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ON THE IRREDUCIBILITY OF GLOBAL DESCENTS

FOR EVEN UNITARY GROUPS AND ITS APPLICATIONS

KAZUKI MORIMOTO

Abstract. In this paper, we prove the irreducibility of global descents for
even unitary groups. More generally, through Fourier-Jacobi coefficients of
automorphic forms, we give a bijection between a certain set of irreducible

cuspidal automorphic representations of U(n, n)(A) and a certain set of irre-
ducible square-integrable automorphic representations of U(2n, 2n)(A). We
also give three applications of the irreducibility of global descents. As a global
application, we prove a rigidity theorem for irreducible generic cuspidal auto-
morphic representations of U(n, n). Moreover, as a local application, we prove
the irreducibility of explicit local descents for a couple of supercuspidal repre-
sentations and a local converse theorem for generic representations in the case
of U(n, n).

1. Introduction

Functorial lifts of automorphic representations for classical groups to appropriate
general linear groups with respect to standard representations have been studied in
various situations. For example, in Kim-Krishnamurthy [KK04], [KK05], they con-
structed such functorial lifts for irreducible generic cuspidal automorphic represen-
tations of quasi-split unitary groups using the converse theorem as in Cogdell–Kim–
Piatetski-Shapiro–Shahidi [CKPSS01], [CKPSS04] and Cogdell–Piatetski-Shapiro–
Shahidi [CPSS11]. Recently, as an analogue of Arthur [Ar13], Mok [Mo15] estab-
lished the endoscopic classification for irreducible tempered cuspidal automorphic
representations of quasi-split unitary groups using trace formulas, and he obtained
functorial lifts for such automorphic representations under certain assumptions.

Because of these functorial lifts, we can transfer some questions, such as ana-
lytic properties of L-functions, of automorphic representations of classical groups
to that of general linear groups. On the other hand, in order to pull back a result
of automorphic representations of GL(n) to that of classical groups, we need an in-
verse map of the functorial lifts. As a sort of such inverse maps, Ginzburg–Rallis–
Soudry [GRS11] established the theory of global descent, which gives a generic
cuspidal automorphic representation of quasi-split classical groups for given auto-
morphic representations of general linear groups satisfying certain conditions. At
the present time, the global descent method becomes one of the most important
theories to study automorphic representations for classical groups and their L-
functions. However, it seems that the theory of global descents is not complete for
unitary groups. Indeed, we do not have the irreducibility of global descents in this
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case. One of our main purposes of the present paper is to prove this irreducibility
in the case of even unitary groups.

In order to state our main global results, let us introduce some notation. Let F
be a number field and let E be a quadratic extension of F . We denote the adeles
of F and E by AF and AE , respectively. We often simply write A = AF . Let
ωE/F be the quadratic character of A

×
F /F

× corresponding to E/F . We denote
by Gn := U(n, n) ⊂ ResE/FGL2n the quasi-split unitary group of degree 2n with
respect to E/F . Let ψF be a non-trivial additive character of AF /F and define
a character ψ of AE/E by ψ(x) = ψF

(
x+x̄
2

)
where x �→ x̄ is the action of the

non-trivial element of Gal(E/F ).
Let [ni] = (n1, . . . , nr) be a partition of 2n; i.e., ni are positive integers such

that 2n = n1 + · · · + nr, and τ̄ = (τ1, . . . , τr) with an irreducible unitary cusp-
idal automorphic representation τi of GLni

(AE) such that τi �� τj if i �= j, and
L(s, τi,Asai) has a pole at s = 1. Then we consider Eisenstein series E(fτ̄ ,s̄, g)
on G2n(A) with respect to a parabolic subgroup whose Levi part is isomorphic to
ResE/FGLn1

×· · ·×ResE/FGLnr
. We know that this Eisenstein series has a pole at

s̄ = ( 12 , . . . ,
1
2 ). Then we define an irreducible residual representation Eτ̄ of G2n(A)

by the residues of those Eisenstein series.

For an automorphic form ϕ on G2n(A), a Fourier-Jacobi coefficient FJψ,η
φ,n(ϕ)(·)

(see Section 3.2 for the definition) gives an automorphic form on Gn(A) where η
is a character of A×

E/E
× such that η|

A
×
F

= ωE/F and φ ∈ S(An
E). Then for an

automorphic representation Π of G2n(A), we may define a global descent D4n,η
2n,ψ(Π)

which is the automorphic representation ofGn(A) generated by FJψ,η
φ,n(ϕΠ)(·) for any

ϕΠ ∈ Π and φ ∈ S(An
E). In the case Π = Eτ̄ , Ginzburg–Rallis–Soudry [GRS11, The-

orem 3.1] showed fundamental properties of D4n,η
2n,ψ(Eτ̄ ). For example, it is cuspidal

and ψ−1-generic. See Section 3.1 for the definition of ψ−1-generic representation.
One of the main results of this paper is the irreducibility of global descents.

Theorem 1.1. The global descent D4n,η
2n,ψ(Eτ̄ ) is an irreducible cuspidal ψ−1-generic

automorphic representation of Gn(A).

We note that in the case of metaplectic groups and odd special orthogonal groups,
Jiang and Soudry [JS03] proved the irreducibility of global descents as a consequence
of a local converse theorem.

In this paper, we shall prove this irreducibility by a similar argument as [GJS12].
Indeed, as in [GJS12], we shall prove such irreducibility in a more general setting;
namely, we shall study the global descents not only for Eτ̄ but also for a certain
family of automorphic representations of G2n(A) which are nearly equivalent to Eτ̄ .

Let N2n(τ̄ , η, ψ) be the set of irreducible automorphic representations of G2n(A)

such that they have non-trivial image under the descent map D4n,η
2n,ψ(·), appear

in the discrete spectrum, and are nearly equivalent to Eτ̄ . We note that from
[GRS11, Theorem 3.1], Eτ̄ is contained in N2n(τ̄ , η, ψ). We denote by N ′

2n(τ̄ , η, ψ)
the subset consisting of cuspidal representations in N2n(τ̄ , η, ψ) and Eτ̄ . Then
Theorem 1.1 is a special case of the following result (see Theorem 8.1).

Theorem 1.2. Let Π ∈ N ′
2n(τ̄ , η, ψ). Then the global descent D4n,η

2n,ψ(Π) is an

irreducible cuspidal automorphic representation of Gn(A).

In [GJS12], they proved a similar result for metaplectic groups when r = 1. The
case of r = 1 is not enough to study any automorphic representation of classical
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groups and metaplectic groups. Indeed, the image of functorial lifts for those groups
is an isobaric sum of certain cuspidal automorphic representations, and it is not
cuspidal in general. We shall prove the above theorem extending their argument to
the case r ≥ 1. Main ingredients of our proof are computations of Fourier-Jacobi
coefficients and Fourier coefficients of residual representations.

Our proof is roughly as follows. Let Nn(τ̄ , η) be the set of irreducible cuspidal
automorphic representations of Gn(A), which weakly lift to �(τi ⊗ η−1). Then
we can consider a residual automorphic representation Eτ̄ ,π of G3n(A) associated
to τ̄ and π ∈ Nn(τ̄ , η) with respect to a parabolic subgroup whose Levi part is
isomorphic to ResE/FGLn1

× · · · ×ResE/FGLnr
×Gn. By an explicit computation

of Fourier-Jacobi coefficients, we shall show that (see Proposition 7.2)

D4n,η
2n,ψ

(
D6n,η

4n,ψ−1(Eτ̄ ,π)
)
= π ⊗ η−1,

where D6n,η
4n,ψ−1(Eτ̄ ,π) (resp. D4n,η

2n,ψ

(
D6n,η

4n,ψ−1(Eτ̄ ,π)
)
) is the automorphic representa-

tion of G2n(A) (resp. Gn(A)) given by certain Fourier-Jacobi coefficients. Further,
by an explicit computation of Fourier-Jacobi coefficients and Fourier coefficients,
we shall show that for a given Π ∈ N ′

2n(τ̄ , η, ψ), there exists π0 ∈ Nn(τ̄ , η) such
that (see Proposition 7.7 and Theorem 7.8)

(1.1) Π⊗ η−1 ⊂ D6n,η
4n,ψ−1(Eτ̄ ,π0

).

From these equations, the above irreducibility readily follows.
Because of the irreducibility in Theorem 1.2, we can define a map from

N ′
2n(τ̄ , η, ψ) to Nn(τ̄ , η). We shall refine the above result under a certain assump-

tion; indeed we shall prove that this map becomes a bijection. For simplicity,
we write Φ(π) := D6n,η

4n,ψ−1(Eτ̄ ,π) with π ∈ Nn(τ̄ , η) and Ψ(Π) = D4n,η
2n,ψ(Π) with

Π ∈ N2n(τ̄ , η, ψ). We also write Φ′(π) := Φ(π)⊗ η.

Theorem 1.3. For each Π ∈ N2n(τ̄ , η, ψ), Π is a subrepresentation of Φ′(Ψ(Π)),
which is an inclusion as spaces of square-integrable automorphic forms. Moreover,
we assume that Eτ̄ ,π is irreducible for any π ∈ Nn(τ̄ , η). Then for Π ∈ N ′

2n(τ̄ , η, ψ),

Φ(Ψ(Π)) = Π⊗ η−1, i.e., Φ′(Ψ(Π)) = Π.

