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STRONG HYPERCONTRACTIVITY

AND LOGARITHMIC SOBOLEV INEQUALITIES

ON STRATIFIED COMPLEX LIE GROUPS

NATHANIEL ELDREDGE, LEONARD GROSS, AND LAURENT SALOFF-COSTE

Abstract. We show that for a hypoelliptic Dirichlet form operator A on
a stratified complex Lie group, if the logarithmic Sobolev inequality holds,
then a holomorphic projection of A is strongly hypercontractive in the sense
of Janson. This extends previous results of Gross to a setting in which the
operator A is not holomorphic.

1. Introduction

In [10–13], subsets of the current authors, together with Bruce K. Driver, stud-
ied properties of elliptic and hypoelliptic heat kernels on complex Lie groups and
homogeneous spaces, particularly the Taylor map for L2 holomorphic functions.
Generally, it was shown that hypoelliptic heat kernels and their sub-Laplacians of-
ten behave similarly to their elliptic counterparts, such as the Gaussian heat kernel
and standard Laplacian on Cn. In this paper we turn our attention to the phenom-
enon of strong hypercontractivity in the particular case of stratified complex Lie
groups.

To motivate this study, let us first consider Euclidean space Rn equipped with
standard Gaussian measure ν. Let Q(f, g) be the Dirichlet form with core C∞

c (Rn)
defined by Q(f, g) =

∫
Rn ∇f · ∇ḡ dν, whose generator is the Ornstein–Uhlenbeck

operator Af(x) = −Δf(x) + x · ∇f(x). In [38], E. Nelson discovered that the
semigroup e−tA enjoys the following property known as hypercontractivity.

Theorem 1.1. For 1 < q ≤ p < ∞, let tN (p, q) = 1
2 log

(
p−1
q−1

)
. Then for any

t ≥ tN , e−tA is a contraction from Lq(ν) to Lp(ν).

So the semigroup e−tA improves local integrability of functions with respect to
ν; as soon as t exceeds “Nelson’s time” tN (p, q), e−tA maps Lq into Lp. Moreover,
Nelson’s time is sharp: for t < tN (p, q), e−tA is unbounded from Lq to Lp. For a
short history of this theorem, see the survey [28].

Now replace ν with any smooth measure μ on Rn and redefine Q and A accord-
ingly. In [24], the second author introduced the notion of a logarithmic Sobolev
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inequality, which (in its simplest version) is said to be satisfied by μ if

(1.1)

∫
Rn

|f |2 log |f | dμ ≤ Q(f) + ‖f‖2L2(μ) log ‖f‖L2(μ)

for all f in the domain of Q.
(Actually, in this paper, we shall study a more general version of (1.1) in which

the coefficient of Q(f) is a constant c other than 1, and in which a term of the
form β‖f‖2L2 can be added to the right side. See (7.1). The general version can
also be used in the theorems in this introduction, making appropriate changes to
the constants, but for simplicity we omit the details here.)

It was shown in [24] that in this case the logarithmic Sobolev inequality (1.1) is
essentially equivalent to hypercontractivity.

Theorem 1.2. A smooth measure μ on Rn satisfies the logarithmic Sobolev in-
equality (1.1) if and only if the corresponding semigroup e−tA is hypercontractive
(with Nelson’s time tN ).

The early history of these two types of inequalities devolves from two different
backgrounds. In 1959 A. J. Stam [40], motivated by problems in information theory,
proved an inequality, based on Lebesgue measure rather than on Gauss measure,
easily transformable into the Gaussian special case of (1.1). In 1966 E. Nelson
[37], motivated by the problem of semiboundedness of Hamiltonian operators in
quantum field theory, proved the first version of the hypercontractivity inequal-
ity of Theorem 1.1 with dimension dependent bounds. In order to encompass a
larger class of Hamiltonians, J. Glimm [21] sharpened Nelson’s inequality in 1968
and removed the dimension dependence, thereby enabling the inequality to work
in infinite dimensions. Subsequently Nelson [38], in 1973, found the best hypercon-
tractivity constants, which are those presented in Theorem 1.1. Pursuing a different
track to semiboundedness of quantum field Hamiltonians, P. Federbush [17] showed
in 1969 that semiboundedness would follow from a logarithmic Sobolev inequality
much more easily than from hypercontractivity. His semiboundedness theorem es-
sentially asserts that a logarithmic Sobolev inequality implies semiboundedness. In
this paper he also gave a derivation of a Gaussian logarithmic Sobolev inequality
using delicate Hermite function expansions in infinitely many variables. Although
his version of a logarithmic Sobolev inequality is not written in this paper, it follows
easily from the identity [17, Equ. (14)] and inequality [17, Equ. (21)]. He thereby
recovered semiboundedness for the class of Hamiltonians originally addressed by
Nelson, though not the class encompassed by Glimm’s improvement. Ironically,
using the semiboundedness theorem of Federbush, the sharp logarithmic Sobolev
inequality of Stam would have yielded semiboundedness of the large class addressed
by Glimm’s improvement. But Stam’s results were not known among this group
of mathematical physicists till 1991, when Eric Carlen [9], discovered Stam’s paper
and made the connection with the Gaussian logarithmic Sobolev inequalities of the
mathematical physics literature. In the meanwhile, the second author [24] proved
in 1975 that a family of hypercontractivity bounds, such as those in Theorem 1.1,
is equivalent to a logarithmic Sobolev inequality. Best constants are preserved in
this equivalence. Theorem 1.2 is a typical case. He also proved the sharp form
(1.1) of the Gaussian logarithmic Sobolev inequality, which Carlen later showed to
be equivalent to the Euclidean form of Stam. With the help of the equivalence
theorem, one can understand better the relation between Stam’s and Federbush’s
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versions of the logarithmic Sobolev inequality: the former is equivalent to the strong
form of Glimm, while the latter is equivalent to the original form of Nelson.

Generalizations of the equivalence Theorem 1.2 are now known to hold in a wide
variety of settings; see [2,25,28] for surveys and the recent exposition and historical
background in [39].

Let us turn now to the complex setting; replace Rn by Cn and suppose that μ is a
standard Gaussian measure on C

n. S. Janson discovered in [31] that if one restricts
the Ornstein–Uhlenbeck semigroup e−tA to the holomorphic functions H, then one
obtains the property of strong hypercontractivity, in which the improvement
in integrability happens at earlier times:

Theorem 1.3. For 0 < q ≤ p < ∞, let tJ (p, q) =
1
2 log

(
p
q

)
. Then, for any t ≥ tJ ,

e−tA is a contraction from H ∩ Lq(μ) to H ∩ Lp(μ).

Several other proofs of this theorem followed [8, 32, 46]. Note that “Janson’s
time” tJ(p, q) is less than Nelson’s time tN (p, q) whenever 1 < q < p < ∞. More-
over Janson’s strong hypercontractivity also has content for 0 < q ≤ p ≤ 1. Very
roughly, the reason for this is that holomorphic functions are harmonic, and so the
second-order differential operator A, when restricted to H, reduces to the first-order
operator Af(z) = z·∇f(z). Thus it is not surprising that its behavior should be
improved in this case. We note for later reference that in this case A is the holo-
morphic vector field which generates the flow of the dilations ϕt(z) = tz, meaning
that the semigroup e−tA is simply e−tAf(z) = f(e−tz).

In the paper [26], the second author studied such Dirichlet form operators over a
complex Riemannian manifold (M, g) equipped with a smooth measure μ, seeking to
relate the logarithmic Sobolev inequality to strong hypercontractivity in a general
holomorphic context. The result was that the former implies the latter, under
fairly mild assumptions. In this result, the spaces H∩Lp(μ) must be replaced with
possibly smaller spaces denoted HLp(μ); see Remark 4.6 below for the definitions
used in [26], and see [26] for a complete discussion of the issues involved. As in the
Euclidean case, the Dirichlet form operator A is given by the Laplacian over M
plus a complex vector field Z, so that on holomorphic functions one has Af = Zf .
If Z is a holomorphic vector field or, equivalently, if the operator A maps H into
H, we will say that A is holomorphic. Let Y = i(Z − Z̄) be the imaginary part
of Z.

Theorem 1.4 ([26, Theorem 2.19]). Suppose that the operator A is holomorphic
and that the real vector field Y is Killing. If the logarithmic Sobolev inequality (1.1)
holds, then for any t ≥ tJ(p, q), e

−tA is a contraction from HLq(μ) to HLp(μ).

A second proof was given in [27], which also allows for certain other types of
boundary conditions in the case that (M, g) is incomplete.

The present paper is an extension of the results of [26, 27]. As noted, a key
assumption of those papers was that A should be holomorphic. This assumption is
in some sense natural, since it allows one to work entirely within the holomorphic
category, and it is satisfied by many interesting examples. But there are also
many apparently innocuous settings in which A is not holomorphic. See [26,27,29]
and references therein for examples, counterexamples, and necessary and sufficient
conditions; the same condition is studied, in other contexts, in [7, 19].
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To the best of our knowledge, until now, there have been no strong hypercontrac-
tivity results akin to Theorem 1.4 that apply in the case where A is not holomorphic.
As such, our goal here is to begin attacking this case by studying a particular class
of examples in which A is not holomorphic, yet a strong hypercontractivity theorem
can still be proved.

One possible way to approach the case where A is not holomorphic is, as sug-
gested in [27, Section 7], to replace A by B = PHA, its L2 orthogonal projection
onto the holomorphic functions H. Unfortunately, this does not always work, and
[27] gives an example of a complex manifold (a cylinder) for which e−tB is not
strongly hypercontractive and is not even contractive on Lp(μ) for small p < 1.

In the present paper, we examine a class of spaces in which the operator A is not
holomorphic, and yet we are able to show that e−tB is strongly hypercontractive,
where B is (at least on a large class of functions) the holomorphic projection of
A. We work in the setting of complex stratified Lie groups, where we replace
the Laplacian Δ by the hypoelliptic sub-Laplacian and take as our measure the
corresponding hypoelliptic heat kernel. A key observation is that stratified Lie
groups have a canonical dilation structure, and it turns out that, as in the case of
the Gaussian measure on C

n, the operator B is essentially the holomorphic vector
field generated by dilations.

The paper is structured as follows.

• In Section 2 we introduce notation and review important properties of strat-
ified complex Lie groups G, their sub-Riemannian geometry, and the hypo-
elliptic heat kernel ρa. We also begin a discussion of holomorphic polyno-
mials on G.

• Section 3 defines the Dirichlet form Q and the operators A,B.
• In Section 4, we study the density properties of holomorphic polynomials,
including an orthogonal decomposition of holomorphic functions in L2(ρa)
into homogeneous polynomials, and obtain some additional properties of
A,B and their domains. Section 4 also defines the function spaces HLp(ρa)
on which we work and discusses related subtleties.

• In Section 5, we show that the operator B is (up to scaling and domain
issues) identical to the holomorphic vector field generated by dilations; we
take advantage of this to show that (except in trivial cases) the operator A
is not holomorphic.

• We then proceed to show in Section 6 that the semigroup e−tB is a con-
traction on Lp(ρa) for 0 < p < ∞; this is the special case of strong hyper-
contractivity with q = p.

