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SPECIAL VALUES OF HYPERGEOMETRIC FUNCTIONS

AND PERIODS OF CM ELLIPTIC CURVES

YIFAN YANG

Abstract. Let X6
0 (1)/W6 be the Atkin–Lehner quotient of the Shimura curve

X6
0 (1) associated to a maximal order in an indefinite quaternion algebra of

discriminant 6 over Q. By realizing modular forms on X6
0 (1)/W6 in two ways,

one in terms of hypergeometric functions and the other in terms of Borcherds
forms, and using Schofer’s formula for values of Borcherds forms at CM-points,
we obtain special values of certain hypergeometric functions in terms of periods
of elliptic curves over Q with complex multiplication.

1. Introduction

Let XD
0 (N) be the Shimura curve associated to an Eichler order of level N in

an indefinite quaternion algebra of discriminant D over Q. When D = 1, the
Shimura curve X1

0 (N) is just the classical modular curve X0(N) and there are
many different constructions of modular forms on X0(N) in literature, such as
Eisenstein series, Dedekind eta functions, Poincare series, theta series, etc. These
explicit constructions provide practical tools for solving problems related to classical
modular curves. On the other hand, when D �= 1, because of the lack of cusps, most
of the methods for classical modular curves cannot possibly be extended to the case
of general Shimura curves. As a result, even some of the most fundamental problems
about Shimura curves, such as finding equations of Shimura curves, computing
Hecke operators on explicitly given modular forms, etc., are not easy to answer.
However, in recent years, there have been two realizations of modular forms on
Shimura curves emerging in literature, and some progress toward the study of
Shimura curves has already been made using these two methods.

The first method was due to the author of the present paper. In [35], we first
observed that when a Shimura curve X has genus 0, all modular forms on X can be
expressed in terms of solutions of the Schwarzian differential equation associated to
a Hauptmodul of X. Then by utilizing the Jacquet–Langlands correspondence and
explicit covers between Shimura curves, we devised a method to compute Hecke
operators with respect to the explicitly given basis of modular forms. As applica-
tions of this computation of Hecke operators, we computed modular equations for
Shimura curves, which can be regarded as equations for Shimura curves associated
to Eichler orders of higher levels, in [34] and obtained Ramanujan-type identities for
Shimura curves in [36]. In addition, since some Schwarzian differential equations are
essentially hypergeometric differential equations, this realization of modular forms
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yields many beautiful identities among hypergeometric functions. This is discussed
in [29, 31].

The second method is to realize meromorphic modular forms with divisors sup-
ported on CM-points as Borcherds forms associated to the lattice formed by the
elements of trace zero in an Eichler order. Borcherds forms themselves are not easy
to work with. What makes Borcherds forms useful in practice is Schofer’s formula
[24] for norms of (generalized) singular moduli of Borcherds forms, that is, norms
of values of Borcherds forms at CM-points. Schofer’s formula is based on an earlier
work of Kudla [19], and the evaluation of derivatives of Fourier coefficients of Eisen-
stein series uses works of Kudla, Rapoport, and Yang [20, 22, 32]. An immediate
consequence of Schofer’s formula is a necessary condition for primes that can ap-
pear in the prime factorization of the norm of the difference of two singular moduli
of different discriminants, which is analogous to Gross and Zagier’s work [16] for
the case of the classical modular curve X0(1). Also, Errthum [13] used Schofer’s
formula to determine singular moduli of X6

0 (1)/W6 and X10
0 (1)/W10, where WD

denotes the group of all Atkin–Lehner involutions on XD
0 (1), verifying Elkies’ nu-

merical computation [12]. (However, we remark that Schofer’s formula needs a
slight correction when the Borcherds forms have nonzero weights. See Section 4
below.)

The realization of modular forms on Shimura curves in [35] is completely analytic,
while Schofer’s formula for singular moduli of Borcherds forms is more arithmetic
in nature. (For example, the primary motivation of [19–22] was to obtain arith-
metic Siegel–Weil formulas realizing generating series from arithmetic geometry as
modular forms.) It is an interesting problem to see what results we can obtain by
combining the two approaches. This is the main motivation of the present work.

In this paper, we will consider the Shimura curve X = X6
0 (1)/W6. From [35],

we know that every holomorphic modular form on X can be expressed in terms of
hypergeometric functions. Now according to [26, Theorem 7.1] and [37, Theorem
1.2 and (1.4) of Chapter 3], if t(τ ) is a modular function on X that takes algebraic
values at all CM-points, then the value of t′(τ ) at a CM-point of discriminant d is
an algebraic multiple of the square of

ωd = eL
′(0,χd0

)/2L(0,χd0
) =

1√
|d0|

|d0|−1∏
a=1

Γ

(
a

|d0|

)χd0
(a)μd0

/4hd0

,

where d0 is the discriminant of the field Q(
√
d), χd0

is the Kronecker character

associated to Q(
√
d), μd0

is the number of roots of unity in Q(
√
d), and hd0

is the

class number of Q(
√
d). (See [2, Theorem 7] for some examples.) The significance

of these numbers ωd is that periods of any elliptic curve over Q with CM by Q(
√
d)

lie in
√
πωd ·Q. (See [14,25].) In other words, the values of certain hypergeometric

functions at singular moduli can be expressed in terms of periods of CM elliptic
curves over Q.

Theorem 1. Let s(τ ) be the Hauptmodul of X6
0 (1)/W6 that takes values 0, 1, and

∞ at the CM-points of discriminants −4, −24, and −3, respectively. Let τd be a
CM-point of discriminant d such that |s(τd)| < 1. Then

2F1

(
1

24
,
5

24
;
3

4
; s(τd)

)
∈ ωd

ω−4
·Q, 3F2

(
1

3
,
1

2
,
2

3
;
3

4
,
5

4
; s(τd)

)
∈ ω2

d ·Q.
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Likewise, let t(τ ) = 1/s(τ ). If τd is a CM-point of discriminant d such that |t(τd)| <
1, then

2F1

(
1

24
,
7

24
;
5

6
; t(τd)

)
∈ ωd

ω−3
·Q, 3F2

(
1

4
,
1

2
,
3

4
;
5

6
,
7

6
; t(τd)

)
∈ ω2

d ·Q.

The proof of the theorem will be given at the end of Section 2. Note that the
theorem says that if d = −4r2 for some integer r, then 2F1(1/24, 5/24; 3/4; s(τd)) ∈
Q, and if d = −3r2, then 2F1(1/24, 7/24; 5/6; t(τd)) ∈ Q. For instance, in [35],
using the Jacquet–Langland correspondence, we find that for d = −75,

2F1

(
1

24
,
7

24
;
5

6
;−210 · 33 · 5

114

)
=

√
6

6

√
11

55
.

The parallel results in the cases of classical modular curves can be described as
follows. Let λ1 and λ2 be a basis for a lattice Λ in C with Im (λ2/λ1) > 0, and for
positive even integers k ≥ 4, let

Gk(Λ) =
∑

λ∈Λ,λ �=0

1

λk
.

Then Weierstrass’s equation for the elliptic curve C/Λ over C is

y2 = 4x3 − 40G4(Λ)x− 140G6(Λ).

From the relations

G4(Λ) =
1

45

(
π

λ1

)4

E4(τ ), G6(Λ) =
2

945

(
π

λ1

)6

E6(τ ),

where τ = λ2/λ1 and Ek are the normalized Eisentein series of weight k, we imme-

diately see that for τ ∈ Q(
√
d) ∩H+, H+ = {τ ∈ C : Im τ > 0},

Ek(τ ) ∈
(
Ωd

π

)k

·Q,

where Ωd is any nonzero period of any elliptic curve over Q with CM by Q(
√
d).

According to the Chowla–Selberg formula [14, 25], we may choose

Ωd =
√
π

|d|−1∏
a=1

Γ

(
a

|d|

)χd(a)μd/4hd

=
√
π|d|ωd.

Now from the classical identity

E4(τ ) = 2F1

(
1

12
,
5

12
; 1;

1728

j(τ )

)4

,

we conclude that if τ ∈ Q(
√
d) ∩H+, then

2F1

(
1

12
,
5

12
; 1;

1728

j(τ )

)
∈ Ωd

π
·Q.

For instance, for τ = i, we have j(i) = 1728, and Gauss’s formula for values
of hypergeometric functions at 1 and the multiplication formula for the Gamma
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function yield

2F1

(
1

12
,
5

12
; 1; 1

)
=

Γ(1/2)

Γ(11/12)Γ(7/12)
=

√
πΓ(3/12)

Γ(11/12)Γ(7/12)Γ(3/12)

=

√
πΓ(1/4)

(2π)31/2−3/4Γ(3/4)
=

31/4

2

Ω−4

π
.

For a fundamental discriminant d < 0, one may use the Chowla–Selberg formula
[25, Page 110]

hd∏
j=1

a−6
j Δ(τj) =

ω12hd

d

(2π)6hd
,

where the product runs through the complete set of reduced primitive quadratic
forms ajx

2 + bjxy + cjy
2 of discriminant d with τj = (−bj +

√
d)/2aj , along with

its generalizations to determine special values of hypergeometric functions. See
[1, 4, 11] for some examples.

Now to determine the precise values of the hypergeometric functions in Theorem
1 at singular moduli, we shall realize the modular forms involved as Borcherds
forms. Then evaluating these modular forms at CM-points using Schofer’s formula,
we obtain formulas for special values of hypergeometric functions. The results in the
cases where there exists exactly one CM-point of fundamental discriminant d are
given in the next theorem. In Section 6, we will work out an example to illustrate a
general technique to determine special values of the hypergeometric functions when
there is more than one CM-point of discriminant d.

Theorem 2. The evaluations

2F1

(
1

24
,
5

24
;
3

4
;
M

N

)
= A1

ωd

ω−4
,

3F2

(
1

3
,
1

2
,
2

3
;
3

4
;
5

4
;
M

N

)
= A2ω

2
d

hold for

d M N A1 A2

−120 −74 33 · 53 1

2

8
√
45

√
12 + 2

√
30

45

7

−52 22 · 37 56
1

2

4
√
5

√
8 + 2

√
13

25

6

−132 24 · 112 56
1

2

8
√
75

√
12 + 2

√
33

75

2
√
22

−43 −37 · 74 210 · 56 1

2

4
√
10

√
7 +

√
43

100

21

−88 37 · 74 56 · 113 1

2

8
√
275

√
10 + 2

√
22

275

21
√
2

−312 74 · 234 56 · 116 1

2

8
√
3

4
√
55

√
18 + 2

√
78

9075

161
√
2

−148 22 · 37 · 74 · 114 56 · 176 1

2

4
√
85

√
14 + 2

√
37

7225

231

−232 −37 · 74 · 114 · 194 56 · 236 · 293 1

2

8
√
29

4
√
115

√
16 + 2

√
58

383525

4389

−708 28 · 74 · 114 · 474 · 592 56 · 176 · 296 1

2

8
√
3

4
√
2465

√
30 + 2

√
177

18228675

3619
√
118

−163 −311 · 74 · 194 · 234 210 · 56 · 116 · 176 1

2

4
√
1870

√
13 +

√
163

3496900

27531
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Also,

2F1

(
1

24
,
7

24
;
5

6
;
M

N

)
= B1

ωd

ω−3
,

3F2

(
1

4
,
1

2
,
3

4
;
5

6
,
7

6
;
M

N

)
= B2ω

2
d

hold for

d M N B1 B2

−84 33 22 · 72 12
√
56

√
3 +

√
7 2

√
14

3

−40 −53 37 12

√
4

3

√
2
√
3 +

√
10

6√
5

−51 210 74
1

2

6
√
7

√
10 + 2

√
17

7

2

−19 −210 37
1

2
12

√
1

3

√
6
√
3 + 2

√
19

3

2

−168 56 72 · 114 12
√
7 6
√
22

√
4 +

√
14

22

5

√
7

−228 −36 · 56 26 · 74 · 192 12
√
38 6

√
28

√
5 +

√
19

28

15

√
114

−123 210 · 56 74 · 194 1

2

6
√
133

√
14 + 2

√
41

133

10

−67 −216 · 56 37 · 74 · 114 12

√
1

3
6

√
77

8

√
5
√
3 +

√
67

231

20

−372 33 · 56 · 116 22 · 74 · 194 · 312 12
√
62 6

√
266

√
7 +

√
31

266

55

√
186

−408 36 · 56 · 173 74 · 114 · 314 6
√
4774

√
6 +

√
34

4774

15
√
17

−267 216 · 56 · 116 74 · 314 · 434 1

2

6
√
9331

√
22 + 2

√
89

9331

110

Remark 1. Let F1(s) = 2F1(1/24, 5/24; 3/4; s), G1(t) = 2F1(1/24, 7/24; 5/6; t), and

