
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 9, September 2018, Pages 6169–6219
http://dx.doi.org/10.1090/tran/7111

Article electronically published on February 8, 2018

THE APOLLONIAN STRUCTURE OF BIANCHI GROUPS

KATHERINE E. STANGE

Abstract. We study the orbit of ̂R under the Möbius action of the Bianchi

group PSL2(OK) on ̂C, where OK is the ring of integers of an imaginary qua-
dratic field K. The orbit SK , called a Schmidt arrangement, is a geometric
realisation, as an intricate circle packing, of the arithmetic ofK. We give a sim-
ple geometric characterisation of certain subsets of SK generalizing Apollonian
circle packings, and show that SK , considered with orientations, is a disjoint
union of all primitive integral such K-Apollonian packings. These packings
are described by a new class of thin groups of arithmetic interest called K-
Apollonian groups. We make a conjecture on the curvatures of these packings,
generalizing the local-to-global conjecture for Apollonian circle packings.

1. Introduction

Let K be an imaginary quadratic field with ring of integers OK . The Bianchi

group PSL2(OK) acts on the extended complex plane Ĉ = C ∪ {∞} via Möbius

transformations. Its action permutes the collection of circles of Ĉ (where straight

lines are considered circles through ∞). The orbit of the extended real line R̂
under PSL2(OK) forms a delicately intertwined collection of circles, some examples
of which are shown in Figures 1, 4, and 7. This is the Schmidt arrangement of K,
denoted SK , named, in [42], in honour of the work of Asmus Schmidt generalizing

continued fractions to the complex setting [33–37]. The individual images of R̂ are
called K-Bianchi circles.

The Schmidt arrangement naturally exhibits various aspects of the number the-
ory of OK , and this was the topic of study of an earlier paper of the author [42].
Most vividly, SK is connected if and only if OK is Euclidean.

The author’s interest arose from SQ(i) (Figure 1), which made its appearance
in [14] as an Apollonian superpacking in the study of Apollonian circle packings
(apparently the authors of [14] were unaware of the relation to Schmidt’s work;
the picture is the same but the definition is different). This paper gives a new
description of the relationship between SQ(i) and Apollonian circle packings, and
introduces a family of new circle packings arising from the Schmidt arrangements of
imaginary quadratic fields in an analogous way. These packings, which share many
of the remarkable arithmetic properties of Apollonian circle packings, are isolated
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Figure 1. The Schmidt arrangement of SQ(i). The image includes
those circles of curvature ≤ 20 intersecting the closure of the fun-
damental parallelogram of the ring of integers.

. . .

Figure 2. The iteration process generating an Apollonian circle packing.

by a simple geometric characterisation, and give rise to associated thin subgroups
of PSL2(OK); we refer to this as the Apollonian structure of PSL2(OK).

A Descartes quadruple of circles in Ĉ is a quadruple such that every pair of
circles is tangent. The curvatures (inverse radii) a, b, c, d of such a quadruple satisfy
the Descartes quadratic relation, famously stated by Descartes in a 1643 letter to
Princess Elizabeth of Bohemia:

(1) (a+ b+ c+ d)2 = 2(a2 + b2 + c2 + d2).

The study of Descartes quadruples has a lively history and there are several excellent
expositions; see for example [10, 32]. If one begins with three mutually tangent
circles with curvatures a, b, c, then there are exactly two circles, called Soddy circles,
which complete the triple to a Descartes quadruple, with curvatures d and d′ solving
(1); these satisfy

d+ d′ = 2(a+ b+ c).

Adding these two new circles to our original triple, we have a set of five circles.
For each mutually tangent triple in the set, we can again find two Soddy circles
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which complete it to a quadruple. Any of these which are not already included in
our collection are now added, thereby expanding the set of circles. If we continue
this process ad infinitum, we obtain an infinite collection of circles which is called
an Apollonian circle packing. See Figure 2. The remarkable fact for the number
theorist is that if the first four circles had integer curvatures, then the generation
rule implies that every circle in the packing has an integral curvature. For an
example, see Figure 3. The natural question is to determine which integers occur
as curvatures.

As it happens, SQ(i) is the union of all possible primitive, integral Apollonian
circle packings, considered up to suitable symmetries and an appropriate scaling
(integral refers to integer curvatures; primitive means they share no common fac-
tor). This is a result of [14, Theorem 6.3] (using the definition of the Schmidt
arrangement as an Apollonian superpacking), further studied in [41]. In particular,
the curvatures of Q(i)-Bianchi circles are all integral.

Apollonian circle packings have generated great interest recently, in large part
because of their connection to thin groups. The central conjecture is a local-global
principle for the curvatures of a packing.

Conjecture 1.1 (Graham, Lagarias, Mallows, Wilks, and Yan [12], Fuchs and
Sanden [11]). Let P be a primitive integral Apollonian circle packing, and let S be
the set of residue classes modulo 24 of the curvatures in P. Then all sufficiently
large integers with residues in S occur as curvatures in P.

Significant progress has been made toward this conjecture, most notably that
it holds for a set of integers of density one [3] (positive density was first shown in
[2]). For an excellent overview and further references, see [10]; see also the series
of papers [12–14] which are central to the field, and the exposition [32]. For the
related question of the multi-set of integral curvatures appearing in a packing, a
gateway to the literature is the survey [29].

These results depend on an analysis of the Apollonian group, a matrix group
which describes the relations between curvatures of tangent circles. The Apollonian
group is Zariski dense in OQ (where OQ is the orthogonal group for the Descartes
form (1)), and yet it is of infinite index in OQ(Z); in other words, it is a thin group.
Thin groups are not as accessible as arithmetic groups, but, remarkably, still share
some of their properties, most notably a version of strong approximation. The
Apollonian group has garnered so much interest in part because of its position as
a ‘naturally occurring’ thin group of arithmetic interest. For an overview of the
arithmetic of thin groups, and the discoveries rapidly unfolding in recent years, see
[21]. It is one of the principal goals of this paper to place the Apollonian group in
a new ‘naturally occurring’ infinite family of thin groups of arithmetic interest.

We begin by defining K-Apollonian packings for imaginary quadratic fields K �=
Q(

√
−3).

Definition 1.2. One says that a collection of circles P straddles a circle C if it
intersects both the interior and exterior of C nontrivially. We say that a collection
of circles P is tangency-connected if the graph whose vertices are circles and whose
edges indicate tangencies is a connected graph. We define a K-Apollonian packing
to be any maximal tangency-connected subset P of circles in SK under the condition
that P does not straddle any circle of SK .
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Figure 3. A primitive integral Apollonian packing with curva-
tures shown. The outer circle has curvature −6 (indicating that
its interior is outside).

For an example, see Figure 5.
Note that, in particular, this implies that the circles in P can be oriented to have

disjoint interiors. An equivalent definition of a K-Apollonian packing is that it
corresponds to a connected component of the immediate tangency graph, the graph
whose vertices are oriented circles, and whose edges indicate immediate tangency,
that is, tangency between two circles of disjoint interiors which straddle no other
K-Bianchi circle (Proposition 4.10).

Now we can state the fundamental relationship between Schmidt arrangements
and K-Apollonian packings.

Theorem 1.3. For an imaginary quadratic field K �= Q(
√
−3), each circle of SK

participates in exactly two K-Apollonian packings: one disjoint with its interior
and one disjoint with its exterior. In particular, SK is equal to the union of all
K-Apollonian packings.
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Figure 4. Schmidt arrangements SK of imaginary quadratic
fields K. Clockwise from top left: Q(

√
−2), Q(

√
−7), Q(

√
−15),

Q(
√
−11). In each case, the image includes those circles of curva-

ture ≤ 20 intersecting the closure of the fundamental parallelogram
of OK .

The Eisenstein case (K = Q(
√
−3)) presents the difficulty that SK has circles

intersecting other than tangently, as in Figure 7. For this reason, throughout
the paper, we will assume that K �= Q(

√
−3). This special case is being further

investigated in [16].
Let Δ < 0 be the discriminant of K. The curvature of a K-Bianchi circle is of

the form n
√
−Δ, for some n ∈ Z; we may call n the reduced curvature of the circle.

With this definition, we may extend Conjecture 1.1 for Apollonian circle packings.

Conjecture 1.4. Let K be an imaginary quadratic field with Δ �= −3. Let P be
a K-Apollonian packing, and for any M ∈ Z, let SM be the set of residue classes
modulo M of the reduced curvatures in P. There exists an M dividing 24 such that
all sufficiently large integers whose residues modulo M lie in SM occur as curvatures
in P.
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Figure 5. An Apollonian packing (shown in darker lines) lying in
the Schmidt arrangement of Q(i) according to Definition 1.2.

Furthermore, fixing K, the minimal M which will suffice for all K-Apollonian
packings is determined by the following formulae for its valuations with respect to
2 and 3:

v2(M) =

⎧⎪⎪⎨⎪⎪⎩
3 Δ ≡ 28 (mod 32)
2 Δ ≡ 8, 12, 20, 24 (mod 32)
1 Δ ≡ 0, 4, 16 (mod 32)
0 otherwise

, v3(M) =

{
1 Δ ≡ 5, 8 (mod 12)
0 otherwise

.

Further detailed predictions and supporting evidence is given in Section 16. See
Figure 6 for an example of packing with curvatures shown.

The bulk of the paper is devoted to the study of K-Apollonian packings. In
particular, we define K-Apollonian groups for every K �= Q(

√
−3). Let Möb denote

the group of Möbius transformations, including c, complex conjugation. Then a K-
Apollonian group is one satisfying the conclusions of the following theorem.

Theorem 1.5 (Summary of results of Sections 9–15). Let K �= Q(
√
−3) be an

imaginary quadratic field. Then there exists a finitely generated Kleinian group
A < 〈PSL2(OK), c〉 < Möb with the following properties:

(1) The limit set of A is the closure of the K-Apollonian packing containing R̂,

where R̂ is oriented so its interior is the lower half plane.
(2) Any K-Apollonian packing is the orbit under A of some finite collection of

circles.
(3) A has Zariski closure A = SO3,1 or O3,1, under the isomorphism Möb ∼=

O+
3,1(R), and is of infinite index in A(Z). In other words, it is thin.
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Figure 6. An example of Q(
√
−2)-Apollonian packing, shown

with reduced curvatures (the outer circle has reduced curvature
−1). In this case, it is conjectured that all sufficiently large in-
tegers that are not congruent to 1 modulo 4 appear as reduced
curvatures.

(4) It is possible to define clusters of circles, being unordered collections of
4 ≤ n < ∞ circles in a certain geometric arrangement, so that the set of
clusters in any K-Apollonian packing is a principal homogeneous space1 for
A.

The last property deserves some further explanation. In the study of traditional
Apollonian circle packings, the ‘clusters’ are Descartes quadruples (any four circles
which are mutually tangent). We have seen that, given three mutually tangent
circles, there are exactly two Descartes quadruples containing these three. There-
fore, given one Descartes quadruple and one circle of that quadruple, there is a

1By a principal homogeneous space for a group G we mean a nonempty set on which the group
G acts freely and transitively.
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swap that replaces that circle with the unique choice that gives a new Descartes
quadruple. For each quadruple, there are four such swaps. It turns out that the
space of Descartes quadruples is a principal homogeneous space for the traditional
Apollonian group, whose four generators encode the four swaps. This group has
two manifestations, sometimes called algebraic and geometric. The geometric man-
ifestation is the one discussed in the theorem above, but both aspects are discussed
in this paper.

There are many K-Apollonian groups (even for the traditional Apollonian cir-
cle packing), and we give some particularly simple and symmetric examples with
pleasing presentations. In particular, in cases where OK is Euclidean, we give an
example which is a free product of finitely many copies of Z/2Z. In each case, we
give generators explicitly, and describe their interpretation as ‘swaps’ on ‘clusters’.

Various Apollonian-like circle packings have appeared in the literature. Guettler
and Mallows studied generalized Apollonian packings, which have also come to be
called Apollonian 3-packings or octahedral Apollonian packings, circle packings in
which each curvilinear triangle is packed with three (not just one) new circles [15].
They generalize much of the general theory of Apollonian packings, including the
analogue of the Apollonian superpacking [15, Figure 4]. Zhang later extended some
of the local-to-global theory to Apollonian 3-packings, most notably a density one
result on curvatures [45]; his paper contains an Apollonian-type group for the 3-
packings. It appears that the Apollonian 3-packings are dual toQ(

√
−2)-Apollonian

packings in the following sense: in SQ(
√
−2), every loop of four tangent circles has

its tangency points along a new circle; this collection of new circles is the super
3-packing suitably rotated and scaled.2

Butler, Graham, Guettler and Mallows study circle packings given by certain
clusters (which they call configurations) and recursive rules for filling curvilinear
triangles [4]. They are particularly interested in which fields are needed to define
the curvatures and centres of such packings. Some of the K-Apollonian packings
in the present paper come under their rubric, but not all. For example, some
K-Apollonian packings are formed recursively by filling curvilinear 4- or 6-gons.

