains i and
√
2 but does not

contain
√
3. In this case the image of the Galois group

Gal
(
k
(√

3
)
/k

)
∼= C2

in W (D5) is 〈ι45〉. The pair of (−1)-curves E1 and L23 is defined over k. Thus one
can Galois-equivariantly contract this pair and get a del Pezzo surface of degree
6. Therefore X is k-rational by Theorem 2.9. One has ρ(X)G = 1, but for each
non-trivial element in G its four fixed points are not permuted transitively by the
Galois group Gal

(
k
(√

3
)
/k

)
. Thus by Lemma 5.8 the quotient surface X/G is

birationally equivalent to a del Pezzo surface Y of degree 4 with ρ(Y ) = 4, and Y
is k-rational by Corollary 2.12. This gives us an example of a k-rational quotient
of a G-minimal k-rational del Pezzo surface of degree 4 by the group V4.

Example 6.7. In Example 6.3 consider the quotient ofX by the groupG=〈ι12, ι14〉.
The element ι12 has four fixed points

(
0 : 0 : ±

√
3 : ±

√
2 : 1

)
, the element ι14 has

four fixed points
(
0 : ±i

√
2 : ±1 : 0 : 1

)
, and the element ι24 has four fixed points(

±i : 0 : ±
√
2 : 0 : 1

)
.

Suppose that the field k contains
√
2 and

√
3 and does not contain i. Then the

image of the Galois group

Gal (k (i) /k) ∼= C2

in W (D5) is 〈ι1345〉. The surface X admits a structure of a minimal conic bundle by
Theorem 2.8(iii), since ρ(X) = 2. Thus the surface X is not k-rational by Theorem
2.9. One has ρ(X)G = 1. But for each non-trivial element in G the four fixed points
are not permuted transitively by the Galois group Gal (k (i) /k). Thus by Lemma
5.8 the quotient surface X/G is birationally equivalent to a del Pezzo surface Y of
degree 4 with ρ(Y ) = 4, and Y is k-rational by Corollary 2.12. This gives us an
example of a k-rational quotient of a (G-minimal) non-k-rational del Pezzo surface
of degree 4 by the group V4.

Now we show that the quotient of a del Pezzo surface of degree 4 by a group C4

can be non-k-rational.
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Lemma 6.8. Let a finite group G act on a del Pezzo surface X of degree 4 and let

N ∼= C4 = 〈(12)(34)ι15〉
be a normal subgroup in G. Then the surface X/N is G/N-birationally equivalent
to a conic bundle Y with K2

Y = 4.

Proof. After a suitable change of coordinates the group N is generated by an ele-
ment

g : (x1 : x2 : x3 : x4 : x5) �→ (−x2 : x1 : x4 : x3 : −x5).

The element g is of order 4, and the element g2 has four fixed points p1, p2, p3,
and p4 on X cut out by the plane x1 = x2 = 0. These points are the intersection
points of two N -invariant conics C1 and C2 in the plane x1 = x2 = 0. These conics
cannot be pointwisely fixed by the group N , since N has only four fixed points.
Therefore N faithfully acts on C1 and C2, has two fixed points on C1, and has
two fixed points on C2. Thus after relabelling the points pi if necessary, we have
gp1 = p1, gp2 = p2, gp3 = p4, and gp4 = p3.

Consider a linear system spanned by the curves x3 + x4 = 0 and x5 = 0. In this
linear system there is exactly one member C passing through the points p3 and p4.
There are two g2-fixed points on C. An element of an automorphism group of order
2 cannot have two fixed points on an elliptic curve. Therefore C is a singular curve;
moreover C has more than one singular point since the element g does not have
fixed points on C. Thus C is reducible and consists of two smooth conics meeting
each other at points p3 and p4.

Let f : X → X/N be the quotient map and let

π : X̃/N → X/N

be the minimal resolution of singularities. One can show that X̃/N admits a conic
bundle structure as in the proof of Lemma 6.1.