F2(s) = 2F1(7/24, 11/24; 5/4; s) = 3F2(1/3, 1/2, 2/3; 3/4; 5/4; s)/F1(s),

G2(t) = 2F1(5/24, 11/24; 7/6; t) = 3F2(1/4, 1/2, 3/4; 5/6, 7/6; t)/G1(t)

be the hypergeometric functions in Theorem 2. The Ramanujan-type identities
obtained in [36] can be written as(

R1s
d

ds
F1(s)

2 +R2F1(s)
2

) ∣∣∣
s=M/N

=
√
R3|M |3/4N1/4C1,(

R1s
d

ds
F2(s)

2 + (R1/2 +R2)F2(s)

) ∣∣∣
s=M/N

=
√
R3|M |1/4N3/4C−1

1 ,

and (
R1t

d

dt
G1(t)

2 +R2G1(t)
2

) ∣∣∣
t=M/N

=
√
R3|M |2/3N1/3C2,(

R1t
d

ds
G2(t)

2 + (R1/3 +R2)G2(t)

) ∣∣∣
t=M/N

=
√
R3|M |1/3N2/3C−1

2 ,
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for some rational numbers R1, R2, R3 depending on d, where

C1 =
4

4
√
12

π

Ω2
−4

=
4

4
√
12

Γ(3/4)2

Γ(1/4)2
, C2 =

3
6
√
2

π

Ω2
−3

=
3
6
√
2

Γ(2/3)3

Γ(1/3)3
.

Combining these identities with the formulas in Theorem 2, we obtain special values
for the functions

d

ds
F1(s)

2 =
d

ds
3F2

(
1

12
,
1

4
,
5

12
;
1

2
,
3

4
; s

)
=

5

216
3F2

(
13

12
,
5

4
,
17

12
;
3

2
,
7

4
; s

)
,

d

ds
F2(s)

2 =
d

ds
3F2

(
7

12
,
3

4
,
11

12
;
3

2
,
5

4
; s

)
=

77

360
3F2

(
19

12
,
7

4
,
23

12
;
5

2
,
9

4
; s

)
.

For instance, for d = −120, we have

3F2

(
13

12
,
5

4
,
17

12
;
3

2
,
7

4
;− 74

153

)
=

36 · 59/4
2 · 73 · 19 · ω2

−4

(
(4
√
3 + 2

√
10)ω2

−120 −
√

3

2

)
,

3F2

(
19

12
,
7

4
,
23

12
;
5

2
,
9

4
;− 74

153

)
=

37 · 523/4 · ω2
−4

77 · 11 · 19

(
242(2

√
3−

√
10)ω2

−120 − 7

√
3

2

)
.

There are similar formulas for the functions

3F2

(
13

12
,
4

3
,
19

12
;
11

6
,
5

3
; t

)
, 3F2

(
17

12
,
5

3
,
23

12
;
13

6
,
7

3
; t

)
,

such as

3F2

(
13

12
,
4

3
,
19

12
;
11

6
,
5

3
;
27

196

)
=

24 · 5 · 77/6
32 · 13 · ω2

−3

(
4√
3
−
√
2(3 +

√
7)ω2

−84

)
,

3F2

(
17

12
,
5

3
,
23

12
;
13

6
;
7

3
;
27

196

)
=

25 · 723/6 · ω2
−3

34 · 5 · 11 · 13
(
4
√
3− 55

√
2(3−

√
7)ω2

−84

)
.

Remark 2. Notice that the numbers A1 in the first table are all of the form A1/8(a+√
|d|)1/2 for some positive integer a and some rational number A whose denominator

is 2 or 4. In other words, the special values 2F1(1/24, 5/24; 3/4;M/N) possess a
certain integrality property. This integrality property is a consequence of Schofer’s
work [24] and our explicit realization of modular forms as Borcherds forms. On the
other hand, if we can somehow manage to prove this integrality property without
using Borcherds forms, then to obtain the identities in Theorem 2, we can just
evaluate the hypergeometric functions to a high precision and identify the integers.
Note that the prime factors of the numerator of A are either 2 or prime factors of
N . This suggests that it may be possible to prove the integrality property using
the moduli interpretation of the Shimura curve X6

0 (1).
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Remark 3. Note that the proof of Theorem 1 is certainly valid for other Shimura
curves XD

0 (N)/W , W being a subgroup of the Atkin–Lehner groups, or even
Shimura curves over totally real fields. However, other than the cases of arith-
metic triangle groups, as classified in [28], there are only a very limited number of
Shimura curves whose Schwarzian differential equations are known (see [12, 30]).

To obtain analogues of Theorem 2 for XD
0 (N)/W , one will need a method to

construct Borcherds forms systematically. This is recently addressed in [17], so
there is no problem in evaluating modular forms on XD

0 (N)/W at CM-points.
However, we remark that this only translates to analogues of the 2F1-evaluations.
To obtain analogues of the 3F2-evaluations, we will need to determine the constant
C such that the linear combination f1 + Cf2 of two solutions f1 and f2 of the
Schwarzian differential equation is a modular form. In general, this is a difficult
problem. (For the case of X6

0 (1)/W6, the constant C is determined by using Gauss’s
formula 2F1(a, b; c; 1) = Γ(c)Γ(c− a− b)/Γ(c− a)Γ(c− b).)

If one wishes to further generalize Theorem 2 to Shimura curves over totally real
fields, one will need the theory of Borcherds forms over totally real fields, developed
recently by Bruinier and Yang [8, 9]. As far as we can see, it should in principle
be possible to obtain explicit evaluations at least for the case of arithmetic triangle
groups. We leave this problem for future investigation.

Remark 4. Notice that if a prime p divides M , then the hypergeometric series
appearing in Theorem 2 converges p-adically and one may wonder what the limit
is. Our computation suggests the following p-adic evaluation.

For a prime p, let Γp(x) be the p-adic Gamma function defined by

Γp(n) = (−1)n
∏

0<j<n,p�j

j

for positive integers n and extended continuously to Zp, and for a fundamental
discriminant d < 0, set

ωd,p =

|d|−1∏
a=1

Γp

(
a

|d|

)χd(a)μd/8hd

.

Consider the two hypergeometric functions in the first set of identities in Theorem
2. Other than the cases d = −52 and d = −132, the series converge 7-adically.
Then the numerical data suggest that

2F1

(
1

24
,
5

24
;
3

4
;
M

N

)
= A1

ωd,7

ω−4,7
,

3F2

(
1

3
,
1

2
,
2

3
;
3

4
,
5

4
;
M

N

)
= A2ω

2
d,7
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hold with the same M and N , and

d A1 A2

−120
1

2
8

√
− 1

125

√√
−3 +

√
−10

3

8
√
2

−43 4
√
−10

√
1 +

√
43

43
−100

129

−88
1

2
8

√
− 1

11
4

√
5

11

√
1 +

√
22

25

24
√
2

−312
8

√
−1

3
4

√
−55

8

√√
−6 +

√
−13

13
−3025

2392

−148
4
√
85

√
4 +

√
37

74
−7225

9768

−232
8

√
1

29
4

√
−115

232

√
2
√
2 +

√
29

13225

5016

−708
8

√
−1

3
4
√
2465

√√
−3 +

√
−59

118

6076225

244024
√
−59

−163
4
√
1870

√
11 +

√
163

163
−3496900

641079

(There are many places where we need to take square roots of p-adic numbers. The
table above means that after taking suitable choices of square roots, the identities
hold conjecturally.)

Note that for a prime p and a fundamental discriminant d < 0, the p-adic number
ω2
d,p appears in the matrix representation of the Frobenius automorphism on the

de Rham cohomology H1
dR(E/Q)⊗Kp for an elliptic curve E over Q with CM by

Q(
√
d), where p is the prime of Q lying over p and Kp is the algebraic closure of Qp

in the completion of Q at p. (See [23, Theorem 3.15].) Note also that if the prime p

splits in Q(
√
d), then wd,p is algebraic over Q since a suitable power of ωd,p appears

as the value of a certain p-adic Gaussian sum. (See [15, Theorem 1.12].) On the

other hand, it is expected that when p is inert in Q(
√
d), ωd,p is transcendental

over Q. In our conjectural 7-adic formulas mentioned above, since the prime 7 is
always inert in Q(

√
d) (which is a consequence of Theorem 3.6 of [24]), we expect

that ωd,7 is transcendental over Q for d given in the list.

2. Realization of modular forms

in terms of Schwarzian differential equations

Here we briefly explain the realization of modular forms on Shimura curves using
solutions of Schwarzian differential equations. For details, see [35].

Assume that a Shimura curve X has genus 0 with elliptic points and cusps
τ1, . . . , τr of order e1, . . . , er, respectively. (Here we set ej = ∞ if τj is a cusp.) Let
t(τ ) be a Hauptmodul for X and set aj = t(τj). Then Theorem 4 of [35] shows
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that a basis for the space of modular forms of even weight k ≥ 4 is

(1) t′(τ )k/2t(τ )j
r∏

i=1,ai �=∞
(t(τ )− ai)

−�k(1−1/ei)/2�, j = 0, . . . , dk − 1,

where

dk = 1− k +
r∑

j=1

⌊
k

2

(
1− 1

ej

)⌋

is the dimension of the space of modular forms of weight k on X.
Now it is easy to check that t′(τ ) is a meromorphic modular form of weight 2

on X. Thus, t′(τ )1/2 and τt′(τ )1/2, as functions of t, are solutions of a certain
second-order linear differential equation with rational functions in t as coefficients.
(See [27, Theorem 5.1] or [33, Theorem 1]. Here the coefficients of the differential
equation are rational functions because t is a Hauptmodul.) In fact, this differential
equation is

(2)
d2

dt2
F +Q(t)F = 0,

where

Q(t) = −1

2

{t, τ}
t′(τ )2

, {t, τ} =
t′′′(τ )

t′(τ )
− 3

2

(
t′′(τ )

t′(τ )

)2

.

Because {t, τ} is classically known as the Schwarzian derivative, we call the differ-
ential equation satisfied by t′(τ )1/2 and t(τ ) the Schwarzian differential equation
associated to the Shimura curve. If we let {f1, f2} be a basis for the solution of
(2), then we have t′(τ ) = (c1f1 + c2f2)

2 for some complex numbers c1 and c2.
Substituting this into (1), we obtain the realization of modular forms in terms of
solutions of Schwarzian differential equations.

When a Shimura curve is of genus zero and has precisely three elliptic points or
cusps, the Schwarzian differential equation is essentially a hypergeometric differen-
tial equation. In particular, for the curve X = X6

0 (1)/W6, we can realize modular
forms on X in terms of hypergeometric functions as follows.

We let B = Q + QI + QJ + QIJ with I2 = −1, J2 = 3, and IJ = −JI
be the quaternion algebra of discriminant 6 over Q and choose the embedding
ι : B ↪→ M(2,R) to be the one defined by

ι(I) =

(
0 −1
1 0

)
, ι(J) =

(√
3 0

0 −
√
3

)
.

Fix a maximal order O = Z + ZI + ZJ + Z(1 + I + J + IJ)/2 in B and choose
representatives of CM-points of discriminants −3, −4, and −24 to be

P−3 =
−1 + i

1 +
√
3
, P−4 = i, P−24 =

(
√
6−

√
2)i

2
.
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They are the elliptic points of orders 6, 4, and 2, respectively. A fundamental
domain is given by

Here the grey area represents a fundamental domain for X6
0 (1)/W6. The four

marked points on the boundary are P−4, P−3, P−24, and (2−
√
3)i.

We have the following bases for the spaces of modular forms on X6
0 (1)/W6.