The study of a three-dimensional analogue of Apollonian circle packings with
integer curvatures began with Soddy’s Nature article of 1937 entitled The Bowl of
Integers and the Hexlet [40]. The three-dimensional case has the distinction that
the associated local-global conjecture is known to hold [20]. Nakamura extends
this result to orthoplicial Apollonian sphere packings [26], which generalize the
Apollonian-3-packing to three dimensions in the same way Soddy’s bowl of integers
generalizes the classical Apollonian circle packing.

The methods of the paper give rise to a few results that may be of independent
interest. The following theorem strengthens the results of [42].

Theorem 1.6 (Theorem 5.1). Suppose OK is non-Euclidean. Then the immediate
tangency graph of the Schmidt arrangement for K is an infinite forest of trees of
infinite valence. In particular, the tangency graph of a K-Apollonian packing is a
tree.

2The inspiration for this observation arises from the beautiful Glowing Limit poster [24] ad-
vertising Indra’s Pearls [25], which happens to depict this duality, albeit without reference to
Q(

√
−2).
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Figure 7. Schmidt arrangement SQ(
√
−3). The image includes

those circles of curvature bounded by 20 intersecting the funda-
mental parallelogram of the ring of integers or its boundary.

The following is a straightforward strengthening of results of [28], although we
provide an independent geometric proof of the infinite index which may be of in-
terest.

Theorem 1.7 (Theorem 9.5). Whenever OK is non-Euclidean, the subgroup of
PSL2(OK) generated by elementary matrices is a thin group.

And finally, the paper contains in Section 10 a discussion of topographical groups.
These are subgroups of PGL2(Z) for which unordered superbases are a principal
homogeneous space. There are only two normal such subgroups, which are iso-
morphic under the outer automorphism of PGL2(Z). They have a Cayley graph
isomorphic to the topograph of Conway and Fung [5].

It is natural to ask about extending the results of the present paper to Schmidt
arrangements for congruence subgroups of the Bianchi group, which is work in
progress [16], and Bianchi groups for nonmaximal orders, for which Schmidt ar-
rangements have been studied by Sheydvasser [39].

A note on the figures. The figures in this paper were produced with Sage
Mathematics Software [43]. Figures 2, 4, 7, and 8 appeared previously in [41, 42].

2. Notation

Throughout the paper, K is an imaginary quadratic field with discriminant −3 �=
Δ < 0 and ring of integers OK . The ring OK has an integral basis 1, τ , where

τ2 =

{
Δ/4, Δ ≡ 0 (mod 4),
τ + (Δ− 1)/4, Δ ≡ 1 (mod 4).
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It is convenient to write

ε = Tr(τ ) =

{
0, Δ ≡ 0 (mod 4),
1, Δ ≡ 1 (mod 4).

In other words,

τ, τ =
ε

2
±

√
Δ

2
.

Write N : K → Q for the norm map α → αα. In particular,

N(τ ) = −Δ− ε

4
.

We follow [13] in writing Möb for the conformal group, the group of conformal

maps of Ĉ, including Möbius transformations and reflections (i.e. allowing complex
conjugation); and writing Möb+ for the group of Möbius transformations without
reflections, which is isomorphic to PSL2(C) via the usual matrix representation of a
Möbius transformation. We also write GM∗ := Möb×{±I} for the extended Möbius
group. The group Möb is isomorphic to the isometry group of three-dimensional
hyperbolic space, H3, via its action on the boundary of the upper-half-space model.

Warning: For the remainder of the paper, K �= Q(
√
−3).

3. Preliminaries

We recall some basic facts about Schmidt arrangements from [42], to which the
reader is referred for further details. Let K be an imaginary quadratic field. Recall
that throughout the paper, K �= Q(

√
−3). Among the remaining cases, K = Q(i)

is special in several regards, as we will describe.

Definition 3.1. If M ∈ PSL2(OK), then M(R̂) is called a K-Bianchi circle. The
collection of all K-Bianchi circles is called the Schmidt arrangement, denoted SK .
We will also refer to the union of these circles as SK , without fear of confusion.

It is convenient to consider oriented circles.

Definition 3.2 ([42, Definitions 3.1, 3.2, 3.3]). An oriented circle is a circle to-
gether with an orientation, which is a direction of travel, specified as either pos-
itive/counterclockwise or negative/clockwise. The interior of an oriented circle is
the area to your left as you travel along the circle according to its orientation (in
other words, the region not containing ∞ for a positively oriented circle). For lines

(circles through ∞) besides R̂, positive orientation indicates travel in the direction

of increasing imaginary part. For R̂, positive orientation indicates travel to the
right. An oriented K-Bianchi circle is an oriented circle whose underlying circle is

a K-Bianchi circle. Write ŜK for the collection of oriented K-Bianchi circles.

The map ŜK → SK which forgets orientation is two-to-one.

Let us also set the convention that R̂, when considered an oriented circle, denotes
the negatively oriented circle (whose interior is the lower half plane). The group
PGL2(C) has a natural action on oriented circles via Möbius transformation, so

that, with this convention, M(R̂) is naturally endowed with an orientation. The

stabilizer of R̂ is PSL2(R). Furthermore, by Proposition 3.4 of [42], this action
restricts, in the case K �= Q(i), to a transitive action of PGL2(OK) on oriented

K-Bianchi circles, with Stab(R̂) = PSL2(Z). In the case of K = Q(i), PSL2(OK)
is already transitive on oriented K-Bianchi circles with the same stabilizer. If one
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considers the orbit of R̂ under PGL2(Z[i]), one obtains a strictly larger collection of
circles than the Schmidt arrangement. However, the new circles are not interesting:
the set consists of two copies of the Schmidt arrangement at right angles. See
[42, Section 3].

Oriented circles are best described as parameterized by four real parameters, as
follows.

Proposition 3.3 ([42, Proposition 3.5]). Let C be an oriented circle in Ĉ (including
those through ∞). Then the circle C can be given uniquely in the form{

X/Y ∈ Ĉ : bXX − aY X − aXY + b′Y Y = 0
}
,

where the following hold:

(1) b, b′ ∈ R, a ∈ C,
(2) we have

(2) b′b = aa− 1,

(3) b has sign equal to the orientation of C, and
(4) if b = 0, in which case C must be a line, then a, as a vector, is a unit vector

pointing from exterior to interior orthogonal to C.

Furthermore, if C ′ is the image of C under z → 1/z, and C has parameters (b, b′, a)
according to the requirements above, then C ′ has parameters (b′, b, a) according to
the requirements above. Finally,

(1) b = 0 if and only if ∞ ∈ C,
(2) b′ = 0 if and only if 0 ∈ C,
(3) if ∞ /∈ C, then C has radius 1/|b|,
(4) if ∞ /∈ C, then C has centre a/b.

Definition 3.4 ([42, Definition 3.6]). For any circle C in Ĉ, expressing it as in
Proposition 3.3, we call b the curvature (elsewhere sometimes called a bend), b′ the
co-curvature, and a the curvature-centre.

Proposition 3.5 ([42, Proposition 3.7]). Consider an oriented circle expressed as

the image of R̂ under a transformation of the form

M =

(
α γ
β δ

)
, α, β, γ, δ ∈ C, |αδ − βγ| = 1.

The curvature of the circle is given by

i(βδ − βδ),

the co-curvature of the circle is given by

i(αγ − αγ),

and the curvature-centre is given by

i(αδ − γβ).

The curvature and co-curvature of an oriented K-Bianchi circle are integer mul-
tiples of

√
−Δ; the integer alone will be referred to as the reduced curvature or

reduced co-curvature, respectively.
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Proposition 3.6 ([42, Propositions 4.1 and 4.4]). Two K-Bianchi circles may
intersect only at K-points, and only tangently.3

It is useful to be very explicit about which circles are tangent. We say that
α, β ∈ OK are coprime if the ideals they generate are coprime, i.e., (α)+ (β) = (1).

Proposition 3.7 ([42, Proposition 4.3]). Let α/β ∈ K be such that α and β are
coprime. Suppose |O∗

K | = n. Then the collection of oriented K-Bianchi circles
passing through α/β is a union of n generically different Z-families, one for each

u ∈ O∗
K . The family associated to u consists of the images of R̂ under the trans-

formations (
α uγ + kτα
β uδ + kτβ

)
, k ∈ Z,

where γ, δ is a particular solution to αδ − βγ = 1. Furthermore,

(1) The curvatures of the circles in one family form an equivalence class modulo√
−ΔN(β).

(2) The centres of the circles in a given family lie on a single line through α/β.
(3) The family given by unit u contains the same circles as the family given by

−u, but with opposite orientations.

4. K-Apollonian packings and immediate tangency

In this section we give two equivalent definitions of a K-Apollonian packing.
This allows us to prove Theorem 1.3 of the introduction, describing the Schmidt
arrangement as a union of its K-Apollonian packings.

Definition 4.1. The tangency graph of P ⊂ SK is the graph whose vertices are
the circles of P and whose edges indicate tangencies. We say that P is tangency-

connected if its tangency graph is connected. We say that P ′ ⊂ ŜK is tangency-
connected if the underlying set of unoriented circles is so. We say P straddles a
circle C if it intersects both the interior and exterior of C nontrivially.

This definition of straddling coincides with that of [42, Definition 4.5] in the
cases we are considering (K �= Q(

√
−3), where circles intersect only tangently),

and is simpler to state.
We repeat Definition 1.2 of the introduction here:

Definition 4.2. We define a K-Apollonian packing of unoriented circles to be any
maximal tangency-connected subset P of circles of SK under the condition that P
does not straddle any circle of SK .

We will now extend the definition of a K-Apollonian packing to oriented circles.

Definition 4.3. We define a K-Apollonian packing of oriented circles to be any

maximal tangency-connected subset P of oriented circles of ŜK with disjoint inte-

riors under the condition that P does not straddle any circle of ŜK .

The following lemma verifies that these two definitions correspond nicely under
the orientation-forgetting map.

3This does not hold for K = Q(
√
−3). The reader is reminded, one final time, that K �=

Q(
√
−3) throughout the paper.
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Lemma 4.4. A collection of circles P ⊂ SK is a K-Apollonian packing of un-
oriented circles if and only if it can be obtained from a K-Apollonian packing of
oriented circles by forgetting orientation.

Proof. First, we show that any tangency-connected, nonstraddling P ⊂ SK lifts

(under the orientation-forgetting map) to a unique P ′ ⊂ ŜK which is nonstraddling
and tangency-connected with disjoint interiors. For, suppose P ⊂ SK does not
straddle any circle of SK . Then, in particular, it cannot intersect both the interior

and exterior of any C ∈ P. Therefore, P can be lifted to P ′ ⊂ ŜK by choosing
the orientation of each circle C ∈ P in such a way that P is disjoint from the
interior of C. This lift is unique if P contains at least two circles (an assumption
we are safe in making; for example, by Proposition 3.7, K-Apollonian packings
contain more than one circle). The resulting collection has disjoint interiors and
the nonstraddling property. Furthermore, P ′ is tangency-connected if and only if
P is.

Conversely, any P ′ ⊂ ŜK which is nonstraddling and tangency-connected with
disjoint interiors is surely nonstraddling and tangency-connected when orientation
is forgotten, and this operation is inverse to the lifting just described.

What remains then, is to show that such pairs (P,P ′) have the property that
P is maximal with respect to being tangency-connected and nonstraddling if and
only if P ′ is maximal with respect to being tangency-connected, nonstraddling, and
having disjoint interiors.

A K-Apollonian packing in ŜK cannot contain both orientations of the same
unoriented circle without violating the disjoint interiors requirement (unless it con-
tained only those two circles, but then it would not be maximal). It follows then,

that if there is a way to add another circle to P ′ in ŜK under the stipulated condi-
tions it corresponds to a way to add another circle to P in SK , and vice versa. �

With this result in place, we may henceforth consider oriented circles. We wish
to give a different characterisation of being a K-Apollonian packing of oriented
circles, and show that it is equivalent. We will need the following notion.

Definition 4.5. Two oriented K-Bianchi circles C1, C2 ∈ ŜK are immediately
tangent if they are externally tangent in such a way that the pair straddles no

circles of ŜK .

In other words, C1 and C2 are immediately tangent if they are consecutive in an
unoriented family of Proposition 3.7, and taken with disjoint interiors.

We recall the result that for any K-Bianchi circle, there is exactly one K-Bianchi
circle immediately tangent to it at a fixed K-rational point. More precisely:

Proposition 4.6 ([42, Proposition 6.2]). Let C ∈ ŜK be an oriented K-Bianchi
circle with K-rational point x. Then there exists

MC =

(
α γ
β δ

)
∈ PGL2(OK)

such that C = MC(R̂) and x = α/β. Furthermore, there exists exactly one oriented

K-Bianchi circle C ′ ∈ ŜK immediately tangent to C at x, and it is given by C ′ =

MC′(R̂) where

MC′ =

(
α −γ + τα
β −δ + τβ

)
= MC

(
1 τ
0 −1

)
∈ PGL2(OK).
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Definition 4.7. Let P be a subset of ŜK . We say that P is closed under immediate

tangency if it has the property that for any circle C ∈ P, any circle C ′ ∈ ŜK that is
immediately tangent to C is also contained in P. We say that P is a K-Apollonian

packing defined by tangency if it is minimal among nonempty subsets of ŜK which
are closed under immediate tangency.