The points f(p1) and f(p2) are A3 singularities. Exceptional divisors of their
resolutions are chains consisting of three (−2)-curves each. The point f(p3) = f(p4)
is an A1 singularity. The curves π−1

∗ f (C1), π−1
∗ f (C2), and π−1

∗ f (C) are three
disjoint (−1)-curves (see Table 1).

Let σ : X → Y be the contraction of the curves π−1
∗ f (C1), π−1

∗ f (C2), and
π−1
∗ f (C). Then

K2
Y = K2

X̃/N
+ 3 = K2

X/N + 3 =
1

4
K2

X + 3 = 4,

and Y is a conic bundle. �

Remark 6.9. The reducible curves π−1f(pi) are chains of three (−2)-curves. The
conic bundle Y obtained in Lemma 6.8 has two sections with self-intersection −2
which are transforms of the central (−2)-curves in these chains. There exists an
elliptic curve E such that the surface Y is birationally equivalent to a quotient of
P1
k
× E by an involution (see [DI09, Subsection 5.2] for details). Such a surface is

called an Iskovskikh surface.

Remark 6.10. In the notation of Lemma 6.8 one can check that if ρ(X)G = 1 and
the points p1 and p2 are permuted by an element of G × Gal

(
k/k

)
which does

not permute the curves C1 and C2 then ρ(Y )G/N = 2 and Y is G/N -minimal by
Theorem 2.8(iii).
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Now we construct an explicit example satisfying the conditions of Lemma 6.8.

Example 6.11. Suppose that the field k contains i and does not contain
√
2 and√

6. Consider a surface X in P4
k given by the equations

4x2
1 − 4x2

2 − x2
3 + x2

4 = 0, 2x2
1 + 2x2

2 − x2
3 − x2

4 + 12x2
5 = 0.

Note that X(k) �= ∅ since the k-point (1 : i : 2 : 2i : 0) lies on X.
The normal subgroup C4

2 of W (D5) acts on X by switching signs of coordinates:
elements ιij and ιijkl switch signs of coordinates xi, xj and xi, xj , xk, xl, respec-
tively. The group G ∼= C4 generated by an element

g : (x1 : x2 : x3 : x4 : x5) �→ (−x2 : x1 : x4 : x3 : −x5)

acts on X. The element g2 has four fixed points on X:

p1 = (0 : 0 :
√
6 : −

√
6 : 1), p2 = (0 : 0 : −

√
6 :

√
6 : 1),

p3 = (0 : 0 :
√
6 :

√
6 : 1), p4 = (0 : 0 : −

√
6 : −

√
6 : 1).

One can check that sixteen (−1)-curves on the surface X are given by the fol-
lowing parametrization:(

± (x+ y) : ± (x− y) : ±
√
2 (x+ 2y) : ±

√
2 (x− 2y) : ±y

)
.

These curves are defined over any field containing
√
2, and the image of the group

Gal
(
k
(√

2
)
/k

)
∼= C2

in W (D5) is 〈ι34〉. The pair of (−1)-curves E3 and E4 is defined over k. Thus one
can Galois-equivariantly contract this pair and get a del Pezzo surface of degree 6.
Therefore X is k-rational by Theorem 2.9. One has ρ(X)G = 1, and the points p1
and p2 are permuted by an element of G×Gal

(
k/k

)
which does not permute the

curves C1 and C2, given by x1 = ±ix2. Therefore by Remark 6.10 the quotient
surface X/G is birationally equivalent to a minimal conic bundle Y with K2

Y = 4
and Y is not k-rational by Theorem 2.9. This gives us an example of a non-k-
rational quotient of a G-minimal k-rational del Pezzo surface of degree 4 by the
group C4.