Proposition 5. Let s be the Hauptmodul on X = X6
0 (1)/W6 determined by s(P−4)

= 0, s(P−24) = 1, and s(P−3) = ∞. Then for an even integer k ≥ 4, a basis for
the space Sk(X) of modular forms of weight k on X is

s{3k/8}(1− s){k/4}sj

(
2F1

(
1

24
,
5

24
;
3

4
; s

)
+

1
4
√
12ω2

−4

s1/42F1

(
7

24
,
11

24
;
5

4
; s

))k

,

j = 0, . . . , dk − 1, where dk = dimSk(X) = 1− k + 
k/4�+ 
3k/8�+ 
5k/12�.
Also, let t = 1/s. Then a basis for Sk(X) is

t{5k/12}(1− t){k/4}tj

(
2F1

(
1

24
,
7

24
;
5

6
; t

)
− e−2πi/8

6
√
2ω2

−3

t1/62F1

(
5

24
,
11

24
;
7

6
; t

))k

,

j = 0, . . . , dk − 1.

Proof. The first part is the content of Lemmas 3 and 4 of [36]. For the second part,
the proof of Lemma 14 of [35] shows that

(3) t′(τ ) =
6t5/6(1− t)1/2

C(P−3 − P−3)

(
2F1

(
1

24
,
7

24
;
5

6
; t

)
− Ct1/62F1

(
5

24
,
11

24
;
7

6
; t

))2

,

where

C =
P−24 − P−3

P−24 − P−3

Γ(5/6)Γ(17/24)Γ(23/24)

Γ(7/6)Γ(13/24)Γ(19/24)
.

Now

P−24 − P−3

P−24 − P−3

= (1− i)

(
1− 1√

2

)
= e−2πi/8(

√
2− 1).
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Also, by Euler’s reflection formula and Gauss’s multiplication formula, we have(
Γ(17/24)Γ(23/24)

Γ(13/24)Γ(19/24)

)2

=
Γ(17/24)Γ(23/24)Γ(5/24)Γ(11/24)

Γ(13/24)Γ(19/24)Γ(1/24)Γ(7/24)

× sin(5π/24) sin(11π/24)

sin(π/24) sin(7π/24)

= 4−2/3Γ(5/6)

Γ(1/6)
(3 + 2

√
2)

and

Γ

(
1

3

)
Γ

(
5

6

)
= (2π)1/22−1/6Γ

(
2

3

)
.

From these, we deduce that

Γ(5/6)

Γ(7/6)

Γ(17/24)Γ(23/24)

Γ(13/24)Γ(19/24)
= 6 · 2−2/3(

√
2 + 1)

Γ(5/6)3/2

Γ(1/6)3/2

= 6 · 2−2/3(
√
2 + 1)

1

(2π)3/2
Γ

(
5

6

)3

= 6 · 2−7/6(
√
2 + 1)

Γ(2/3)3

Γ(1/3)3
=

√
2 + 1

6
√
2ω2

−3

,

and hence

C =
e−2πi/8

6
√
2ω2

−3

.

Then from (1), we conclude that the second set of functions in the lemma forms a
basis for Sk(X). �

For general Shimura curves, we can determine Schwarzian differential equations
using Propositions 5 and 6 of [35] and explicit covers of Shimura curves. In [30], Tu
determines Schwarzian differential equations for the cases when XD

0 (1)/WD and
XD

0 (N)/WD both have genus zero.
We now give a proof of Theorem 1.

Proof of Theorem 1. Here we only prove the second half of the theorem; the proof
of the first half is similar and is omitted.

Since t(τ ) is a Hauptmodul that takes rational values at three distinct CM-
points, it takes algebraic values at all CM-points. Thus, by [26, Theorem 7.1]
and [37, Theorem 1.2 and (1.4) of Chapter 3], the value of t′(τ ) at a CM-point of
discriminant d is an algebraic multiple of ω2

d0
. Then, from (3), we see that

2F1

(
1

24
,
7

24
;
5

6
; t(τd)

)
− e−2πi/8

6
√
2ω2

−3

t(τd)
1/6

2F1

(
5

24
,
11

24
;
7

6
; t(τd)

)
∈ ωd0

ω−3
·Q.

Without loss of generality, we may assume that τd lies in the fundamental domain
depicted earlier. Then equation (22) of [35] implies that

2F1(5/24, 11/24; 7/6; t(τd))

2F1(1/24, 7/24; 5/6; t(τd))
∈ ω2

−3 ·Q.

It follows that

2F1

(
1

24
,
7

24
;
5

6
; t(τd)

)
∈ ωd0

ω−3
·Q
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and

3F2

(
1

4
,
1

2
,
3

4
;
5

6
,
7

6
; t(τd)

)
= 2F1

(
1

24
,
7

24
;
5

6
; t(τd)

)
2F1

(
5

24
,
11

24
;
7

6
; t(τd)

)
∈ ω2

d0
·Q.

This proves the theorem. �

3. Realization of modular forms as Borcherds forms

We first give a quick introduction to Borcherds forms. For details, see [5, 6].
Let L be an even lattice with a symmetric bilinear form 〈·, ·〉 of signature (b+, b−),

let L∨ = {γ ∈ L ⊗ Q : 〈γ, η〉 ∈ Z for all η ∈ L} be its dual lattice, and let
{eη : η ∈ L∨/L} be the standard basis for the vector space C[L∨/L]. Let

S̃L(2,Z) =

{((
a b
c d

)
,±

√
cτ + d

)
:

(
a b
c d

)
∈ SL(2,Z)

}
be the metaplectic double cover of SL(2,Z), which is generated by

S =

((
0 −1
1 0

)
,
√
τ

)
, T =

((
1 1
0 1

)
, 1

)
.

Associated to the lattice L, we have the Weil representation ρL : S̃L(2,Z) →
GL(C[L∨/L]) defined by

ρL(T )eη = e−2πi〈η,η〉/2eη,

ρL(S)eη =
e2πi(b

+−b−)/8√
|L∨/L|

∑
γ∈L∨/L

e2πi〈η,γ〉eγ .

A holomorphic function F : H+ → C[L∨/L] is said to be a weakly holomorphic
vector-valued modular form of weight k ∈ 1

2Z and type ρL if it satisfies

F

(
aτ + b

cτ + d

)
= (cτ + d)kρL

((
a b
c d

)
,
√
cτ + d

)
F (τ )

for all τ ∈ H+ and all
(
a b
c d

)
∈ SL(2,Z) and the principal part of its Fourier

expansion F (τ ) =
∑

η(
∑

m∈Q cη(m)qm)eη, q = e2πiτ , has finitely many terms, i.e.,

the number of pairs (η,m) with m < 0 and cη(m) �= 0 is finite.
For k = Q, R, or C, let V (k) = L⊗ k and extend the definition of 〈·, ·〉 to V (k)

by linearity. Define the orthogonal groups

OV (R) = {σ ∈ GL(V (R)) : 〈σx, σy〉 = 〈x, y〉 for all x, y ∈ V (R)}
and

O+
V (R) = {σ ∈ OV (R) : spin σ = sgn detσ},

where if σ is equal to the product of n reflections with respect to the vectors
v1, . . . , vn, then its spinor norm is defined by spinσ = (−1)n

∏n
i=1 sgn 〈vi, vi〉. Also

let
OL = {σ ∈ OV (R) : σ(L) = L}, O+

L = OL ∩O+
V (R).

(Note that the definition of spinor norms is different from that of [5] since the
bilinear form in our setting differs from that of [5] by a factor of −1.)

From now on, we assume that the signature of L is (b, 2). Let Gr(V (R)) be the
Grassmanian of oriented negative 2-planes in V (R). For an element A in Gr(V (R)),
we can find an oriented basis {x, y} for A with 〈x, x〉 = 〈y, y〉 = −1 and 〈x, y〉 = 0.
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Let z = x+ iy ∈ V (C). Then we have 〈z, z〉 = 0 and 〈z, z〉 < 0. In fact, it is easy
to show that Gr(V (R)) can be identified with the set

K = {z ∈ V (C) : 〈z, z〉 = 0, 〈z, z〉 < 0}/C×.

The set K has two connected components which amount to the two choices of
continuously varying orientation of negative 2-planes in V (R). Pick one of them to
be K+. Then the orthogonal group O+

V (R) acts transitively on K+. Let

K̃+ = {z ∈ V (C) : 〈z, z〉 = 0, 〈z, z〉 < 0, [z] ∈ K+}.

Then for a subgroup Γ of O+
L , a meromorphic function Ψ : K̃+ → P1(C) is called a

modular form of weight k with character χ on Γ if Ψ satisfies

(1) Ψ(cz) = c−kΨ(z) for all c ∈ C× and z ∈ K̃+, and

(2) Ψ(gz) = χ(g)Ψ(z) for all g ∈ Γ and z ∈ K̃+.

Theorem A ([5, Theorem 13.3]). Let L be an even lattice of signature (b, 2) and let
F (τ ) be a weakly holomorphic vector-valued modular form of weight 1−b/2 and type
ρL with Fourier expansion F (τ ) =

∑
η∈L∨/L Fη(τ )eη =

∑
η(
∑

m∈Q cη(m)qm)eη.

Suppose that cη(m) ∈ Z whenever m ≤ 0. Then there corresponds a meromorphic

function ΨF (z), z ∈ K̃+, with the following properties:

(1) ΨF (z) is a meromorphic modular form of weight c0(0)/2 on the group

O+
L,F = {σ ∈ O+

L : Fση = Fη for all η ∈ L∨/L}

with respect to some unitary character χ of O+
L,F .

(2) The only zeros or poles of ΨF (z) lie on the rational quadratic divisor λ⊥ =

{z ∈ K̃+ : 〈z, λ〉 = 0} for λ ∈ L, 〈λ, λ〉 > 0 and are of order∑
0<r∈Q,rλ∈L∨

crλ(−r2〈λ, λ〉/2).

We call the function ΨF (z) the Borcherds form associated to F (τ ).
We now explain the idea of realizing modular forms on Shimura curves in terms

of Borcherds forms. Even though this idea has been used in [13], it seems to us
that some key properties were not explained very concretely there. For instance,
it was not explained in [13] why the characters associated to the Borcherds forms
constructed therein are trivial. Therefore, it is worthwhile to explain this approach
in some detail.

Let O be an Eichler order of level N in an indefinite quaternion algebra B of
discriminant D over Q, (N,D) = 1, let O1 be the group of norm-one elements in
O, and let

L = {α ∈ O : tr(α) = 0}
be the set of elements of trace zero in O, where tr(α) and n(α) denote the trace
and the norm of α, respectively. By setting 〈α, β〉 = tr(αβ′), L becomes a lattice
of signature (1, 2), where β′ denote the quaternionic conjugate of β in B. We now
determine OL and O+

L .
By the Cartan–Dieudonné theorem, every isometry σ in OV (R) is equal to the

product of at most three reflections. Now it is clear that for an element of nonzero
norm α in V (R), the function τα : γ → −αγα−1 sends α to −α and leaves any
element of V (R) orthogonal to α fixed. (Here we regard V (R) as the set of trace-
zero elements in the quaternion algebra B⊗R and define multiplication and inverse
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accordingly.) In other words, τα is the reflection with respect to α. Thus, σ has
determinant 1, i.e., σ is the product of an even number of reflections if and only if
σ is the isometry σβ : γ → βγβ−1 induced by the conjugation by an element β of
nonzero norm in B ⊗ R and σ has determine −1 if and only if σ = −σβ for some
β. From this, we deduce that

OV (R) = {σβ : β ∈ (B ⊗ R)/R×, n(β) �= 0} × {±1}
and

O+
V (R) = {σβ : β ∈ (B ⊗ R)/R×, n(β) > 0} × {±1}.

In addition, by the Noether–Skolem theorem, if σβ , β ∈ B⊗R, satisfies σβ(V (Q)) =
V (Q), then β can be chosen from B. It follows that

OL = {σβ : β ∈ NB(O)/Q×} × {±1}
and

O+
L = {σβ : β ∈ N+

B (O)/Q×} × {±1},
where NB(O) denotes the normalizer of O in B and N+

B (O) is the subgroup of
elements of positive norm in NB(O).

Now assume that the quaternion algebra B is represented by B =
(

a,b
Q

)
with

a, b > 0. That is, B = Q + QI + QJ + QIJ with I2 = a, J2 = b, and IJ = −JI.
Fix an embedding ι : B → M(2,R) by

ι : I →
(

0
√
a√

a 0

)
, J →

(√
b 0

0 −
√
b

)
.