There are infinitely many circles immediately tangent to any one circle, by Propo-
sition 4.6, so K-Apollonian packings defined by tangency are infinite sets of circles.

This definition can be rephrased slightly, in the language of graph theory.

Definition 4.8. The immediate tangency graph of ŜK is the graph whose ver-

tices are the circles of ŜK and whose edges are given by the symmetric relation of
immediate tangency.

With this definition, the following proposition is immediate.

Proposition 4.9. A subset P of ŜK is a K-Apollonian packing defined by tangency
if and only if it is a connected component of the immediate tangency graph.

We now show that Definitions 4.3 and 4.7 for a K-Apollonian packing coincide.

Proposition 4.10. A subset P of ŜK is a K-Apollonian packing if and only if it
is a K-Apollonian packing defined by tangency.

Proof. Let P be a K-Apollonian packing. Let C be a circle of P and let z ∈ C be a
K-rational point. Let C ′ be the unique circle immediately tangent to C at z. Our
first goal is to show that P contains C ′. This demonstrates that P is closed under
immediate tangency.

If not, since C is in the exterior of C ′, then all of P is exterior to C ′. Suppose we
add C ′ to P. This creates a larger tangency-connected set with disjoint interiors.

We show that this larger set is not straddling any circle of ŜK , which is a contra-
diction to maximality. To see this, suppose it did straddle a circle. Since P did not,
it must be that C ′ is inside some circle D that P is exterior to. Since they touch
at z, D is tangent to C and C ′ at z and separates them (one is interior to D, the
other exterior). In other words, C and C ′ straddle D, but this is a contradiction
to immediate tangency.

Hence C ′ ∈ P, and we have demonstrated that P is closed under immediate
tangency.

To show that P is minimal as a set closed under immediate tangency, let us
imagine removing a collection of circles S from P, to leave behind a subset S ′ ⊂ P
which is closed under immediate tangency. Then it is impossible that any circle
of S touches any circle of S ′ since any two circles of P that are touching are
immediately tangent (otherwise they would violate the nonstraddling property).
Hence P is tangency-disconnected, a contradiction. Therefore P is a K-Apollonian
packing defined by tangency.

Conversely, suppose P is a K-Apollonian packing defined by tangency. First,

we show that P straddles no circle D ∈ ŜK . By definition, D is not tangent
immediately to any of the circles in its interior. No circle of P exterior to D is
immediately tangent to a circle interior to D, as such a tangency would straddle
D. Hence P is not minimal; its circles inside D could be removed without violating
closure under immediate tangency. This is a contradiction. Therefore, we have
shown that P straddles no circles.
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We have already observed (Proposition 4.9) that P is tangency-connected. Next
we show that P has disjoint interiors. Suppose not: then some circle C lies in-
side another, C ′. Since P is tangency-connected, we can assume without loss of
generality that C is tangent to C ′ at some point z. But since P also includes the
circle immediately tangent to C ′ at z, this gives a collection of three distinct circles
tangent at a point. This is disallowed by the nonstraddling property just shown.

Finally, we must show P is maximal. Suppose there were another circle C /∈ P
such that P ∪ {C} is tangency-connected. We will show P ∪ {C} straddles some
circle of SK . Let z ∈ C be a point of tangency with a circle D ∈ P. This is
not an immediate tangency, since C /∈ P. Then there is some C ′ �= D, C ′ ∈ P,
immediately tangent to C. Thus we have three distinct circles of P ∪ {C} sharing
a single tangency point: as a set they must straddle one of their members. �

The following statement is an immediate consequence of the two equivalent def-
initions.

Theorem 4.11. The K-Apollonian packings of ŜK form a collection of disjoint

subsets of ŜK whose union is all of ŜK .

Proof. This is evident from Definition 4.7, as theK-Apollonian packings are exactly

the connected components of the immediate tangency graph on ŜK . �
Proof of Theorem 1.3. Forget orientations in Theorem 4.11. �

Note that the packings are not disjoint as collections of unoriented circles, how-
ever. A circle generally belongs to two packings, depending on the orientation
assigned: one living in its interior and another in its exterior.

It is an open question whether tangency-connectedness corresponds exactly to
the topological notions of connectedness or path-connectedness for subsets of

Schmidt arrangements (it is clearly stronger for arbitrary unions of circles in Ĉ).
See [42, Section 7] for more on this distinction. In particular, it is shown in [42, The-
orem 7.1] that SK is connected if and only if it is tangency-connected if and only
if OK is Euclidean.

Definition 4.12. The K-Apollonian packing containing R̂ is called the fundamen-
tal packing, and is denoted PK .

See Figure 5 for the fundamental packing of Q(i). Other fundamental packings
are shown in Figures 16, 19 and 22.

5. Loops in the tangency graph

The purpose of this section is to prove the following theorem, from which Theo-
rem 1.6 of the introduction follows. Note that [42, Theorem 7.5] already guarantees
that SK has infinitely many components when Δ ≤ −15.

Theorem 5.1. Let K be such that Δ ≤ −15. Then the immediate tangency graph

of ŜK contains no loops.

The proof for Δ < −15 will rely on a simple graph theory principle.

Lemma 5.2. Consider a graph G with vertex set V and a function f : V → R.
Direct each edge of G according to the direction of increase of f (whenever it is not
constant). Suppose that at any vertex v ∈ V , all but at most one edge is directed
outward. Then G contains no loops.
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Proof. Suppose there is a loop. Let v be a vertex of that loop. By assumption, at
least one of the two edges of the loop adjacent to v is directed outward. Moving
to the next vertex w along this edge, we enter w along an inward directed edge,
and, therefore, continuing along the loop, leave w along an outward directed edge.
Hence, as we travel around the loop in this direction, the value of f is increasing,
so we can never return to v. �

Lemma 5.3. Let K be such that Δ < −15. Let C be a K-Bianchi circle. Then
there is at most one point x ∈ C at which C is tangent to a K-Bianchi circle of
absolute curvature less than or equal to the absolute curvature of C.

By absolute curvature we mean the absolute value of the curvature. Note that,
at the point x, the circle may be tangent to several circles of absolute curvature
less than its own.

Proof. Suppose C = M(R̂) for

M =

(
α γ
β δ

)
,

and let Λ = βZ+δZ. Let b be the reduced curvature of C. Then the covolume of Λ
as a lattice in C is |b

√
−Δ/2|. There is at most one element of Λ, up to multiples,

whose norm is less than its covolume, so for all but one x ∈ Λ, we have

(3) N(x) ≥ |b
√
−Δ/2|.

On the other hand, if C ′ is tangent to C at the unique point with denominator x
(here we use that b �= 0), and has curvature b′ where |b′| ≤ |b|, then it follows from
Proposition 3.7 that

|kN(x)− b| = |b′| ≤ |b|
for some k ∈ Z>0, whence

(4) N(x) ≤ 2|b|.
Comparing the inequalities (3) and (4) gives the desired result. �

The proof of Theorem 5.1 will rely on this lemma for Δ < −15. However, the
lemma fails for Δ = −15, where we will require an entirely different method.

Proposition 5.4. The tangency graph of K = Q(
√
−15) contains no loops.

Proof. Let K = Q(
√
−15). First, we remark that PSL2(OK) is transitive on pairs

(C, z) where C ∈ ŜK and z ∈ C is a tangency point between circles of ŜK . Thus,

we need only show that R̂ (with interior below) and any C ∈ SK of the form ki+ R̂,
k ∈ Z>0 (with interior above) do not participate as adjacent vertices in any cycle
of the graph. Suppose for a contradiction, that they do. We will call this the
postulated cycle.

Note that k ≥
√
15
2 (equality occurs if C is the circle immediately tangent to R̂

(oriented negatively) at ∞). Then the finitely many other circles making up the
cycle must form a chain of tangent circles reaching from some tangency point x of

R̂ up to some tangency point y of C. In particular, the chain consists of finitely
many circles. Each is of curvature at least

√
15 or else equal to 0. Therefore, the

portion of the chain that lies below R̂+
√
−15
2 is bounded away from ∞.
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Figure 8. The Schmidt arrangement of Q(
√
−15), in blue, with

ghost circles, shown in yellow.

In [42, Section 7], it was shown that SK is disconnected by demonstrating the
existence of a ghost circle which is contained in the complement of SK . The ghost
circle G is the circle of radius 1/

√
15 centred at

1

2
− 7

√
−15

30
.

Its existence immediately implies the existence of infinitely many other ghost circles
formed by PSL2(OK) images of G. The union of these circles is contained in the
complement of SK . These images include an infinite ‘ghost chain’ of tangent circles

extending horizontally to ∞ in both directions, and separating R̂ and R̂ +
√
−15
2 .

To see this, illustrated in Figure 8, let G′ be the reflection of G in R̂, and let G′′ be

the translation of G by −1+
√
−15

2 . The circles G′ and G′′ are tangent at 1+
√
−15
4 .

The union of translates of the pair G′ and G′′ by Z is the ‘ghost chain’ of tangent
circles which contradicts the existence of the postulated cycle, and the theorem is
proved. �

Proof of Theorem 5.1. Suppose first that Δ < −15. Let G be the immediate tan-

gency graph of ŜK . Let f be the function of absolute curvatures on the vertices
of the graph. The edges of G may be labelled by the points of tangency. If one
does so, then at any vertex, there is at most one adjacent edge with any given
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label, by Proposition 4.6. Combining this observation with Lemma 5.3 verifies the
hypotheses of Lemma 5.2, and we are done.

The case of Δ = −15 is completed by Proposition 5.4. �
In the Euclidean cases, we will see that the immediate tangency graph does

contain loops.

6. The space of circles

We introduce an embedding of the space of circles in Minkowski space which
is described in [13] and elaborated upon beautifully by Kocik [19]; it is a natural
viewpoint from the perspective of the spin homomorphism and hyperbolic space
as the space of Hermitian forms; see, for example, [8]. Associating a circle to a
Hermitian form goes back to Bianchi [6, Chapter XV, p. 272]. See also [18].

Let M be the vector space R4 endowed with an inner product of signature 3, 1
given by the Gram matrix

GM =

⎛⎜⎜⎝
0 − 1

2 0 0
− 1

2 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

The associated quadratic form will be denoted M , for Minkowski. This space is
identified with the collection of Hermitian matrices via⎛⎜⎜⎝

b′

b
r
m

⎞⎟⎟⎠ ↔
(

b′ r +mi
r −mi b

)
.

Under this identification, the self-product of a vector under GM is equal to the
determinant of the corresponding matrix. In what follows, we will use this identi-
fication implicitly.

The space M (considered as Hermitian matrices T ) comes with a metric-preserv-
ing action of PGL2(C) via

γ · T :=
γTγ†

N(det γ)
, γ ∈ PGL2(C),

where † indicates the conjugate transpose. There is also an action by Möb, where
complex conjugation c acts by c · T = T . This allows us to define a map

ρ : Möb → O+
M (R)

where O+
M (R) is the collection of time-preserving isometries ofM (in our description,

this is equivalent to preserving the sign of b+ b′), also known as the orthochronous
Lorentz group. This map is an isomorphism, which we call the exceptional isomor-
phism, closely related to the famous spin homomorphism. It can also be extended
to GM∗, so that we have the following isomorphisms and subgroup relations:

Möb+
� � ��

ρ ∼=
��

Möb �
�

��

ρ ∼=
��

GM∗

ρ ∼=
��

SO+
M (R) �

�
�� O+

M (R) �
�

�� OM (R)

For more on this, see [13].
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Two Hermitian forms Hi(u, v), i = 1, 2, on a C-vector space V are called equiv-
alent or isometric over C if H1(φ(u), φ(v)) = H2(u, v) for some C-isomorphism
φ : V → V . The equivalence class of a Hermitian form and its determinant form a
complete set of invariants for the orbits of the PGL2(C)-action on Hermitian forms
described above. All Hermitian forms of positive determinant are equivalent over
C (see, for example, [23] and [8, Chapter 9]). Therefore, the action of PGL2(C) on
the locus M = 1 is transitive.

Let Circ be the collection of circles in Ĉ. This is a set with a Möb action (where

c acts by conjugation on Ĉ). Denote by Ĉirc the collection of oriented circles, which
is also a set with an action by Möb.

We define a Pedoe map

π : Ĉirc → M

which will endow the space of circles with the structure of a hypersurface in an
inner product space (see [19]). The map is defined as follows:

π(C) =

(
b′ r +mi

r −mi b

)
↔

⎛⎜⎜⎝
b′

b
r
m

⎞⎟⎟⎠ ,

where b is the curvature, b′ the co-curvature, and r+mi the curvature-centre of C.
The image of π is a Hermitian matrix of determinant 1 (by Proposition 3.3), hence
the image lies on the hyperboloid M = 1 in M.

Proposition 6.1. The map π : Ĉirc −→ {v ∈ M : M(v) = 1} is a Möb-equivariant
bijection via ρ.