Now assume that the field k contains
√
6 but does not contain

√
2. In this case

the image of the Galois group

Gal
(
k
(√

2
)
/k

)
∼= C2

in W (D5) is 〈ι34〉. The pair of (−1)-curves E3 and E4 is defined over k. Thus one
can Galois-equivariantly contract this pair and get a del Pezzo surface of degree 6.
Therefore X is k-rational by Theorem 2.9. One has ρ(X)G = 1, but the points p1
and p2 are not permuted by the Galois group Gal

(
k
(√

2
)
/k

)
. Thus by Lemma

6.8 the quotient surface X/G is birationally equivalent to a minimal conic bundle
Y with K2

Y = 4 with ρ(Y ) � 3, and Y is k-rational by Corollary 2.12. This gives
us an example of a k-rational quotient of a G-minimal k-rational del Pezzo surface
of degree 4 by the group C4.

Example 6.12. Suppose that the field k contains i and does not contain
√
2,

√
3,

and
√
6. Consider a surface X in P4

k given by the equations

4x2
1 − 4x2

2 − 3x2
3 + 3x2

4 = 0, 2x2
1 + 2x2

2 − 3x2
3 − 3x2

4 + 36x2
5 = 0.

Note that X(k) �= ∅ since the k-point (3 : 3 : 0 : 0 : i) lies on X.
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The normal subgroup C4
2 of W (D5) acts on X by switching signs of coordinates:

elements ιij and ιijkl switch signs of coordinates xi, xj and xi, xj , xk, xl, respec-
tively. The group G ∼= C4 generated by an element

g : (x1 : x2 : x3 : x4 : x5) �→ (−x2 : x1 : x4 : x3 : −x5)

acts on X. The element g2 has four fixed points on X:

p1 = (0 : 0 :
√
6 : −

√
6 : 1), p2 = (0 : 0 : −

√
6 :

√
6 : 1),

p3 = (0 : 0 :
√
6 :

√
6 : 1), p4 = (0 : 0 : −

√
6 : −

√
6 : 1).

One can check that sixteen (−1)-curves on the surface X are given by the fol-
lowing parametrization:(

±
√
3 (x+ y) : ±

√
3 (x− y) : ±

√
2 (x+ 2y) : ±

√
2 (x− 2y) : ±y

)
.

These curves are defined over any field containing
√
2 and

√
3, and the image of

the group

Gal
(
k
(√

2,
√
3
)
/k

)
∼= C

2
2

in W (D5) is 〈ι12, ι34〉. In this case ρ(X) = 2, and X admits a structure of a minimal
conic bundle by Theorem 2.8(iii). Thus the surface X is not k-rational by Theorem
2.9. One has ρ(X)G = 1, and the points p1 and p2 are permuted by an element of
G×Gal

(
k/k

)
which does not permute the curves C1 and C2, given by x1 = ±ix2.

Therefore by Remark 6.10 the quotient surface X/G is birationally equivalent to a
minimal conic bundle Y with K2

Y = 4 and Y is not k-rational by Theorem 2.9. This
gives us an example of a non-k-rational quotient of a (G-minimal) non-k-rational
del Pezzo surface of degree 4 by the group C4.

Now assume that the field k contains
√
6 but does not contain

√
2 and

√
3. In

this case the image of the Galois group

Gal
(
k
(√

2
)
/k

)
∼= C2

in W (D5) is 〈ι1234〉. In this case ρ(X) = 2, and X admits a structure of a minimal
conic bundle by Theorem 2.8(iii). Thus the surface X is not k-rational by Theorem
2.9. One has ρ(X)G = 1, but the points p1 and p2 are not permuted by the Galois

group Gal
(
k
(√

2
)
/k

)
. Thus by Lemma 6.8 the quotient surfaceX/G is birationally

equivalent to a minimal conic bundle Y with K2
Y = 4 with ρ(Y ) � 3 and Y is k-

rational by Corollary 2.12. This gives us an example of a k-rational quotient of a
(G-minimal) non-k-rational del Pezzo surface of degree 4 by the group C4.
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