• Section 7 contains the proof of our main theorem, showing that if the log-
arithmic Sobolev inequality holds, then the semigroup e−tB is strongly
hypercontractive.

• In Section 8 we specifically consider the complex Heisenberg group for which
the logarithmic Sobolev inequality does indeed hold.

2. Stratified complex groups

2.1. Definitions. In this section, we recall the definition of a stratified complex Lie
group (respectively, algebra) and its basic properties. A comprehensive reference
on stratified Lie groups is [6].
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Definition 2.1. Let g be a finite-dimensional complex Lie algebra. We say g is
stratified of step m if it admits a direct sum decomposition

(2.1) g =
m⊕
j=1

Vj

for which
[V1, Vj ] = Vj+1, [V1, Vm] = 0

and Vm �= 0. A complex Lie group G is stratified if it is connected and simply
connected and its Lie algebra g is stratified.

Using the Jacobi identity, it is easy to show that in a stratified Lie algebra,
we have [Vk, Vj ] ⊂ Vj+k, where we take Vj+k = 0 for j + k > m. (Proceed by
induction on k.) In particular, g is nilpotent of step m. As such, the exponential
map exp : g → G is a diffeomorphism, so we may as well take G = g as sets and
let the exponential map be the identity. The group operation on G can then be
written explicitly using the Baker–Campbell–Hausdorff formula. We note that in
G, the identity element e is 0, and the group inverse is given by g−1 = −g. We
shall use Lx : G → G to denote the left translation map Lx(y) = x · y. We identify

g with the tangent space TeG, and for ξ ∈ g, ξ̃ is the left-invariant vector field on

G with ξ̃(e) = ξ.
Since g is a finite-dimensional vector space, it carries a translation-invariant

Lebesgue measure, which is unique up to scaling. We fix one such measure and
denote it by m; integrals with respect to dx, dy, etc., will also be understood to
refer to this measure. Then m is also a measure on G. It is easy to verify that m
is bi-invariant under the group operation on G, so m is (again up to scaling) the
Haar measure on G.

Notation 2.2. We define convolution on G by

(2.2) (f ∗ g)(x) =
∫
G

f(xy−1)g(y)dy =

∫
G

f(z)g(z−1x)dz

when the Lebesgue integral exists.

Our motivating examples are the complex Heisenberg and Heisenberg–Weyl
groups.

Example 2.3. The complex Heisenberg Lie algebra is the complex Lie algebra
hC3 given by C3 with the bracket defined by

(2.3) [(z1, z2, z3), (z
′
1, z

′
2, z

′
3)] = (0, 0, z1z

′
2 − z′1z2).

Taking V1 = {(z1, z2, 0) : z1, z2 ∈ C} and V2 = {(0, 0, z3) : z3 ∈ C}, it is clear that
hC3 is stratified of step 2. The complex Heisenberg group HC

3 is then C3 with
the group operation g · h = g + h+ 1

2 [g, h], which we may write in coordinates as

(z1, z2, z3) · (z′1, z′2, z′3) = (z1 + z′1, z2 + z′2, z3 + z′3 +
1

2
(z1z

′
2 − z2z

′
1)).

Some readers may be used to seeing the Heisenberg group as the group of upper
triangular matrices with 1s on the diagonal. Let us note that by mapping the
element (z1, z2, z3) ∈ HC

3 to the matrix⎛⎝1 z1 z3 +
1
2z1z2

0 1 z2
0 0 1

⎞⎠
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we have an embedding of the Lie group HC
3 into the Lie group GL(C, 3) of invertible

3 × 3 complex matrices, whose image is precisely the upper triangular matrices
with 1s on the diagonal. So this realization of the complex Heisenberg group is
isomorphic to ours. (Note that the slightly strange-looking upper right entry of the
matrix above is chosen so that this map is a group homomorphism.)

Example 2.4. Generalizing the previous example, the complex Heisenberg–
Weyl Lie algebra of dimension 2n+ 1 is the complex Lie algebra hC2n+1 given by
C2n+1 with the bracket defined by

(2.4) [(z1, . . . , z2n+1), (z
′
1, . . . , z

′
2n+1)] =

(
0, . . . , 0,

n∑
k=1

z2k−1z
′
2k − z′2k−1z2k

)
.

This again is stratified of step 2, taking V1 = {(z1, . . . , z2n, 0) : z1, . . . , z2n ∈ C} and
V2 = {(0, . . . , 0, z2n+1) : z2n+1 ∈ C}. The complex Heisenberg–Weyl group
HC

2n+1 is again C2n+1 with the group operation g · h = g + h+ 1
2 [g, h].

2.2. The dilation semigroup.

Definition 2.5. For λ ∈ C, the dilation map on g or G is defined by

(2.5) δλ(v1 + · · ·+ vm) =

m∑
k=1

λkvk, vj ∈ Vj , j = 1, . . . ,m.

It is straightforward to verify that for λ �= 0, δλ is an algebra automorphism of
g and a group automorphism of G and that

(2.6) δλμ = δλ ◦ δμ, λ, μ ∈ C.

Moreover, δλ is linear, so the derivative at the identity of δλ : G → G is (δλ)∗ =
δλ : g → g.

We note that δλ scales the Lebesgue measure m by

(2.7) m(δλ(A)) = |λ|2Dm(A),

where D :=
∑m

j=1 j dimC Vj is the homogeneous dimension of G. Thus for an
integrable function f , we have

(2.8)

∫
G

f ◦ δλ dm = |λ|−2D

∫
G

f dm.

We can then consider the vector fields generating this semigroup.

Definition 2.6. We define the real vector fields X,Y on G as

(Xf)(z) =
d

ds

∣∣∣
s=0

f(δesz), f ∈ C∞(G),(2.9)

(Y f)(z) =
d

dθ

∣∣∣
θ=0

f(δeiθz), f ∈ C∞(G)(2.10)

and the complex vector field Z by

(2.11) Z =
1

2
(X − iY ).

Remark 2.7. To remind the reader of standard conventions, we note that the i
appearing in (2.11) does not denote the complex structure on g, but rather ordinary
scalar multiplication for complex vector fields. Formally, Z is a smooth section of
the complexified tangent bundle TG ⊗R C, which has a natural complex vector
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space structure with scalar multiplication ζ · (vx ⊗ η) = vx ⊗ (ζη), and in which
TG embeds naturally via vx �→ vx ⊗ 1.

Lemma 2.8. Z is a holomorphic vector field of type (1, 0).

Proof. Let z1, . . . , zN be complex coordinates on G ≡ g relative to a basis of g

adapted to the decomposition in (2.1). Then δλz = (. . . , λcjzj , . . .) for positive
integers c1, . . . , cN . Hence for any function f ∈ C∞(G) we have

(Xf)(z) =
N∑
j=1

{
cjzj

∂f

∂zj
+ cjzj

∂f

∂zj

}
and

(Y f)(z) =
N∑
j=1

{
icjzj

∂f

∂zj
− icjzj

∂f

∂zj

}
.

Thus

(2.12) (Zf)(z) =

N∑
j=1

cjzj
∂f

∂zj
.

�

2.3. Holomorphic polynomials and Taylor series.

Notation 2.9. H denotes the vector space of holomorphic functions on G.

The dilations δλ on G lead naturally to a notion of homogeneous functions and
polynomials on G. These functions were used extensively in [18] in the context
of real homogeneous groups. For us, they will be used as a convenient class of
holomorphic test functions. In this section, we define these functions and verify a
few key properties that will be important in this paper.

Definition 2.10. Let k be a nonnegative integer. A function f : G → C is
homogeneous of degree k if

(2.13) f(δλz) = λkf(z) for all z ∈ G and 0 �= λ ∈ C.

Example 2.11. If G is the complex Heisenberg group with complex coordinates
z1, z2, z3, then z21 , z1z2, z

2
2 , z3 are all homogeneous of degree 2.

Note that if f is homogeneous of degree k, then (2.13) and (2.9), (2.10), (2.11)
give

Xf(z) = kf(z),(2.14)

(Y f)(z) = ikf(z)(2.15)

and

(Zf)(z) = kf(z).(2.16)

Notation 2.12. For k = 0, 1, 2, . . . we will denote by Pk the set of all holomorphic
functions on G which are homogeneous of degree k.
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Lemma 2.13. Every holomorphic function f ∈ H has a unique decomposition of
the form

(2.17) f(z) =
∞∑
k=0

fk, fk ∈ Pk,

in the sense of pointwise convergence.

Proof. Notice first that the function G×C � (z, λ) �→ δλz ∈ G is holomorphic in the
sense that each coordinate of δλz, in the basis used in Lemma 2.8, is holomorphic.

Suppose f : G → C is holomorphic, so that (z, λ) �→ f(δλz) is holomorphic on
G × C. Fix an arbitrary z ∈ G. Then the function u(λ) := f(δλz) is an entire
function on C, and its Taylor expansion

(2.18) u(λ) =
∞∑

n=0

λnan(z)

determines functions an(z) which are holomorphic functions on G because

an(z) =
1

n!

dn

dλn

∣∣∣
λ=0

f(δλz).

Now if μ ∈ C, then

∞∑
n=0

λnan(δμz) = f(δλδμz) = f(δλμz) =
∞∑

n=0

(λμ)nan(z) for all λ ∈ C.

Hence

an(δμz) = μnan(z) for all z ∈ G.

Therefore an ∈ Pn. This proves the existence of the functions fk satisfying (2.17).
If {gk} is another set satisfying (2.17), then

∞∑
k=0

λkgk(z) =
∞∑
k=0

gk(δλz) = f(δλz) =
∞∑
k=0

fk(δλz) =
∞∑
k=0

λkfk(z)

for all λ ∈ C. Hence gk(z) = fk(z) for all k and z. �

Notation 2.14. Let P denote the linear span of {Pk : k ≥ 0}, i.e., the set of all
finite sums of homogeneous functions (of possibly different degrees).

Lemma 2.15. P is the set of holomorphic polynomials.

Proof. In the adapted coordinates z1, . . . , zN , a monomial
∏N

j=1 z
kj

j is homogeneous

of degree
∑N

j=1 kjcj . Therefore any holomorphic polynomial lies in P. Conversely,
we need to show that a function f ∈ Pk is actually a polynomial. If its power series
expansion is given by

f(z) =
∑

k1,...,kN≥0

ak1,...,kN
zk1 · · · zkN ,(2.19)

then, for all complex λ �= 0, we have

λkf(z) = f(δλz) =
∑

k1,...,kN

ak1,...,kN
zk1 · · · zkNλ

∑N
j=1 kjcj .(2.20)
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Since the coefficient of λr on the right must be zero for all z if r �= k we actually
have

f(z) =
∑

∑N
j=1 kjcj=k

ak1,...,kN
zk1 · · · zkN .(2.21)

The subscripts in the sum form a finite set, showing that f is a polynomial. �

Corollary 2.16. Pk is finite dimensional.

Lemma 2.17. If f is holomorphic and is given by (2.17), then

(2.22) (Zf)(z) =
∞∑
k=0

kfk(z).