In particular, Φ(π) is irreducible, and thus the mappings

Ψ : N ′
2n(τ̄ , η, ψ) → Nn(τ̄ , η)

and

Φ′ : Nn(τ̄ , η) → N ′
2n(τ̄ , η, ψ)

are bijective and satisfy

Ψ ◦ Φ′ = IdNn(τ̄ ,η), Φ′ ◦Ψ = IdN ′
2n(τ̄ ,η,ψ).

The bijection in this theorem is described in the following commutative diagram:

Nn(τ̄ , η, ψ)

Ares(G3n)N ′
2n(τ̄ , η, ψ) � Eτ̄ ,π0

� π0

��

D6n,η

4n,ψ−1 (·)⊗η
����

Ψ=D4n,η
2n,ψ

����
���

���
���

���
���

���
��

�

��
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where Ares(G3n) is the space of residual automorphic forms of G3n(AF ), and the
composition of the vertical map and the horizontal map is Φ′. We also note that
the existence of automorphic representation in Nn(τ̄ , η, ψ) satisfying (1.1) is the
surjectivity of the horizontal map.

As we noted above, Ginzburg–Jiang–Soudry [GJS12] proved similar results for
metaplectic groups when r = 1; namely, τ̄ is an irreducible cuspidal automorphic
representation. In this paper, we shall follow their argument to prove the above
results. We note that in their proof, some results on vanishing and non-vanishing
of Fourier coefficients were crucial (e.g. see [GJS12, Theorem 2.1]). In the present
paper, we also prove similar results on Fourier coefficients using a similar argument
as their proof except for one step. Indeed, in our case, we should study a certain
integral over AE/AF , and it may not be exchanged by other root subgroups using
a root exchange. Then we shall show that its constant term only survives by using
root exchange in a different manner and an observation on an unramified component
(see proof of Theorem 5.2).

Another main purpose of the present paper is to study a fundamental problem in
the representation theory of p-adic reductive groups that is a local converse theorem.
As we remarked above, the irreducibility of global descents for metaplectic groups
and odd special orthogonal groups is already known, and it is a consequence of
the local converse theorem for generic representations by Jiang–Soudry [JS03]. On
the other hand, in this paper, we shall prove a local converse theorem for generic
representations of even unitary groups as an application of the irreducibility of
global descents.

In [JS03], they proved the local converse theorem using the local descents for
a couple of supercuspidal representations. However, in our case, the irreducibility
of the local descents has not been proved yet. Moreover, it does not seem easy to
prove the irreducibility in a similar argument used in the case of metaplectic groups
for a couple of supercuspidal representations (see Soudry–Tanay [ST15, p. 561]). In
order to prove the local converse theorem, we shall prove the irreducibility of local
descents first. In our proof, the following global application of the irreducibility of
global descents plays an important role, which is called the rigidity theorem.

Theorem 1.4. Let σ and σ′ be irreducible ψ−1-generic cuspidal automorphic rep-
resentations of Gn(A). Suppose that σ and σ′ are nearly equivalent; i.e., for almost
all places v of a number field F , σv � σ′

v. Then

σ = σ′.

In particular, the multiplicity one theorem for the generic spectrum holds for Gn.

Using the rigidity theorem, the irreducibility of global descents, and globalization
of supercuspidal representations, we can prove the following irreducibility of local
descents.

Theorem 1.5. Let η0 be a character of (k′)× such that η0|k = ωk′/k. Let τ̄ =
(τ1, . . . , τr) with τi being an irreducible supercuspidal representation of GLni

(k′)
such that τi �� τj if i �= j and L(s, τi,Asai) has a pole at s = 0. Then the explicit

local descent Dη0

ψk′ (τ̄) is an irreducible ψ−1
k′ -generic supercuspidal representation of

Gn(k) (see Section 9.2 for the definition of explicit local descents).
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In our future work, we will extend this result to the case where τi are discrete
series representations using the globalization by Ichino–Lapid–Mao [ILM17, Corol-
lary A.6]. We note that the irreducibility of local descents was studied by Soudry–
Tanay [ST15] when r = 1. They computed several Jacquet modules explicitly and
showed the irreducibility under a certain assumption. In the above theorem, we do
not need any assumption. As a consequence of the above applications and global-
izations of supercuspidal representations, we can prove the following local converse
theorem.

Theorem 1.6. Let k be a non-archimedean local field of characteristic zero and let
k′ be a quadratic extension of k. Let ψk be a non-trivial additive character of k and
define an additive character ψk′ of k′ by ψk′(x) = ψk(

x+x̄
2 ) for x ∈ k′. Here, x �→ x̄

is the non-trivial element of Gal(k′/k). Let π1 and π2 be irreducible ψ−1
k′ -generic

representations of Gn(k) such that

γSh(s, π1 × σ, ψk′) = γSh(s, π2 × σ, ψk′)

holds for any irreducible supercuspidal representation σ of GLi(k
′) with 1 ≤ i ≤ n.

Then

π1 � π2.

Here, local γ-factors are the ones studied in Shahidi [Sh90a] and [Sh90b].

We would like to remark that recently, Zhang [Zh17a], [Zh17b] studied a local
converse theorem for G1 and G2 with respect to local gamma factors defined by
Shimura type integrals. His proof is purely local and he uses Howe vectors as
in the proof of a local converse theorem for GSp4 by Baruch [Ba95]. Further,
we should mention that in our proof of the above theorem, we shall use a local
converse theorem for GL2n(k

′). A local converse theorem for GLm was first proved
by Henniart [He93], and his result needed a twist by supercuspidal representations
of GLi for 1 ≤ i ≤ m − 1. Recently Jacquet and Liu [JL16] and independently
Chai [Ch16] weakened this condition; indeed they proved a local converse theorem
with a twist by supercuspidal representations of GLi for 1 ≤ i ≤ [m2 ].

From our local converse theorem, we obtain a characterization of local base
change lift for supercuspidal representations (see Corollary 9.10), and thus we get
the uniqueness of local Langlands correspondence for even unitary groups in [Mo15].
We also obtain a characterization of (GL2n(k), ωk′/k)-distinguished supercuspidal
representations of GL2n(k

′) in terms of local base change lifts (see Corollary 9.12).
Finally, we would like to mention that in Lapid–Mao [LM16], they used the

theory of global descents in order to reduce their conjecture on Whittaker Fourier
coefficients of automorphic forms on unitary groups to certain local identities as-
suming the irreducibility of global descents and certain properties on local zeta
integrals. Required properties of the local zeta integrals in the assumption were
recently proved by Ben-Artzi–Soudry [BAS]. Further, because of our irreducibility
result, this reduction holds without any assumption. In our future work, we shall
give a rigorous proof of conjectural local identities in [LM16].

This paper is organized as follows. In Section 2, we prepare some notation. In
Section 3, we define some unipotent subgroups. We also define Fourier coefficients
and Fourier-Jacobi coefficients with respect to these unipotent subgroups. In Sec-
tion 4, we firstly construct residual representations of G2n and recall the definition
of global descents. Secondly, we construct several residual representations of G3n
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and G4n. In Section 5, by computing Fourier coefficients explicitly, we shall give
some vanishing and non-vanishing of Fourier coefficients of residual representations.
Using this result, we shall study a global descent of a residual representation of G3n.
In Section 6, we give definitions of certain nearly equivalent classes and their prop-
erties. In Section 7, we give basic identities of double descents, which is crucial to
proving the irreducibility of global descents. Also, we prove a key result, namely
Theorem 7.8. In Section 8, we prove the irreducibility of global descents and its
generalization to certain nearly equivalent sets. In Section 9, we give applications
of the irreducibility of global descents. In Appendix A, we shall show some facts
on unramified representations, which are used to compute Fourier coefficients of
residual representations.

2. Preliminaries

Let F be a number field and let E be a quadratic extension of F . We denote by
x �→ x̄ the action of the non-trivial element of Gal(E/F ). Let us take ι ∈ E such
that ῑ = −ι and E = F (ι). We denote the ring of adeles of F and E by AF and AE ,
respectively. We denote by ωE/F the quadratic character of A×

F /F
× corresponding

to the quadratic extension E.
Let ψF be a non-trivial character of AF /F , and define a character ψ of AE/E

by

ψ(x) = ψF

(
x+ x̄

2

)
.

Further, for a ∈ E×, we define

ψa(x) := ψ(ax), x ∈ AE .

In particular, when a ∈ F×, we have

ψa(x) = ψF

(
a(x+ x̄)

2

)
.

Let Ar be the subgroup of diagonal elements of ResE/FGLr and let Zr be the
subgroup of upper triangular unipotent matrices of ResE/FGLr. Then Pr = ArZr

is the Borel subgroup of ResE/FGLr. Further, for a partition [ni] of r, namely for

positive integers ni such that n1+· · ·+ns = r, let PGL
[ni]

denote the standard parabolic

subgroup of ResE/FGLr whose Levi component is isomorphic to ResE/FGLn1
×· · ·×

ResE/FGLns
.