We can show that each class in K = {z ∈ V (C) : 〈z, z〉 = 0, 〈z, z〉 < 0}/C× contains
a unique representative of the form

(4) z(τ ) =
1− τ2

2
√
a

I +
τ√
b
J +

1 + τ2

2
√
ab

IJ

for some τ ∈ H±, the union of the upper and lower half-planes, and the mapping
τ → z(τ ) mod C× is a bijection between H± and K. Let K+ be the image of H+

under this mapping. Now the group N+
B (O)/Q× acts on H+ by linear fractional

transformation through the embedding ι and also on K+ by conjugation. By a
straightforward computation, we can verify that the actions are compatible. To be
more concrete, for α ∈ N+

B (O), if we write ι(α) = ( c1 c2
c3 c4 ), then for all τ ∈ H+, we

have

(5) αz(τ )α−1 =
(c3τ + c4)

2

n(α)
z

(
c1τ + c2
c3τ + c4

)
.

Thus, if Ψ(z) is a meromorphic modular form of weight k on O+
L with character χ,

then the function ψ(τ ) defined by ψ(τ ) = Ψ(z(τ )) is a meromorphic modular form
of weight 2k with character on the Shimura curve N+

B (O)\H+. Since the group

N+
B (O)/(Q×O1) contains the Atkin–Lehner group, we find that ψ(τ ) is a modular

form on XD
0 (N)/WD,N , the quotient of the Shimura curve XD

0 (N) by the group
WD,N of all Atkin–Lehner involutions. In particular, we have the following lemma.

Lemma 6. Let F (τ ) =
∑

η(
∑

m cη(m)qm)eη be a weakly holomorphic vector-valued

modular form of weight 1/2 and type ρL such that O+
L,F = O+

L and cη(m) ∈ Z

whenever m ≤ 0. Then the function ψF (τ ) defined by ψF (τ ) = ΨF (z(τ )) is a
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meromorphic modular form of weight c0(0) with certain unitary character χ on the
Shimura curve XD

0 (N)/WD,N .

We now determine the divisor of ψF (τ ). According to Borcherds’s theorem,
the divisor of ΨF (z) is supported on λ⊥ for λ ∈ L with positive norm such that
crλ(−r2n(λ)) �= 0 for some positive rational number r. Now suppose that λ is
such an element of L. The condition 〈λ, z〉 = 0 implies that λzλ−1 = −z =
z mod C×. That is, λ⊥/C× consists of the point zλ in K+ fixed by the action

of λ, and the corresponding point τλ in H+ is a CM point. Let E = Q(
√
−n(λ))

and let φ : E → B be the embedding determined by φ(
√
−n(λ)) = λ. Then the

discriminant of this CM-point is the discriminant of the quadratic order R in E
such that φ(E) ∩ O = φ(R). Note, however, that if the CM-point τλ happens to
be an elliptic point of order e, then the projection K+ � H+ → XD

0 (N)/WD,N is
locally e-to-1 at τλ. Thus, the order of the modular form ψF (τ ) at τλ is 1/e of that
of ΨF (z) at zλ.

In practice, to have a simpler description of the divisor of ψF (τ ), we often assume
that the weakly holomorphic vector-valued modular form F has the property that
the only η ∈ L∨/L such that cη(m) �= 0 for some m < 0 is 0. In such a case, if we
assume that λ is primitive, that is, λ/n /∈ O for any positive integer n ≥ 2, then the
discriminant of the CM-point τλ is either −n(λ) or −4n(λ), depending on whether
or not (1 + λ)/2 is in O. In summary, the divisor of ψF (τ ) can be described as
follows.

Lemma 7. Let F (τ ), ΨF (z), and ψF (τ ) be as in the previous lemma. Assume in
addition that the only η ∈ L∨/L such that cη(m) �= 0 for some m < 0 is 0. Then
we have

divψF =
∑
m<0

c0(m)
∑

r∈Z+,4m/r2 is a discriminant

1

e4m/r2

∑
τ∈CM(4m/r2)

τ,

where for a negative discriminant d, CM(d) denotes the set of CM-points of dis-
criminant d (which might be empty) and ed is the cardinality of the stabilizer of
τ ∈ CM(d) in N+

B (O)/Q×.

We next determine when the character of a Borcherds form ψF (τ ) is trivial,
under the assumption that the genus of N+

B (O)\H+ is zero.

Lemma 8. Assume that the genus of X = N+
B (O)\H+ is zero. Let τ1, . . . , τr be

the elliptic points of X and assume that their orders are b1, . . . , br, respectively.
Assume further that, as CM-points, the discriminants of τ1, . . . , τr are d1, . . . , dr,
respectively. Let F (τ ) =

∑
η(
∑

m cη(m)qm)eη be a weakly holomorphic vector-

valued modular form of weight 1/2 and type ρL such that O+
L,F = O+

L and cη(m) ∈ Z

whenever m ≤ 0. Assume that c0(0) is even. Then the character associated to the
modular form ψF (τ ) is trivial if and only if for all j such that bj �= 3, the order of
ΨF (z) at z(τj) has the same parity as c0(0)/2.

Proof. Let γ1, . . . , γr be generators of the stabilizer subgroups of τ1, . . . , τr in the
group Γ = N+

B (O)/Q×. Since X is assumed to be of genus zero, the group Γ is
generated by γ1, . . . , γr with a single relation

(6) γ1 . . . γr = 1,

after a suitable reindexing. (See [18, Chapter 4].)
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Recall that the order of an elliptic point can only be 2, 3, 4, or 6. Also, an elliptic
point of order 3 or 6 is necessarily a CM-point of discriminant −3 and a CM-point
of discriminant −3 is an elliptic point of order 3 or 6 depending on whether 3 � DN
or 3|DN . In particular, an elliptic point of order 3 and an elliptic point of order
6 cannot exist at the same time. Moreover, on XD

0 (N)/WD,N , there can be at
most one CM-point of discriminant −3. Likewise, an elliptic point of order 4 is
necessarily a CM-point of discriminant −4, and on XD

0 (N)/WD,N there can be at
most one such point. Therefore, there are at most two elliptic points whose orders
are different from 2.

Consider the case where there is one or zero elliptic point whose order is different
from 2 first. By (6), to show that the character χ associated to the modular form
ψF (τ ) is trivial, it suffices to prove that χ(γj) = 1 for j with bj = 2.

Observe that for j with bj = 2, γj is an element of order 2 in Γ and hence of
trace zero and positive norm. Now by the compatibility relation (5), if we write
ι(γj) = ( c1 c2

c3 c4 ) and set k = c0(0), then

ψF

(
c1τ + c2
c3τ + c4

)
= ΨF

(
n(γj)

(c3τ + c4)2
γjz(τ )γ

−1
j

)
=

(c3τ + c4)
k

n(γj)k/2
ΨF

(
γjz(τ )γ

−1
j

)
.

Let σj be the element of O+
L that corresponds to the reflection with respect to γj .

We have σj : z → −γjzγ
−1
j . Being a reflection, σj acts on ΨF (z) as +1 or −1,

depending on whether ΨF (z) has an even order or an odd order at the fixed point
z(τj) of σj . Thus, assuming the order of ΨF (z) at z(τj) has the same parity as
k/2 = c0(0)/2, we have

ψF

(
c1τ + c2
c3τ + c4

)
=

(c3τ + c4)
k

n(γj)k/2
ΨF (−σjz(τ ))

= (−1)k/2
(c3τ + c4)

k

n(γj)k/2
ΨF (σjz(τ ))

=
(c3τ + c4)

k

n(γj)k/2
ΨF (z(τ )) =

(c3τ + c4)
k

n(γj)k/2
ψF (τ ).

Therefore, if the order of ΨF (z) at z(τj) has the same parity as k/2 = c0(0)/2 for
all j with bj = 2, then ψF (τ ) is a modular form with trivial character on X.

Now consider the remaining case where there are two elliptic points of order
different from 2. By the remark made earlier, the orders of these two elliptic points
can only be 3 and 4 or 4 and 6. By the same argument in the previous paragraph,
we find that, under the assumption of the lemma, for all j with bj even, we have

χ(γ
bj/2
j ) = 1. It follows that if bj = 4, then χ(γj)

2 = 1, and if bj = 3 or bj = 6,

then χ(γj)
3 = 1. Since χ(γ1) · · ·χ(γr) = 1, we conclude that χ(γj) = 1 for all j.

This proves the lemma. �

For the case of X6
0 (1)/W6 under consideration, there are three elliptic points of

order 2, 4, and 6, respectively. They are CM-points of discriminants −24, −4, and
−3, respectively. The proof of the above lemma gives us the following criterion for
a Borcherds form ψF (τ ) to be a modular form with trivial character on X6

0 (1)/W6.

Corollary 9. Let O be a maximal order in the quaternion algebra of discriminant
6 over Q and let L be the lattice formed by the elements of trace zero in O. Suppose
that F (τ ) =

∑
η(
∑

m cη(m)qm)eη is a weakly holomorphic vector-valued modular
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form of weight 1/2 and type ρL such that cη(m) ∈ Z whenever m ≤ 0 and O+
L,F =

O+
L . Assume in addition that

(1) the only η ∈ L∨/L such that cη(m) �= 0 for some m < 0 is 0, and
(2) c0(0) is even and∑

m=−r2

c0(m) ≡
∑

m=−3r2

c0(m) ≡ c0(0)/2 mod 2.

Then the Borcherds form ψF (τ ) = ΨF (z(τ )) is a modular form of weight c0(0) and
trivial character on the Shimura curve X6

0 (1)/W6.

Finally, we introduce Errthum’s method for constructing F (τ ) satisfying the
conditions in the lemma above [13]. Here we consider general Eichler orders in an
indefinite quaternion algebra over Q.

The first lemma shows that we can construct F (τ ) out of a scalar-valued modular
form with suitable properties. To state the required properties, we let χθ denote

the character associated to the Jacobi theta function θ(τ ) =
∑

n∈Z q
n2

. That is, χθ

is the character satisfying

θ(γτ ) = χθ(γ)(cτ + d)1/2θ(τ )

for all γ =
(
a b
c d

)
∈ Γ0(4) and all τ ∈ H+. For a scalar-valued modular form f(τ )

of weight k ∈ 1
2Z on Γ0(M) and γ =

(
a b
c d

)
∈ Γ0(M), we let

f
∣∣
γ
(τ ) = (cτ + d)−kf(γτ ).

We observe that the level M of the lattice L is always a multiple of 4 for any D
and N .

Lemma 10 ([3, Theorem 4.2.9]). Let M be the level of the lattice L. Suppose that
f(τ ) is a weakly holomorphic scalar-valued modular form of weight 1/2 such that

f(γτ ) = χθ(γ)(cτ + d)1/2f(τ )

for all γ =
(
a b
c d

)
∈ Γ0(M). Then the function Ff (τ ) defined by

(7) Ff (τ ) =
∑

γ∈˜Γ0(M)\˜SL(2,Z)

f
∣∣
γ
(τ )ρL(γ

−1)e0

is a weakly holomorphic vector-valued modular form of weight 1/2 and type ρL.

Lemma 11 ([13, Proposition 5.4]). Suppose that the weakly holomorphic modular
form f(τ ) in the above lemma has a pole only at the infinity cusp. Then the Fourier
expansion Ff (τ ) =

∑
η(
∑

m cη(m)qm)eη satisfies cη(m) = 0 whenever η �= 0 and
m < 0.

Lemma 12 ([13, Theorem 5.8]). Let f(τ ) and Ff (τ ) be given as in the previous
lemmas. Then for any η, η′ ∈ L∨ with 〈η, η〉 = 〈η′, η′〉, the eη-component and the
eη′-component of Ff (τ ) are equal. Consequently, we have O+

L,Ff
= O+

L .

It remains to construct scalar-valued modular forms f(τ ) satisfying the condition
in Lemma 10.
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Lemma 13 ([6, Theorem 6.2]). Let M be the level of the lattice L. Suppose that
rd, d|M , are integers satisfying the conditions

(1)
∑

d|M rd = 1,

(2) |L∨/L|
∏

d|M drd is a square in Q×,

(3)
∑

d|M drd ≡ 0 mod 24, and

(4)
∑

d|M (M/d)rd ≡ 0 mod 24.

Then
∏

d|M η(dτ )rd is a weakly holomorphic modular form satisfying the condition

for f(τ ) in Lemma 10.