Proof. Since f(δλz) =
∑∞

k=0 λ
kfk(z) for all λ ∈ C we have

(Zf)(z) = (Xf)(z) =
d

ds

∣∣
s=0

∞∑
k=0

eksfk(z) =
∞∑
k=0

kfk(z).

The interchange of derivative and sum is justified since
∑∞

k=0 e
ksfk(z) is the Taylor

series of the holomorphic function u(es), where u(λ) := f(δλz) as in the proof of
Lemma 2.13, and this can be differentiated termwise. �

We remark for future reference that by (2.14) and (2.16), we have

(2.23) Zf = Xf, f ∈ P.

Lemma 2.18. Let ξ ∈ Vj and f ∈ Pk. Then ξ̃f ∈ Pk−j if k ≥ j, and ξ̃f = 0 if
k < j.

Proof. First, since f is holomorphic and ξ̃ is left-invariant, ξ̃f is holomorphic. Next,
since δλ is a group homomorphism, for any z ∈ G we have Lδλ(z) = δλ ◦ Lz ◦ δλ−1 .

By left-invariance of ξ̃ we have

(ξ̃f)(δλz) = ((Lδλ(z))∗ξ)f

= (δλ(Lz)∗δλ−1ξ)f

= λ−j(δλ(Lz)∗ξ)f since ξ ∈ Vj

= λ−j((Lz)∗ξ)(f ◦ δλ)
= λk−j((Lz)∗ξ)f since f ∈ Pk

= λk−j ξ̃f(z).

Thus f ∈ Pk−j . If k − j < 0, then the fact that ξ̃f is continuous at the identity
leads to the conclusion that f ≡ 0. �

2.4. Sub-Riemannian geometry on G. As before, let g be a stratified complex
Lie algebra with its connected, simply connected complex Lie group G. For this
section, we will use J to denote the complex structure on g. In this section, we
collect a number of facts about the sub-Riemannian geometry of G and its hypoel-
liptic Laplacian. Although much of this development is standard, we shall be rather
explicit with our definitions to fix notation and avoid any possible ambiguity.

View g as a real vector space, and let g∗ be its dual space. Let h : g∗ × g∗ → R

be a symmetric, positive semidefinite, real bilinear form on g∗. We shall think of
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h as a “dual metric” on the dual g∗, despite the fact that it is degenerate, i.e.,
only positive semidefinite instead of positive definite. Suppose further that h is
Hermitian, i.e., h(J∗α, J∗β) = h(α, β), where J∗ is the adjoint of J . (This ensures
that h, in some sense, respects the complex structure of g.)

Let K := {α ∈ g∗ : h(α, α) = 0} be the null space of h and let H = K0 =⋂
α∈K kerα ⊂ g be the backward annihilator of K; H is called the horizontal

subspace of g. Note that H is invariant under J .
Henceforth we assume the following nondegeneracy condition:

Assumption 2.19. H = V1.

In particular, Hörmander’s condition is satisfied: H generates g. In fact,
Hörmander’s condition is satisfied if and only if V1 ⊂ H; we need the opposite
inclusion to ensure that h interacts nicely with the dilation structure on G.

Now h induces a natural real-linear map Φ : g∗ → g defined by α(Φβ) = h(α, β)
with kernel K and image H. (Note that Φ = JΦJ∗.) We may then define a
bilinear form g : H ×H → R on H by g(Φα,Φβ) = h(α, β), which is easily seen to
be well-defined, Hermitian (i.e., g(v, w) = g(Jv, Jw)), and positive definite.

By left translation, we can extend h to a (degenerate) left-invariant dual metric
(still denoted by h) on T ∗G, defined by hx(αx, βx) = h(L∗

xαx, L
∗
xβx) for αx, βx ∈

T ∗
xG. ThenH extends to a left-invariant sub-bundle of TG, namely, vx ∈ Hx ⊂ TxG

iff (Lx−1)∗vx ∈ H, which happens iff αx(vx) = 0 for every αx ∈ T ∗
xG satisfying

hx(αx, αx) = 0. Hx is the horizontal subspace of TxG, and vectors vx ∈ Hx are
said to be horizontal. The bundle H itself is sometimes called the horizontal dis-
tribution. We can also extend g to a left-invariant positive definite inner product
on H, defined by gx(vx, wx) = g((Lx−1)∗vx, (Lx−1)∗wx) for vx, wx ∈ Hx. g is called
a sub-Riemannian metric. If we define Φx : T ∗

xG → TxG by Φx = (Lx)∗ΦL
∗
x,

then the image of Φx is Hx, and we have gx(Φxαx,Φxβx) = hx(αx, βx). Given a
smooth function f : G → R, we can define its left-invariant sub-gradient ∇f ∈ H
by ∇f(x) = Φx(df(x)).

We wish to consider complex functions, one-forms, vector fields, etc., on G, so we
shall now complexify everything in sight. At each x ∈ G, we form the complexified
tangent space TxG ⊗ C, which, as mentioned in Remark 2.7, is a complex vector
space with the complex scalar multiplication ζ · (vx ⊗ η) = vx ⊗ (ζη). When taking
this tensor product, we view TxG as a real vector space, forgetting that it already
has the natural complex structure Jx = (Lx)∗J(Lx−1)∗. This means that TxG⊗C

now has two distinct complex structures: multiplication by i (i.e., vx⊗η �→ vx⊗ iη)
and Jx (which we extend to TxG ⊗ C by complex linearity: Jxivx = iJxvx). A
complex vector field can thus be viewed as a smooth section of the complexified
tangent bundle TG ⊗ C. The complexified horizontal bundle H ⊗ C is naturally
contained in TG⊗C. We likewise form the complexified cotangent space T ∗

xG⊗C

and note that it can be viewed as the complex dual space of TxG⊗C. If f : G → C

is a complex function, written as f = u + iv, then its differential df is a complex
one-form, a smooth section of T ∗G⊗C given by df = du+idv. T ∗G⊗C also has two
complex structures: multiplication by i and J∗

x = L∗
x−1J∗L∗

x (extended by complex
linearity). In particular, if f is holomorphic, then we have the Cauchy–Riemann
equation J∗df = idf ; that is, df is a complex one-form of type (1, 0).

Now we extend h to T ∗G⊗C in such a way as to make it complex bilinear with
respect to multiplication by i; that is, hx(iαx, βx) = hx(αx, iβx) = ihx(αx, βx). So
now hx is complex bilinear with respect to i and Hermitian with respect to J∗

x . We
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likewise extend Φx to a complex linear map Φx : T ∗
xG ⊗ C → Hx ⊗ C, and then

defining gx analogously as before makes it a complex bilinear form on Hx⊗C. Note
that gx remains Hermitian with respect to Jx. By an abuse of terminology, we shall
continue to call g and h the sub-Riemannian metric and dual metric, respectively.
We now also have the sub-gradient ∇f(x) = Φx(df(x)) ∈ TxG ⊗ C defined for
complex functions.

We can describe this geometry more explicitly by choosing a set of left-invariant
real vector fields X1, Y1, . . . , Xk, Yk which span H, are g-orthonormal, and have
Yj = JXj . Then the sub-gradient is given by

∇f(x) =
∑
j

(Xjf)(x)Xj(x) + (Yjf)(x)Yj(x),

and for smooth f1, f2 : G → C we have

(2.24) g(∇f1,∇f̄2) = h(df1, df̄2) =
∑
j

{Xjf1Xj f̄2 + Yjf1Yj f̄2}.

We shall use |∇f |2 as shorthand for g(∇f,∇f̄).
Alternatively, letting

Zj =
1

2
(Xj − iYj),

Z̄j =
1

2
(Xj + iYj)

(2.25)

so that Zj and Z̄j are complex vector fields of type (1, 0) and (0, 1) respectively,
we get

∇f(x) = 2
∑
j

(
(Zjf)(x)Z̄j(x) + (Z̄jf)(x)Zj(x)

)
,(2.26)

g(∇f1,∇f̄2) = h(df1, df̄2) = 2
∑
j

(
Zjf1Z̄j f̄2 + Z̄jf1Zj f̄2

)
.(2.27)

We remark in passing that Xj and Yj commute (since, using the fact that g is a
complex Lie algebra, [Xj , Yj ] = [Xj , JXj ] = J [Xj , Xj ] = 0), and thus Zj and Z̄j

commute.
Note that when f is real, we have

(2.28) |∇f |2 := g(∇f,∇f) = h(df, df) = 4
∑
j

|Zjf |2,

and when f is holomorphic,

(2.29) |∇f |2 = 2
∑
j

|Zjf |2.

Example 2.20. Returning to the example of the complex Heisenberg group begun
in Example 2.3, consider HC

3 = C3 with its Euclidean coordinates (z1, z2, z3). Let
h be the left-invariant dual metric given at the identity e = 0 by

he(dz1, dz̄1) = he(dz2, dz̄2) = 2,

he(dz3, dz̄3) = 0,

he(dzj , dz̄k) = 0, j �= k.
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This makes h Hermitian with respect to the complex structure of HC
3 , so that

he(dzj , dzk) = he(dz̄j , dz̄k) = 0 for all j, k. (The 2 appearing in the first line
ensures that the cotangent vectors dxi, dyj are orthonormal under he.)

From now on, any occurrence of HC
3 will be understood to carry this dual metric

h and the corresponding metric g.
We can choose the left-invariant complex vector fields Zj discussed in (2.25) to

be those which equal ∂
∂zj

at the identity. They are given by

Z1 =
∂

∂z1
− 1

2
z2

∂

∂z3
,

Z2 =
∂

∂z2
+

1

2
z1

∂

∂z3
,

Z3 =
∂

∂z3
.

Example 2.21. For the Heisenberg–Weyl group HC
2n+1 of Example 2.4, we may

similarly define a left-invariant dual metric h by

he(dzj , dz̄j) = 2, 1 ≤ j ≤ 2n,

he(dz2n+1, dz̄2n+1) = 0,

he(dzj , dz̄k) = 0, j �= k.

Let us see how the dilations interact with the left-invariant real vector fields
Xj , Yj . If y ∈ G and λ = α+ iβ ∈ C, we have

(δλ)∗Xj(y) = (δλLy)∗Xj(e)

= (Lδλ(y)δλ)∗Xj(e)

= (Lδλ(y))∗(αXj(e) + βJXj(e))

= αXj(δλ(y)) + βJXj(δλ(y)).

(2.30)

The same holds for Yj . Thus we get

(δλ)∗Zj(y) = λZj(δλ(y)),

(δλ)∗Z̄j(y) = λ̄Z̄j(δλ(y)).
(2.31)

The sub-Laplacian Δ is defined by

(2.32) Δ =
∑
j

X2
j + Y 2

j = 4
∑
j

ZjZ̄j .

It is shown in [44] that Δ, with domain C∞
c (G), is a hypoelliptic operator and is

essentially self-adjoint on L2(m). As a consequence of (2.31), we have

(2.33) Δ(f ◦ δλ) = |λ|2(Δf) ◦ δλ.
Likewise, if esΔ/4 is the heat semigroup for Δ, we have

(2.34) esΔ/4(f ◦ δλ) = (es|λ|
2Δ/4f) ◦ δλ.