Define an even unitary group Gn := U(n, n), which is an algebraic group defined
over F such that

Gn(F ) =
{
g ∈ GL(2n,E) : tḡJ−

2ng = J−
2n

}
.

Here, J−
2n is a 2n× 2n skew-symmetric matrix defined by

J−
2n :=

(
0 Jn

−Jn 0

)
,

where Jn is the n× n symmetric matrix defined inductively by

Jn =

(
0 1

Jn−1 0

)
and J1 = (1).

For g ∈ ResE/FGLi, we write

g∗ = Ji
tḡ−1Ji,
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and we define an element of G2m by

ĝ2m :=

⎛⎝g 12m−2k

g∗

⎞⎠ .

For simplicity, we often denote ĝ2m by ĝ.
Let Tn be the group of diagonal matrices in Gn and let T ◦

n be the subgroup of Tn

such that T ◦
n(F ) = Tn(F )∩GL2n(F ). Then Tn is a maximal torus of Gn and T ◦

n is
a maximal F -split torus. Let Bn be the subgroup of upper triangular matrices of
Gn. Then Bn is the Borel subgroup and it has the Levi decomposition Bn = TnUn,
where Un is the subgroup of upper triangular unipotent matrices.

Let us denote by Φ the set of roots associated to (Bn, Tn). For α ∈ Φ, we
denote by Xα the one-parameter subgroup corresponding to α. Further, we denote
the Weyl group NGn

(T )/ZGn
(T ) as W2n and we will fix its representatives for the

elements of the Weyl group.
Let us define several parabolic subgroups of unitary groups. Let Q2k

r be the stan-
dard (non-maximal) parabolic subgroup of Gk whose Levi part M2k

r is isomorphic
to ResE/FGLr

1 ×Gk−r. We denote its unipotent radical by U2k
r .

Let P 2k
r be the standard maximal parabolic subgroup of Gk whose Levi part D2k

r

is isomorphic to ResE/FGLr×Gk−r. We denote its unipotent radical by N2k
r . More

generally, let [ni] = (n1, . . . , nr) be an r-tuple of positive integers and let n be a
positive integer. Then we denote by P[ni],n the standard parabolic of Gn1+···+nr+n

whose Levi component M[ni],n is isomorphic to ResE/FGLn1
×· · ·×ResE/FGLnr

×
Gn. We denote its unipotent radical by V[ni],n.

Let us define L-groups of Gn and ResE/FGLn as follows. Let LGn be the L-
group of Gn which is isomorphic to GL2n(C) � Z2 with the action of non-trivial
element Z2 on GL2n(C) given by

g �→ J2n · tg−1J2n.

Let LResE/FGLn be the L-group of ResE/FGLn, which is isomorphic to (GLn(C)×
GLn(C))�Z2 with the action of non-trivial element σ of Z2 on (GLn(C)×GLn(C))
given by

(g1, g2)
σ = (g2, g1).

Then we define an Asai representation Asai+ of LResE/FGLn by

Asai+(g1, g2)(x) = g1x
tg2 and Asai+(σ)(x) = tx

for x ∈ Matn×n(C). Similarly, we may define another Asai representation Asai− of
LResE/FGLn by

Asai−(g1, g2)(x) = g1x
tg2 and Asai−(σ)(x) = −tx

for x ∈ Matn×n(C). We note that for an irreducible cuspidal automorphic repre-
sentation τ of GLn(AE), we have

L(s, τ ⊗ η,Asai+) = L(s, τ,Asai−)

for any character η of A×
E/E

× such that η|
A

×
F
= ωE/F . Hereafter, we shall simply

write the representation Asai+ by Asai.
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For an automorphic representation (τ, Vτ ) of GLn(AE), we write by τ θ the au-
tomorphic representation of GLn(AE) given by g �→ τ (ḡ) and Vτθ = {g �→ ϕ(ḡ) :
ϕ ∈ Vτ}. Then

L(s, τ ⊗ τ θ) = L(s, τ,Asai)L(s, τ,Asai−).

For an automorphic form ϕ on Gn(A) and a unipotent subgroup U of Gn, we write

CU (ϕ) =
∫
U(F )\U(A)

ϕ(u) du.

Finally, we let Ad(Gn) be the set of all irreducible automorphic representations of
Gn(A) occurring as subrepresentations in the space of square-integrable automor-
phic forms of Gn(A).

3. Fourier coefficients and Fourier-Jacobi coefficients

3.1. Fourier coefficients. Following [CM93], we define unipotent subgroups at-
tached to symplectic partitions. We only need a few kinds of unipotent subgroups.
Hence, for the exposition, we do not give a definition of such unipotent subgroups
in general, but we shall define such unipotent subgroups explicitly in particular
cases.

Let O2r,2(k−r) := [(2r)12(k−r)] be a partition of 2k, i.e.,

2k = 2r +

2(k−r)︷ ︸︸ ︷
1 + · · ·+ 1 .

For any a ∈ F×, let tO2r,2(k−r)
(a) be an element of T ◦

n defined by

tO2r,2(k−r)
(a) = diag(a2r−1, a2r−3, . . . , a, 1, . . . , 1, a−1, . . . a−2r+1).

Let us define a unipotent subgroup of Gk by

V 2k
r

=V[(2r)12(k−r)]

:=〈xα(r) ∈ Xα : tO2r,2(k−r)
(a)xα(r)tO2r,2(k−r)

(a)−1 = xα(a
ir) ⊂ Gk

with i ≥ 2, α ∈ Φ〉.

In matrices, V 2k
r is the unipotent group consisting of the following elements:

(3.1) v = v(u, x, z) =

⎛⎝u x z
12(k−r) x′

u∗

⎞⎠ ∈ Gk,

where u ∈ Zr(F ) and x ∈ Matr×2(k−r)(E) is such that its last row is zero. We note

that this is a subgroup of the unipotent radical U2k
r of the parabolic subgroup Q2k

r .
Let us define characters of V 2k

r . When we write an element of V 2k
r (A) in the

form (3.1), for a ∈ F×, we define

ψV 2k
r ,a(v(u, x, z)) := ψ(u1,2 + · · ·+ ur−1,r + azr,1),

where we note that zr,1 ∈ AF . Under the conjugation by M2k
r (F ), the orbit of

ψV 2k
r ,a is open in the group of characters of V 2k

r /[V 2k
r , V 2k

r ]. Conversely, such a

character of V 2k
r (A) is given by ψV 2k

r ,a for a ∈ F×/NE/F (E
×) up to a conjugation
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by M2k
r (F ). Then for an automorphic representation π of Gk, we define a Fourier

coefficient of ϕπ ∈ π associated to the partition [(2r)12(k−r)] by

Fψ
V 2k
r ,a(ϕπ) :=

∫
V 2k
r (F )\V 2k

r (A)

ϕπ(v)ψ
−1
V 2k
r ,a

(v) dv.

We note that when k = r, V 2k
r is the upper triangular matrices Uk of Gk and

the character ψV 2k
r ,a gives a non-degenerate character of Uk(A):

(3.2) ψ(v1,2 + · · ·+ vk−1,k + avk,k+1), v ∈ V 2k
k (A) = Uk(A).

When no confusion occurs we shall write this character simply by ψa. Then we call

Fψ
V 2k
k

,a(ϕπ) the ψa-Whittaker coefficient of ϕπ, and we say that π is ψa-generic if
ψa-Whittaker coefficients are not identically zero on Vπ.

Similarly, for a partition [(2n)212r] of 4n + 2r, we define a unipotent subgroup
V[(2n)212r] of G2n+r. Then it is the subgroup of G2n+r consisting of the following
matrices: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗ ∗ ∗
12 0 ∗ ∗ ∗

12r 0 ∗ ∗
12 ∗ ∗

. . . ∗
12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To define characters of V[(2n)212r ](A), we identify

(3.3) V[(2n)212r ](F )/[V[(2n)212r ](F ), V[(2n)212r](F )] � Mat2×2(E)n−1×Herm0
2×2(F ),

where

Herm0
2×2(F ) = {A ∈ Mat2×2(E) : −J2A+ tĀJ2 = 0}

=

{(
a b
c ā

)
: a ∈ E, b, c ∈ F

}
.

Then, through the above isomorphism, the Levi subgroup GL2(E)n−1×Gr(F ) acts
on V[(2n)212r ](F )/[V[(2n)212r ](F ), V[(2n)212r ](F )] by

(h1, . . . , hn : g) · (X1, . . . , Xn−1;Y ) = (h1X1h
−1
2 , . . . , hn−1Xn−1h

−1
n ;hnY (h∗

n)
−1).

Here, recall that h∗
n = J2

th̄−1J2. Representatives of generic GL2(E)n−1 × Gr(F )-
orbits on the quotient (3.3) are given by(

12, . . . 12;

(
0 a
b 0

))
, where a, b ∈ F×/NE/F (E

×).

Hereafter, we identify the representative of a class of F×/NE/F (E
×) with its class.

Define a character ψ[(2n)212r];b,a of V[(2n)212r](A) by

ψ[(2n)212r ];b,a(v) = ψ

(
tr

(
X1 + · · ·+Xn +

(
0 a
b 0

)
Y

))
,
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where

(
X1 + · · ·+Xn +

(
0 a
b 0

)
Y

)
is the image of v of the following map:

V[(2n)212r ](A) → V[(2n)212r ](A)/[V[(2n)212r ](A), V[(2n)212r](A)]

� Mat2×2(AE)
n−1 ×Herm0

2×2(A).