Proof. Bijectivity follows from Proposition 3.3 (note that M(v) = 1 is exactly (2)).
That π respects the Möb-action is a direct computation. �

In particular, the oriented K-Bianchi circles are in bijection with the orbit of
(0, 0, 0, 1)t ∈ M under ρ(Möb(OK)).

One may verify that π may also be computed in the following way. Express a
circle C as C = MC(R) for

MC =

(
α γ
β δ

)
∈ PGL2(C), N(det(MC)) = 1.

Then

π(C) = i(N −N†), where N =

(
αγ αδ

βγ βδ

)
.

It is a brief computation that this map agrees with π. Note that, if we write −C
for the circle C with opposite orientation, then π(−C) = −π(C).

The inner product on Minkowski space now gives us an inner product on circles.
It carries geometric information about the circles in question. Following Kocik, we
will call this the Pedoe product.

Proposition 6.2 (Proposition 2.4 of [19]). Let vi = π(Ci) for two circles C1, C2

which are not disjoint. Then 〈v1, v2〉 = cos θ, where θ is the angle between the two
circles as in Figure 9. In particular,

(1) 〈v1, v2〉 = −1 if and only if the circles are tangent externally
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θ

Figure 9. The angle of intersection of two circles.

(2) 〈v1, v2〉 = 1 if and only if the circles are tangent internally

(3) 〈v1, v2〉 = 0 if and only if the circles are mutually orthogonal

This extends via the Law of Cosines, so that the inner product of disjoint circles
is

(5) 〈v1, v2〉 =
1

2

(
d2b1b2 − b2/b1 − b1/b2

)
,

where b1 and b2 are the curvatures and d is the distance between centres.

7. The Gaussian integers and Descartes configurations

The study of Apollonian circle packings depends on the study of the action of
the so-called Apollonian group on the space of Descartes configurations. We will
develop a similar theory for K-Apollonian packings in other imaginary quadratic
fields. Therefore, we will review briefly the case of Apollonian circle packings for
comparison. See [13] for details.

We will consider Apollonian circle packings formed from circles in Ĉ (any Apol-
lonian circle packing may be realized this way). Let WD be a matrix whose columns
are π(Ci) for any four oriented circles D : C1, C2, C3, C4. By Proposition 6.2, these
four circles are in Descartes configuration, or this is the case once all orientations
are reversed, if and only if

(6) W t
DGMWD =

⎛⎜⎜⎝
1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞⎟⎟⎠ =: R.

Let D denote the space of matrices satisfying this equation, known as the space of
Descartes configurations.4 Since GM , R, and the elements of D are all invertible,
we obtain

WDR−1W t
D = G−1

M .

This collection of 16 quadratic equations in the curvatures, co-curvatures, and
curvature-centres of four circles are the full ‘Descartes relations’ as in [22]: the
circles are in Descartes configuration if and only if these 16 equalities hold. In par-
ticular, the upper left corner of this matrix equality is the relation on curvatures
(1).

4Note that these are ordered, oriented configurations in the sense of [14].



THE APOLLONIAN STRUCTURE OF BIANCHI GROUPS 6189

Given four circles in Descartes configuration (write v1,v2,v3,v4 ∈ M), and a
chosen subset of three of them, say v1,v2,v3, the fourth circle v4 can be swapped
out for its alternative v′

4, i.e., the unique other circle which forms a Descartes
configuration with v1,v2,v3. This takes one configuration in an Apollonian circle
packing P to another in the same packing. The relation that describes this swap
in M is very simple:

vi + v′
i = 2

⎛⎝∑
j �=i

vj

⎞⎠ .

In particular, if the original curvatures are a, b, c, d, then the new curvature is

d′ = 2(a+ b+ c)− d.

There are four ways to swap out a circle. This is accomplished by right multiplica-
tion on D by the following four matrices of OR(R) of order two:

(7)

⎛⎜⎜⎝
−1 0 0 0
2 1 0 0
2 0 1 0
2 0 0 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 2 0 0
0 −1 0 0
0 2 1 0
0 2 0 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 0 2 0
0 1 2 0
0 0 −1 0
0 0 2 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 −1

⎞⎟⎟⎠ .

Right multiplication by one of the matrices (7) corresponds to inversion in a circle
orthogonal to three of the four circles of the quadruple, as in Figure 10. For example,
the four swaps on the so-called base cluster shown in Figure 11 are accomplished
by the following Möbius transformations (given in the same order as (7)):

(8) z → (2i+ 1)z − 2

2z + 2i− 1
, z → −z + 2, z → z

2z − 1
, z → −z.

The group generated by the matrices (7) is commonly referred to as the algebraic

Apollonian group, which we will denote ÂQ(i). The group generated by the Möbius
transformations (8) is commonly referred to as the geometric Apollonian group,
which we will denote AQ(i). While the algebraic Apollonian group does not act
on individual circles, only ordered quadruples, the geometric Apollonian group is a
group of Möbius transformations acting on circles, unordered or ordered quadruples.
However, both groups have the property that the orbit of the base quadruple gives
the full fundamental Apollonian packing. Furthermore, the two are isomorphic as
groups. The following section will elaborate on the isomorphism.

Theorem 7.1 (Graham, Lagarias, Mallows, Wilks, Yan [13, Proof of Theorem
4.3]). There are no relations on the matrices of (7) besides the fact that they are

of order two. Therefore, the group ÂQ(i), and also AQ(i), is a free product of the
four copies of Z/2Z.

This group is the basic tool in arithmetic results concerning curvatures in Apol-
lonian circle packings, because of the following.
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Figure 10. A swap for SQ(i). The blue and black circles (including
two straight lines) form the base quadruple (see Figure 11) of the

Q(i)-Apollonian packing containing R̂. If swapping by preserving
the black circles, the blue circle is replaced with the green one, by
inversion in the red circle. The new quadruple is formed of the
black and green circles.

Figure 11. Base quadruple for SQ(i). The coordinates of the four
circles in M are given, in the labelled order, by the columns of the

following matrix:

⎛
⎜⎜⎝

0 0 2 2
0 2 0 2
0 0 0 2
−1 1 1 1

⎞
⎟⎟⎠.
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Theorem 7.2 (Graham, Lagarias, Mallows, Wilks, Yan [13, Theorem 4.3]). Let P
be an Apollonian circle packing.

(1) The full set of Descartes configurations contained in P is a union of 48

orbits of ÂQ(i).
(2) Fix a Descartes quadruple D ∈ P. Then there are 48 matrices WD ∈ D

(i.e., satisfying (6)) representing this quadruple. Each of the 48 orbits
contains exactly one of these 48 matrices.

The 48 matrices representing a quadruple are formed by reordering the circles
24 ways, and reversing the orientation of all four simultaneously.

8. Cluster spaces and the algebraic-geometric correspondence

Definition 8.1. A cluster space is a set of the form

SR := {W ∈ M4×4(R) : W
tGMW = R},

where R is a fixed invertible matrix.

The space D of Descartes quadruples of the last section is such a space. When
the columns of the W lie on M = 1 (i.e., the diagonal of R consists of 1’s), this can
be considered the collection of quadruples of circles, considered in M, which are
in a particular configuration (specified by R) with respect to the Pedoe product.
In general, we will loosen this requirement, and may interpret columns as sums of
circles.

The purpose of the next two results is to show that SR is a principal homogeneous
space under left and right actions on SR by matrix groups isomorphic to OM (R).

Definition 8.2. The left action of OM (R) on SR by matrix multiplication on the
left is called the geometric action.

Proposition 8.3. The set SR is a principal homogeneous space for the geometric
action.

Proof. Since N ∈ OM (R) preserves the form M ,

(NW )tGMNW = W tGMW,

and so this action preserves SR. If R is invertible, then W ∈ SR are invertible and
so the element of OM (R) taking any W1 to W2, namely N := W2W

−1
1 ∈ OM (R),

exists and is unique. That is, OM (R) is freely transitive on SR. �
The reason for the name geometric is that, restricting to O+

M (R), the left action
can be considered a Möbius action on circles via the exceptional isomorphism ρ.

The special case of R = GM gives SR = OM (R).

Definition 8.4. Write OR(R) for the matrices preserving the quadratic form asso-
ciated to Gram matrix R. The right action of OR(R) on SR by matrix multiplication
on the right is called the algebraic action.

Proposition 8.5. The set SR is a principal homogeneous space for the algebraic
action. Furthermore, OR(R) ∼= OM (R).

Proof. Let W0 ∈ SR. Then OR(R) = W−1
0 OM (R)W0

∼= OM (R) preserves the
quadratic form given by Gram matrix R, which form is isomorphic to M over R.
Therefore right multiplication by this group preserves SR. The proof is as for the
last proposition. �
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The algebraic action is sometimes called the Apollonian action. It acts by linear
combination on 4-tuples of vectors in M. It cannot be thought of as arising from
an action on circles or vectors alone; it only acts on SR.

The isomorphism between OR(R) and OM (R) given in Proposition 8.5 is called
the algebraic-geometric correspondence depending on W0 ∈ SR, which we will de-
note

σW0
: OM (R) → OR(R), M → W−1

0 MW0.

Both the geometric and algebraic actions have a manifestion in the action of
Möbius. To discuss this, we have to interpret SR as clusters of circles.

Definition 8.6. Let n ≥ 4, n ∈ Z. A cluster type is a finite-to-one function

f : SR → Circn,

on a cluster space, with image lying in the collection of n-tuples of oriented circles,
and having the form

f(W ) =

(
π−1

(
4∑

i=1

ai,jWi

))n

j=1

,

where ai,j ∈ Z and W1, . . . ,W4 denote the columns of W . In other words, a cluster
type determines a collection of circles by linear combination on the columns of W .
A cluster type is given by the data of an invertible matrix R and the ai,j ∈ Z,
1 ≤ i ≤ 4, 1 ≤ j ≤ n. A collection of circles in the image of a given cluster type is
called an ordered cluster of the given type. An unordered cluster is any collection
obtained from an ordered cluster by forgetting ordering.

The previous definition is motivated by the notion of a Descartes quadruple,
which is the cluster type given by n = 4,

R =

⎛⎜⎜⎝
1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞⎟⎟⎠ ,

and ai,j = δi,j .
It is immediate to verify that under these definitions, the Möbius action cor-

responds to the geometric action, which justifies its name. The algebraic action
can also be interpreted as an action of Möb, via the algebraic-geometric corre-
spondence. This is complicated by the need for a base cluster W0 to define the
algebraic-geometric correspondence, and by the need to consider ordered clusters
as elements of Möb. The precise statement is as follows, and is verified by direct
computation.

Proposition 8.7. Fixing an ordered base cluster B given by WB ∈ SR, the left-
and right-multiplication action of Möb on Möb corresponds to the algebraic and
geometric actions of OR(R) and OM (R), respectively, on SR, in the sense that
the following diagram commutes (where all arrows between sets are bijections, all
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arrows between groups are isomorphisms, and tightly curved arrows represent group
actions):

OM (R) SR OR(R)

OR(R)
{
ordered
clusters

}

Möb Möb Möb

geometric

f

algebraic

M
�→WB

M

ρ

left mult.

σ
W
B ◦ρ

M
�→M

(B
)

right mult.

σWB
◦ρ

In other words, an element of Möb can be interpreted as its image on the base
cluster, and then the right multiplication action of Möb on Möb ‘is’ the algebraic
action on clusters. When the right multiplication of Möb on Möb is interpreted
in this way, we will simply refer to it as the algebraic action. A consequence of
Proposition 8.7 is the following.

Proposition 8.8. The geometric and algebraic orbits of the base cluster under any
subgroup G < Möb agree.

9. Apollonian groups, weak and strong, algebraic and geometric

In this section we define the various flavours of Apollonian groups for a general
imaginary quadratic field. Recall that PK denotes the fundamental packing (Def-

inition 4.12), and let PK denote its closure in Ĉ. The limit set (or residual set)
Λ(G) of a subgroup G ⊂ Möb is the accumulation set of the orbit of the origin.

Definition 9.1. A weak Apollonian group for the imaginary quadratic field K �=
Q(

√
−3), or weak K-Apollonian group, is a finitely generated Kleinian group AK <

〈PSL2(OK), c〉 < Möb whose limit set is the closure of the fundamental Apollonian
packing for K, i.e., Λ(AK) = PK .

There is no reason to assume that there is a unique weak K-Apollonian group
for a given field K. It is easy to give examples of weak K-Apollonian groups.

Theorem 9.2. Let K be an imaginary quadratic field. Let A be the subgroup of

Möb generated by PSL2(Z) and the matrix V =

(
1 τ
0 −1

)
. Then A is a weak

K-Apollonian group.

Proof. As a subset of the Bianchi group, A is Kleinian. Since PSL2(Z) is finitely

generated, so is A. We use Proposition 4.6. Given a circle M(R̂), the immedi-

ately tangent circles are exactly those given by M ′(R̂) where M ′ ∈ M PSL2(Z)V .