Finally, we recall the definition of the Carnot–Carathéodory distance on G and
some of its basic properties. Suppose γ : [0, 1] → G is a smooth path. If γ̇(t) ∈ Hγ(t)

for each t, we say γ is horizontal, and we define its length by

(2.35) �(γ) =

∫ 1

0

√
g(γ̇(t), γ̇(t)) dt.
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Then for x, y ∈ G, we define the Carnot–Carathéodory distance d by

d(x, y) = inf{�(γ) : γ horizontal, γ(0) = x, γ(1) = y}.
Since Hörmander’s condition is satisfied, the Chow–Rashevskii and ball-box the-
orems [35, 36] imply that d(x, y) < ∞ and that d is a metric which induces the
manifold topology on G (which indeed is just the Euclidean topology on the finite-
dimensional vector space G = g).

Since we are denoting the complex structure on g by J , for v ∈ V1 ⊂ g =
TeG we have (δα+iβ)∗v = δα+iβ(v) = αv + βJv. Thus, for v, w ∈ V1 we have
g((δλ)∗v, (δλ)∗w) = |λ|2g(v, w). Since δλ is a group homomorphism and g is left
invariant, it follows that the same holds for v, w ∈ Hx. In particular, �(δλ(γ)) =
|λ|�(γ), and so d(e, δλ(x)) = |λ|d(e, x).

By fixing a basis for g, we may linearly identify it (noncanonically) with Eu-
clidean space RdimR g; let | · | denote the pullback of the Euclidean norm onto g. For
v ∈ g, write v = v1 + · · ·+ vm with vk ∈ Vk and let

(2.36) |v|1 =

m∑
k=1

|vk|1/k.

Note that |δλv|1 = |λ||v|1. Since we have identified G with g as a set, | · |1 also
makes sense on G. It is shown in [6, Proposition 5.1.4] that there is a constant c
such that for every x ∈ G we have

(2.37)
1

c
|x|1 ≤ d(e, x) ≤ c|x|1.

The proof is simple: since d(e, ·) and | · |1 have the same scaling with δλ, it suffices
to consider x with |x|1 = 1. The set of such x is compact, so d(e, ·) attains a finite
maximum and a nonzero minimum on this set.

2.5. Properties of the heat kernel. It is shown in [44] that the Markovian heat
semigroup esΔ/4 admits a right convolution kernel ρs, i.e., e

sΔ/4f = f ∗ ρs, which
we shall call the heat kernel; it is also shown that ρs is C∞ and strictly positive.
Since esΔ/4 is Markovian, the heat kernel measure ρs dm is a probability measure.

Notation 2.22. For s > 0 and 0 < p < ∞, we write Lp(ρs) as short for
Lp(G, ρs dm). As usual, for 0 < p < 1, the vector space Lp(ρs) is equipped
with the topology induced by the complete translation-invariant metric d(f, g) =∫
|f − g|p ρs dm. Nonetheless ‖f‖Lp(ρs) will still mean

(∫
|f |p ρs dm

)1/p
, even for

the case 0 < p < 1 in which it does not define a norm.

Since ρs is bounded, and bounded below on compact sets, any sequence converg-
ing in Lp(ρs) also converges in Lp

loc(m). As such, if fn are holomorphic functions
and fn → f in Lp(ρs), then we also have fn → f uniformly on compact sets, and
so f is holomorphic. Thus Lp(ρs) ∩H is closed in Lp(ρs).

We record here some estimates for the heat kernel.

Theorem 2.23. For each 0 < ε < 1 there are constants C,C ′ such that for every
x ∈ G and s > 0,

(2.38)
C

m(B(e,
√
s))

e−d(e,x)2/(1−ε)s ≤ ρs(x) ≤
C ′

m(B(e,
√
s))

e−d(e,x)2/(1+ε)s

where m(B(e,
√
s)) is the Lebesgue (Haar) measure of the d-ball centered at the

origin (or any other point) of radius
√
s.
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Proof. The upper bound is Theorem IV.4.2 of [44]. The lower bound is Theorem
1 of [43]. Note that our choice to consider the semigroup esΔ/4 rather than esΔ

accounts for a missing factor of 4 in the exponents compared to the results stated
in [43, 44]. �

Theorem 2.24. Suppose ξ1, . . . , ξk ∈ g. Let m be a nonnegative integer, r ≥ 0,
and 0 < s < t < ∞. There is a constant C such that for all y ∈ G,

(2.39) sup
d(x,e)<r

∣∣∣∣( dm

dsm
ξ̃1 · · · ξ̃kρs

)
(y · x)

∣∣∣∣ ≤ Cρt(y).

Proof. This is a special case of Theorem IV.3.1 of [44]. To reduce their statement
to ours, note first that it suffices to assume the ξi are all in V1 (since, assuming
Hörmander’s condition, any other left-invariant vector field may be written as a
linear combination of commutators of vector fields from V1). We can also assume
without loss of generality that the ξi are orthonormal. Then, in their notation, take
R = 1, α = s, β = t, and δ = r. �

Lemma 2.25. Let s > 0.

(a) For every t > s there exists p > 1 such that ρt/ρs ∈ Lp(ρs).
(b) For every p ≥ 1 there exists t > s such that ρt/ρs ∈ Lp(ρs).

Proof. Let ε > 0. By Theorem 2.23, for any 0 < s < t, any p > 1, and any ε > 0
we may find a constant C(s, t, ε) such that∣∣∣∣ ρt(x)ρs(x)

∣∣∣∣p ρs(x) = ρt(x)
p

ρs(x)p−1

≤ C(s, t, ε) exp

(
−

(
p

(1 + ε)t
− p− 1

(1− ε)s

)
d(e, x)2

)
where them(B(e,

√
·)) factors have been absorbed into C(s, t, ε). Let A=A(p, s, t, ε)

=
(

p
(1+ε)t −

p−1
(1−ε)s

)
be the bracketed quantity in the exponent. If A > 0, then by

(2.37) the right side will be integrable with respect to m, implying the desired
conclusion.

For (a), suppose t > s is given. Fix any ε ∈ (0, 1). As p ↓ 1 we have A → 1
(1+ε)t >

0, so for any p sufficiently close to 1 we get A > 0 and hence ρt/ρs ∈ Lp(ρs).
For (b), suppose s > 0 and p ≥ 1 are given. Without loss of generality we can

assume p > 1 (since L1(ρs) ⊃ Lp(ρs) for any p > 1). Choose t with s < t < p
p−1s.

Then as ε ↓ 0 we have A → p
t − p−1

s > 0, so for any sufficiently small ε we get
A > 0. �

Lemma 2.26. For any ξ ∈ g and any s > 0 we have ξ̃ log ρs ∈
⋂

p≥1 L
p(ρs).

Proof. Fix p ≥ 1. By Lemma 2.25(b) we can choose t > s such that ρt/ρs ∈ Lp(ρs).
Then by Theorem 2.24, taking any r > 0 and x = e, there is a constant C such
that ξ̃ρs ≤ Cρt. As such, by the chain rule we have

ξ̃ log ρs =
ξ̃ρs
ρs

≤ ρt
ρs

∈ Lp(ρs).

�
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Lemma 2.27. The heat kernel ρs obeys the scaling relation

(2.40) ρs(δλ(y)) = |λ|−2Dρs|λ|−2(y).

Proof. This follows from the corresponding scaling properties of the semigroup
esΔ/4 (2.34) and of the Haar measure m (2.7). �

3. Dirichlet forms and operators

For the rest of the paper, fix some a > 0. Henceforward Lp by itself will, unless
otherwise specified, refer to Lp(ρa).

Notation 3.1. Let Q0 be the positive quadratic form on L2(ρa) defined on the
domain C∞

c (G) by

(3.1) Q0(f1, f2) =

∫
G

h(df1, df̄2) ρa dz =

∫
G

g(∇f1,∇f̄2) ρa dz

and let Q be its closure, with domain D(Q), so that (Q,D(Q)) is a Dirichlet
form on L2(ρa). Note that D(Q) is a Hilbert space under the energy norm
(f, g)Q = (f, g)L2(ρa) +Q(f, g). Let (A,D(A)) be the generator of Q; i.e., A is the

unique self-adjoint operator on L2(ρa) having domain D(A) ⊂ D(Q) and satisfying∫
G
(Af1)f̄2 ρa dz = Q(f1, f2) for all f1 ∈ D(A), f2 ∈ D(Q).

On smooth functions f ∈ D(A) ∩ C∞(G), integration by parts gives

(3.2) Af = d∗df = −Δf − g(∇f,∇ log ρa) = −Δf − h(df, d log ρa).

The operator A = d∗d can be seen as an analogue of the Ornstein–Uhlenbeck
operator in this noncommutative Lie group setting. Such operators have attracted
substantial interest in the literature, including the study of functional inequalities
such as Poincaré inequalities. Papers which study these operators (in the setting
of real Lie groups) include [5, 33, 34].

Remark 3.2. When g is abelian (i.e., the Lie bracket is 0) then G is Euclidean
space Cn (with its usual additive group structure). If we take h to be the usual
positive definite Euclidean inner product, then everything reduces to the Euclidean
case: ∇ and Δ are the usual gradient and Laplacian, d is Euclidean distance, ρs is

the Gaussian heat kernel ρs(z) = (πs)−ne−|z|2/s, and A is the Ornstein–Uhlenbeck
operator.

Definition 3.3. We will say that A is a holomorphic operator if it maps holo-
morphic functions to holomorphic functions, i.e., A(D(A) ∩H) ⊂ H.

In our setting, the operator A is not holomorphic (except in the abelian case
G = Cn); see Theorem 5.10 below. So our setting stands in contrast to that of
[26], in which most of the main results were proved under the hypothesis that the
operator A should be holomorphic.

Since the phenomenon of strong hypercontractivity is quite specific to the holo-
morphic category, it is not reasonable to expect it to hold for an operator that does
not preserve holomorphicity. As such, our main object of study will not be A itself,
but rather the operator B defined as follows.

Notation 3.4. The restrictionQ|H of Q to the domain D(Q)∩H is a positive closed
quadratic form on the Hilbert space H ∩ L2(ρa). Let (B,D(B)) be its generator,
so that B is a self-adjoint operator on H ∩ L2(ρa).
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We intend to think of B as the “holomorphic projection” of the operator A. In
Section 4, we shall discuss the precise sense in which this is true. For now, let us
observe that

(3.3) D(A) ∩H ⊂ D(B).

To see this, note that for f ∈ D(A) ∩ H ⊂ D(Q) ∩ H and g ∈ D(Q) ∩ H, we have
|Q(f, g)| = |(Af, g)L2 | ≤ ‖Af‖L2‖g‖L2 , and so f is in the domain of the generator
of Q|H, namely B.

4. Density properties of holomorphic polynomials

Notation 4.1. H will denote the set of holomorphic functions on G.

Theorem 4.2.

(a) P is dense in H ∩ Lp(ρa) for 1 ≤ p < ∞.
(b) P ⊂ D(Q) and is a core for Q|H. In particular, from (a), Q|H is densely

defined in H ∩ L2(ρa).
(c) If j �= k, then Pj ⊥ Pk in both L2(ρa) and in energy norm.
(d) H ∩ L2(ρa) =

⊕∞
k=0 Pk.