We now consider the case of X6
0 (1)/W6.

Proposition 14. Consider the case X6
0 (1)/W6. Let

f(τ ) = 2
η(2τ )η(3τ )2η(4τ )4η(6τ )4

η(12τ )10
+ 2

η(τ )η(2τ )3η(6τ )2

η(3τ )η(4τ )η(12τ )3

and

g(τ ) = 2
η(τ )η(2τ )3η(6τ )2

η(3τ )η(4τ )η(12τ )3
.

Let Ff (τ ) and Fg(τ ) be defined as in (7). Then ψFf
(τ ) and ψFg

(τ ) span the one-

dimensional spaces of holomorphic modular form on X6
0 (1)/W6 of weight 8 and 12,

respectively.

Proof. The two eta-products were found in [13, page 848]. Here we give a quick
explanation.

In the case of X6
0 (1)/W6, the lattice L has level 12 and |L∨/L| = 72. The two

eta-products clearly satisfy the four conditions in Lemma 13. Now the congruence
subgroup Γ0(12) has 6 cusps, represented by 1/c, c|12. The orders of the eta
functions η(dτ ) at these cusps, multiplied by 24, are given by the following table:

1/1 1/2 1/4 1/3 1/6 1/12

η(τ ) 12 3 3 4 1 1

η(2τ ) 6 6 6 2 2 2

η(4τ ) 3 3 12 1 1 4

η(3τ ) 4 1 1 12 3 3

η(6τ ) 2 2 2 6 6 6

η(12τ ) 1 1 4 3 3 12

From the table, we see that the two eta-products have only a pole at the cusp
1/12 ∼ ∞. Thus, by Lemma 11, the divisors of ψFf

(τ ) and ψFg
(τ ) are determined

by the e0-components of the Fourier expansions of Ff (τ ) and Fg(τ ). Since f(τ ) =
2q−3 − 6 − 18q + · · · and g(τ ) = 2q−1 − 2 − 8q + 8q2 + · · · , the e0-components of
Ff (τ ) and Fg(τ ) are

2q−3 + c0 + · · · , 2q−1 + d0 + · · ·
for some c0 and d0, respectively. The numbers c0 and d0 are complicated to compute
directly from the definition of Ff and Fg. Here we observe that, by Lemma 7,

divψFf
(τ ) =

1

3
P−3, divψFg

(τ ) =
1

2
P−4,
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where P−3 and P−4 denote the unique CM-points of discriminants −3 and −4,
respectively. (Note that there does not exist a CM-point of discriminant −12 on
X6

0 (1)/W6.) Therefore, the weight of ψFf
(τ ) must be 8 and the weight of ψFg

(τ )
must be 12. In other words, we have c0 = 8 and d0 = 12. Then, by Corollary 9,
ψFf

(τ ) and ψGf
(τ ) must be modular forms on X6

0 (1)/W6 with trivial characters.
This proves the proposition. �

Combining Proposition 5 and Proposition 14, we find that

(8) ψFf
(τ ) = C1

(
2F1

(
1

24
,
5

24
;
3

4
; s

)
+

1
4
√
12ω2

−4

s1/42F1

(
7

24
,
11

24
;
5

4
; s

))8

and

(9) ψFg
(τ ) = C2

(
2F1

(
1

24
,
7

24
;
5

6
; t

)
− e−2πi/8

6
√
2ω2

−3

t1/62F1

(
5

24
,
11

24
;
7

6
; t

))12

for some complex numbers C1 and C2. To determine the absolute values of these
two numbers, we shall use Schofer’s formula for values of Borcherds forms at CM-
points.

4. Schofer’s formula for values of Borcherds forms at CM-points

Let O be an Eichler order of level N in an indefinite quaternion algebra of
discriminant D over Q. Throughout this section, we assume that the level N is
squarefree and the symbol d always denotes a negative fundamental discriminant.
Let L = {α ∈ O : tr(α) = 0} be the lattice of signature (1, 2) formed by the elements

of trace 0 in O. We retain all the notation 〈·, ·〉, V (Q), V (R), V (C), K, K̃+, OL,
OL,F , etc. used in the previous section. Here let us summarize Schofer’s formula
[24] for average values of Borcherds forms at CM-points first. The explanation of
the terms involved will be given later.

Theorem B ([24, Corollaries 1.2 and 3.5]). Let F (τ ) =
∑

η(
∑

m cη(m)qm)eη be

a weakly holomorphic vector-valued modular form of weight 1/2 and type ρL such
that O+

L,F = O+
L and cη(m) ∈ Z whenever m ≤ 0. Let ΨF (z) be the Borcherds form

associated F (τ ) and let ψF (τ ) = ΨF (z(τ )) be the modular form of weight c0(0) on
XD

0 (N)/WD,N as described in Lemma 6, where z(τ ) is given by (4). Let d < 0 be
a fundamental discriminant such that the set CM(d) of CM-points of discriminant
d is not empty and that the support of divψ(τ ) does not intersect CM(d). Then we
have∑

τ∈CM(d)

log
∣∣∣ψF (τ )(Im τ )c0(0)/2

∣∣∣
= −|CM(d)|

4

⎛⎝ ∑
η∈L∨/L

∑
m≥0

cη(−m)κη(m) + c0(0)(Γ
′(1) + log(2π))

⎞⎠ .

Remark 15.

(1) Note that the formula given in [24] is valid for Borcherds forms associated
to lattices of general signature (n, 2). Here we have specialized the formulas
to the cases under our consideration. Note also that in [24], the left-hand
side of the formula has ΨF (z)|y|c0(0)/2 in place of ψF (τ )(Im τ )c0(0)/2, where
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z = x+ iy ∈ K̃+ and |y| =
√
|〈y, y〉|. By a direct computation, we find that

for z = z(τ ) given in (4), we have |y| = Im τ . Notice that in general, for
any modular form ψ(τ ) of weight k on a Fuchsian subgroup Γ of SL(2,R),
we have |ψ(γτ )(Imγτ )k/2| = |ψ(τ )(Im τ )k/2| for any τ ∈ H+ and γ ∈ Γ.
Thus, the left-hand side of the formula does not depend on the choice of
representatives of the CM-points.

(2) Let χd be the Kronecker character associated to the field Q(
√
d) and let

Λ(s, χd) =

(
π

|d|

)−(1+s)/2

Γ

(
1 + s

2

)
L(s, χd)

be the complete L-function associated to χd. In [24], the term κ0(0) was
given as

κ0(0) = 2
Λ′(1, χd)

Λ(1, χd)

under a certain assumption. (Note that our definition of Λ(s, χd) is different
from that in [24].) Later on, we will prove that for the cases under our
consideration, we have

κ0(0) = 2
Λ′(1, χd)

Λ(1, χd)
+

∑
p|D/(D,d)

p− 1

p+ 1
log p+

∑
p|N/(N,d)

log p,

where the last two summations run over all prime divisors p of D/(D, d)
and N/(N, d), respectively.

(3) From the functional equation Λ(s, χd) = Λ(1−s, χd) for Λ(s, χd), we deduce
that

(10) 2
Λ′(1, χd)

Λ(1, χd)
= log

4π

|d| − Γ′(1)− 2
L′(0, χd)

L(0, χd)
.

By the Chowla–Selberg formula, we have

eL
′(0,χd)/2L(0,χd) =

1√
|d|

|d|−1∏
a=1

Γ

(
a

|d|

)χd(a)μd/4hd

= ωd.

This shows that the value of a suitable modular form of weight k on
XD

0 (N)/WD,N at a CM-point of discriminant d will be an algebraic multiple
of ωk

d , agreeing with the results of [26] and [37].

We now explain the terms κη(m). Recall that each CM-point τ of discriminant

d corresponds to an embedding φ : Q(
√
d) → B such that φ(Q(

√
d)) ∩ O = φ(Rd),

where Rd is the imaginary quadratic order of discriminant d. To be more precise, τ
is the common fixed point of φ(Rd) in the upper half-plane. Let λ = φ(

√
d). Then λ

is an element of positive norm in L and the set U = λ⊥ = {α ∈ V (Q) : 〈λ, α〉 = 0}
is a negative 2-plane isomorphic to Q(

√
d) in the sense that there is an isomorphism

h : U → Q(
√
d) as vector spaces over Q and a negative rational number c such that

c〈α, β〉 = tr
Q(

√
d)

Q (h(α)h(β)) for all α, β ∈ U .
Let L+ = L ∩Qλ and L− = L ∩ U . We have

L+ + L− ⊂ L ⊂ L∨ ⊂ L∨
+ + L∨

−.

For μ ∈ L∨
−/L−, let ϕμ : U → C be the characteristic function of μ+L−. Then for

each μ ∈ L∨
−/L−, we have the incoherent Eisenstein series E(τ, s;ϕμ, 1) of weight
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1 [20–22,24]. Write τ = u+ iv and let

E(τ, s;ϕμ, 1) =
∑
m

Aμ(s,m, v)qm, q = e2πiτ ,

be the Fourier expansion of E(τ, s;ϕμ, 1). The Eisenstein series E(τ, s;ϕμ, 1) van-
ishes at s = 0. Thus,

Aμ(s,m, v) = bμ(m, v)s+O(s2)

near s = 0 for some function bμ(m, v). We define

(11) κ−
μ (m) :=

⎧⎪⎪⎨⎪⎪⎩
lim
v→∞

bμ(m, v) if m > 0,

lim
v→∞

(b0(0, v)− log v) if m = 0 and μ = 0,

0 else.

Then the term κη(m) in Schofer’s formula is defined by

(12) κη(m) =
∑

μ∈L/(L++L−)

∑
x∈η++μ++L+

κ−
η−+μ−(m− 〈x, x〉/2),

where for μ ∈ L/(L++L−) and η ∈ L∨/L, we write μ = μ++μ− and η = η++ η−
with μ+, η+ ∈ Qλ and μ−, η− ∈ U . The terms κη(m) look very complicated, but
nonetheless are computable using the fact that Aμ(s,m, v)qm can be written as a
product of local Whittaker functions [20–22], which can be computed using formulas
in [22, 32]. Here we briefly describe a general strategy to compute Aμ(s,m, v) and
κ−
μ (m) efficiently, following [13, 22].
In general, for μ ∈ L∨

−/L−, we have Aμ(s,m, v) = 0 unless 〈μ, μ〉/2 − m ∈ Z,
and when 〈μ, μ〉/2−m ∈ Z holds, we have

Aμ(s,m, v)qm = δμ,mvs/2 +Wm,∞(τ, s)
∏
p<∞

Wm,p(s, ϕμ,p),

where

δμ,m =

{
1 if μ = 0 and m = 0,

0 else

and Wm,∞(τ, s) and Wm,p(s, ϕμ,p) are the local Whittaker factors at ∞ and p,
respectively. (See [20, Section 2].) Let Δ be the discriminant of the lattice L−.
When a prime p does not divide Δ and the p-adic valuation vp(m) is zero, equation
(4.4) and Theorems 4.3 and 4.4 of [22] yield

Wm,p(s, ϕμ,p) = γp(1− χd(p)p
−1−s),

where γ∞ and γp are certain explicit constants that do not have any effect on the
calculation since γ∞

∏
p γp = 1. Therefore, assuming m > 0, letting

(13) Sm,μ = {p : p|Δ or vp(m) > 0},
and using the formula for Wm,∞ in Proposition 2.3 of [22], we find

Aμ(m, s, v) = − 2π

L(s+ 1, χd)

∏
p∈Sm,μ

Wm,p(s, ϕμ,p)

1− χd(p)p−1−s
.

As Aμ(m, 0, v) = 0, there exists at least a prime p′ in Sm,μ such that Wm,p′(0, ϕμ,p′)
= 0. Taking the derivative of the above expression and evaluating at s = 0, we
obtain the following lemma.
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Lemma 16. Assume that m > 0 and let all the notation be given as in the discus-
sion. We have

κ−
μ (m) = −μd

√
|d|

hd

W ′
m,p′(0, ϕμ,p′)

1− χd(p′)/p′

∏
p∈Sm,μ,p�=p′

Wm,p(0, ϕμ,p)

1− χd(p)/p
,

where μd and hd denote the number of roots of unity and the class number of Q(
√
d),

respectively.