Therefore the orbit of R̂ includes all of the fundamental packing. Since we have

PSL2(Z) < A, all of Q̂ is in the orbit of 0, so that R̂ is in the limit set Λ(A), and
so are all its images, i.e., all of PK . On the other hand, the orbit of 0 lies within
PK . Therefore Λ(A) = PK . �

The proof illustrates that the fundamental packing is exactly the orbit of R̂ under
A. All other K-Apollonian packings are orbits of left cosets of A.
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Theorem 9.3. Any K-Apollonian packing is of Hausdorff dimension δK > 1.

Proof. It suffices to prove this for the packing PK , by the Möbius action. But PK is
the limit set of a weakK-Apollonian group by Theorem 9.2. For a finitely-generated
Kleinian group, the limit set must be one of the following: totally disconnected, a
circle, or of Hausdorff dimension > 1 (see, for example, [1, Corollary 1.8] and the

citations therein). However, PK , since it contains R̂ and other circles, is neither
totally disconnected, nor a circle. �

Let X be a subgroup of H(Z), where H is a semi-simple Lie group, and let
G = Zcl(X) be its Zariski closure in H. Then X is called thin if it is of infinite
index in G(Z). We are interested in the case H = O+

M
∼= Möb. We will consider a

weak K-Apollonian group A to be a subgroup of O+
M (Z) < OM (Z).

Theorem 9.4. Any weak Apollonian group A for K is thin, and its Zariski closure
is either OM or SOM .

In any given situation, to determine which Zariski closure is obtained, it suffices
to check whether the generators of A all lie in SOM .

Proof. First, we show that A is of infinite index in OM (Z). For, its index is equal to
the number of K-Apollonian packings in SK , which is infinite (for example, there
is a strip packing in every horizontal strip k ≤ (z − z)i/

√
−Δ ≤ k + 1 for k ∈ Z).

On the other hand, A is infinite, as its limit set is infinite.
Let G be the Zariski closure of A. It is necessarily an algebraic subgroup of

OM defined over Z. Therefore G(R) must be a Lie subgroup of OM (R). Our proof
imitates that in [9, Lemma 1.6(ii)]. The classification of the a priori possibilities
for G are:

(1) A finite subgroup.
(2) A torus or parabolic subgroup.
(3) A subgroup fixing a form of signature (1, 2).
(4) OM .
(5) SOM .

We eliminate the first three possibilities in turn. First, G(Z) is not finite as A
is not finite. The second two possibilities are subgroups of dimension ≤ 2. Any
finitely generated Kleinian subgroup in those dimensions is geometrically finite.
Therefore, the limit set has Hausdorff dimension at most 1. However, the residual
set of A has Hausdorff dimension > 1, by Theorem 9.3. Therefore, G = OM or
SOM . In either case, as a subgroup of infinite index in OM (Z), A is of infinite
index in G(Z). Therefore, it is thin. �

We now observe that the methods above also provide a proof that the subgroup
E2(OK) of PSL2(OK) generated by elementary matrices is thin whenever OK is
non-Euclidean.

Theorem 9.5. When OK is non-Euclidean, the groups E2(OK) are thin.

Proof. The group E2(OK) is generated by PSL2(Z) and the matrix

W =

(
1 τ
0 1

)
.
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First we show that Λ(E2(OK)) is the tangency-connected component of R̂ in SK .

Consider a circle given by M(R̂). Then the circles MNWn(R̂), where N ∈ PSL2(Z)

are exactly those tangent to R̂ in SK (see Proposition 3.7). Therefore, the orbit of

R̂ under E2(OK) is the tangency-connected component of SK containing R̂. Since

PSL2(Z) < E2(OK), all of R̂ is in the limit set, so the entire tangency-connected
component of SK is Λ(E2(OK)).

By [42, Theorem 7.1], there are infinitely many tangency-connected components
in SK . Hence E2(OK) is of infinite index in PSL2(OK). Note that this fact was
proven in [28] by different methods.

By the same method as Theorem 9.3, this component has Hausdorff dimension
exceeding 1. The rest of the proof of thinness is as in Theorem 9.4. �

Next we define strong K-Apollonian groups, also called simply K-Apollonian
groups. These are weak Apollonian groups with extra structure captured in their
relationship to a certain cluster type. We are motivated by the traditional Apollo-
nian group, which is described by its relationship to Descartes quadruples.

Definition 9.6. Let A < Möb and fix a cluster space and corresponding cluster
type. Suppose that A is a weak Apollonian group for K for which the set of
unordered clusters in PK is a principal homogeneous space for A. Then we say
that A is a strong K-Apollonian group with respect to the cluster type or simply a
K-Apollonian group when no confusion will occur. If a base cluster is fixed, then

A corresponds under the algebraic-geometric correspondence to a subgroup Â of

OR(Z). In this case, Â is called an algebraic K-Apollonian group, and A is called
a geometric K-Apollonian group when distinction is necessary.

The group Â acts on ordered clusters but not on unordered clusters or circles.

Theorem 9.7. The group AQ(i) defined in Section 7 is a geometric Q(i)-Apollonian

group, and ÂQ(i) is an algebraic Q(i)-Apollonian group.

Proof. Theorem 7.2, via Proposition 8.8, tells us that the geometric action of AQ(i)

is transitive on the set of unordered Descartes quadruples. Furthermore, since
the algebraic action is induced by the action of OR(R) on SR, we also know from
Theorem 7.2 that there are no automorphisms of a cluster in AQ(i)’s algebraic
action, hence no elements fixing the base cluster in its geometric action. This
proves that the set of unordered quadruples is a principle homogeneous space for
AQ(i)’s geometric action. That its limit set is the strip packing is well known. �

A general method of proving groups are Apollonian will be developed in Section
11.

10. Topographical Groups

For this section, we concern ourselves with certain special subgroups of PGL2(Z).

Definition 10.1. A superbasis is a triple (a, b, c) of points of Q̂ which are pairwise
distinct modulo all primes.

The use of the terminology superbasis is borrowed from Conway and Fung [5, The
First Lecture]: for them, a = [a1, a2],b = [b1, b2], c = [c1, c2] ∈ Z2 form a superbasis
if they are primitive vectors (i.e., gcd(a1, a2) = gcd(b1, b2) = gcd(c1, c2) = 1),
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and each pair forms a basis for Z2. It is evident that the two definitions are
naturally in bijection, where the vectors a,b, c ∈ P1(Z) represent the elements

a = a1/a2, b = b1/b2, c = c1/c2 ∈ Q̂.
Conway shows that the graph whose vertices are unordered superbases, where

an edge indicates that two superbases share a basis, is a single tree of valence three,
shown in Figure 12. Conway calls this graph the topograph.

A matrix of PGL2(Z) with columns a and b can be interpreted as the superbasis
a, b, a+ b as above. This gives a six-to-one map

φ : PGL2(Z) → {unordered superbases}.
The matrices which are interpreted as the superbasis 0, 1,∞, in some order, are

S :=

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 −1
0 −1

)
,

(
0 −1
1 −1

)
,

(
1 −1
1 0

)
,

(
1 0
1 −1

)}
<PGL2(Z).

The set S is a group isomorphic to S3. Left cosets of S inside PGL2(Z) are in
bijection with unordered superbases.

Definition 10.2. A topographical group is a subgroup of PGL2(Z) for which φ gives
an isomorphism from its Cayley graph under right multiplication (with respect to
suitable generators) to Conway’s topograph.

By the Cayley graph under right multiplication, it is meant that the edges g and
gs (not sg) are joined for each generator s.

There are only finitely many topographical groups. For, suppose H has a Cayley
graph isomorphic to Conway’s topograph under φ. In particular, it is generated
by three elements of order two which take {0, 1,∞} to {0,−1,∞}, {0, 1, 1/2}, and
{1, 2,∞}, respectively. There are only finitely many possibilities mapping {0, 1,∞}
to each of these sets, and most possibilities are not of order two. The remaining
elements are:

γ1 =

(
−1 2
−1 1

)
, γ2 =

(
1 −1
2 −1

)
, γ3 =

(
0 1
−1 0

)
,

ρ1 =

(
−1 0
0 1

)
, ρ2 =

(
−1 2
0 1

)
, ρ3 =

(
−1 0
2 1

)
.

Write Π = PGL2(Z) and Γ = PSL2(Z). Write Π(N) and Γ(N) for their congru-
ence subgroups of level N , respectively.

Theorem 10.3. The only topographical groups which are normal in Π are G :=
Γ3 = 〈γ1, γ2, γ3〉 and P := Π(2) = 〈ρ1, ρ2, ρ3〉.

Note that these two groups are normal but not characteristic: the outer auto-
morphism of PGL2(Z) maps one to the other (see [7, 44] for more on the outer
automorphism). One is a congruence subgroup of PGL2(Z) and the other is not;
this is a general phenomenon with regard to the outer automorphism [17].

Proof. Suppose a group H is normal and unordered bases form a principal ho-
mogeneous space for H under the Möbius action. Then H is normal of index 6
in Π = PGL2(Z). From the classification of normal subgroups of small index in
Γ = PSL2(Z) due to Newman [27], we immediately observe that H ∩ Γ is one of
Γ(2), Γ′, or Γ3, where Γ′ represents the commutatator subgroup, and Γ(2) the con-
gruence subgroup of level 2. The first two of these groups are of index 6 in Γ and
the latter is of index 3. All of these groups contain Γ(12). But the only normal
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1
1 = 1
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1
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3
2

3
1
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3

−1
3

Figure 12. Conway’s topograph is a valence three tree embedded
in the plane such that it breaks up the plane into many infinite
regions, each labelled with an element of P1(Z). The vertices rep-
resent unordered superbases a, b, c, where a, b, c, are given by the
three regions adjacent to the vertex. For example, the right-central
vertex corresponds to the superbasis 0, 1,∞.

subgroups of Π of index 6 containing Γ(12) are G = Γ3 and P = Π(2) (see [31]),
whose intersections with Γ are exactly Γ3 and Γ(2), respectively.

Let

G0 = 〈γ1, γ2, γ3〉,
where

γ1 =

(
−1 2
−1 1

)
, γ2 =

(
1 −1
2 −1

)
, γ3 =

(
0 1
−1 0

)
,

and

P0 = 〈ρ1, ρ2, ρ3〉,
where

ρ1 =

(
−1 0
0 1

)
, ρ2 =

(
−1 2
0 1

)
, ρ3 =

(
−1 0
2 1

)
.

The generators γi and ρi are each of order two. Next we verify that G0 = G and
P0 = P . If we set, as usual,

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
∈ PGL2(Z),

then γ1 = TST−1, γ2 = T−1ST , and γ3 = S. Since γ1γ2γ3 = T 3, G = Γ3 < G0.
But Γ3 is normal, so it contains all conjugates of the element S, hence G0 < Γ3 = G.
That the ρi generate P = Π(2) is immediate.

Finally, to verify that G and P are topographical is now a simple computation
using the Cayley graph on the generators above. �
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We will need the following lemma. Let

B =

{(
1 n
0 1

)
: n ∈ Z

}
,

which is the stabilizer of ∞.

Lemma 10.4.

G ∩B = 〈γ1γ2γ3〉 =
{(

1 3n
0 1

)
: n ∈ Z

}
∼= Z.

We will use the notation GB := G ∩B.

Proof. We use the identification of the Cayley graph of G under right multiplication
with the topograph, as in the last theorem. One can draw the topograph in the

plane so that the infinite ‘regions’ between branches are labelled with elements of Q̂,
and the ‘shoreline’ consists of those superbases and bases containing that element,
in the sense of Conway (see [5, The First Lecture] for details). The stabilizer of ∞
is exactly those elements of G which map ∞, 0,−1 to a superbasis surrounding the
region ∞, and keep ∞ in first position. Travelling along the ‘shore’ of the ∞ region
by explicit computation, we see that this is exactly the group generated by γ1γ2γ3.
Finally,

γ1γ2γ3 =

(
1 3
0 1

)
.

�

The structure of AQ(i) and the collection of quadruples has much in common
with the structure of topographical groups and the collection of superbases. In
particular, the collection of (unordered) Descartes quadruples can be considered
the vertices of a graph, where edges indicate that two quadruples share a subset of
three circles. This graph is a tree of valence four which is the Cayley graph of AQ(i)

with respect to the four given generators. Each generator swaps out one circle of a
quadruple, changing it into an adjacent quadruple. For more on this, see [41]. We
will imitate this structure for other fields in later sections.

Finally, it is worth remarking that superbases can be interpreted as the tangency

points of a triple of intervals covering R̂; such intervals can be put in bijection with
elements of R3 lying on a hypersurface; this develops a story analogous to that
of Section 6 with the exceptional isomorphism O+

2,1(R)
∼= PGL2(R) in place of

O+
3,1(R)

∼= PGL2(C), and quadratic forms in place of Hermitian forms. This has
pleasing connections to the rational parametrization of Pythagorean triples; see
[30].

11. Sufficient conditions for Apollonian groups

In this section we provide a set of sufficient conditions guaranteeing a group is
Apollonian. The main theorem, Theorem 11.3, will be used to verify all the example
Apollonian groups in the remainder of the paper.