For an automorphic form ϕ on G2n+r(A), we define a Fourier coefficient of ϕ asso-
ciated to the partition [(2n)212r] by

Fψ[(2n)212r];b,a(ϕ) =

∫
V[(2n)212r](F )\V[(2n)212r ](A)

ϕ(v)ψ−1
[(2n)212r ];b,a(v) dv.

3.2. Fourier-Jacobi coefficients. Let us recall the definition of Fourier-Jacobi
coefficients.

Let us quickly review the Weil representation (see [GRS11, pp. 8, 9]). Let Y be a
non-degenerate 2n-dimensional anti-Hermitian space with the anti-Hermitian form
( , ). Assume that its Witt index is n; i.e., the dimension of a maximal isotropic
subspace of Y is n over E. Let U(Y ) be the corresponding unitary group.

Define an F -bilinear form

〈, 〉 = 1

2
TrE/F ( , )

on Y . Then it is a non-degenerate symplectic form on Y when we regard Y as a 4n-
dimensional vector space over F . Denote this 4n-dimensional space by Y ′. We may
define the corresponding symplectic group Sp(Y ′), and we have an F -embedding,

U(Y ) ↪→ Sp(Y ′).

Further, we note that the metaplectic cover of Sp(Y ′) splits over U(Y ). Remark
that this splitting is not canonical. Fix a character η of A×

E/E
× such that its restric-

tion to A
×
F is the character ωE/F corresponding to the quadratic extension E/F .

Then we choose the splitting as in Moeglin–Vigneras–Waldspurger [MVW87] and
Kudla [Ku94] corresponding to η. We denote the corresponding Weil representation
of U(Y )(A) �H(Y ′)(A) by ωψ,η. Here, H(Y ′) := Y ′ ⊕ F denotes the Heisenberg
group associated to Y ′ with the multiplication

(3.4) (w, z) · (w′, z′) = (w + w′, z + z′ +
1

2
〈w,w′〉), w, w′ ∈ Y ′, z, z′ ∈ F.

Then its explicit action is given as follows.
We fix a polarization

Y = Y + + Y −,

where Y ± are maximal isotropic subspaces of Y . Hereafter, we shall write any
element of H(Y ′) by (y1, y2; z) with y1 ∈ Y +, y2 ∈ Y −, and z ∈ F . We have for
φ ∈ S(Y +(AE)) (see [GRS11, (1.5)])

ωψ,η((y
+, 0; 0))φ(ξ) = φ(ξ + y),

ωψ,η((0, y
−; 0))φ(ξ) = ψ(2〈ξ, y−〉)φ(ξ),

ωψ,η((0, 0; t))φ(ξ) = ψ(t)φ(ξ),(3.5)

ωψ,η

((
g

g∗

))
φ(ξ) = γψ(NE/F (det g))η(det g)| det g|1/2φ(ξ · g),

ωψ,η

((
1n X

1n

))
φ(ξ) = ψ(〈ξ, ξ ·X〉)φ(ξ),
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where y+ ∈ Y +(AE), y
− ∈ Y −(AE), t ∈ AF , and we write the elements of U(Y )

as
(
a b
c d

)
with a ∈ HomE(Y

+, Y +), b ∈ HomE(Y
+, Y −), c ∈ HomE(Y

−, Y +), and
d ∈ HomE(Y

−, Y −).
Recall that for a ∈ F×, we define ψa(x) = ψF (

a
2 · TrE/F (x)). Then for the Weil

representation ωψa,η and φ ∈ S(An−r
E ), we define the theta function by

θψ
a,η

φ,n−r(vh) :=
∑

ξ∈En−r

ωψa,η(vh)φ(ξ), h ∈ U(Y )(A), v ∈ H(Y ′)(A).

We shall use the matrix form to study Fourier-Jacobi coefficients. We fix a basis
to realize Y � E2n and U(Y ) � Gn. Recall that Q2n

r = M2n
r U2n

r is the standard
parabolic subgroup of Gn whose Levi subgroup M2n

r is isomorphic to ResE/FGLr
1×

Gn−r. Then the map

�n−r : v �→
(
vr,r+1, . . . , vr,2n−r,

1

2
TrE/F (vn,4n−r+1)

)
gives an isomorphism from U2n

r /U2n
r−1 to the Heisenberg group H(E2(n−r)). Define

a character ψU2n
r

of U2n
r (A) by

ψU2n
r
(u) = ψ(u1,2 + · · ·+ ur−1,r).

For an automorphic form ϕ on Gn(A), we define the Fourier-Jacobi coefficient of ϕ
with respect to n− r and ψa by the following integral:
(3.6)

FJψ
a,η

φ,n−r(ϕ)(h) =

∫
U2n

r (F )\U2n
r (A)

ϕ(uh)θψ
a,η−1

φ,n−r (�n−r(u)h)ψU2n
r
(u) du, h∈Gn−r(A).

We know that it defines an automorphic form on Gn−r(A).

Remark 3.1. We note that U2n
r contains the unipotent subgroup V[(2r)12(k−r)].

In particular, the Fourier-Jacobi coefficient FJψ
a,η

φ,n−r(ϕ)(1) contains the Fourier-

coefficient Fψ
V 2k
r ,a(ϕ) as an inner integral.

4. Certain residual representations

Let us construct some residual representations and define global descents. Let
τi be an irreducible unitary cuspidal automorphic representation of GLni

(AE) (1 ≤
i ≤ r) such that 2n = n1 + · · · + nr, τi �� τj if i �= j and L (s, τi,Asai) has a pole
at s = 1. Then we write τ̄ = (τ1, . . . , τr), and we regard τ̄ as an automorphic
representation of

∏r
i=1 GLni

(AE). Consider the parabolic induction

I(τ̄ , s̄) := Ind
G2n(A)
P[ni]

(A)(τ1| det |
s1
E ⊗ · · · ⊗ τr| det |srE ),

where s̄ := (s1, . . . , sr) ∈ Cr and P[ni] := P[ni],0 is the standard parabolic subgroup
of G2n whose Levi component is isomorphic to ResE/FGLn1

× · · · × ResE/FGLnr
.

Then for a holomorphic section fτ̄ ,s̄ ∈ I(τ̄ , s̄), we form an Eisenstein series on
G2n(A) by

E(h, fτ̄ ,s̄) :=
∑

γ∈P[ni]
(F )\G2n(F )

fτ̄ ,s̄(γh),

which converges absolutely for Re(si) � 0 and has a meromorphic continuation
to Cr (Langlands [La76]). Then by [GRS11, Theorem 2.1], this Eisenstein series
has a pole at s̄ = ( 12 , . . . ,

1
2 ) for some fτ̄ ,s̄, and we write Eτ̄ for the automorphic
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representation of G2n(A) generated by these residues. We note that Eτ̄ is square-
integrable and irreducible.

Now, let us recall the definition of the global descents. Let π be an automorphic
representation of Gn(A). Then we denote by D2n,η

2(n−r),ψa(π) the automorphic repre-

sentation of Gn−r(A) generated by all Fourier-Jacobi coefficients FJψ
a,η

φ,n−r(ϕπ) for

ϕπ ∈ π and φ ∈ S(An−r
E ).

Theorem 4.1 ([GRS11, Theorem 3.1]). The global descent D4n,η
2n,ψ(Eτ̄ ) from G2n(A)

to Gn(A) of Eτ̄ is a direct sum of irreducible cuspidal ψ−1-generic automorphic
representations which weakly lift to (τ1 ⊗ η−1)� · · ·� (τr ⊗ η−1).

Let us define a residual automorphic representation of G3n(A). First, let us
recall the following result on the functoriality of generic cuspidal automorphic rep-
resentations of Gn(A).

Theorem 4.2 (Theorems 1.1 and 8.10 in [KK05]). Let π be an irreducible cuspidal
automorphic representation of Gn(A) which is ψ−1-generic. Then there is a base
change lift of π to GL2n(AE), and it is written as (τ1 ⊗ η−1) � · · · � (τr ⊗ η−1),
where τi is an irreducible unitary cuspidal automorphic representation of GLni

(AE)
such that τi �� τj if i �= j and L(s, τi,Asai) has a simple pole at s = 1. Thus the
residual representation Eτ̄ exists for such τ̄ = (τ1, . . . , τr).

The above theorem should hold for cuspidal automorphic representations which
have a tempered A-parameter (see [Mo15]). We note that it can be non-generic.
When we study the non-generic case, we assume the following.

Assumption 1. Let π be an irreducible cuspidal automorphic representation of
Gn(A). Then it has a base change lift to an irreducible isobaric automorphic repre-
sentation �r

i=1(τi ⊗ η−1) of GL2n(AE) such that τi �� τj if i �= j and L(s, τi,Asai)
has a simple pole at s = 1. In this case, we can also construct the residual repre-
sentation Eτ̄ .