This is essentially Theorem 6.3 of [13]. We now consider the term κ−
0 (0). If the

discriminant Δ of L− is precisely |d|, then, again, Theorems 4.3 and 4.4 of [22]
show that

W0,p(s, ϕ0,p) = γp
1− χd(p)p

−1−s

1− χd(p)p−s

so that

A0(s, 0, v) = vs/2 − v−s/2 Λ(s, χd)

Λ(s+ 1, χd)

and

b0(0, v) = log v +
Λ′(1, χd)

Λ(1, χd)
− Λ′(0, χd)

Λ(0, χd)
= log v + 2

Λ′(1, χd)

Λ(1, χd)
.

(See [24, Lemma 2.20].)
In general, the discriminant Δ of L− may not be exactly |d|. Let

S = {p : p|(Δ/d)}.

Then we have

(14) A0(s, 0, v) = vs/2 − v−s/2 Λ(s, χd)

Λ(s+ 1, χd)

∏
p∈S

(1− χd(p)p
−s)W0,p(s, ϕ0,p)

1− χd(p)p−1−s
.

Let G(s) denote the product on the right. Since A0(0, 0, v) is identically 0, we must
have G(0) = 1. From this, we deduce the following lemma.

Lemma 17. Let all the notation be given as above. We have

κ−
0 (0) = 2

Λ′(1, χd)

Λ(1, χd)
− d

ds
logG(s)

∣∣∣
s=0

.

We now determine G(s) for the cases under our consideration. In the following
lemma, for a prime p, we let Lp = L− ⊗Z Zp.

Lemma 18. Let all the notation be given as in the preceding discussion. Assume
that the level N of the Eichler order O is squarefree and that d < 0 is a fundamental
discriminant.

(1) Let p be an odd prime. Then there exists a basis {�1, �2} for Lp and ε1, ε2 ∈
Zp with ε1ε2 = −d such that the Gram matrix (〈�i, �j〉) is equal to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
ε1 0

0 ε2

)
if p|(DN, d) or if p � DN,

p

(
ε1 0

0 ε2

)
if p|DN but p � d.
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(2) Assume that d ≡ 0 mod 4. Then there exists a basis {�1, �2} for L2 and
ε1, ε2 ∈ Z2 with ε1ε2 = −d/4 such that the Gram matrix is

2

(
ε1 0
0 ε2

)
.

(3) Assume that d ≡ 1 mod 8 (and 2 � D). Then there exists a basis {�1, �2}
for L2 and ε ∈ Z×

2 such that the Gram matrix is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ε

(
0 1

1 0

)
if 2|N,

ε

(
0 1

1 0

)
if 2 � N.

(4) Assume that d ≡ 5 mod 8 (and 2 � N). Then there exists a basis {�1, �2}
for L2 and ε ∈ Z×

2 such that the Gram matrix is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ε

(
2 1

1 2

)
if 2|D,

ε

(
2 1

1 2

)
if 2 � D.

Proof. Assume that p is an odd prime. Consider the case when p divides DN first.
There exists a basis {e1, e2, e3} for L⊗ Zp such that

(〈ei, ej〉) =

⎛⎝2μ1 0 0
0 2μ2p 0
0 0 2μ1μ2p

⎞⎠ ,

where μ1 and μ2 are elements in Z×
p with the property that the Hilbert symbol

(−μ1,−μ2p)p is 1 or −1 depending on whether p|N or p|D.
Assume that λ = c1e1+ c2e2+ c3e3. If p|d, then we have p|c1 and at least one of

c2 and c3 must be in Z×
p . Without loss of generality, we assume that c2 ∈ Z×

p . Then
Lp is spanned by −c2μ2e1 +(c1/p)μ1e2 and c3μ1e2− c2e3. The Gram matrix of Lp

with respect to this basis has determinant −(2c2μ1μ2)
2d. It follows that there is

a basis {�1, �2} for Lp such that (〈�i, �j〉) =
(
ε1 0
0 ε2

)
with the properties ε1, ε2 ∈ Zp

and ε1ε2 = −d.
If p � d, then p � c1. We find that Lp is spanned by −c2μ2pe2 + c1μ1e2 and

−c3μ2p+c1e3. The Gram matrix of Lp with respect to this basis is inside pM(2,Zp)
and its determinant is −(2c1μ1μ2p)

2d. It follows that there exists a basis {�1, �2}
for Lp such that (〈�i, �j〉) =

( ε1p 0
0 ε2p

)
with ε1, ε2 ∈ Zp and ε1ε2 = −d. The proof of

the case p � DN is similar and is omitted.
Now consider the case p = 2. If 2 � DN , then O⊗ZZ2 is isomorphic to M(2,Z2).

Thus, we may assume that L ⊗Z Z2 is {α ∈ M(2,Z2) : tr(α) = 0} so that e1 =(
1 0
0 −1

)
, e2 = ( 0 1

0 0 ), and e3 = ( 0 0
1 0 ) form a basis for L ⊗Z Z2. Let c1, c2, c3 be the

elements in Z2 such that

c1e1 + c2e2 + c3e3 =

{
λ if d ≡ 1 mod 4,

λ/2 if d ≡ 0 mod 4.

When d ≡ 1 mod 4, the element λ satisfies (1 + λ)/2 ∈ O ⊗ Z2, which implies
that 2 � c1 and 2|c2, c3. Therefore, the lattice L2 = L− ⊗Z Z2 is spanned by
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−(c2/2)e1 + c1e3 and −(c3/2)e1 + c1e2. The Gram matrix relative to this basis is(
−c22/2 −c21 − c2c3/2

−c21 − c2c3/2 −c23/2

)
with determinant −c21(c

2
1 + c2c3) ≡ −d mod 8. By Lemma 8.4.1 of [10], there is a

basis {�1, �2} for L2 and ε ∈ Z×
2 such that the Gram matrix is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε

(
0 1

1 0

)
if d ≡ 1 mod 8,

ε

(
2 1

1 2

)
if d ≡ 5 mod 8.

If d ≡ 0 mod 4, then c2 and c3 cannot both be even since −c21 − c2c3 = −d/4 ≡
1, 2 mod 4. Assume that 2 � c2. Then L2 is spanned by c2e1−2c1e3 and c2e2−c3e3.
The Gram matrix with respect to this basis is(

−2c22 2c1c2
2c1c2 2c2c3

)
.

It follows from Lemma 8.4.1 of [10] that there exists a basis {�1, �2} for L2 such
that the Gram matrix is

2

(
ε1 0
0 ε2

)
with ε1, ε2 ∈ Z2 and ε1ε2 = −d/4. This proves the case 2 � DN .

The proof of the case 2|DN is similar. We remark that when 2|N , we have

O ⊗Z Z2 �
(

Z2 Z2

2Z2 Z2

)
and when 2|D, we have B ⊗Q2 �

(
−1,−1
Q2

)
, and the maximal

order in
(

−1,−1
Q2

)
is Z2 + Z2I + Z2J + Z2(1 + I + J + IJ)/2. The rest of proof is

similar to that in the other cases and is omitted. �
Corollary 19. Let all the notation and assumptions be given as before. Let

r =
∏

p|DN/(DN,d)

p.

Then the Gram matrix of L− is equivalent to −rM for some positive definite integral
matrix M of determinant |d|. In particular, the discriminant of L− is r2|d|.
Lemma 20. Assume that N is squarefree and d < 0 is a fundamental discriminant.
Let χd, Λ(s, χd), λ, L+, and L− be defined as above. Let κ−

μ (m) and κη(m) be
defined as in (11) and (12), respectively. Then we have

κ−
0 (0) = κ0(0) = 2

Λ′(1, χd)

Λ(1, χd)
+

∑
p|D/(D,d)

p− 1

p+ 1
log p+

∑
p|N/(N,d)

log p,

where the two sums run over prime divisors of D/(D, d) and N/(N, d), respectively.

Proof. Consider the case when an odd prime p divides DN/(DN, d), i.e., p|DN , but
p � d. By Lemma 18, the Gram matrix of Lp = L− ⊗Z Zp is equivalent to p

(
ε1 0
0 ε2

)
for some ε1, ε2 ∈ Zp with ε1ε2 = −d. We shall apply Theorem 4.3 of [22] with
μ = 0 and m = 0. Using the notation in Section 4.2 of [22], we have Hμ = {1, 2},
K0(μ) = ∞,

Lμ(k) =

{
{1, 2} if k is even,

∅ if k is odd,
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dμ(k) = 1 for all k, εμ(k) = χd(p)
k−1, tμ(m) = 0, and aμ(m) = ∞. Thus, the

combination of (4.4) and Theorem 4.3 of [22] yields

W0,p(s, ϕ0,p)

γpp−1
= 1 +

(
1− 1

p

) ∞∑
k=1

pχd(p)
k−1p−ks = 1 + (p− 1)

p−s

1− χd(p)p−s
.

That is,

(15) W0,p(s, ϕ0,p) = γp ·
1− χd(p)p

−1−s

1− χd(p)p−s
· 1 + (p− 1− χd(p))p

−s

p− χd(p)p−s
.

For the case 2|DN/(DN, d), i.e., 2|DN and d ≡ 1 mod 4, we use the results in
Section 4.3 of [22]. Consider the case d ≡ 1 mod 8 and 2|N first. By Lemma 18,
the Gram matrix of L2 is equivalent to 2ε ( 0 1

1 0 ). Following the notation in Section
4.3 of [22], we have Hμ = Nμ = ∅, Mμ = {1}, Lμ(k) = ∅, dμ(k) = pμ(k) = εμ(k) =
δμ(k) = 1 for all k ≥ 1, K0(μ) = ∞, and tμ = ν = 0. Thus, Theorem 4.4 and (4.4)
of [22] yield

(16) W0,2(s, ϕ0,p) =
γ2
2

(
1 + 2−s + 2−2s + · · ·

)
= γ2 ·

1− 2−1−s

1− 2−s
· 1

2− 2−s
.

For the case d ≡ 5 mod 8 and 2|D, Lemma 18 shows that the Gram matrix is
equivalent to 2ε ( 2 1

1 2 ) for some ε ∈ Z×
2 . In this case, we have Hμ = Mμ = ∅,

Nμ = {1}, Lμ(k) = ∅, dμ(k) = εμ(k) = δμ(k) = 1 for k ≥ 1, pμ(k) = (−1)k−1,
K0(μ) = ∞, and tμ = ν = 0. Then Theorem 4.4 of [22] shows that

(17) W0,2(s, ϕ0,p) =
γ2
2

(
1 + 2−s − 2−2s + 2−3s − · · ·

)
= γ2 ·

1 + 2−1−s

1 + 2−s
· 1 + 21−s

2 + 2−s
.

From (14), (15), (16), and (17), we see that

A0(s, 0, v) = vs/2 − v−s/2 Λ(s, χd)

Λ(s+ 1, χd)

∏
p|D/(D,d)

1 + p1−s

p+ p−s

∏
p|N/(N,d)

1 + (p− 2)p−s

p− p−s
.

By Lemma 17

κ−
0 (0) = 2

Λ′(1, χd)

Λ(1, χd)
−

∑
p|D/(D,d)

(
−p1−s log p

1 + p1−s
− −p−s log p

p+ p−s

) ∣∣∣
s=0

−
∑

p|N/(N,d)

(
−(p− 2)p−s log p

1 + (p− 2)p−s
− p−s log p

p− p−s

) ∣∣∣
s=0

= 2
Λ′(1, χd)

Λ(1, χd)
+

∑
p|D/(D,d)

p− 1

p+ 1
log p+

∑
p|N/(N,d)

log p,

and the proof of the lemma is complete. �

Example 21. Let ψFf
(τ ) and ψFg

(τ ) be the Borcherds forms given in Proposition
14. In this example, we shall utilize Lemmas 16 and 20 to determine the absolute
values of ψFf

(τ ) at the CM-point of discriminant −4 and that of ψFg
(τ ) at the

CM-point of discriminant −3.