Let Möb
R̂
be the set of Möbius transformations fixing R̂. Define

η : Möb
R̂
→ PGL2(R)

to be the restriction of the action of such a Möbius transformation to R̂. This map
is surjective.
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We will need the following technical term for the theorem.

Definition 11.1. The base prong for SK is the collection of four K-Bianchi circles

consisting of R̂ and three circles immediately tangent to R̂ at 0, 1, and ∞. A three-
prong is a collection of four circles that has the same pairwise Pedoe products as
the base prong. Equivalently, the three-prongs are the clusters in the cluster space
containing the base prong. A three-prong is said to be centred on any of its circles
which is tangent to the other three.

In the case of Q(i), three-prongs are exactly Descartes quadruples and a prong
is centred on all of its circles. In other cases, the central circle is unique. Evidently,
the base prong exists and is unique for a particular Schmidt arrangement SK . The
matrix R for which the base prongs correspond to the cluster space SR is given
explicitly in the next section, but is not needed at the moment.

Lemma 11.2. Three-prongs centred on R̂ are in bijection with superbases.

Proof. Any K-Bianchi circle tangent to R̂ at α/β (in lowest terms) is given by(
α −γ + αkτ
β −δ + βkτ

)
,

where αδ − βγ = 1, α, δ, β, γ ∈ Z, and where k = 1 if and only if the circle is
immediately tangent (Proposition 3.7). Therefore, its Pedoe embedding into M is
given by Proposition 3.5:

b = k(τ−τ )β2i, b′ = k(τ−τ )α2i, a = i(−(αδ−βγ)+k(τ−τ )αβ) = i(k(τ−τ )−1).

Then the Pedoe product of two K-Bianchi circles tangent to R̂ at α1/β1 and α2/β2

(in lowest terms) is

1 +
1

2
k1k2(τ − τ )2(α1β2 − α2β1)

2,

where k1, k2 ∈ Z. Therefore, we obtain

1 +
1

2
(τ − τ )2

if and only if α/β and γ/δ satisfy αδ − βγ = ±1 and the circles are immediately
tangent. The result follows. �

Theorem 11.3. Let A < 〈PSL2(OK), c〉 < Möb be a finitely generated Kleinian
group. Suppose that A takes circles in PK to circles in PK . Suppose further that
there is a cluster type, and a cluster (call it the base cluster), for which the following
conditions hold:

(i) The base cluster is contained in PK .
(ii) The base cluster is the unique cluster containing the base prong.
(iii) In the orbit of the base cluster, there are clusters containing the three base

prongs centred on R̂ with tangencies at (0, 1/2, 1), (1, 2,∞), and (−1, 0,∞).

(iv) There are elements of A taking a cluster with three-prong centred on R̂ to

a cluster with three-prong centred on the circles immediately tangent to R̂
at 0, 1, and ∞.

(v) No automorphism of the base cluster is contained in A.
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(vi) If B1 and B2 are two three-prongs centred on the same circle C, but oth-
erwise sharing no circles, and if C1 and C2 are clusters containing B1 and
B2, respectively, then C1 and C2 have no circles in common besides C.

(vii) The base cluster is tangency-connected.

Then, A is an Apollonian group for K.

Proof. First, we will show that all clusters are in the orbit of the base cluster. The
orbit of the base cluster under the geometric (left multiplication) or algebraic (right
multiplication) actions is the same (see Proposition 8.8). This allows us to focus
on the algebraic action when needed.

To begin, we will show that any cluster in PK which contains a three-prong

centred on R̂ is in the orbit of the base cluster. It suffices to observe that

(1) there is exactly one cluster in PK containing any given three-prong centred
on any fixed circle (this is by assumptions (i) and (ii), and the Möbius
action),

(2) the three-prongs centred on R̂ are in bijection with superbases (Lemma
11.2), and

(3) the orbit of the base cluster contains a cluster centred on R̂ at any super-
basis. This follows by induction from (iii). More precisely, the topograph
is connected, and the three superbases specified are the three superbases
adjacent to (0, 1,∞) in the topograph.

Let C be the circle immediately tangent to R̂ at 0, 1, or ∞. By assumptions (iv)
and (i), there is, in the orbit of the base cluster, a cluster containing a three-prong
centred on C. But then by the last observation, we see that in the orbit of the base
cluster there is a cluster containing a three-prong centred on any circle immediately

tangent to R̂.
By induction we see that in fact for any circle C in PK , since it is obtained from

R̂ by a finite chain of immediate tangencies, there is in the orbit of the base cluster,
a cluster containing a three-prong centred on C. Every cluster contains some three-
prong centred on some circle, since the base cluster does by assumption, and that
all clusters have the same pairwise Pedoe products. So by observation (1), every
cluster is in the orbit of the base cluster. Hence all clusters are in the orbit of any
cluster, by the algebraic action.

That A acts freely and transitively on the clusters of PK now follows from
assumption (v).

Now we must show that Λ(A) = PK . First, the immediate tangency points of
any fixed circle C ∈ PK with other circles of PK are dense in C, by Proposition 4.6.
From this observation, it suffices to show that all tangency points of all clusters lie
in Λ(A) to conclude that PK ⊂ Λ(A). Since the orbit of 0 is contained in PK , it
would follow that Λ(A) = PK .

First, 0 is in Λ(A), and, therefore, by the action of A, every cluster contains at
least one point of Λ(A) among its tangency points.

Next we will show that there is a sequence of clusters whose tangency points all
approach 0. First observe that there is a sequence of disjoint superbases approach-
ing 0. To finish the proof, we will show that the tangency points of the clusters
containing the superbases also approach 0. Consider any two superbases in this
sequence which are disjoint; then the clusters they define may not share any circles

besides R̂ by (vi). Since there are only finitely many circles of curvature below any
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fixed bound, the curvatures in the cluster (besides that of R̂) must be approaching
∞. For a tangency connected cluster (item (vii)), this implies the tangency points
are all approaching 0.

By the observation of the previous paragraph, there is a sequence of clusters
whose tangency points all approach 0. By Möbius symmetry, for any tangency
point x of PK , there is a sequence of clusters whose tangency points all approach x.
Since every cluster carries a point of Λ(A) among its tangency points, this shows
that x ∈ Λ(A) and we are done. �

In the following sections we define example Apollonian groups for each imaginary
quadratic field. These definitions are not unique, and the author has endeavoured
to find pleasing choices.

12. K-clusters for imaginary quadratic fields

In this section, we develop a general theory that yields an Apollonian group for
any imaginary quadratic K (save Q(

√
−3), as usual). In the Euclidean cases, it

is possible to replace this group with one which is freely generated by elements of
order two, and this is the purpose of later sections. We begin, however, taking K
generally.

Definition 12.1. Given a set, D, of four oriented circles C1, . . . , C4 corresponding
to vectors v1, . . . ,v4 in M, define the matrix WD formed of the columns

(9) v1,v2,v3,v4.

We say that C1, . . . , C4 form a K-cluster, or K-quadruple, if WD satisfies the rela-
tionship W t

DGMWD = R, where the matrix R = R0 is defined to be

R0 :=

⎛⎜⎜⎝
1 −1 −1 −1
−1 1 1 + 1

2Δ 1 + 1
2Δ

−1 1 + 1
2Δ 1 1 + 1

2Δ
−1 1 + 1

2Δ 1 + 1
2Δ 1

⎞⎟⎟⎠ .

Definition 12.2. In the case that Δ ≡ 1 (mod 4), it will be convenient to change
variables so that WD is the matrix represented by the columns

(10) v1,
1

2
(−v2 + v3 + v4),

1

2
(v2 − v3 + v4),

1

2
(v2 + v3 − v4).

Then, R becomes

R1 :=

⎛⎜⎜⎝
1 −1/2 −1/2 −1/2

−1/2 1−Δ
4

1+Δ
4

1+Δ
4

−1/2 1+Δ
4

1−Δ
4

1+Δ
4

−1/2 1+Δ
4

1+Δ
4

1−Δ
4

⎞⎟⎟⎠ .

The change of variables is given by R0 = StR1S, where

S =

⎛⎜⎜⎝
1 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

⎞⎟⎟⎠ .

The interpretation of the cluster space as a space of clusters of circles is unchanged.
This is done to simplify the generators in the next definition.
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Figure 13. The base K-cluster, here shown for SQ(
√
−15).

We remark that

R−1
0 =

1

Δ

⎛⎜⎜⎝
Δ+ 3 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞⎟⎟⎠ and R−1
1 =

1

Δ

⎛⎜⎜⎝
Δ+ 3 2 2 2

2 0 2 2
2 2 0 2
2 2 2 0

⎞⎟⎟⎠ .

In particular, that tells us the “Descartes equation” for K-clusters: the curvatures
a, b, c, d of four circles in a K-cluster satisfy 2(a2+ b2 + c2 + d2)− (a+ b+ c+ d)2 −
(Δ + 4)a2 = 0.

In particular, a K-cluster always consists of a three-prong as defined in the last
section, and SR is the cluster space of three-prongs. In the case Δ �= −4, these
three circles are disjoint from one another, as in Figure 13. The definition above
reduces to the usual Descartes quadruple (where they are all mutually tangent)
when Δ = −4.

Definition 12.3. We define the matrix group Â0
K ⊂ OR(R) to be the group gen-

erated by the following generators. For the case Δ ≡ 0 (mod 4):

(11)

⎛⎜⎜⎝
1 2 0 0
0 −1 0 0
0 2 0 1
0 2 1 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 0 2 0
0 0 2 1
0 0 −1 0
0 1 2 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 0 0 2
0 0 1 2
0 1 0 2
0 0 0 −1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 1 + Δ/4 1 1 + Δ/4
0 1 0 0
1 −1−Δ/4 0 −1−Δ/4
0 0 0 1

⎞⎟⎟⎠ ,
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while for the case Δ ≡ 1 (mod 4):
(12)⎛⎜⎜⎝

1 −1 1 1
0 −1 2 2
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 1 −1 1
0 0 0 1
0 2 −1 2
0 1 0 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 1 1 −1
0 0 1 0
0 1 0 0
0 2 2 −1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 1 Δ+3

4 0
1 1 −Δ−1

4 −1
0 0 1 0
1 0 −Δ+3

4 0

⎞⎟⎟⎠ .

We wish to associate to this a group of Möbius transformations via the algebraic-
geometric correspondence. Define the base cluster D to be given by the images of

R̂ under (
1 0
0 1

)
,

(
−1 τ
0 1

)
,

(
0 −1
−1 τ − 1

)
,

(
1 1− τ
1 −τ

)
.

The associated matrix WD to this K-cluster is, for Δ ≡ 0 (mod 4),

WD = W 0
D :=

⎛⎜⎜⎝
0 0 η η
0 η 0 η
0 0 0 η
−1 1 1 1

⎞⎟⎟⎠ ,

and for Δ ≡ 1 (mod 4),

WD = W 1
D :=

⎛⎜⎜⎝
0 η 0 0
0 0 η 0
0 η/2 η/2 −η/2
−1 1/2 1/2 1/2

⎞⎟⎟⎠ ,

where η = i(τ − τ ) =
√
−Δ. Note that W 0

D = W 1
DS.

The four generators of Â0
K , under the algebraic-geometric correspondence via

the base quadruple, become

(13)

(
−1 2
−1 1

)
,

(
1 −1
2 −1

)
,

(
0 1
−1 0

)
,

(
1 1− τ
0 −1

)
.

The reader will recognise the first three matrices as γ1, γ2, γ3, so that G < Â0
K .

The last matrix takes R̂ to the circle tangent to R̂ at ∞. The group generated by
these Möbius transformations will be called A0

K . Note that AQ(i) �= A0
Q(i), where

AQ(i) is as defined in Section 7.

Theorem 12.4. Suppose Δ ≤ −15. Then A0
K (or Â0

K) has the presentation

〈s1, s2, s3, r : s21 = s22 = s23 = r2 = 1, rs1s2s3 = s3s2s1r〉.
In fact, this presentation may be realised by taking s1, s2, s3, r to be the matrices
(11) or (12), depending on whether Δ ≡ 0 or 1 (mod 4).

To prove this, we need a result from the Bass-Serre theory of groups acting on
trees (in our case, the tree will be a tangency-connected component of the graph of
immediate tangencies of P; see Definition 4.8).

Theorem 12.5 (Serre [38, Section 1.4]). Suppose that a group G acts on a tree X
with inversion (i.e., there exists g ∈ G and e an edge of X such that g · e is again
e, but with orientation reversed). Suppose the action is transitive on vertices and
transitive on edges. Let v be a vertex of X and let e be an adjacent edge. Let Gv
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be the stabilizer of v, let Ge be the stabilizer of e, and let G′ be the stabilizer of v
and e (hence preserving the direction of e). Then G′ is of index 2 in Ge and

G ∼= Gv ∗G′ Ge,

where ∗ denotes the free product with amalgamation.

We will also need a lemma.

Lemma 12.6. The stabilizer of R̂ in A0
K is G.