Let τ̄ and π be as in Assumption 1 or Theorem 4.2. Then we consider the
parabolic induction

Ind
G3n(A)
P[ni],n

(A)(τ1| det |
s1
E ⊗ · · · ⊗ τr| det |srE ⊗ π), si ∈ C,

where P[ni],n is the standard parabolic subgroup of G3n whose Levi component
M[ni],n is isomorphic to ResE/FGLn1

× · · · × ResE/FGLnr
×Gn. Then for a holo-

morphic section fτ̄ ,π,s̄(·) in the above parabolic induction, we define an Eisenstein
series on G3n(A) by

E(h, fτ̄ ,π,s̄) :=
∑

γ∈P[ni],n
(F )\G3n(F )

fτ̄ ,π,s̄(γh),

which converges absolutely for Re(si) � 0 and has a meromorphic continuation to
Cr (Langlands [La76]).

Lemma 4.3. Let τ̄ and π be as in Assumption 1 (or as in Theorem 4.2 when π is
ψ−1-generic). Then the function

s̄ �→ (s1 − 1) · · · (sr − 1)E(h, fτ̄ ,π,s̄)

is holomorphic at s̄ = 1. Moreover, for some fτ̄ ,π,s̄, the residue is non-trivial. We
write the representation of G3n(A) generated by these residues as Eτ̄ ,π.



THE IRREDUCIBILITY OF GLOBAL DESCENTS AND APPLICATIONS 6257

Proof. We shall prove this lemma by a similar argument as in the proof of [GRS11,
Theorem 2.1]. First, suppose that r = 1; namely τ̄ = τ is cuspidal. Then since
P2n,n is a maximal parabolic subgroup, we know that constant terms of E(h, fτ,π,s)
along N6n

k are zero except for k = 2n. In the case k = 2n, the constant term is
written as

CN6n
2n
(E(·, fτ,π,s))(g) = fτ,π,s(g) +M(w0)(fτ,π,s)(g),

where M(w0) is the intertwining operator corresponding to the Weyl element

w0 =

⎛⎝ 12n
12n

−12n

⎞⎠ .

Then the normalizing factor of M(w0)(fτ̄ ,π,s̄)(g) (outside a finite set S of places) is

LS(s, τ × π∨)

LS(s+ 1, τ × π∨)
· LS(2s, τ,Asai)

LS(2s+ 1, τ,Asai)
.

Note that we have

LS(s, τ × π∨) = LS(s, τ,Asai−)LS(s, τ,Asai).

Since LS(s, τ,Asai) has a simple pole at s = 1 and LS(s, τ,Asai−) is holomorphic
and does not vanish at s = 1, LS(s, τ × π∨) has a simple pole at s = 1. Further,
remaining L-functions are holomorphic and non-zero at s = 1. Hence,

s �→ (s− 1)E(h, fτ,π,s)

is holomorphic at s = 1, and it is non-trivial for some fτ,π,s.
Suppose that r > 1. Let {na(1), . . . , na(l)} be a subset of {n1, . . . , nr}. We write

τ̄ ′ = (τa(1), . . . , τa(l)) and s̄′ = (sa(1), . . . sa(l)). Then we consider an Eisenstein
series E(h, fτ̄ ′,π,s̄′) on Gm(a)+n(A) corresponding to the parabolic induction

Ind
G(n+m(a))(A)

P[ni]
′,n(A)

(τa(1)| det |sa(1) ⊗ · · · ⊗ τa(l)| det |sa(l) ⊗ π),

where m(a) = na(1) + · · · + na(l) and [ni]
′ is the corresponding partition of m(a).

Let us study constant terms of E(h, fτ̄ ′,π,s̄′).

By [MW95, II.1.7], for g ∈ D
2(n+m(a))
k (A),

(4.1) C
N

2(n+m(a))
k

(E(·, fτ̄ ′,π,s̄))(g) =
∑

w∈W[ni],k

E
D

2(n+m(a))
k

(g,M(w)fτ̄ ′,π,s̄),

where

W[ni]′,k

=

⎧⎪⎨⎪⎩w ∈ W3n :

(i)w(α) > 0 for all positive roots α inside M[nj ]′,2n,

(ii)w−1(α) > 0 for all positive roots α inside D
2(n+m(a))
k ,

(iii)wM[nj ]′,2nw
−1 is a standard Levi subgroup of D

2(n+m(a))
k

⎫⎪⎬⎪⎭

(4.2)

and E
D

2(n+m(a))
k

(g,M(w)fτ̄ ′,π,s̄′) denotes the Eisenstein series on D
2(n+m(a))
k (A)

defined by the section M(w)fτ̄ ′,π,s̄|D2(n+m(a))
k

which lies in the parabolic induction

(4.3) Ind
D

2(n+m(a))(A)
k (A)

Q[ni]
′,D

(τ1| det |s1E ⊗ · · · ⊗ τa(l)| det |
sa(l)

E ⊗ π)w
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with the standard parabolic subgroup Q[ni]′,D of D
2(n+m(a))
k whose Levi part is

wM[nj ]′,2nw
−1. Then as in [GRS11, p. 33], we may decompose w ∈ W[ni]′,k into

the form

w = w1w2w3

where

w1 =

⎛⎜⎜⎜⎜⎝
1na(1)+···+na(i−1)

ω
1

ω∗

1na(1)+···+na(i−1)

⎞⎟⎟⎟⎟⎠
with

ω =

(
1na(i)

1na(i+1)

)
,

w2 =

⎛⎝1na(1)+···+na(i−1)

μ
1na(1)+···+na(i−1)

⎞⎠
with

μ =

⎛⎝ 1na(i)+···+na(k)

12n
1na(i)+···+na(k)

⎞⎠ ,

and w3 is a certain Weyl element contained in D
2(n+m(a))
2n (F ) which preserves

M
2(n+m(a))
[ni]′,2n

. Before proceeding with the proof, we note that in the case of l = 1,

we can show that

(sa(1) − 1)E
D

2(n+m(a))
k

(g,M(w)fτ̄ ′,π,s̄′)

is holomorphic at s̄′ = 1 as in the case of r = 1.
In order to study the analytic properties of each Eisenstein series in (4.3), we

shall first study the analytic behavior of the intertwining operator M(w). First, we
note that

M(w) = M(w1) ◦M(w2) ◦M(w3).

Then from the definition of w3, [GRS11, Lemma 2.1] shows that M(w3)(fτ̄ ′,π,s̄) is
holomorphic at s̄′ = 1.

Let us consider M(w2) ◦ M(w3)(fτ̄ ′,π,s̄′). From the decomposition [GRS11,
(2.56)] of M(w2), in a similar argument as [GRS11, p. 35] we can reduce an analytic
behavior of M(w2)◦M(w3)(fτ̄ ′,π,s̄′) to the case M(w[a(i)])◦M(w3)(fτ̄ ′,π,s̄′) where

w[a(i)] =

⎛⎜⎜⎜⎜⎝
1na(1)+···+na(i−1)

1na(i)

1
1na(i)

1na(1)+···+na(i−1)

⎞⎟⎟⎟⎟⎠ .

Then (sa(i) − 1)M(w[a(i)]) ◦M(w3)(fτ̄ ′,π,s̄′) is holomorphic at s̄′ = 1 by the same
argument as in the case of r = 1. Then the argument in [GRS11, p. 35] shows that

q∏
j=p

(sa(ij) − 1)M(w2) ◦M(w3)(fτ̄ ′,π,s̄′) is holomorphic at s̄′ = 1
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with 1 ≤ p ≤ q ≤ l. Here, p and q are integers such that M(w) maps the original
inducing data to define the parabolic induction (4.3) to the inducing data⎛⎝p−1⊗

j=1

τa(ij)| det |
sa(ij)

⎞⎠⊗ τa(ip)| det |
−sa(ip) ⊗ · · · ⊗ τa(iq)| det |

−sa(iq)

⊗

⎛⎝ l⊗
j=q+1

τa(ij)| det |
sa(ij )

⎞⎠⊗ π.

We note that the case p = 1 and q = l corresponds to the Weyl element

wl
0 =

⎛⎝ 1na(1)+···+na(l)

12n
−1na(1)+···+na(l)

⎞⎠ .

Finally, by the argument in the case of r = 1, we see that

Fτ̄ ′,π,s̄′ :=

q∏
j=p

(sa(ij) − 1)M(w1) ◦M(w2) ◦M(w3)(fτ̄ ,π,s̄) is holomorphic at s̄′ = 1.

Let us consider the Eisenstein series

E
D

2(n+m(a))
k

(g, Fτ̄ ′,π,s̄′).

As in [GRS11, pp. 36, 37], we may write this Eisenstein series as a finite sum of auto-
morphic forms of the form EGL×EG where EGL (resp EG) is an Eisenstein series on
GLna(i1)+···+na(ip−1)

(AE) (resp. Gn+na(iq+1)+na(il)
(A)) defined by the induced repre-

sentation corresponding to
⊗p−1

j=1 τa(ij)| det |
sa(ij) (resp.