Let B =
(

−1,3
Q

)
, let O = Z + ZI + ZJ + ZIJ , and let the embedding ι : B ↪→

M(2,R) be chosen as in Section 2. Choose λ = I. Then φ : i → I defines an
optimal embedding relative to (O,Z[i]) and the fixed point τd of ι(φ(I)) in the
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upper half-plane is a CM-point of discriminant d = −4. By Theorem B, Lemma
20, and (10), we have

log
∣∣ψFf

(τd)(Im τd)
4
∣∣ = −1

4
(2κ0(3) + 8κ0(0) + 8Γ′(1) + 8 log(2π))

= −1

2
κ0(3)− 4

Λ′(1, χd)

Λ(1, χd)
− log 3− 2Γ′(1)− 2 log(2π)

= −1

2
κ0(3) + 4

L′(0, χd)

L(0, χd)
− log 3 + 2 log |d| − 2 log(8π2).

The term that needs some work is κ0(3).
We have L+ = ZI and L− = ZJ + ZIJ . Thus, L = L+ + L− and by (12), we

have

κ0(3) =
∑
x∈L+

κ−
0 (3− 〈x, x〉/2) = κ−

0 (3) + 2κ−
0 (2).

With respect to the basis {J, IJ}, the Gram matrix of L− is
(−6 0

0 −6

)
. Thus, the

sets Sm,μ in (13) is {2, 3} for both κ−
0 (3) and κ−

0 (2). Using results in Section 4 of
[22], we find that

W3,2(s, ϕ0,2) =
1

2
(1− 2−2s), W3,3(s, ϕ0,3) =

1

3
(1 + 2 · 3−s + 3−2s)

and

W2,2(s, ϕ0,2) =
1

2
(1 + 2−3s), W2,3(s, ϕ0,3) =

1

3
(1− 3−s).

Therefore, by Lemma 16,

κ−
0 (3) = −8 log 2, κ−

0 (2) = −2 log 3

and κ0(3) = −8 log 2− 4 log 3. It follows that

(18)
∣∣ψFf

(τd)(Im τd)
4
∣∣ = 48 · |d|2

64π4
e4L

′(0,χd)/L(0,χd).

We next determine the value of ψFg
(τ ) at the CM-point of discriminant d = −3.

Choose λ = 3I − J + IJ so that φ :
√
−3 → λ defines an optimal embedding of

discriminant −3. By Theorem B, Lemma 20, and (10) again, we have

log
∣∣ψFg

(τd)(Im τd)
6
∣∣ = −1

2
κ0(1)− 6

Λ′(1, χd)

Λ(1, χd)
− log 2− 2Γ′(1)− 2 log(2π)

= −1

2
κ0(1) + 6

L′(0, χd)

L(0, χd)
− log 2 + 3 log |d| − 3 log(8π2).

By Corollary 19, the lattice L− has discriminant 12 and its Gram matrix must
be equivalent to

(−4 −2
−2 −4

)
. Since the discriminant of the lattice L+ +L− is equal to

that of L, L/(L+ + L−) is trivial. Consequently,

κ0(1) =
∑
x∈L+

κ−
0 (1− 〈x, x〉/2) = κ−

0 (1).

The set Sm,μ in (13) is {2, 3} for κ−
0 (1). Using Theorems 4.3 and 4.4 of [22], we

find

W1,2(s, ϕ0,2) =
1

2
(1− 2−s), W1,3(s, ϕ0,3) =

1√
3
(1 + 3−s).
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Then, Lemma 16 yields

κ−
0 (1) = −6

√
3 · log 2

3
· 2√

3
= −4 log 2.

Finally, we arrive at

(19)
∣∣ψFg

(τd)(Im τd)
6
∣∣ = 2 · |d|3

512π6
e6L

′(0,χd)/L(0,χd).

Corollary 22. The absolute values of the constants C1 and C2 in (8) and (9) are

|C1| =
12

π4
e4L

′(0,χ−4)/L(0,χ−4), |C2| =
27(1 +

√
3)6

256π6
e6L

′(0,χ−3)/L(0,χ−3),

respectively.

Proof. The CM-point of discriminant −4 in the example above is τ−4 = i. Ac-
cording to our choice of s(τ ) in Proposition 5, we have s(i) = 0. Therefore, the
right-hand side of (8) is simply C1. Then (18) gives us the absolute value of C1.
The determination of |C2| is similar. �

Remark 23. The values of |C1| and |C2| can also be determined by considering
the values of the Borcherds forms at the CM-point τ−24 of discriminant −24. At
the point τ−24, the functions s(τ ) and t(τ ) take value 1. Thus, the right-hand
sides of (8) and (9) can be expressed in terms of Gamma values using Gauss’s
formula 2F1(a, b; c; 1) = Γ(c)Γ(c−a−b)/(Γ(c−a)Γ(c−b)). By repeatedly applying
Euler’s reflection formula and Gauss’s multiplication formula, we arrive at the same
expressions for |C1| and |C2|.

Example 24. Consider the case d = −163. By Theorem B and Lemma 20, we
have

log
∣∣ψFf

(τd)(Im τd)
4
∣∣ = −1

2
κ0(3)+4

L′(0, χd)

L(0, χd)
− log 3− 2

3
log 2+2 log |d|−2 log(8π2).

On page 851 of [13], it is computed that

κ0(3) = −40

3
log 2− 4 log 3− 4 log 5− 4 log(11)− 4 log(17).

Thus, ∣∣ψFf
(τd)(Im τd)

4
∣∣ = 26 · 3 · 52 · 112 · 172 · |d|2

64π4
e4L

′(0,χd)/L(0,χd).

We now give the values of the Borcherds forms ψFf
(τ ) and ψFg

(τ ) at various
CM-points. The computation is done using Magma [7]. (The use of Magma is not
essential. We use Magma only because it has built-in functions for computation
about quaternion algebras.) The Magma code is available as a supplement to the
arXiv version of this paper (arXiv:1503.07971).1

Lemma 25. For a fundamental discriminant d < 0 appearing in Theorem 2, let
τd ∈ H+ be a CM-point of discriminant d, and let

ωd = eL
′(0,χd)/2L(0,χd) =

1√
|d|

|d|−1∏
a=1

Γ

(
a

|d|

)χd(a)μd/4hd

.

1The interested reader should download the source file instead of the pdf file.
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Let Ad be the number such that

(20)
∣∣ψFf

(τd)(Im τd)
4
∣∣ = Ad

|d|2
64

(
ωd√
π

)8

.

Then we have

d Ad d Ad d Ad

−4 24 · 3 −132 24 · 32 · 52 −148 24 · 3 · 52 · 172

−24 24 · 32 −43 26 · 3 · 52 −232 24 · 3 · 52 · 232 · 29
−120 24 · 33 · 5 −88 24 · 3 · 52 · 11 −708 24 · 32 · 52 · 172 · 292

−52 24 · 3 · 52 −312 24 · 32 · 52 · 112 −163 26 · 3 · 52 · 112 · 172

Also, let Bd be the number such that

(21)
∣∣ψFg

(τd)(Im τd)
6
∣∣ = Bd

|d|3
512

(
ωd√
π

)12

.

We have

d Bd d Bd d Bd

−3 2 −19 2 · 32 −67 2 · 32 · 72 · 112

−84 24 · 7 −168 23 · 7 · 112 −372 24 · 72 · 192 · 31
−40 23 · 32 −228 26 · 72 · 19 −408 23 · 72 · 112 · 312

−51 2 · 72 −123 2 · 72 · 192 −267 2 · 72 · 312 · 432

5. Proof of Theorem 2

In this section, we shall convert informations from Lemma 25 into special-value
formulas for hypergeometric functions.

We retain our choices of B, O, ι, the fundamental domain, etc. from Section 2.
In the following discussion, we let s be the Hauptmodul of X6

0 (1)/W6 that takes
values 0, 1, and ∞ at the CM-points of discriminants −4, −24, and −3, respectively.
According to the choice of the fundamental domain in Section 2, these CM-points
are represented by i, (

√
6 −

√
2)i/2, and (−1 + i)/(1 +

√
3), respectively. Let

also t = 1/s. For a CM-point τd of a fundamental discriminant d < 0 inside

the fundamental domain, we let φ : Q(
√
d) ↪→ B be the corresponding optimal

embedding and assume that φ(
√
d) = a1I + a2J + a3IJ . Then we have

(22) τd =
a2
√
3 +

√
d

a1 + a3
√
3
.

We first recall a technical lemma from [36].

Lemma 26 ([36, Lemma 5]). If s(τd) takes a value in the line segment [0, 1], then
a2 = 0. If s(τd) takes a value in [1,∞), then a1 = 3a3. If s(τd) takes a negative
value, then a2 = −a3.

Recall that ψFf
(τ ) and ψFg

(τ ) are the Borcherds forms defined in (8) and (9),
respectively.
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Proposition 27. Assume that −1 < s(τd) < 1. Let Ad be the real number such
that (20) holds. Then we have

(23) 2F1

(
1

24
,
5

24
;
3

4
; s(τd)

)8

=
Ad

212 · 3(a1 +
√
|d|)4

(
ωd

ω−4

)8

and

(24) 3F2

(
1

3
,
1

2
,
2

3
;
3

4
;
5

4
; s(τd)

)4

=
32Ad

210|s(τd)|
(a22 + a23)

2ω8
d.

Assume that −1 < t(τd) < 1. Let Bd be the real number such that (21) holds. Then
we have

2F1

(
1

24
,
7

24
;
5

6
; t(τd)

)12

=
Bd

27 · 33

(
ωd

ω−3

)12

×
{
((a2 + 2a3)

√
3 +
√
|d|)6 if t(τd) > 0,

((a1 − 2a3)
√
3 +
√
|d|)6 if t(τd) < 0

(25)

and

(26) 3F2

(
1

4
,
1

2
,
3

4
;
5

6
,
7

6
; t(τd)

)6

=
Bd

216|t|ω
12
d ×

{
27(a2 + a3)

6 if t(τd) > 0,

(a1 − 3a3)
6 if t(τd) < 0.

Proof. For convenience, set

F1(s) = 2F1(1/24, 5/24; 3/4; s), F2(s) = 2F1(7/24, 11/24; 5/4; s),

and sd = s(τd). Note that we have F1(s)F2(s) = 3F2(1/3, 1/2, 2/3; 3/4, 5/4, s). Let

C = −1/ 4
√
12ω2

−4. By Lemma 5 of [36], we have

(27)
Cs

1/4
d F2(sd)

F1(sd)
=

τd − i

τd + i
.

Combining (8), (20), (22), and Corollary 22, we find

Ad
|d|2
64

(
ωd√
π

)8

=
12ω8

−4|d|2

π4(a1 + a3
√
3)4

F1(sd)
8

∣∣∣∣1− τd − i

τd + i

∣∣∣∣8
=

12ω8
−4|d|2

π4(a1 + a3
√
3)4

F1(sd)
8

(
2(a1 + a3

√
3)(a1 −

√
|d|)

3(a22 + a23)

)4

.

Simplifying the identity, we get (23). To prove (24), we observe that from (27) we
obtain

F2(sd) =
4
√
12ω2

−4

F1(sd)

|sd|1/4

∣∣∣∣τd − i

τd + i

∣∣∣∣ = 4
√
12ω2

−4

F1(sd)

|sd|1/4
a1 −

√
|d|√

3(a22 + a23)
.

Combining this with (23), we obtain

F1(sd)
8F2(sd)

8 = 24 · 32 · ω16
−4

F1(sd)
16

s2d

(a1 −
√
|d|)8

34(a22 + a23)
4

=
A2

d

220 · 34 · s2d
(a1 +

√
|d|)8(a1 −

√
|d|)8

(a22 + a23)
4

ω16
d =

34A2
d

220s2d
(a22 + a23)

4ω16
d .

Simplifying the equality, we obtain (24).
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Similarly, we write td = t(τd), and

G1(t) = 2F1

(
1

24
,
7

24
;
5

6
; t

)
, G2(t) = 2F1

(
5

24
,
11

24
;
7

6
; t

)
.

Then G1(t)G2(t) = 3F2(1/4, 1/2, 3/4; 5/6, 7/6; t). Let C ′ = e−2πi/8/ 6
√
2ω2

−3. We
have

C ′t
1/6
d G2(td)

G1(td)
=

τd − τ−3

τd − τ−3
, τ−3 =

−1 + i

1 +
√
3
.