Proof. Write γ1, γ2, γ3, ρ for the generators (13) of A0
K . It is clear that G is in the

stabilizer, since G = 〈γ1, γ2, γ3〉.
To show the opposite containment, let w be a word in the γi and ρ which lies

in PGL2(R). Build up the word w character-by-character from the left, applying
the algebraic right action to the base cluster, to produce a series of three-prongs.
A character changes the central circle of the three-prong only if it is equal to ρ.
When it changes, it changes to an immediately tangent circle. Since the immediate
tangency graph is a tree (Theorem 5.1), the sequence of central circles must be of
the form

R̂, C1, C2, . . . , Cn−1, Cn, Cn−1, . . . , C2, C1, R̂.

Define the middle substring s = ργi1 · · · γijρ of the word corresponding to the
central circles

Cn−1, Cn, Cn−1.

Then this word, acting on the right, fixes Cn−1 and, therefore, is an element of
PGL2(R).

There are two possible cases: s ∈ G or s /∈ G. In the first case, we can replace
this part of the word with a string formed of γi’s. Repeating this process, we either
eliminate all ρ’s, so that w ∈ G, or we arrive in the second case. Therefore, it
suffices to show that whenever γ ∈ G and ργρ ∈ PGL2(R), then ργρ ∈ G.

Let G′ = ρGρ. Then it is a direct computation that G′ ∩ PGL2(R) = GB, and
we are done. �

Proof of Theorem 12.4. The group Â0
K is isomorphic to the group A0

K of Möbius
transformations given by generators (13). As Möbius transformations act on circles,
preserving tangencies, and A0

K takes a K-Apollonian packing P back to itself, it
acts on the (immediate) tangency tree of P (it is a tree by Theorem 5.1). The

fourth generator of (13), call it r, reverses the edge between circle R̂ and R̂ + τ .
Note that the topographical group G is a subgroup of A0

K .

The orbit of rG acting on R̂ is the collection of K-Bianchi circles immediately

tangent to R̂. Thus A0
K maps R̂ to all immediately tangent circles. Therefore the

action is transitive on vertices. The orbit of ∞ under G is Q̂. This implies that the
action is transitive on edges (which correspond to tangency points).

The stabilizer of ∞ is 〈GB, r〉 (see Lemma 10.4 for the definition of GB). Since
conjugation by r acts as the nontrivial automorphism of GB

∼= Z (a simple direct
computation), we have that this stabilizer is isomorphic to the nontrivial semi-direct

product Z� (Z/2Z). The stabilizer of R̂ is G by Lemma 12.6. The stabilizer of the

directed edge R̂
∞−→ (R̂+ τ ) is GB.

With these data, Theorem 12.5 describes the structure of A0
K as G ∗GB

〈GB, r〉.
Recalling that G has presentation 〈γ1, γ2, γ3〉 and with reference to Lemma 10.4,
the presentation is now a direct computation. �
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Theorem 12.7. Suppose Δ ≤ −15. Then the group A0
K is a geometric Apollonian

group for K, and Â0
K is an algebraic Apollonian group for K.

Proof. This proof uses Theorem 11.3. That A0
K is a finitely-generated Kleinian

group is evident. Since its generators take R̂ to itself or immediately tangent
circles, it takes elements of PK to PK . It now suffices to verify some details about
the base cluster and A0

K . Items (i) and (ii) are immediate.
It was noted above that A0

K contains the topographical group G, which implies
item (iii).

For item (iv), it suffices to exhibit such elements: the last element of (13),
together with its conjugations by γ1 and γ3, will suffice.

To verify (v), we must appeal to the tangency tree. In particular, the automor-

phisms of the base cluster must stabilize R̂; this stabilizer is exactly G by Lemma
12.6. But G contains no automorphisms of superbases, so there are no automor-
phisms of the base cluster in A0

K .
Finally, items (vi) and (vii) are immediate. �

13. Cubes and cubicles in K = Q(
√
−2)

In the case of K = Q(
√
−2), there is a very pretty Apollonian group (an alter-

native to the general one in the last section), and we will elaborate on it somewhat
here.

In the graph of tangencies, we find cubes, as in Figure 14. A cube is defined to
be eight circles in the following arrangement specified by the Pedoe products. Here
WC is a 4× 8 matrix which has as columns the eight π(Ci):

(14) W t
CGMWC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −3 −1 −5 −3 −1 −3
−1 1 −1 −3 −3 −5 −3 −1
−3 −1 1 −1 −1 −3 −5 −3
−1 −3 −1 1 −3 −1 −3 −5
−5 −3 −1 −3 1 −1 −3 −1
−3 −5 −3 −1 −1 1 −1 −3
−1 −3 −5 −3 −3 −1 1 −1
−3 −1 −3 −5 −1 −3 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This matrix represents the following arrangement of tangencies:

v1

���
�

v2

���
�

v4 v3

v7

���
�

v8

���
�

v6 v5
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Figure 14. Base cube for SQ(
√
−2). The coordinates of the eight

circles in M are given, in the labelled order, by the columns of the
following matrix:

⎛
⎜⎜⎝

0 0 2
√
2 2

√
2 4

√
2 4

√
2 2

√
2 2

√
2

0 2
√

2 4
√
2 2

√
2 4

√
2 2

√
2 0 2

√
2

0 0 2
√
2 2

√
2 2

√
2 2

√
2 0 0

−1 1 3 1 5 3 1 3

⎞
⎟⎟⎠ .

The two cubicles forming the cube are shown in blue and black,
respectively.

It is evident that a cube contains eight Q(
√
−2)-clusters as defined in the previous

section, corresponding to the eight vertices of the cube (considered up to reordering
the three circles tangent to a central one). Any such Q(

√
−2)-cluster defines a

unique cube (this follows from verifying the fact for the base cluster).
We define a cubicle to be a subset of four circles of a given cube so that no two

are tangent. There are two cubicles in a cube. A cubicle satisfies this arrangement:5

(15) W t
DGMWD =

⎛⎜⎜⎝
1 −3 −3 −3
−3 1 −3 −3
−3 −3 1 −3
−3 −3 −3 1

⎞⎟⎟⎠ .

A cubicle is contained in a unique cube. By considering a single cubicle in Q(
√
−2)

5Incidentally, this gives a relation on the curvatures of a cubicle: 8(a2 + b2 + c2 + d2) =
3(a+ b+ c+ d)2 which we do not need here.
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Figure 15. The blue and black circles (including two straight
lines) form the base cube of the Q(

√
−2)-Apollonian packing con-

taining R̂. If swapping through the side represented by black cir-
cles, the blue circles are replaced with green ones, by inversion in
the red circle. The new cube is formed of the black and green
circles.

(we use Figure 14), one can obtain equations that determine the cube from the
cubicle:6

2v2 = v1 + v3 − v6 + v8,

2v4 = v1 + v3 + v6 − v8,

2v5 = −v1 + v3 + v6 + v8,

2v7 = v1 − v3 + v6 + v8.

Any individual face of a cube consists of four Q(
√
−2)-Bianchi circles satisfying

the following relations (in particular, they are tangent in a loop):

(16) W t
DGMWD =

⎛⎜⎜⎝
1 −1 −3 −1
−1 1 −1 −3
−3 −1 1 −1
−1 −3 −1 1

⎞⎟⎟⎠ .

Then there are exactly two ways to complete a face to a cube of Q(
√
−2)-Bianchi

circles (again, this need only be verified on the base cube). This implies that given
a cube, there are six swaps one can perform which fix one side and swap out the
remaining four circles. Geometrically, this is accomplished by reflecting in the circle
C orthogonal to all circles in the fixed side, as shown in Figure 15.

These six swaps can be described in terms of the cube as follows. Fixing
v1, . . . ,v4, the two ways to complete to a cube containing this side are to add

6It is also nice to observe that all body diagonal sums agree: v1 + v5 = v2 + v6 = v3 + v7 =
v4 + v8, and that on each individual face, diagonal sums again agree: v1 + v3 = v2 + v4, etc.
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Figure 16. The Q(
√
−2)-Apollonian packing containing R̂.

v5, . . . ,v8 or v′
5, . . . ,v

′
8 where

v5 + v′
5 = −2v1 + 4v2 + 4v4,

v6 + v′
6 = 4v1 − 2v2 + 4v3,

v7 + v′
7 = 4v2 − 2v3 + 4v4,

v8 + v′
8 = 4v1 + 4v3 − 2v4.

If we express a cube as a real 4 × 4 matrix whose columns are the cubicle
v1,v3,v6,v8, then these swaps correspond to right multiplication by

(17)

⎛⎜⎜⎝
1 0 3 3
0 1 3 3
0 0 0 −1
0 0 −1 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 3 0 3
0 0 0 −1
0 3 1 3
0 −1 0 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 −1
3 1 0 3
3 0 1 3
−1 0 0 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 3 3 0
0 0 −1 0
0 −1 0 0
0 3 3 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 −1 0
3 1 3 0
−1 0 0 0
3 0 3 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 −1 0 0
−1 0 0 0
3 3 1 0
3 3 0 1

⎞⎟⎟⎠ .

Definition 13.1. Call the group generated by these matrices ̂AQ(
√
−2).

The Möbius transformations which realise the six swaps on the base cube of
Figure 14 are given by (in the same order as the generators (17)),

z → z

2z − 1
, z → −z + 2, z → (3 + 2

√
−2)z − 4

4z − 3 + 2
√
−2

,(18)

z → −z, z → (1 + 2
√
−2)z − 2

4z − 1 + 2
√
−2

, z → (1 + 2
√
−2)z − 4

2z − 1 + 2
√
−2

.

Definition 13.2. Call the group generated by these transformations AQ(
√
−2).

Definition 13.3. The cube graph is the graph whose vertices are all cubes (con-
sidered without regard to the ordering of the constituent circles); and whose edges
indicate cubes sharing a side.
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Theorem 13.4. The cube graph is a forest of trees of valence six. Consequently,
AQ(

√
−2) is freely generated by the generators (17). In particular, it is a free product

of six copies of Z/2Z.

Proof. Let H be the cube graph. Any one component of the graph of ordered
cubes under the six available swaps is the Cayley graph of AQ(

√
−2) under right

multiplication and generators (17). We wish to demonstrate that any component
of H is a tree. If so, then the Cayley graph cannot have a loop, as it would reduce
to a loop in the cube graph under forgetting orientation. The theorem follows.

Let G be the tangency graph of a single packing, i.e., the graph whose vertices
are circles, and whose edges represent tangencies. This graph is the same for any
packing, so assume the packing is bounded away from ∞. This graph can be

embedded on the sphere Ĉ by placing each vertex at the centre of the corresponding
circle, so that edges pass through tangency points (the exception being the bounding
circle, where we can take its centre to be ∞). Therefore, it is planar.

Suppose that H has a loop. This loop is a finite loop of n ≥ 2 cubes lying in one
packing, so its circles create an induced subgraph L of G (for that packing). We
will demonstrate that L cannot exist inside the planar graph G.

To do so, we will consider building the graph L cube-by-cube. Begin with one
adjacent pair of cubes in L, sharing four vertices in a cycle C. The cycle breaks the
plane up into two regions. The two cubes lie in the two different regions (except
that they both include the boundary). (By the Möbius action, verification on the
base cube suffices.) Continuing to add cubes to form L, at each stage we are adding
edges and vertices of G inside an existing face of the construction. In particular,
we are either adding a cube inside the cycle C or outside it. Finally, to complete
the loop L, we must join one cube inside C to one outside C, using another cycle
C ′ �= C. This is impossible inside the planar graph G. �

An alternate method of proof is to show that L contains 4n vertices and 8n edges,
but no cycles of length 3, which is impossible for a planar graph. Interestingly, a
similar count works for Q(i) and Q(

√
−7), but fails for Q(

√
−11). The proof above

generalizes to all cases with little modification.

Theorem 13.5. The group AQ(
√
−2) is a geometric Apollonian group for Q(

√
−2)

and ̂AQ(
√
−2) is an algebraic Apollonian group for Q(

√
−2).

Proof. Our cluster type is that given above (cubes), and the base cube is as in
Figure 14. We will verify the hypotheses of Theorem 11.3; many of the verifications
are simple and similar to those in the proof of Theorem 12.7. Item (iii) is verified
by generators 1, 2, and 4 of (18). Item (iv) is verified by identity transformation,
since the base cube contains a three-prong centred on any of its circles.

That no automorphism of the base cluster is contained in AQ(
√
−2) (item (v)) is

a consequence of Theorem 13.4: such an automorphism would indicate a nontrivial
path in the Cayley graph whose endpoints were two different orderings of the same
cube. Forgetting orientation, this would give a loop in the cube graph. �

14. Tents and belts in K = Q(
√
−7)

In this case, and for Q(
√
−11), we will be somewhat more brief in our description.

We define a Q(
√
−7)-Descartes configuration, called a tent, to be five circles in the
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arrangement specified by the relation

W t
DGMWD =

⎛⎜⎜⎜⎜⎝
1 −1 −5/2 −1 −5/2
−1 1 −1 −5/2 −1
−5/2 −1 1 −1 −5/2
−1 −5/2 −1 1 −1
−5/2 −1 −5/2 −1 1

⎞⎟⎟⎟⎟⎠ ,

on the matrix WD whose columns are the five circles. The graph of tangencies looks
like this:

v2

���
� ���

�

v1

���
� v5 v3

���
�

v4

There is one relation among these circles:

v1 + v3 + v5 = 2(v2 + v4).