(⊗l
j=q+1 τa(ij)| det |

sa(ij )

)
⊗

π). Since na(iq+1) + na(il) ≤ m(a), in an inductive argument, we can show that

(sa(q+1) − 1) · · · (sa(l) − 1)EG

is holomorphic at s̄′ = 1, and EGL is holomorphic at the same point by [GRS11,
Lemma 2.1]. Therefore,

l∏
j=p

(sa(ij) − 1)E
D

2(n+m(a))
k

(g,M(w)(fτ̄ ,π,s̄))

is holomorphic.
Suppose that l = r. As a consequence of the above argument, we see that unless

w = wr
0 (and thus k = 2n and p = 1),

r∏
i=1

(si − 1)ED6n
k
(g,M(w)fτ̄ ′,π,s̄)

is zero. In this case, the corresponding term in (4.1) is

ED6n
2n
(g,M(wr

0)fτ̄ ,π,s̄),

which is the Eisenstein series on D6n
2n(A) � GL2n(AE) × Gn(A) associated to

M(wr
0)fτ̄ ,π,s̄. Indeed, it is an Eisenstein series corresponding to the parabolic in-

duction Ind
GL2n(AE)

PGL
[ni]

(τ1| det |−s1 ⊗ · · · ⊗ τr| det |−sr)⊗ π.
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It is easy to see that the normalizing factor of M(wr
0) outside S is given by

r∏
i=1

LS(si, τi × π∨)

LS(si + 1, τi × π∨)
·

r∏
i=1

LS(2si, τi,Asai)

LS(2si + 1, τi,Asai)
.

Then, as in the case of r = 1, we see that the product of this function with∏r
i=1(si − 1) is non-trivial at s̄ = 1. In summary,

∏r
i=1(si − 1)E(h, fτ̄ ,π,s̄) is

holomorphic, and it is non-trivial at s̄ = 1 for some fτ̄ ,π,s̄. �

For s0 ∈ C and s0 = (s0, . . . , s0) ∈ Cr, we define automorphic representations
E(τ̄ , s̄0) of GL2n(AE) as follows. For a holomorphic section fGL

τ̄ ,s̄ of the induced

representation Ind
GL2n(AE)

PGL
[ni]

(τ1| det |s1⊗· · ·⊗τr| det |sr ), we form an Eisenstein series

E(h, fGL
τ̄ ,s̄ ) =

∑
γ∈PGL

[ni]
(F )\GL2n(E)

fGL
τ̄ ,s̄ (γh),

which converges absolutely for Re(si) � 0 and has a meromorphic continuation to
Cr (Langlands [La76]). Then we define an automorphic representation of GL2n(AE)
by

E(τ̄ , s0) =
〈
E(·, fGL

τ̄ ,s̄ ) : f
GL
τ̄ ,s̄ such that E(h, fGL

τ̄ ,s̄ ) is holomorphic at s̄ = s0
〉
.

We note that this space may be zero. By the computation in [Sh10, Chapter 7],
we can determine whether E(τ̄ , s0) is zero or not by an analytic behavior of certain
L-functions. We note that in [GRS11, Lemma 2.1], they give a sufficient condition
so that the Eisenstein series E(τ̄ , s̄) becomes holomorphic at s = s0. We can easily
show that this space is not zero if∏

i<j

L(si − sj , τi × τ∨j )

is holomorphic and non-zero at s̄ = s0. Hence, this is equivalent to τi �� τj for
i �= j. From our assumption on τ̄ , E(τ̄ , s0) is non-zero. We also note that in this
case, any non-zero automorphic form in this space is generic.

From the proof of the above lemma, we obtain the following relation.

Corollary 4.4. Let τ̄ and π be as in the previous lemma. Then we have

CN6n
2n
(Eτ̄ ,π) ⊂

(
δ

1
2

P 6n
2n

· E (τ̄ ,−1)
)
⊗ π

as automorphic representations of GL2n(AE)×Gn(A).

Proof. We note that for ξτ̄ ,π ∈ Eτ̄ ,π, we have

CN6n
2n
(ξτ̄ ,π) = lim

si→1

r∏
i=1

(si − 1)ED6n
2n
(g,M(wr

0)fτ̄ ,π,s̄)

= lim
si→1

ED6n
2n

(
g,

r∏
i=1

(si − 1)M(wr
0)fτ̄ ,π,s̄

)
.

Since M(wr
0)fτ̄ ,π,s̄ ∈ Ind

GL2n(AE)

PGL
[ni]

(τ1| det |−s1 ⊗ · · · ⊗ τr| det |−sr) ⊗ π, our claim

follows from the above equation. �

Finally, we construct a residual representation of G4n(A) given by non-cuspidal
representations.
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Definition 4.5. Let τ̄ be as above. Then we say that an irreducible cuspidal
automorphic representation π of G2n(A) is a CAP representation with respect to
the CAP-datum

(GL2n, τ̄ ,
1

2
)

if at almost all finite places v where the local components Πv and τi,v are unramified,
Πv is isomorphic to the unramified irreducible constituent of

Ind
G2n(Fv)
P[ni]

(Fv)
(τ1,v| det |

1
2

E ⊗ · · · ⊗ τr,v| det |
1
2

E).

More generally, if Π ∈ Ad(G2n) (possibly non-cuspidal) satisfies this condition, we
also say that Π is of type (GL2n, τ̄ ,

1
2 ).

Let τ̄ be as above and let Π ∈ Ad(G2n) be of type (GL2n, τ̄ ,
1
2 ). We consider the

Eisenstein series on G4n(A) given by

E(h, fτ̄ ,Π,s̄) =
∑

γ∈P[ni],2n
(F )\G4n(F )

fτ̄ ,Π,s̄(γg), g ∈ G4n(A),

where fτ̄ ,Π,s̄ is a holomorphic section of

Ind
G4n(A)
P[ni],2n

(A)(τ1| det |
s1 ⊗ · · · ⊗ τr| det |sr ⊗Π).

This series converges absolutely for Re(si) � 0 and has a meromorphic continuation
to Cr (Langlands [La76]).

Proposition 4.6. Let τ̄ and Π be as above. Then the function

s̄ �→
(
s1 −

3

2

)
· · ·
(
sr −

3

2

)
E(h, fτ̄ ,Π,s̄)

is holomorphic at s̄ = 3
2 ·1, and its residue is non-trivial for some fτ̄ ,Π,s̄. Let us de-

note by Eτ̄ ,Π the automorphic representation of G4n(A) generated by these residues.
Moreover we have, as spaces of automorphic representations of GL2n(AE)×G2n(A),

CN8n
2n
(Eτ̄ ,Π) ⊂

(
δ

1
2

P 8n
2n

· E
(
τ̄ ,−3

2
· 1
))

⊗Π.

Proof. We use the same argument as in the proof of Lemma 4.3 (see also the proof of
[GRS11, Theorem 2.1]). Suppose that r = 1. We know that CN8n

k
(E(·, fτ,Π;s))(g) =

0 unless k = 2n and

CN8n
2n
(E(·, fτ,Π;s))(g) =

∑
w∈W2n,8n

∫
(wN8n

2n (F )w−1∩N8n
2n (F ))\N8n

2n (A)

fτ,Π;s(w
−1ng) dn,

where W2n,8n is a subset of the Weyl group W8n given as in (4.2). Then the longest
Weyl element in W2n,8n is given by

w̃0 =

⎛⎝ 12n
14n

12n

⎞⎠ ∈ G4n(F ).

We note that the constant term of Π along a parabolic subgroup P0 ⊂ G2n is zero
except for P0 = P 4n

2n . Then by the cuspidality of τ and this fact, we may rewrite
this constant term as

fτ,Π;s(g) +M(w̃0)fτ,Π;s(g) +
∑
w

∫
(wP 8n

2n (F )w−1∩N8n
2n (F ))\N8n

2n (A)

fτ,Π;s(w
−1ng) dn,
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where w ranges over an element in W2n,8n such that P 8n
2n (F ) ∩ w−1N8n

2n (F )w =
N4n

2n (F ). Each term in the last part is written as∫
wN4n

2n (F )w−1\N8n
2n (A)

fτ,Π;s(w
−1ng) dn

=

∫
N4n

2n (A)\w−1N8n
2n (A)w

∫
N4n

2n (F )\N4n
2n (A)

fτ,Π;s(nw
−1ug) dn du.

The inner integral is the constant term of Π, and thus it is easy to see that this
integral is holomorphic at s = 3

2 . On the other hand, the normalizing factor of
M(w̃0)fτ,Π;s(g) is given by

LS(s,Π∨ × τ )

LS(s+ 1,Π∨ × τ )
× LS(2s, τ,Asai)

LS(2s+ 1, τ,Asai)
.

Since Π is of type (GL2n, τ,
1
2 ), this is equal to

LS(s+ 1
2 , τ × τ∨)LS(s− 1

2 , τ × τ∨)

LS(s+ 1
2 , τ × τ∨)LS(s+ 3

2 , τ × τ∨)
× LS(2s, τ,Asai)

LS(2s+ 1, τ,Asai)
.

We know that LS(s − 1
2 , τ × τ∨) has a pole at s = 3

2 and remaining factors are

holomorphic and non-zero at s = 3
2 . Therefore, M(w̃0)fτ,Π,s̄ has a pole at s = 3

2 ,

and thus (s− 3
2 )E(·, fτ,Π;s) is holomorphic and non-zero at s = 3

2 . Finally, we note
that the last assertion follows as in the proof of Corollary 4.4.