(e) H ∩D(Q) =
⊕∞

k=0 Pk (convergence in energy norm).
(f) P ⊂ D(B) and is a core for B.

Remark 4.3. It is interesting to contrast Theorem 4.2 with [33, Proposition 8]
(credited to W. Hebisch), in which it is shown that the result is typically false if we
drop the word “holomorphic”. Specifically, when G is a (real) stratified Lie group,
the (not necessarily holomorphic) polynomials are dense in L2(ρa) if and only if G
has step at most 4.

Proof. The proofs are slight variants of the proof of [26, Lemma 5.4].
For (a), to begin, it follows from the upper bound in Theorem 2.23, using polar

coordinates and the homogeneity of d, that P ⊂ Lp(ρa).
Let

Fn(θ) =
1

2πn

n−1∑
k=0

k∑
j=−k

eijθ

=
1

2πn

sin2(nθ/2)

sin2(θ/2)
(4.1)

denote Fejer’s kernel [42, §13.31]. We observe that∫ π

−π

Fn(θ) dθ = 1,(4.2) ∫ π

−π

Fn(θ)e
i�θ dθ = 0, � ≥ n,(4.3)

lim
n→∞

∫ π

−π

Fn(θ)ϕ(θ) dθ = ϕ(0), ϕ ∈ C([−π, π]).(4.4)

Define

Vθf := f ◦ δeiθ
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for any function f on G. If f ∈ H and is written f =
∑∞

k=0 fk as in (2.17), with
fk ∈ Pk, then

(4.5) (Vθf)(z) =
∞∑
k=0

eikθfk(z).

The convergence is uniform on θ ∈ [−π, π] for each z ∈ G because the function
θ �→ f(δeiθz) is smooth and periodic with period 2π. Now let

(4.6) gn(z) :=

∫ π

−π

Fn(θ)(Vθf)(z) dθ.

Using (4.5), Fubini’s theorem, and (4.3), we see that gn is a linear combination of
f0, f1, . . . , fn−1 and is therefore in P. (We can justify the application of Fubini’s
theorem using the fact that

∑∞
k=0 fk(z) is the Taylor series for u(λ), as defined in

(2.18), at λ = 1, and therefore converges absolutely.) Since the map δeiθ : G → G
preserves the measure ρa(x)dx (see (2.7), (2.40)), the operators Vθ are isometries in
Lp(G, ρa(x)dx) for 0 < p < ∞. Moreover, the map θ �→ Vθ is strongly continuous in
Lp(ρa) for 1 ≤ p < ∞: for bounded continuous f : G → R, dominated convergence
gives Vθf → f in Lp(ρa) as θ → 0, and the case of general f ∈ Lp(ρa) follows by
density.

Thus if 1 ≤ p < ∞ and f ∈ H ∩ Lp(ρa), then we have

‖f − gn‖Lp =
∥∥∥ ∫ π

−π

Fn(θ)(f − Vθf) dθ
∥∥∥
Lp

≤
∫ π

−π

Fn(θ)‖f − Vθf‖Lp dθ

→ 0 as n → ∞

(4.7)

by Minkowski’s inequality for integrals. This proves part (a).
To prove part (b), recall that by Lemma 2.18, if f ∈ Pk and ξ ∈ V1, then

ξ̃f ∈ Pk−1 ⊂ L2(ρa). Hence |∇f |2 is in L1(ρa). Moreover, multiplying f by a
sequence ϕn of cutoff functions in C∞

c (G) which converge to 1 boundedly and such

that ξ̃ϕn → 0 boundedly, one sees that f ∈ D(Q). So P ⊂ D(Q). By (2.27) and
(2.31), for any smooth f we have

(4.8) |∇(f ◦ δeiθ )|2(z) = |∇f |2(δeiθz).

Since ρa(x)dx is preserved by the map δeiθ it follows that

Q(Vθf) = Q(f) for all f ∈ D(Q)

and in particular for all f ∈ H∩D(Q). So Vθ is unitary on H∩D(Q) in the energy
norm, [‖f‖2L2 +Q(f)]1/2. Now if f ∈ H ∩ D(Q) and we define the polynomials gn
as in (4.6), we can differentiate under the integral sign to see that

(4.9) ξ̃gn(z) =

∫ π

−π

Fn(θ)(ξ̃Vθf)(z) dθ =

∫ π

−π

Fn(θ)e
iθ(Vθξ̃f)(z) dθ.
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Then, similarly to (4.7), we have∥∥∥ξ̃f − ξ̃gn

∥∥∥
L2

=

∥∥∥∥∫ π

−π

Fn(θ)(ξ̃f − eiθVθ ξ̃f) dθ

∥∥∥∥
Lp

≤
∫ π

−π

Fn(θ)
∥∥∥ξ̃f − eiθVθ ξ̃f

∥∥∥
Lp

dθ

→ 0 as n → ∞.

(4.10)

It follows that gn → f in energy norm. Hence P is a core for Q | H.
Now if f ∈ Pn and g ∈ Pk, then (Vθf)(z) = einθf(z) and (Vθg)(z) = eikθg(z) by

(2.13). Hence (f, g)L2 = (Vθf, Vθg)L2 = ei(n−k)θ(f, g)L2 for all real θ. So if n �= k,

then (f, g)L2 = 0. Moreover, ξ̃f ∈ Pn−1 and ξ̃g ∈ Pk−1 if ξ ∈ V1. So if n �= k, then
Q(f, g) = 0. This proves part (c). Parts (d) and (e) now follow from parts (a), (b),
and (c).

To prove part (f), assume first that g ∈ Pn. Let f ∈ H ∩ D(Q). By part (e) we
may write f =

∑∞
k=0 fk with fk ∈ Pk, by part (e), which also yields

|Q(g, f)| = |Q(g, fn)| ≤ Q(g)1/2Q(fn)
1/2.

Since Pn is finite dimensional (Corollary 2.16) there is a constant Cn such that
Q(fn) ≤ C2

n‖fn‖2L2 . Since the functions fk are orthogonal in the L2 inner product

we have ‖fn‖2L2 ≤ ‖f‖2L2 . Thus |Q(g, f)| ≤ Q(g)1/2Cn‖f‖L2 . Hence g ∈ D(B) and
we have shown P ⊂ D(B).

Now suppose that h ∈ D(B). Define hn(z) =
∫ π

−π
Fn(θ)(Vθh)(z) dθ. As we have

seen, hn ∈ P. We will show that hn → h in the graph norm of B, using the fact
that Vθ is unitary in both of the Hilbert spaces HL2 and H∩D(Q). If g ∈ H∩D(Q),
then

(4.11) (VθBh, g) = (Bh, V−θg) = Q(h, V−θg) = Q(Vθh, g).

Since the left side is continuous in g in the L2 norm so is Q(Vθh, g). Hence Vθh ∈
D(B) and

(4.12) VθBh = BVθh, h ∈ D(B).

Although this equality is of interest in itself we will actually use (4.11) a little
differently. Multiply equation (4.11) by Fn(θ) and integrate over [−π, π]. The
integral can be taken inside both the L2 and energy inner products because Vθ is
strongly continuous in both spaces. We obtain(∫ π

−π

Fn(θ)VθBhdθ, g

)
= Q(hn, g) ∀ g ∈ H ∩ D(Q).

So ∫ π

−π

Fn(θ)VθBhdθ = Bhn.

As n → ∞ the left side converges to Bh in L2 norm. Thus hn → h and Bhn → Bh.
Hence P is a core for B. �

Let us remark on the requirement that p ≥ 1 in Theorem 4.2(a). Our proof fails
for 0 < p < 1 because the inequality in (4.7) would go the wrong way.

However, in the Euclidean case G = C
n (see Remark 3.2), where ρa is the

Gaussian heat kernel, it is known that in fact P is dense in Lp(ρa) for 0 < p < 1.
This is a consequence of a theorem of Wallstén [45, Theorem 3.1], from which it
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follows that the set E of holomorphic functions of the form f(z) =
∑m

j=1 aje
zj ·w̄j ,

with aj ∈ C and wj ∈ Cn, is dense in Lp(ρa). Since E ⊂ L1, we have that L1 is
dense in Lp. But since P is dense in L1 and the inclusion L1 ⊂ Lp is continuous,
we have P dense in Lp as well. Unfortunately for us, Wallstén’s argument relies
heavily on the simple structure of the Gaussian, and it is not clear whether it can
be adapted to a general complex Lie group with a Hörmander metric h.

Question 4.4. For general (G, h), is P dense in Lp(ρa) for 0 < p < 1?

In light of this issue, we adopt the following function spaces on which to prove
our main results.

Notation 4.5. For 1 ≤ p < ∞, let HLp(ρa) = H ∩ Lp(ρa). For 0 < p < 1, let
HLp(ρa) be the L

p-closure of H∩L2(ρa), which may or may not equal H∩Lp(ρa).

In particular, by this definition, P is dense in HLp(ρa) for every 0 < p < ∞.
Also, for 0 < p < q < ∞, HLq is dense in HLp.

Remark 4.6. Our spaces HLp are defined differently from the spaces Hp used in
[26], but in our current setting they are equal.

• For p = 2, [26] defines H2 as the L2-closure of H ∩ D(Q); for us, Theorem
4.2(a,b) shows this equals H ∩ L2.

• For p > 2, [26] definesHp asH2∩Lp; for us this equalsH∩L2∩Lp = H∩Lp.
• For 0 < p < 2, [26] defines Hp as the Lp closure of H2. For 0 < p < 1 this
is precisely our definition; for 1 ≤ p < 2, this equals H ∩ Lp since HL2 is
dense in HLp.

In the cases considered by [26], it was possible that Hp was very different from
H ∩ Lp; see the counterexamples in [26, Section 5].

We now return to the question of in what sense B is a “holomorphic projection”
of A. Let PH be an orthogonal projection from L2 onto the closed subspace HL2.

Proposition 4.7. For f ∈ D(A) ∩ D(B), we have Bf = PHAf .

Proof. For any g ∈ H ∩ D(Q), we have

(Bf, g)L2 = Q(f, g) = (Af, g)L2 = (PHAf, g)L2 .

Since H ∩D(Q) is dense in H ∩ L2 we must have Bf = PHAf . �
To make the previous proposition more interesting, we should show that D(A)∩

D(B) is reasonably large.

Proposition 4.8. P ⊂ D(A).

Proof. Let f ∈ P, and let ϕ = −Δf − h(df, d log ρa) be the function which, as in
(3.2), ought to equal Af . Integration by parts shows that for any ψ ∈ C∞

c (G) we
have Q(f, ψ) =

∫
G
ϕψ̄ρa dm, so if we can show ϕ ∈ L2(ρa), we will have |Q(f, ψ)| ≤

‖ϕ‖L2‖ψ‖L2 , implying that f ∈ D(A) and moreover Af = ϕ.
Since f is holomorphic, Δf = 0 so we have

(4.13) ϕ = −h(df, d log ρa) = −
∑
j

ZjfZ̄j log ρa

using (2.27) and Z̄jf = 0. By Lemma 2.18, Zjf ∈ P ⊂
⋂

q≥1 L
q(ρa), and by Lemma

2.26, Z̄j log ρa ∈
⋂

p≥1 L
p(ρa), so by Hölder’s inequality, ϕ ∈ L2(ρa) as desired. �
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(A similar argument would show that any L2 holomorphic function with its first
derivatives in L2+ε is also in D(A).)