Using ∣∣∣∣ τd − τ−3

τd − τ−3

∣∣∣∣2 =

√
3(a1 + a2 − a3)−

√
|d|√

3(a1 + a2 − a3) +
√
|d|

,∣∣∣∣1− τd − τ−3

τd − τ−3

∣∣∣∣2 =
2

1 +
√
3

a1 + a3
√
3√

3(a1 + a2 − a3) +
√
|d|

,

(9), (19), and Corollary 22, we deduce that

Bd
|d|3
512

(
ωd√
π

)12

=
27(1 +

√
3)6ω12

−3|d|3

256π6(a1 + a3
√
3)6

G1(td)
12

∣∣∣∣1− τd − τ−3

τd − τ−3

∣∣∣∣12
=

27ω12
−3|d|3

4π6(
√
3(a1 + a2 − a3) +

√
|d|)6

G1(td)
12

so that

G1(τd)
12 =

Bd(
√
3(a1 + a2 − a3) +

√
|d|)6

27 · 33

(
ωd

ω−3

)12

and

G1(τd)
12G2(τd)

12 =
4ω24

−3

t2d
G1(td)

24

(√
3(a1 + a2 − a3)−

√
|d|√

3(a1 + a2 − a3) +
√
|d|

)6

=
B2

d

212 · 36
(
3(a1 + a2 − a3)

2 − |d|
)6

ω24
d

=
B2

d

26 · 36
(
a21 + 3a22 + 3a23 + 3a1a2 − 3a2a3 − 3a1a3

)6
ω24
d .

With Lemma 26, these two identities reduce to (25) and (26), respectively. This
completes the proof. �

Proof of Theorem 2. The values of s(τ ) and t(τ ) at CM-points were computed in
[13]. They are the rational numbers M/N from the two tables in Theorem 2.
The optimal embeddings corresponding to the CM-points inside the fundamental
domain are given in the two tables below.

d φ(
√
d) d φ(

√
d)

−52 8I + 2IJ −120 12I − 2J + 2IJ

−88 10I + 2IJ −43 7I − J + IJ

−132 12I + 2IJ −232 16I − 2J + 2IJ

−312 18I + 2IJ −163 13I − J + IJ

−148 14I + 4IJ

−708 30I + 8IJ



HYPERGEOMETRIC FUNCTIONS AND PERIODS OF CM ELLIPTIC CURVES 6463

d φ(
√
d) d φ(

√
d)

−84 12I − 2J + 4IJ −40 8I − 2J + 2IJ

−51 9I − J + 3IJ −19 5I − J + IJ

−168 18I − 4J + 6IJ −228 18I − 4J + 4IJ

−123 15I − 3J + 5IJ −67 11I − 3J + 3IJ

−372 24I − 2J + 8IJ

−408 30I − 8J + 10IJ

−267 21I − 3J + 7IJ

Here the left columns of the two tables are for discriminants d with s(τd) > 0 and
t(τd) > 0, respectively. Combining information from Lemma 25, Proposition 27,
and the above two tables, we obtain the identities in Theorem 2. �

6. Further examples

Observe that for each discriminant d appearing in Theorem 2, there is only
one CM-point of discriminant d on the Shimura curve X6

0 (1)/W6. In such cases,
Schofer’s formula readily tells us the absolute value of a Borcherds form at the
unique CM-point of discriminant d. However, in general, we can only read from
Schofer’s formula the products of values of Borcherds forms at CM-points. In this
section, we introduce a technique to separate the value at a CM-point from those
at the other CM-points of the same discriminant using Hecke operators. This
technique relies on the method developed in [35] for computing Hecke operators.
Here we will work out the case d = −276. In principle, the method works at least
for any imaginary quadratic number field whose ideal class group, after quotient by
the prime ideals lying above 2 and 3, is an elementary 2-group.

Let E = Q(
√
−276) and let R be the ring of integers in E. There are two

CM-points of discriminant d = −276 on X6
0 (1)/W6, represented by the two points

τ1 =

√
−69

9 + 2
√
3
, τ2 =

−3
√
3 +

√
−69

12 + 4
√
3

in the fundamental domain. The corresponding optimal embeddings φ1 and φ2 are

λ1 = φ1(
√
−276) = 18I + 4IJ, λ2 = φ2(

√
−276) = 24I − 6J + 8IJ,

respectively. According to the table at the end of Section 5 of [34], the values of

the Hauptmodul s(τ ) at these two points are (166139596± 95538528
√
3)/1771561.

(The values can also be determined using Borcherds forms and Schofer’s formula.)
From Lemma 26, we deduce that

s(τ1) =
166139596− 95538528

√
3

1771561
, s(τ2) =

166139596 + 95538528
√
3

1771561
.

Call these two numbers s1 and s2, respectively. Let p2 and p3 be the prime ideals of
R lying above 2 and 3, respectively, and let p5 be any prime above 5. Then the ideal
class group of R is isomorphic to (Z/2Z)× (Z/4Z) generated by the element p2 of
order 2 and the element p5 of order 4. Moreover, the product p2p3p

2
5 is a principal

ideal. It follows that the ideal class group, after quotient by the subgroup generated
by p2 and p3, is cyclic of order 2 and generated by p5. In terms of CM-points on
X6

0 (1)/W6, this means that there should exist an element α of norm 5, 10, 15, or 30
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in O such that ι(α)τ1 = τ2. (Here we retain the notation O, ι, etc. used in Section
2.) Indeed, such an element is

α = 3− 2I − IJ.

(Another element is α′ = (3 − 9I + J − 3IJ)/2.) In other words, we have λ2 =
αλ1α

−1.
Now let F (τ ) = ψFf

(τ ) be the modular form of weight 8 defined in Proposition
14 and set

F̃ (τ ) := F
∣∣
8
ι(α) =

104

((2 +
√
3)τ − 3)8

F

(
3τ + 2−

√
3

(−2−
√
3)τ + 3

)
.

In general, we have

104

|(2 +
√
3)τ − 3|8

=

(
Im ι(α)τ

Im τ

)4

.

Thus,

(28) |F (τ2)| =
(
Im τ1
Im τ2

)4 ∣∣∣F̃ (τ1)
∣∣∣ .

On the other hand, Schofer’s formula yields

|F (τ1)F (τ2)| (Im τ1)
4(Im τ2)

4 = 28 · 34 · 112
(

|d|2
64π4

ω8
d

)2

.

Substituting (28) into this, we obtain

(29)
∣∣F (τ1)(Im τ1)

4
∣∣2 ∣∣∣∣∣ F̃ (τ1)

F (τ1)

∣∣∣∣∣ = 28 · 34 · 112
(

|d|2
64π4

ω8
d

)2

.

The main task remaining is to determine the value of F̃ (τ1)/F (τ1).
Let Γ be the discrete subgroup of PSL(2,R) such that X6

0 (1)/W6 = Γ\H+, i.e.,
Γ := {ι(γ)/(det γ)1/2 : γ ∈ N+

B (O)}. Let γj , j = 1, . . . , 5, be elements in Γι(α)Γ
such that γ0 = ι(α) and γj , j = 1, . . . , 5, form a complete set of coset representatives
of Γ\Γι(α)Γ. In Section 4 of [36], by using results from [35], we find that

5∏
j=0

(
y −

F
∣∣
8
γj

F

)
= y6 +

114

125
y5 − 6333

78125
y4 +

4

511
(8640000s− 5177953)y3

+
3

515
(8467200000s+ 1804020097)y2

+
726

520
(93744000000s− 3501556201)y

+
1

516
(138240s+ 14641)2.

Substituting s by s1 = (166139596−95538528
√
3)/1771561, we deduce that F̃ (τ1)/

F (τ1) is a zero of

(9150625y2 + (40464094y − 20903960
√
3)y + 82650625− 47425000

√
3)g(y),

where g(y) ∈ Q(
√
3)[y] is an irreducible polynomial of degree 4 over Q(

√
3). In

fact, we can show that it is a zero of the factor of degree 2 shown above. Hence,
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we have

(30)

∣∣∣∣∣ F̃ (τ1)

F (τ1)

∣∣∣∣∣ =
(
82650625− 47425000

√
3

9150625

)1/2

=

(
14− 5

√
3

11

)2

.

(It is possible to determine the precise value, not just the absolute value. The two

zeros of the factor of degree 2 are F̃ (τ1)/F (τ1) and the value of (F
∣∣
8
ι(α′))/F at τ1,

where α′ = (3− 9I + J − 3IJ)/2. It is easy to find the ratio of the two values and

hence determine F̃ (τ1)/F (τ1).) Substituting (30) into (29), we obtain∣∣F (τ1)(Im τ1)
4
∣∣ = 144(14 + 5

√
3)

|d|2
64π4

ω8
d.

By Proposition 27, this implies that

2F1

(
1

24
,
5

24
;
3

4
; s1

)8

=
3(14 + 5

√
3)

16
(9 +

√
69)4

(
ω−276

ω−4

)8

and

3F2

(
1

3
,
1

2
,
2

3
;
3

4
,
5

4
; s1

)4

=

(
3(16 + 23

√
3)

11

)4(
2 + 3

√
3

23

)2

(2 +
√
3)ω8

−276.
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Bessatsu, B44, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, pp. 223–245. MR3221732

[30] Fang-Ting Tu, Schwarzian differential equations associated to Shimura curves of genus zero,
Pacific J. Math. 269 (2014), no. 2, 453–489. MR3238486

[31] Fang-Ting Tu and Yifan Yang, Algebraic transformations of hypergeometric functions and
automorphic forms on Shimura curves, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6697–
6729. MR3105767

[32] Tonghai Yang, An explicit formula for local densities of quadratic forms, J. Number Theory
72 (1998), no. 2, 309–356. MR1651696

[33] Yifan Yang, On differential equations satisfied by modular forms, Math. Z. 246 (2004), no. 1-
2, 1–19. MR2031441

[34] Yifan Yang, Computing modular equations for shimura curves. arxiv:1205.5217, 2012.
[35] Yifan Yang, Schwarzian differential equations and Hecke eigenforms on Shimura curves,

Compos. Math. 149 (2013), no. 1, 1–31. MR3011876
[36] Yifan Yang, Ramanujan-type identities for Shimura curves, Israel J. Math. 214 (2016), no. 2,

699–731. MR3544699
[37] Hiroyuki Yoshida, Absolute CM-periods, Mathematical Surveys and Monographs, vol. 106,

American Mathematical Society, Providence, RI, 2003. MR2011848

http://www.ams.org/mathscinet-getitem?mr=2198716
http://www.ams.org/mathscinet-getitem?mr=1726059
http://www.ams.org/mathscinet-getitem?mr=2848999
http://www.ams.org/mathscinet-getitem?mr=0480542
http://www.ams.org/mathscinet-getitem?mr=534763
http://www.ams.org/mathscinet-getitem?mr=772491
http://www.ams.org/mathscinet-getitem?mr=3622871
http://www.ams.org/mathscinet-getitem?mr=1177168
http://www.ams.org/mathscinet-getitem?mr=1988501
http://www.ams.org/mathscinet-getitem?mr=1683308
http://www.ams.org/mathscinet-getitem?mr=2059224
http://www.ams.org/mathscinet-getitem?mr=2718827
http://www.ams.org/mathscinet-getitem?mr=1094861
http://www.ams.org/mathscinet-getitem?mr=2527412
http://www.ams.org/mathscinet-getitem?mr=0215797
http://www.ams.org/mathscinet-getitem?mr=535097
http://www.ams.org/mathscinet-getitem?mr=743544
http://www.ams.org/mathscinet-getitem?mr=0429744
http://www.ams.org/mathscinet-getitem?mr=3221732
http://www.ams.org/mathscinet-getitem?mr=3238486
http://www.ams.org/mathscinet-getitem?mr=3105767
http://www.ams.org/mathscinet-getitem?mr=1651696
http://www.ams.org/mathscinet-getitem?mr=2031441
http://www.ams.org/mathscinet-getitem?mr=3011876
http://www.ams.org/mathscinet-getitem?mr=3544699
http://www.ams.org/mathscinet-getitem?mr=2011848


HYPERGEOMETRIC FUNCTIONS AND PERIODS OF CM ELLIPTIC CURVES 6467

Department of Mathematics, National Taiwan University and National Center for

Theoretical Sciences, Taipei, Taiwan 106

Email address: yangyifan@ntu.edu.tw


	1. Introduction
	2. Realization of modular forms in terms of Schwarzian differential equations
	3. Realization of modular forms as Borcherds forms
	4. Schofer’s formula for values of Borcherds forms at CM-points
	5. Proof of Theorem 2
	6. Further examples
	Acknowledgments
	References