Suppose that r > 1. We know that

CN8n
k
(E(·, fτ̄ ,Π,s̄))(g) =

∑
w∈W[ni],k,8n

ED4n
k
(g,M(w)fτ̄ ,Π,s̄),

where W[ni],k,8n is a subset of the Weyl group W8n given as in (4.2) and

ED4n
k
(g,M(w)fτ̄ ,Π,s̄) is a certain Eisenstein series of D4n

k . Then as in the proof

of Lemma 4.3 using the case of r = 1, we see that only the term corresponding to
w̃0 contributes to the residue. We note that in this case, we should have k = 2n.
Further, the normalizing factor of M(w̃0)fτ̄ ,Π,s̄ is∏

i<j

LS(si + sj , τi × τ∨j )

LS(si + sj + 1, τi × τ∨j )

∏
i

(
LS(si,Π

∨ × τi)

LS(si + 1,Π∨ × τi)
× LS(2si, τi,Asai)

LS(2si + 1, τi,Asai)

)
.

Since Π is of type (GL2n, τ̄ ,
1
2 ), this is equal to∏

i<j

LS(si + sj , τi × τ∨j )

LS(si + sj + 1, τi × τ∨j )
×
∏
i,j

LS(si +
1
2 , τi × τ∨j )L

S(s− 1
2 , τi × τ∨j )

LS(si +
1
2 , τi × τ∨j )L

S(s+ 3
2 , τi × τ∨j )

×
∏
i

LS(2si, τi,Asai)

LS(2si + 1, τi,Asai)
.

Then
∏r

i=1 L
S(si − 1

2 , τi × τ∨i ) has a pole at s̄ = 3
2 · 1, and remaining factors are

holomorphic and non-zero at s̄ = 3
2 · 1. Therefore,(

s1 −
3

2

)
· · ·
(
sr −

3

2

)
E(·, fτ̄ ,Π,s̄)

is holomorphic, and it is non-zero at s̄ = 3
2 · 1 for some fτ̄ ,Π,s̄. The remaining part

is also proved as in the proof of Lemma 4.3 and Corollary 4.4. �
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5. Vanishing and non-vanishing of Fourier coefficients

In this section, we shall study Fourier coefficients and Fourier-Jacobi coeffi-
cients of residual representations. Indeed, we give some vanishing results and non-
vanishing results on these coefficients. Further, using these results, we shall study
certain descent maps of G3n.

The following useful lemma is proved in the same way as [GRS03, Lemma 1.1]
(see also [JL15, Corollary 2.6]).

Lemma 5.1. Let ϕ be an automorphic form on Gk(A). Then the following condi-
tions are equivalent:

(1) ∫
V 2k
r (F )\V 2k

r (A)

ϕ(vg)ψV 2k
r ,a(v) dv = 0

for all g ∈ Gk(A),
(2) ∫

Y (F )\Y (A)

∫
V 2k
r (F )\V 2k

r (A)

ϕ(vyg)ψV 2k
r ,a(v) dv dy = 0

for all g ∈ Gk(A),
(3) ∫

U2k
r (F )\U2k

r (A)

ϕ(ug)θψ
a,η

φ,k−r(�k−r(u))ψU2k
r
(u) du = 0

for all g ∈ Gk(A).

Here, Y is a maximal abelian subgroup of U2k
r /V 2k

r . Similarly, for an automorphic
form ϕ G2n+r(A) and any a, b ∈ F×, the following conditions are equivalent:

(1) ∫
V[(2n)212r ](F )\V[(2n)212r ](A)

ϕ(vg)ψV[(2n)212r ];b,a
(v) dv = 0

for all g ∈ Gk(A),
(2)∫

Y0(F )\Y0(A)

∫
V[(2n)212r](F )\V[(2n)212r ](A)

ϕ(yvg)ψV[(2n)212r ];b,a
(v) dv dy = 0

for all g ∈ Gk(A).

Here, V ′
[(2n)212r ] is the unipotent radical of the standard parabolic subgroup of G2n+r

whose Levi part is isomorphic to ResE/FGLn
2 × Gr, and Y0 is a maximal abelian

subgroup of V ′
[(2n)212r ]/V[(2n)212r ].

In the second case, we may give an equivalent condition in terms of Fourier-
Jacobi coefficient as in the first case. Since these two conditions are sufficient for
our purpose, we only give here an equivalence of these two conditions.

Now, let us prove a crucial result on vanishing and non-vanishing of Fourier
coefficients on a residual representation. We shall prove the following theorem in a
similar way as the proof of [GJS12, Theorem 2.1] except for one step as explained
in the Introduction.
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Theorem 5.2. Let τ̄ and π be as in Assumption 1 or Theorem 4.2 when π is ψ−1-

generic. Then for all l such that n < l ≤ 3n and any a ∈ F×, Fψ
V 6n
l

,a
is zero on

the residual representation Eτ̄ ,π. Moreover, for all a ∈ F×, the Fourier coefficient

FψV 6n
n

,a
is non-trivial on Eτ̄ ,π.

Proof. Let π0 be an irreducible subquotient of Eτ̄ ,π. Let v be a place of F such that
π0,v is unramified. Then π0,v is the unramified quotient of the induced representa-
tion

Ind
G3n(Fv)

P 6n
2n

(τv| det |E ⊗ πv),

where τv is the local functorial lift of πv to GL2n(Ev). Then from Lemma A.3, it
does not have a linear functional � on Vπ0,v

such that �(π0,v(u)w) = ψV 6n
l

(u)�(w)

for any u ∈ V 6n
l (Fv). Hence, the Fourier coefficient Fψ

V 6n
l

,a
is zero on π0, and thus

this Fourier coefficient is zero on Eτ̄ ,π.
Let us prove a non-triviality of the Fourier coefficient FψV 6n

n
,a

on Eτ̄ ,π. Because
of Lemma 5.1, for ξτ̄ ,π ∈ Eτ̄ ,π, the non-vanishing of

FψV 6n
n

,a
(ξτ̄ ,π) =

∫
V 6n
n (F )\V 6n

n (A)

ξτ̄ ,π(v)ψV 6n
n ,a(v) dv

is equivalent to the non-vanishing of

FψṼ 6n
n

,a
(ξτ̄ ,π) =

∫
Ṽ 6n
n (F )\Ṽ 6n

n (A)

ξτ̄ ,π(v)ψṼ 6n
n ,a(v) dv,

where Ṽ 6n
n is the group consisting of the following elements in G3n(F ):

v(u, x, z) =

⎛⎝u x z
14n x′

u∗

⎞⎠
where u ∈ Zn(F ) (recall that this is the group of upper unipotent matrices of
GLn(E)), x ∈ Matn×4n(E) is such that xn,1 = · · · = xn,3n = 0, and

ψṼ 6n
n ,a(v(u, x, z)) = ψ(u1,2 + · · ·+ un−1,n + azn,1).

Clearly, the non-triviality of this Fourier coefficient follows from the non-triviality
of the following Fourier coefficient on the residual representation Eτ̄ ,π:
(5.1)∫

V 4n
n (F )\V 4n

n (A)

∫
Ṽ 6n
n (F )\Ṽ 6n

n (A)

ξτ̄ ,π(vv1)ψṼ 6n
n ,a(v)ψṼ 4n

n ,−a(v1) dv dv1, ξτ̄ ,π ∈ Eτ̄ ,π.

Here we regard a subgroup of G2n as a subgroup of G3n via the embedding

g �→

⎛⎝1n g
1n

⎞⎠ .

Let ω̃ be a Weyl element of GL2n(E) defined by

ω̃2i,i = ω̃2i−1,i+n = 1, i = 1, . . . , n,

ω̃i,j = 0 otherwise.

Put

(5.2) ω =

⎛⎝ω̃ 12n
ω̃∗

⎞⎠ ∈ G3n(F ).
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Let R = V 4n
n V̄ 6n

n , and consider

B = ωRω−1.

Then the integral (5.1) is written as

(5.3)

∫
B(F )\B(A)

ξτ̄ ,π(vω)χψ,a(v) dv.

Here, B denotes the group consisting of the following elements of G3n:

(5.4) v(T,C, Z) =

⎛⎝T C Z
12n C ′

T ∗

⎞⎠ ,

where the last two rows of C are zero and T ∈ GL2n(E) such that when we write
T as an n× n matrix of 2× 2 block matrices T = ([T ]i,j), 1 ≤ i, j ≤ n,

(1) [T ]n,1 = · · · = [T ]n,n−1 = 0, [T ]n,n = 12;
(2) [T ]i,i is lower unipotent, for i < n;
(3) [T ]i,j is lower triangular, for i < j;
(4) [T ]i,j is lower nilpotent, for j < i < n.

With this notation, χψ,a is the character of B(A) given by

ψ (tr ([T ]1,2 + [T ]2,3 + · · ·+ [T ]n−1,n) + a(Z2n,1 − Z2n−1,2)) .