In particular we have P ⊂ D(A) ∩ D(B), so Bf = PHAf for all polynomials.
In the case that A is holomorphic, we actually have that B is simply the restric-

tion of A to D(A)∩H. We already showed in (3.3) that D(A)∩H ⊂ D(B). For the
other direction, let f ∈ D(B); by Theorem 4.2(f) we can find a sequence pn ∈ P
with pn → f and Bpn → Bf in L2. But Bpn = PHApn = Apn if A is holomorphic,
so Apn converges, and since A is closed we have f ∈ D(A) and Af = Bf .

It is conceivable that even when A is not holomorphic, we might get D(B) =
D(A) ∩H, in which case B is simply the restriction of PHA to D(A) ∩H, i.e., the
literal holomorphic projection of A. However, we do not have a proof of this.

Question 4.9. Under what conditions does D(B) = D(A) ∩H?

5. Dilations and the operator B

In this subsection, we show that in fact the operator B is just a constant multiple
of the vector field Z introduced in (2.11): B = 2

aZ. Along the way, we establish
some lemmas that will also be useful in future computations.

Remark 5.1. To see that B = 2
aZ is a plausible statement, consider the Euclidean

case G = C
n as in Remark 3.2. Here A is the Ornstein–Uhlenbeck operator

Af = −Δf + 1
az · ∇f ; since this is a holomorphic operator, B is simply the re-

striction of A to holomorphic functions. For holomorphic f we have Δf = 0 and
z · ∇f = 2

∑n
j=1 zj

∂f
∂zj

. On the other hand, as in (2.12), in this case we have

Zf =
∑n

j=1 zj
∂f
∂zj

(note that all the cj are 1).

Notation 5.2. Let us introduce a class of convenient functions with which to work.
We will say a function f : G → C has polynomial growth if there are constants
C,N such that |f(z)| ≤ C(1 + d(e, z))N for all z. Then we let C2

p(G) denote the

class of all f ∈ C2(G) such that f, ξjf, ξjξkf,Xf, Y f all have polynomial growth.

It is immediate that P ⊂ C2
p(G), and if f, g are in C2

p(g), then so are f ◦ δλ,

f̄ , f + g, and fg. Moreover, if u : C → C is a C2 function with bounded first
and second derivatives, then u(f) is also in C2

p . This is certainly not the broadest
class of functions for which the results below will hold, but it is sufficient for our
purposes and simplifies several of the arguments.

Lemma 5.3. If f ∈ C2
p(G), then s �→

∫
G
f ρs dm is differentiable and

(5.1)
d

ds

∫
G

f ρs dm =
1

4

∫
G

Δf ρs dm =
1

2s

∫
G

Xf ρs dm.

Proof. Suppose first that f ∈ C∞
c (G). Let a(s) =

∫
G
f ρs dm. For the first equality,

differentiating under the integral sign and then integrating by parts gives

a′(s) =

∫
G

f
d

ds
ρs dm =

1

4

∫
G

f Δρs dm =
1

4

∫
G

Δf ρs dm.
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For the second equality, we use (2.34) to observe∫
G

(f ◦ δer) ρs dm = esΔ/4(f ◦ δer)(e)

= (ese
2rΔ/4f)(δer(e))

= (ese
2rΔ/4f)(e)

=

∫
G

f ρse2r dm

= a(se2r).

Now differentiating under the integral sign with respect to r and then setting r = 0,
we get ∫

G

Xf ρs dm =
d

dr

∣∣∣
r=0

a(se2r) = 2s a′(s),

which establishes the second equality of (5.1).
For the case of general f ∈ C2

p(G), let ψ ∈ C∞
c (G) be a cutoff function which

equals 1 on a neighborhood of e ∈ G, and set ψn(x) = ψ(δ1/n(x)). Then ψn → 1

boundedly. It follows from (2.30) that ξ̃jψn → 0 and ξ̃j ξ̃kψn → 0 boundedly, at
least for ξ ∈ V1, and the same for general ξ ∈ g by taking commutators. Then since
X,Y commute with δ1/n, we also have Xψn → 0, Y ψn → 0 boundedly. Hence

setting fn = ψnf , we have constructed fn ∈ C2
c (G) such that, pointwise,

fn → f, Δfn → Δf, Xfn → Xf,

and moreover such that fn and its derivatives are controlled by f and its derivatives.
In particular, there exist C,N such that for all n, x we have

|fn(x)|+ |Δfn(x)|+ |Xfn(x)| ≤ C(1 + d(e, x))N .

Now by integrating (5.1), we have

(5.2)

∫
G

fn (ρt − ρs) dm =
1

4

∫ t

s

∫
G

Δfn ρσ dmdσ =

∫ t

s

1

2σ

∫
G

Xfn ρσ dmdσ.

By the Gaussian heat kernel upper bounds of Theorem 2.23, we have∫
G

C(1 + d(e, x))N sup
σ∈[s,t]

ρσ(x)m(dx) < ∞,

and so by Fubini’s theorem and dominated convergence, we can pass to the limit
in (5.2) as n → ∞ to get

(5.3)

∫
G

f (ρt − ρs) dm =
1

4

∫ t

s

∫
G

Δf ρσ dmdσ =

∫ t

s

1

2σ

∫
G

Xf ρσ dmdσ.

Since the two integrals over G are each continuous functions of σ, then by the
fundamental theorem of calculus, this is equivalent to the desired result. �

Lemma 5.4. For f ∈ C2
p(G), we have

∫
G
Y f ρs dm = 0.
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Proof. This is similar to the previous proof. By (2.34) we have∫
G

(f ◦ δeiθ) ρs dm = esΔ/4(f ◦ δeiθ )(e)

= (es|e
iθ|2Δ/4f)(δeiθ(e))

= (esΔ/4f)(e)

=

∫
G

f ρs dm.

If f ∈ C2
c (G) we can differentiate under the integral sign with respect to θ and set

θ = 0 to get
∫
G
Y f ρs dm = 0. For f ∈ C2

p(G), use cutoff functions. �

Corollary 5.5. Suppose that f, g ∈ P. Then

(5.4) (Zf, g)L2(ρa) = (f, Zg)L2(ρa).

Proof. −iY (fḡ) = (Z − Z̄)(fḡ) = (Zf)ḡ − fZg. Since fḡ ∈ C2
p(G), by Lemma 5.4

the integral with respect to ρa dm is zero. �

Theorem 5.6. Let a > 0. We have

(5.5) D(B) = {f ∈ HL2(ρa) : Zf ∈ L2(ρa)}
and

(5.6) Bf =
2

a
Zf for all f ∈ D(B).

Proof. We begin by showing that (5.6) holds for f ∈ P. Suppose that f and g are
in P, and let Zj be as defined in (2.25). First observe that

ZjZ̄j(fḡ) = ZjZ̄jf · ḡ + Z̄jf · Zj ḡ + Zjf · Z̄j ḡ + f · ZjZ̄j ḡ = Zjf · Zjg.

The first, second and fourth terms of the middle expression vanish because Z̄jf = 0
and ZjZ̄j ḡ = Z̄jZj ḡ = 0 (since Zj is of type (1,0) and commutes with Z̄j). So by
(2.27) and (2.32) we have

h(df, dḡ) =
1

2
Δ(fḡ).

Note that fḡ ∈ C2
p(G). Thus multiplying by ρa and integrating, we have

(Bf, g)L2(ρa) = Q(f, g)

=
1

2

∫
G

Δ(fg)ρa dm

=
1

a

∫
G

X(fg)ρa dm by Lemma 5.3

=
1

a

∫
g

{(Xf)g + fXg}ρa dx

=
1

a

∫
G

{(Zf)g + fZg}ρa dx see (2.23)

=
1

a
(Zf, g)L2 + (f, Zg)L2

=
2

a
(Zf, g)L2 by Corollary 5.5.
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Since Bf,Zf are both holomorphic and P is dense in HL2(ρa), we conclude that
Bf = 2

aZf .
Now let f ∈ D(B) be arbitrary. Since P is a core for B, we may find fn ∈ P with

fn → f and Bfn → Bf in L2, and also uniformly on compact sets. In particular,
Zfn converges uniformly on compact sets, so its limit must be Zf . We conclude
that Bf = 2

aZf and have also shown the ⊂ inclusion of (5.5).

For the other inclusion, suppose f, Zf ∈ HL2, and as in (4.6) set

gn(z) =

∫ π

−π

Fn(θ)f(δeiθ(z)) dθ.

We showed in Theorem 4.2(a) that gn ∈ P and gn → f in L2. Since the integral is
over a compact set and f is smooth, we can differentiate under the integral sign to
obtain

Zgn(z) =

∫ π

−π

Fn(θ)(Zf)(δeiθ(z)) dθ.

Then as before, we have Zgn → Zf in L2. Hence Bgn → 2
aZf in L2. Since B is a

closed operator, we have f ∈ D(B). �

Corollary 5.7. We have

(5.7) e−tBf = f ◦ δe−2t/a

for f ∈ H ∩ L2(ρa) and t ≥ 0.

Proof. For f ∈ Pk ⊂ D(B), by Theorem 5.6 and (2.16), both sides of (5.7) are
equal to e−2tk/af . Hence (5.7) holds for all f ∈ P. Now if f ∈ H ∩ L2(ρa), by
Theorem 4.2(a) we may choose fn ∈ P with fn → f in L2(ρa). Since e−tB is a
contraction on L2, we have e−tBfn → e−tBf in L2, and also fn◦δe−2t/a → f ◦δe−2t/a

pointwise. �

Remark 5.8. In light of Theorem 5.6, our goal of understanding strong hyper-
contractivity for the holomorphic projection of the semigroup e−tA has essentially
reduced to the problem of understanding it for the dilation semigroup on G. A
related study was undertaken in the papers [22, 23], in which the authors consider
the dilation semigroup on real Euclidean space. In these papers, the holomorphic
functions are replaced with the class of log-subharmonic functions, and the authors
examine the relationship between an appropriate version of strong hypercontrac-
tivity and a so-called strong logarithmic Sobolev inequality for such functions. In
recent work by the first author [16], these results are extended to real stratified Lie
groups.

Remark 5.9. The dilation semigroup also arises from the Ornstein–Uhlenbeck semi-
group e−tA in another way. In [33], the author introduces a “Mehler semigroup”
e−tN on a stratified Lie group, defined as follows (after adjusting notation and time
scaling):

(5.8) (e−tNf)(x) =

∫
G

f
(
δe−βt(x) · δ√

1−e−2βt
(y)

)
ρa(y)m(dy)

where we take β = 2/a to make our time scaling come out right. The name
“Mehler semigroup” is explained by the fact that when G = R

n (i.e., a stratified
Lie group of step 1), then (5.8) is precisely Mehler’s formula for the Ornstein–
Uhlenbeck semigroup, so in this special case, e−tN = e−tA. For a nonabelian group
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G, e−tN and e−tA differ, and e−tN is a nonsymmetric semigroup on L2(ρa). A
simple computation shows that, formally, the generator of e−tN is N = −Δ+βX =
−Δ+ 2

aX. In particular, when f is holomorphic, we have (still formally)

(5.9) Nf =
2

a
Xf =

2

a
Zf = Bf.