Three of the five circles (v1,v3,v5) are distinguished as being tangent to fewer
other circles in the tent (2 instead of 3). Call such a circle a peak. Removing a peak
leaves four circles in a cycle, called a belt. Given a belt, there are exactly two tents
containing it. Given a belt v1,v2,v3,v4, the two peaks v5 and v′

5 that complete it
to a tent satisfy

v5 + v′
5 = v1 + v2 + v3 + v4.

The other peak v′
5 is tangent to v1 and v3, thus:

v2

��
�� ��

��

v1

��
��

v′
5 v3

��
��

v4

Therefore, v2 and v4 become new peaks. It is appropriate to renumber the resulting
tent so we have

v′
1 = v2, v′

2 = v1, v′
3 = v4, v′

4 = v3, v′
5 = v1 + v2 + v3 + v4 − v5.

An example is shown in Figure 18.
We will write a tent as a 4× 4 matrix whose columns are v1,v2,v3,v4; call this

a tentbase. Four circles form a tentbase if and only if the matrix of their columns,
WD, satisfies

W t
DGMWD =

⎛⎜⎜⎝
1 −1 −5/2 −1
−1 1 −1 −5/2
−5/2 −1 1 −1
−1 −5/2 −1 1

⎞⎟⎟⎠ =: R.

There are three moves that will replace a tent with another that shares a belt:
each of the three peaks can be swapped out. These correspond to multiplying the
tentbase on the right by these three matrices of order two:

(19)

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−2 0 0 −1
3 0 1 2
0 1 0 −1
3 0 0 2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 −1 0 1
0 2 3 0
0 −1 −2 0
1 2 3 0

⎞⎟⎟⎠ .



THE APOLLONIAN STRUCTURE OF BIANCHI GROUPS 6211

Figure 17. Base tent for SQ(
√
−7). The coordinates of the five

circles in M are given, in the labelled order, by the columns of the
following matrix:

⎛
⎜⎜⎝

0 0
√

7
√

7
√

7√
7 0

√
7

√
7 0

0 0
√

7
√

7/2 0
1 −1 1 5/2 1

⎞
⎟⎟⎠ .

Circles tangent to three others in the tent are shown in black, while
those tangent to two others are shown in blue.

Definition 14.1. Denote the subgroup of OR(R) generated by the matrices (19)

by ̂AQ(
√
−7).

The three swaps (19) are not realised as inversions in circles as in the case of Q(i)
and Q(

√
−2). On the base tent of Figure 17, they correspond, via the algebraic-

geometric correspondence, to the following Möbius transformations, respectively:

(20) z →
1+

√
−7

2 z + 1−
√
−7

2

3+
√
−7

2 z + −1−
√
−7

2

, z → −z − −3−
√
−7

2
, z → z

1−
√
−7

2 z − 1
.

Definition 14.2. The 7-tent graph is the graph whose vertices are all tents (con-
sidered without regard to ordering); and whose edges indicate tents sharing a belt.

Theorem 14.3. The 7-tent graph is a forest of trees of valence three. Consequently,
AQ(

√
−7) is freely generated by the generators (19). In particular, it is a free product

of three copies of Z/2Z.

Proof. The proof is exactly as in Theorem 13.4: any two tents lie in the two regions
created by their shared belt. �

Theorem 14.4. The group AQ(
√
−7) is a geometric Apollonian group for Q(

√
−7)

and the group ̂AQ(
√
−7) is an algebraic Apollonian group for Q(

√
−7).
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Figure 18. The green and black circles (including two straight
lines) form the base tent of the Q(

√
−7)-Apollonian packing con-

taining R̂. If swapping out the peak given by the green circle, the
green circle is replaced with the blue one. The new tent is formed
of the black and blue circles. Note that the black circles are not
individually fixed; they are permuted.

Figure 19. The Q(
√
−7)-Apollonian packing containing R̂.

Proof. Tents are the clusters, and the base tent is as in Figure 17. Most of the
verifications of the hypotheses of Theorem 11.3 are simple or similar to those in the
proof of Theorems 12.7 and 13.5; we consider only (iii), (iv), and (v).

Composing each pair of generators (20) in each possible order, we obtain six
transformations. It is a computation to verify that, applying these six transfor-
mations to the base cluster, we obtain among the results clusters containing the
three-prongs on (0, 1/2, 1), (1, 2,∞), and (−1, 0,∞). This verifies (iii).
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Item (iv) is verified by the three swaps (20). Finally, (v) is verified, as in the
proof of Theorem 13.5, by Theorem 14.3. �

15. Tents and belts in K = Q(
√
−11)

This case is similar to the case Q(
√
−7). A tent D consists of ten circles, and

contains four belts (loops of tangent circles) of six circles each, in the following
arrangement:

v1

���
� v2 v3

���
�

��
��
��
��

v10

���
� v8

���
�

v6

��
��

��
��

��������
v7 v4

��
��
��
��

v9

v5

Let WD denote the matrix whose columns are the vectors in M corresponding
to these circles, say vi, i = 1, . . . , 10 of M. We have

W
t
DGMWD

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −9/2 −13/2 −9/2 −1 −9/2 −13/2 −13/2 −1
−1 1 −1 −9/2 −13/2 −9/2 −13/2 −9/2 −10 −9/2

−9/2 −1 1 −1 −9/2 −13/2 −9/2 −1 −13/2 −13/2
−13/2 −9/2 −1 1 −1 −9/2 −13/2 −9/2 −9/2 −10
−9/2 −13/2 −9/2 −1 1 −1 −9/2 −13/2 −1 −13/2
−1 −9/2 −13/2 −9/2 −1 1 −13/2 −10 −9/2 −9/2

−9/2 −13/2 −9/2 −13/2 −9/2 −13/2 1 −1 −1 −1
−13/2 −9/2 −1 −9/2 −13/2 −10 −1 1 −9/2 −9/2
−13/2 −10 −13/2 −9/2 −1 −9/2 −1 −9/2 1 −9/2
−1 −9/2 −13/2 −10 −13/2 −9/2 −1 −9/2 −9/2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The ten circles of a tent span a vector space of dimension 4. A presentation of the
relations is:

5v2 = −4v1 − 4v3 + v5 + v7,

5v4 = v1 − 4v3 − 4v5 + v7,

5v6 = −4v1 + v3 − 4v5 + v7,

5v8 = v1 − 4v3 + v5 − 4v7,

5v9 = v1 + v3 − 4v5 − 4v7,

5v10 = −4v1 + v3 + v5 − 4v7.

A tent contains four belts. Within a belt, the sum of opposite circles is invariant,
e.g.,

v1 + v4 = v2 + v5 = v3 + v6.

Since there are four belts, one obtains four vectors; these are independent, and we
therefore represent a tent as a matrix with these four columns, say

v1 + v4,v1 + v8,v1 + v9,v3 + v9.

There are exactly two tents containing a single belt. Therefore, there are four swaps
one can perform. Each swap preserves one belt and changes three belts. An example
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Figure 20. Base tent for SQ(
√
−11). The coordinates of the ten

circles in M are given, in the labelled order, by the columns of the
following matrix:
⎛
⎜⎜⎝

0 0
√
11 2

√
11 2

√
11

√
11 2

√
11 2

√
11 3

√
11

√
11

0
√
11 2

√
11 3

√
11 2

√
11

√
11

√
11 2

√
11 2

√
11 0

0 0
√

11/2 3
√

11/2 3
√

11/2
√

11
√

11/2
√

11/2 3
√

11/2 0
−1 1 9/2 13/2 9/2 1 9/2 13/2 13/2 1

⎞
⎟⎟⎠.

Circles tangent to three others in the tent are shown in black, while
those tangent to two others are shown in blue.

is shown in Figure 21. The resulting matrices, in terms of the representation above,
are

(21)

⎛⎜⎜⎝
1 3 3 3
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−1 0 0 0
3 1 3 3
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−1 0 0 0
0 −1 0 0
3 3 1 3
0 0 0 −1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 −1 0
3 3 3 1

⎞⎟⎟⎠ .

Note that the circles of the belt are permuted; for example, the first of these has
the effect

v′
1 = v4,v

′
2 = v5,v

′
3 = v6,v

′
4 = v1,v

′
5 = v2,v

′
6 = v3.

Definition 15.1. Denote the subgroup of OR(R) generated by these four matrices

by ̂AQ(
√
−11).
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Figure 21. The green and black circles (including two straight
lines) form the base tent of the Q(

√
−11)-Apollonian packing con-

taining R̂. If swapping out the peak given by the green circles,
the green circles are replaced with the blue ones. The new tent is
formed of the black and blue circles. Note that the black circles
are not individually fixed; they are cyclically permuted.

Figure 22. The Q(
√
−11)-Apollonian packing containing R̂.

The four Möbius maps performing these swaps on the base tent of Figure 20 (in
the same order as (21)) are:

(22)

z →
3+

√
−11
2 z − 2

3z + −3+
√
−11

2

, z →
1+

√
−11
2 z − 2

2z + −1+
√
−11

2

,

z →
3+

√
−11
2 z − 3

2z + −3+
√
−11

2

, z → (2 +
√
−11)z − 4

4z − 2 +
√
−11

.
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Table 1. For each discriminant Δ, the table shows the smallest
power of 2, M , that explains the obstructions at the prime 2, and
the observed residue sets SM modulo M .

Δ M SM

Δ ≡ 0, 4, 16 (mod 32) 2 S2 = {0, 1}, {1}
Δ ≡ 8, 24 (mod 32) 4 S4 = {0, 2, 3}, {0, 1, 2}
Δ ≡ 12 (mod 32) 4 S4 = {0, 1}, {1, 2}, {2, 3}, {0, 3}
Δ ≡ 20 (mod 32) 4 S4 = {1}, {3}, {0, 1, 2, 3}
Δ ≡ 28 (mod 32) 8 S8 = {0, 1, 4}, {2, 3, 6, 7}, {0, 4, 5}
otherwise none none

Table 2. For each discriminant Δ, the obstruction at the prime
3 is explained by the first power, 3. The table shows the observed
residue sets S3 modulo 3.

Δ S3

Δ ≡ 5, 8 (mod 12) S3 = {0, 1}, {0, 2}
otherwise none

Definition 15.2. Denote the subgroup of Möb generated by these four matrices
by AQ(

√
−11).

Definition 15.3. The 11-tent graph is the graph whose vertices are all tents (con-
sidered without regard to ordering); and whose edges indicate tents sharing a belt.

Theorem 15.4. The 11-tent graph is a forest of trees of valence four. Conse-
quently, AQ(

√
−11) is freely generated by the generators (21). In particular, it is a

free product of four copies of Z/2Z.

Proof. The proof is exactly as in Theorem 13.4 and Theorem 14.3. �
Theorem 15.5. The group AQ(

√
−11) is a geometric Apollonian group for Q(

√
−11),

and the group ̂AQ(
√
−11) is an algebraic Apollonian group for Q(

√
−11).

Proof. The proof is very similar to Theorem 14.4. As before, compositions of
generators verify (iii), and the single generators verify (iv). �

16. Curvatures in K-Apollonian packings

This section is devoted to some computational data supporting Conjecture 1.4.
We first record a basic result on curvatures.

Theorem 16.1. Let P be a K-Apollonian circle packing. Then the reduced curva-
tures of P have no common factor.

Proof. P is generated by immediate tangency. Theorem 4.7 of [42] states that if
C1 and C2 are immediately tangent, then

curv(C1) + curv(C2) = N(x),

where x is the denominator of the point of tangency. If all the curvatures of the
packing are divisible by some prime p, then p | N(x). Fixing C1, the value of x for all
immediately tangent C2 are exactly those x in a rank two Z-lattice βZ+ δZ ⊂ OK .



THE APOLLONIAN STRUCTURE OF BIANCHI GROUPS 6217

Here, β and δ can be taken to be the lower row of some matrix M ∈ PSL2(OK)

taking R̂ to C1 (in particular, (β, δ) = OK).
Therefore, p divides N(β), N(δ) and N(β + δ). If p | N(x), then x ∈ p for some

prime ideal p above p. Therefore at least two of β, δ and β + δ lie in the same
prime ideal; but this is a contradiction to the fact that any pair of them generates
OK . �

Using Sage Mathematics Software [43], some computer experiments were per-
formed. The author computed the complete set of reduced curvatures in various
K-Apollonian packings modulo various moduli n. The results suggest Conjecture
1.4. In particular, each Apollonian packing was observed to omit certain modular
equivalence classes. The behaviour of individual primes is independent, so that we
can discuss the obstruction at a prime p as all equivalence classes modulo powers of
p that cannot occur. The obstruction is explained by pk if pk is the largest power
of p needed to describe the obstruction. In experiments, the only obstructions that
occurred were at 2 (always explained by 2, 4 or 8) and at 3 (always explained by 3).
This explains the number 24 in Conjecture 1.4. Tables 1 and 2 give the observed
allowable sets of residues. It is conjectured that these tables are complete.
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