Thus our main Theorem 7.2 below could be restated as giving the strong hyper-
contractivity of the Mehler semigroup e−tN , still conditionally on the logarithmic
Sobolev inequality (7.1).

As a consequence of Theorem 5.6, we can show:

Theorem 5.10. Except in the abelian case G = Cn, A is not holomorphic.

Proof. Consider the decomposition g =
⊕m

j=1 Vj as in (2.1), where Vm �= 0 is the
center of g. Excluding the abelian case G = Cn, we have m > 1.

Fix a nonzero η ∈ Vm and let � : g → C be a complex linear functional with
�(η) = 1 and � = 0 on V1 ⊕ · · · ⊕ Vm−1. The exponential map exp : g → G is a
holomorphic diffeomorphism, so we can define a holomorphic function f : G → C

by f(exp(ξ)) = �(ξ). (Previously we took G = g as sets and exp to be the identity,
but for now we shall write exp explicitly.) In fact, f is homogeneous of degree m,
so f ∈ Pm. We thus have f ∈ D(A)∩D(B) by Theorem 4.2(f) and Proposition 4.8.
If Af were holomorphic, by Proposition 4.7 we would have Af = Bf . We show
this is not the case.

Let g = exp(η) ∈ G, so that f(g) = 1. By Theorem 5.6 and (2.16), we have
Bf = 2

aZf = 2m
a f , so Bf(g) = 2m

a .
On the other hand, suppose ξ ∈ V1. For any t ∈ R, we have g · exp(tξ) =

exp(η) exp(tξ) = exp(η+ tξ), since η ∈ Vm commutes with ξ. Thus f(g · exp(tξ)) =
�(η + tξ) = 1 since ξ ∈ V1 implies �(ξ) = 0. Differentiating with respect to t

at t = 0, we have ξ̃f(g) = 0. Hence ∇f(g) = 0 and so by (3.2) and (2.32),
Af(g) = 0 �= Bf(g). �

As an explicit example, in the complex Heisenberg group HC
3 with coordinates

(z1, z2, z3), one could take f(z) = z3 and verify by direct computation that
Zf(0, 0, 1) = 2 while Af(0, 0, 1) = 0.

In the case of stratified Lie groups of step 2, explicit integral formulas for the
heat kernel ρa are known [20,41]. So in those cases, to show A is not holomorphic,
in light of (3.2) one could compute Z̄j log ρa and check that it is not holomorphic.

6. Contractivity of e−tB

Theorem 6.1. Let 0 < p < ∞. For every f ∈ HLp(ρa) and every t ≥ 0 we have

(6.1) ‖f ◦ δe−t‖Lp(ρa) ≤ ‖f‖Lp(ρa).

In particular, e−tB extends continuously to HLp(ρa) for 0 < p < 2 and is a con-
traction on HLp(ρa) for 0 < p < ∞.

Proof. First, let us note that for any g ∈ L1(ρa), the scaling relation (2.34) implies

(6.2)

∫
G

(g ◦ δe−t) ρa dm =

∫
G

g ρae−2t dm.
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So if g ∈ C2
p(G) with Δg ≥ 0, then Lemma 5.3 implies that this quantity decreases

with respect to t; that is,

(6.3)

∫
G

(g ◦ δe−t) ρa dm ≤
∫
G

g ρa dm, g ∈ C2
p(G), Δg ≥ 0.

We would now like to replace g with some approximation of |f |p. To achieve
this, let us first suppose that f ∈ P; the general case will then follow from a
density argument. Following [27, Lemma 4.3] we shall introduce a sequence of
“subharmonizing” functions.

Let v ∈ C∞
c ((0,∞)) be nonnegative, and set

u(t) =

∫ t

0

1

s

∫ s

0

v(σ) dσ ds.

Then it is easy to verify that:

• u ∈ C∞([0,∞));
• u ≥ 0;
• u′, u′′ are bounded;
• tu′′(t) + u′(t) = v(t) ≥ 0 for all t ≥ 0.

As such, if f ∈ P, then g := u(|f |2) ∈ C2
p(G). Now using the chain rule and the

fact that f is holomorphic (so that Z̄jf = 0), we have

1

4
Δg =

m∑
j=1

ZjZ̄ju(|f |2)

=
m∑
j=1

Zj

[
u′(|f |2)fZjf

]
=

m∑
j=1

{
u′′(|f |2)f̄Zjf · fZjf + u′(|f |2)|Zjf |2

}
=

m∑
j=1

(
|f |2u′′(|f |2) + u′(|f |2)

)
|Zjf |2.

Since tu′′(t) + u′(t) ≥ 0, we have Δg ≥ 0 and so (6.3) holds with g = u(|f |2).
Now let vn ∈ C∞

c ((0,∞)) be a sequence of nonnegative smooth functions with

vn(σ) ↑
(
p
2

)2
σ(p/2)−1 for σ > 0, and as before set un(t) =

∫ t

0
1
s

∫ s

0
vn(σ) dσ ds and

gn = un(|f |2). As before, gn satisfies (6.3). By monotone convergence,

un(t) ↑
∫ t

0

1

s

∫ s

0

(p
2

)2

σ(p/2)−1 dσ ds = tp/2

and hence gn ↑ |f |p. Hence using (6.3) and monotone convergence, we have

(6.4)

∫
G

|f ◦ δe−t |p ρa dm ≤
∫
G

|f |pρa dm

so that (6.1) holds for f ∈ P.
Now let f ∈ HLp(ρa) be arbitrary. As mentioned following Notation 4.5, P is

dense in HLp(ρa), so we may find a sequence fn ∈ P with fn → f in Lp and also
pointwise, so that in particular fn ◦ δe−t → f ◦ δe−t pointwise. Now since (6.1)
holds for fn, we see that fn ◦ δe−t is Cauchy in Lp, hence converges in Lp, and the
limit must equal the pointwise limit f ◦ δe−t . (In particular, f ◦ δe−t ∈ HLp(ρa).)
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Since the p-norm is continuous on Lp, we can pass to the limit in (6.1) to see that
it holds for f . �
Corollary 6.2. e−tB is a strongly continuous contraction semigroup on HLp(ρa)
for 0 < p < ∞.

Proof. As we noted, e−tBf = f ◦ δe−t . Hence the semigroup property is given
by (2.6), and the previous theorem showed the contractivity. To verify strong
continuity, we note that for f ∈ Pk we have f ◦ δe−t → f pointwise, and |f ◦ δe−t | =
e−tk|f | ≤ |f |. So by dominated convergence, e−tBf = f ◦ δe−t → f in Lp as t → 0.
By linearity, the same holds for any f ∈ P. For general f ∈ HLp(ρa), we use a
familiar triangle inequality argument. Since P is dense in HLp, for any ε we can
choose g ∈ P with ‖f − g‖Lp < ε. For p ≥ 1, Minkowski’s triangle inequality gives

‖e−tBf − f‖Lp ≤ ‖e−tB(f − g)‖Lp + ‖e−tBg − g‖Lp + ‖g − f‖Lp

≤ 2ε+ ‖e−tBg − g‖Lp

using the contractivity of e−tB on the first term. Since g ∈ P, we know that
‖e−tBg− g‖Lp → 0 and hence lim supt→0 ‖e−tBf −f‖Lp ≤ 2ε, implying the desired
result since ε is arbitrary. For 0 < p < 1, ‖ · ‖Lp is not a norm, but we get the same
result by replacing ‖·‖Lp with ‖·‖pLp , which does satisfy the triangle inequality. �

7. Strong hypercontractivity for the dilation semigroup

We now state and prove our main theorem.
We say that the heat kernel ρa satisfies a logarithmic Sobolev inequality if

there exist c > 0 and β ≥ 0 such that

(7.1)

∫
G

|f |2 log |f |ρa dm ≤ cQ(f) + β‖f‖2L2(ρa)
+ ‖f‖2L2(ρa)

log ‖f‖L2(ρa)

for all f such that Q(f) < ∞. (In the case β > 0, (7.1) is sometimes called a
defective logarithmic Sobolev inequality.)

Remark 7.1. To the best of our knowledge, it is currently an open problem to de-
termine whether the logarithmic Sobolev inequality (7.1) is satisfied in all complex
stratified Lie groups G. As such, our main Theorem 7.2 is necessarily conditional
in nature, taking (7.1) as a hypothesis. However, in Section 8 below, we discuss the
particular case of the complex Heisenberg and Heisenberg–Weyl groups, for which
(7.1) is known to hold [14, 30] and which therefore serve as a concrete example to
which our theorem applies. It would be of great interest to have additional examples
of groups satisfying (7.1).

For 0 < q ≤ p < ∞, let

tJ (p, q) :=
c

2
log

(
p

q

)
(7.2)

and

M(p, q) := exp

(
2β

(
1

q
− 1

p

))
.(7.3)

Theorem 7.2. Suppose that the logarithmic Sobolev inequality (7.1) holds and that
0 < q ≤ p < ∞. Then for every f ∈ HLq(ρa) and every t ≥ tJ (p, q),

(7.4) ‖e−tBf‖Lp(ρa) ≤ M(p, q)‖f‖Lq(ρa).
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Proof. Fix 0 < q ≤ p < ∞. We shall concentrate first on the case when f ∈ P;

let us say f has degree D, so f ∈
⊕D

k=0 Pk. The general case will then follow by a
density argument as in the proof of Theorem 6.1. We also note that it is sufficient
to prove that (7.4) holds for t = tJ (p, q), since if this can be shown, then using
Theorem 6.1 we conclude that for any t ≥ tJ ,

‖e−tBf‖Lp = ‖e−tJB(e−(t−tJ )Bf)‖Lp ≤ M(p, q)‖e−(t−tJ)Bf‖Lq ≤ M(p, q)‖f‖Lq .

We adopt similar notation as in [26, Section 4], which we generally follow. Let

gt := e−tBf.

Since Pk is invariant under B (Corollary 5.7 and Lemma 2.17), gt is a smooth curve

in the finite-dimensional space
⊕D

k=0 Pk. Indeed, if f =
∑D

k=0 fk with fk ∈ Pk, we

have gt =
∑D

k=0 e
−2tk/afk.

Fix ε > 0 and let

γt :=
(
|gt|2 + ε

)1/2
,

r(t) := qe2t/c,

v(t) :=

∫
γt(x)

r(t)ρa(x)m(dx),

α(t) := ‖γt‖Lr(t)(ρa) = v(t)1/r(t).

Notice that γt ∈ C2
p(G) (see Notation 5.2) and in particular v(t), α(t) are finite for

all t. Also notice that r(tJ) = p. Our goal will be to show α(tJ) ≤ M(p, q)α(0),
which when taking ε → 0 turns into (7.4) with t = tJ . We will do this by deriving
an appropriate differential inequality for α.

Simple calculus shows

(7.5) α′(t) = α(t)v(t)−1

(
r(t)−1v′(t)− 2

c
v(t) logα(t)

)
.

To attack this, we differentiate under the integral sign to show

v′(t) =

∫
G

γ
r(t)
t

(
r′(t) log γt +

r(t)

γt
γ′
t

)
ρa dm(7.6)

=
2r(t)

c

∫
G

γ
r(t)
t log γt ρa dm+ r(t)

∫
G

γ
r(t)−1
t γ′

t ρa dm(7.7)

=
2r(t)

c

∫
G

γ
r(t)
t log γt ρa dm− r(t) Re

∫
G

γ
r(t)−2
t Bgt · gt ρa dm.(7.8)

To check that differentiation under the integral sign is justified, fix a bounded in-
terval [t1, t2] containing t, and note that since s �→ gs is a continuous curve in
the holomorphic polynomials of degree D, there is a constant C so that |gs(x)| +
|g′s(x)| ≤ C(1 + d(e, x))D for all s ∈ [t1, t2]. Since γt is bounded below and
r, r′ are bounded on [t1, t2] by some constant R, it follows that for t ∈ [t1, t2]
the integrand on the right side of (7.6) is dominated by some constant times
(C(1 + d(e, x))D)R+1ρa(x), which is integrable.

Let I := rRe
∫
G
γr−2Bg · ḡ ρa dx be the second term in (7.8). (For notational

hygiene, we suppressed the explicit dependence on t and will continue to do so
when convenient.) We wish to estimate I from below using the logarithmic Sobolev
inequality, so we need to convert it into an expression involving Q.
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Since g is a polynomial, by Theorem 5.6 and (2.23), we have Bg = 2
aZg = 2

aXg,
so that

I =
2r

a
Re

∫
G

γr−2Xg · ḡ ρa dm.

But X is a real vector field, so an easy computation shows X[|g|2] = 2Re[Xg · ḡ]
and hence X[γr] = rγr−2Re[Xg · ḡ]. Since γr ∈ C2

p(G), by Lemma 5.3 we have

I =
2

a

∫
G

X[γr]ρa dm =

∫
G

Δ[γr]ρa dm.

Now using elementary calculus, we may show:

(7.9) Δ[γr] = 4|∇γr/2|2 + rεγr−4|∇g|2.
To see this, let Zj be the vector fields defined in (2.25), which are of type (1, 0), so
that Δ = 4

∑
j ZjZ̄j . We have

4ZjZ̄j [γ
r] = 4Zj

[r
2
γr−2 ·

(
�
�Z̄jg · ḡ + g · Z̄j ḡ

)]
= 2r · r − 2

2
γr−4 · (Zjg · ḡ + g ·��Zj ḡ) (g · Z̄j)

+ 2rγr−2
(
Zjg · Z̄j ḡ + g ·���ZjZ̄j ḡ

)
since ZjZ̄j ḡ = Z̄jZj ḡ = 0. Now rearranging,

4ZjZ̄j [γ
r] = r(r − 2)γr−4|Zjg|2|g|2 + 2rγr−2|Zjg|2

= r2γr−4|Zjg|2|g|2 + 2rγr−4|Zjg|2(γ2 − |g|2)
= r2γr−4|Zjg|2|g|2 + 2rεγr−4|Zjg|2

since γ2 − |g|2 = ε. On the other hand,

Zj [γ
r/2] =

r

4
γ

r−4
2 Zjg · ḡ

so that
4ZjZ̄j [γ

r] = 16|Zj [γ
r/2]|2 + 2rεγr−4|Zjg|2.

Summing over j and referring to (2.28–2.29), we obtain (7.9).
In particular, since the second term of (7.9) is nonnegative,

Δ[γr] ≥ 4|∇[γr/2]|2.
So integrating gives

I ≥ 4Q(γr/2).

Now, applying the logarithmic Sobolev inequality (7.1) and noting that∥∥γr(t)/2
t

∥∥2
L2(ρa)

= v(t), it follows that

I ≥ 2r(t)

c

∫
G

γ
r(t)
t log γt ρa dm− 4β

c
v(t)− 2

c
v(t) log v(t).

Referring back to (7.8), this shows

(7.10) v′(t) ≤ 4β

c
v(t) +

2

c
v(t) log v(t) =

4β

c
v(t) +

2r(t)

c
v(t) logα(t),

and thus from (7.5)

(7.11) α′(t) ≤ 4βα(t)

cr(t)
.
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In other words,

(7.12)
d

dt
logα(t) ≤ 4β

cr(t)
=

4β

cq
e−2t/c,

so, integrating,

(7.13) α(t) ≤ α(0) exp

(
2β

q
(1− e−2t/c)

)
= α(0) exp

(
2β

(
1

q
− 1

r(t)

))
.

Now let ε ↓ 0, so that γt ↓ |gt|, and by dominated convergence, α(t) ↓ ‖gt‖Lr(t)(ρa) =

‖e−tBf‖Lr(t)(ρa). Taking t = tJ and recalling that r(tJ) = p, (7.13) becomes

(7.14) ‖e−tJBf‖Lp(ρa) ≤ M(p, q)‖f‖Lq(ρa),

which is precisely (7.4) with t = tJ . This completes the proof for f ∈ P.
For general f ∈ HLq(ρa), proceed as in the last paragraph of the proof of

Theorem 6.1. Choose a sequence fn ∈ P with fn → f in Lq-norm. Then (7.4)
holds for fn. As n → ∞, the right side of (7.4) converges to M(p, q)‖f‖Lq(ρa).

Since e−tB is a contraction on HLp by Theorem 6.1, e−tBfn is Cauchy in Lp norm,
so converges in Lp to some function which can only be e−tBf . Hence the left side
of (7.4) converges to ‖e−tBf‖Lp(ρa) as desired. �

8. Application to the complex Heisenberg group

In order for Theorem 7.2 to have content, we need examples of stratified complex
groups for which the logarithmic Sobolev inequality (7.1) is satisfied. In this section,
we verify that the complex Heisenberg group HC

3 of Examples 2.3 and 2.20 enjoys
that property, as do the complex Heisenberg–Weyl groups H

C
2n+1 of Examples 2.4

and 2.21. So for these groups, the hypotheses of our Theorem 7.2 are satisfied. On
the other hand, since as shown in Theorem 5.10, the operator A is not holomorphic
in this setting, the results of [26] do not apply, so we have proved something new.

Indeed, the papers [14] and [30] showed independently that so-called H-type Lie
groups satisfy a gradient estimate which is known to imply the logarithmic Sobolev
inequality (7.1). We shall state that result, check that the complex Heisenberg
group HC

3 is an H-type Lie group, and sketch in the steps leading to (7.1). The same
argument, mutatis mutandis, also applies to the Heisenberg–Weyl groups H

C
2n+1.

We omit the details because they add notation but no further insight.

Definition 8.1. Suppose g is a real Lie algebra equipped with a positive definite
inner product 〈·, ·〉. For u, v ∈ g, define Juv via

〈Juv, w〉 = 〈u, [v, w]〉.
Let z be the center of g, and v = z⊥. We say (g, 〈·, ·〉) is H-type if:

(1) [v, v] = z; and
(2) for each u ∈ z with ‖u‖ = 1, Ju maps v isometrically onto itself.

An H-type Lie group is a connected, simply connected real Lie group G
equipped with an inner product 〈·, ·〉 on its Lie algebra g such that (g, 〈·, ·〉) is
H-type in the above sense.

Suppose then that (G, 〈·, ·〉) is an H-type Lie group. By item 1 of Definition 8.1,
G is nilpotent, so we may fix a bi-invariant Haar measure m which is simply (a
scalar multiple of) Lebesgue measure. Let ξ1, . . . , ξn be an orthonormal basis for

v ⊂ g, let ξ̃1, . . . , ξ̃n be the corresponding left-invariant vector fields, and define
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the sub-Laplacian by Δ = ξ̃1
2
+ · · · + ξ̃n

2
. Also, for sufficiently smooth f let

|∇f |2 := |ξ̃1f |2 + · · ·+ |ξ̃nf |2. The main theorem of [14] and [30] is:

Theorem 8.2. If (G, 〈·, ·〉) is H-type, then following the above notation, there is a
constant K such that for all t ≥ 0 and f ∈ C1

c (G) we have

(8.1) |∇etΔ/4f | ≤ KetΔ/4|∇f |.

Lemma 8.3. Consider HC
3 as a 6-dimensional real Lie group. As a set, hC3 = C3 =

R6, so equip it with the Euclidean inner product 〈·, ·〉. Then (HC
3 , 〈·, ·〉) is H-type.

Proof. Let {ej , iej : j = 1, 2, 3} be the standard basis of hC3 = C3 = R6, which is or-
thonormal with respect to the (real) Euclidean inner product 〈·, ·〉. Then the center
z of hC3 is spanned (over R) by {e3, ie3}, so v = z⊥ is spanned by {e1, ie1, e2, ie2}.
By inspection of the Lie bracket defined in (2.3), we see that [v, v] = z.

Next, we note that for u, v, w ∈ hC3 and α, β ∈ C, we have

(8.2) 〈Jαu(βv), w〉 = 〈αu, [βv, w]〉 = 〈u, [v, ᾱβw]〉 = 〈Juv, ᾱβw〉 = 〈αβ̄Juv, w〉
so that Juv is complex-linear in u and conjugate-linear in v. Together with the
relations Je3e1 = e2, Je3e2 = −e1, we easily see that for any α ∈ C with |α| = 1,
we have that Jαe3 is an isometry of v into itself. �

Now we note that when the dual metric h is defined on (hC3 )
∗ as in Example 2.20,

the backward annihilator H is precisely v, and the metric g is just the restriction
of 〈·, ·〉 to H. Hence the sub-Laplacian Δ used in Theorem 8.2 is the same as that
defined in (2.32), and for smooth real f , the squared gradient |∇f | of Theorem 8.2
is equal to h(df, df) in the notation of Section 2.4.

Theorem 8.4. It follows from Theorem 8.2 that the logarithmic Sobolev inequality
(7.1) holds for HC

3 , with c = 2K2a and β = 0, where K is the constant from
Theorem 8.2.

Proof. This can be proved by an elementary, though clever, argument in the style
of Γ2-calculus, which can be found in [4, Theorem 6.1]. The essence of this argu-
ment, which is an equivalence between gradient bounds and the logarithmic Sobolev
inequality, goes back to [3]. �

Corollary 8.5. Theorem 7.2 holds for the complex Heisenberg and Heisenberg–

Weyl groups H
C
2n+1, with tJ (p, q) = K2a log

(
p
q

)
and M(p, q) = 1, where K is the

constant from Theorem 8.2.

Remark 8.6. The foregoing argument would apply to any complex stratified Lie
group which is H-type. Since the complex stratified groups and the H-type groups
are each rather large classes, one might think there would be many more such
examples. However, there are actually no more: the first author has shown in [15]
that the complex Heisenberg–Weyl Lie algebras are the only complex Lie algebras
which are H-type under a Hermitian inner product.
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