Then applying the exact same argument in [GJS12, pp. 965–968], we can show that
the integral (5.3) is equal to

(5.5)

∫
Y (A)

∫
L(F )\L(A)

ξτ̄ ,π(vyω)ψ
′
L,a(v) dv,

where Y is the subgroup of lower unipotent matrices in B, L = V[(2n)212n], and
ψ′
L,a = ψ[(2n)212n];a,−a. Further, from [GRS11, Corollary 7.2], for a given ξτ̄ ,π ∈

Eτ̄ ,π, there is ξ′τ̄ ,π such that∫
Y (A)

∫
L(F )\L(A)

ξτ̄ ,π(vyhω)ψ
′
L,a(v) dv dy =

∫
L(F )\L(A)

ξ′τ̄ ,π(vyh)ψ
′
L,a(v) dv.

Let

b =

(
1 −1
1 1

)
and define

(5.6) b̂ = diag(b, . . . , b, 12n, b
∗, . . . , b∗) ∈ G3n(F ).

Then we may write

Fψ[(2n)212n];a,−a(ξτ̄ ,π) =

∫
L(F )\L(A)

ξτ̄ ,π(vb̂)ψL,a(v) dv,

where ψL,a is the character given by v �→ ψ′
L,a(b̂

−1vb̂). We write an element of the
unipotent subgroup L in the form

(5.7) v(A,C,Z) =

⎛⎝A C Z
12n C ′

A∗

⎞⎠
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where the last two rows of C are zero, and when we write A as an n× n matrix of
2× 2 blocks, A should be of the form

A =

⎛⎜⎜⎜⎜⎜⎜⎝

12 A1,2 · · · · · · A1,n

12 · · · · · · A2,n

...
. . . An−1,n

12

⎞⎟⎟⎟⎟⎟⎟⎠ .

Let L′ be the subgroup consisting of v(A,C,Z) with A as above and C such that

only its last row is zero. Then by the second case of Lemma 5.1, Fψ[(2n)212n];a,−a(ξτ̄ ,π)
is not identically zero on Eτ̄ ,π if and only if the integral

(5.8) FψL′,a(ξτ̄ ,π) =

∫
L′(F )\L′(A)

ξτ̄ ,π(v)ψL′,a(v) dv

is not identically zero on Eτ̄ ,π. Here, ψL′,a(v) is the character defined as in the
definition of ψL,a.

Let ν be the Weyl element in G2n(F ) defined as in [GJS12, p. 970]:

νi,2i−1 = 1, i = 1, . . . , 2n,

ν2n+i,2i = −1, i = 1, . . . , n,

ν2n+i,2i = 1, i = n+ 1, . . . , n,

νi,j = 0 otherwise.

Write

ν =

(
ν1 ν2
ν3 ν4

)
where νi are 2n× 2n matrices, and let

(5.9) ν′ =

⎛⎝ν1 ν2
12n

ν3 ν4

⎞⎠ .

Define

B′ = ν′L′(ν′)−1.

Then elements in B′ have the following form:

(5.10) v =

⎛⎜⎜⎜⎜⎝
u1 u2 c z1 z2
0 u3 0 0 z′1
0 d′ 12n 0 c′

y1 y2 d u∗
3 u′

2

0 y′1 0 0 u∗
1

⎞⎟⎟⎟⎟⎠ ∈ G3n,

where u1, u3 (and also u∗
1, u

∗
3) are n × n upper unipotent, z1, y1 (and also z′1, y

′
1)

are upper nilpotent, the last row of d is zero, and the first column of d′ is zero. We
have

(5.11) FψL′ ,a(ξτ,π) =

∫
B′(F )\B′(A)

ξτ,π(vν
′)ψB′,a(v) dv

where

(5.12) ψB′,a(v) = ψ((u1)1,2 + (u1)n−1,n − a(u2)n,1 − (u3)1,2 − · · · − (u3)n−1,n).
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Lemma 5.3. The right-hand side of (5.11) is equal to

(5.13)

∫
L0(A)

∫
V 6n
2n (F )\V 6n

2n (A)

ξτ,π(vyν
′)ψ′

a(v) dv dy,

where L0 is the group consisting of lower unipotent matrices in B′, and the character
ψ′
a(v) is the character of V 6n

2n (A) defined by the same formula of (5.12).

Proof. Before proceeding with a proof, we note that in the proof of this lemma,
we will encounter an essentially different part (e.g., see (5.19)) from the proof of
[GJS12, Theorem 2.1].

Let

Z2n = v(Z2n, 0, 0) ⊂ B′.

Here, recall that Z2n denotes the group of upper triangular unipotent matrices in
ResE/FGL2n. Define 1 ≤ i ≤ j ≤ 2n such that i+ j �= 2n+ 1,

Xi,j ={v(I2n, 0, tei,j + t̄e2n+1−j,2n+1−i) : t ∈ ResE/FGa},
Yi,j ={v̄(I2n, 0, tei,j + t̄e2n+1−j,2n+1−i) : t ∈ ResE/FGa},

where v(A,C,Z) is as in (5.7), and

v̄(A,C,Z) =

⎛⎝AC 12n
Z C ′ A∗

⎞⎠ ∈ G3n, A ∈ ResE/FGL2n.

Further, for 1 ≤ i ≤ 2n, define

Xi,2n+1−i = {v(I2n, 0, tei,2n+1−i : t ∈ Ga}
and

Yi,2n+1−i = {v̄(I2n, 0, tei,2n+1−i : t ∈ Ga}.
We note that

Xi,j = X2n+1−j,2n+1−i and Yi,j = Y2n+1−j,2n+1−i.

Similarly, for 1 ≤ i, j ≤ 2n, define

X ′
i,j = {v(12n, tei,j , 0) : t ∈ ResE/FGa}

and

Y ′
i,j = {v̄(12n, tei,j , 0) : t ∈ ResE/FGa}.

For simplicity, we shall denote the group of F -rational points of Xi,j , Yi,j , X
′
i,j , Y

′
i,j

by the same symbol. Then we have

B′ = 〈Z2n, Xi,j , Yi,j , X
′
p,q, Y

′
r,s; 1 ≤ i < j ≤ 2n, 1 ≤ p ≤ n, 1 ≤ q, r ≤ 2n,

n+ 2 ≤ s ≤ 2n〉.
For 1 ≤ i < j ≤ n+ 1, we define a subgroup Ci,j of B′ as follows. First, define

T (i, j) = {(a, b) ∈ N
2 : b ≤ a ≤ j − 2, or a = j − 1 and i+ 1 ≤ b ≤ j − 1}

and

S(i, j) =
{
(a, b) ∈ N

2 : 2 ≤ b < j and 1 ≤ a ≤ b− 1, or b = j and i ≤ a ≤ j − 1
}
.

Then we define

Ci,j=

〈
Z2n, X

′
p,q, Y

′
r,s, Xk,�, Ys,t

∣∣∣∣ 1 ≤ p ≤ n, 1 ≤ q, r ≤ 2n, n+ 2 ≤ s ≤ 2n,
(k, �) ∈ T (i, j), (s, t) �∈ S(i, j)

〉
∩B′.
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Further, we define

Ai,j := Di,jYi,j , Bi,j := Ci,jYi,j , and Di,j := Ci,jXj−1,i

and we put

D0
n,n+1 = Cn,n+1X

0
n,n,

where

X0
n,n = Xn,n ∩GL6n/F .

Then we note that

(5.14) B′ = B1,2

and

(5.15) Di,j = Bi−1,j (2 ≤ i < j ≤ n+ 1) and D1,j = Bj,j+1 (1 ≤ j ≤ n).

We can easily show that the character ηψ,a := ψB′,a|Z2n(A) of Z2n(A) can be
extended to Ci,j(A), Bi,j(A), and Di,j(A) so that it is trivial on the corresponding
subgroups Xp,q(A), Yp,q(A), X

′
p,q(A), and Y ′

p,q(A). We denote each such extension

by η
(i,j)
ψ,a .

Define for h ∈ G3n(A),

Ri,j(ξτ̄ ,π)(h) =

∫
Bi,j(F )\Bi,j(A)

ξτ̄ ,π(vhν
′)η

(i,j)
ψ,a (v) dv

and

(5.16) R′
i,j(ξτ̄ ,π)(h) =

∫
Di,j(F )\Di,j(A)

ξτ̄ ,π(vhν
′)η

(i,j)
ψ,a (v) dv.

Then the right-hand side of (5.11) is equal to R1,2(ξτ̄ ,π)(1) by (5.14).
For 1 ≤ i < j ≤ n, applying [GRS11, Lemma 7.1] for Ai,j , Bi,j , Ci,j , Di,j , Xj−1,i,

and Yi,j with η
(i,j)
ψ,a , we obtain

(5.17) Ri,j(ξτ̄ ,π)(1) =

∫
Yi,j(A)

R′
i,j(ξτ̄ ,π)(y) dy.

Hence,

R1,2(ξτ̄ ,π)(1) =

∫
Y1,2(A)

R′
1,2(ξτ̄ ,π)(y) dy

=

∫
Y1,2(A)

∫
D1,2(F )\D1,2(A)

ξτ̄ ,π(vν
′)η

(1,2)
ψ,a (v) dv.

By (5.15), this is equal to∫
Y1,2(A)

∫
B2,3(F )\B2,3(A)

ξτ̄ ,π(vν
′)η

(2,3)
ψ,a (v) dv =

∫
Y1,2(A)

R2,3(ξτ̄ ,π)(y) dy.

Using (5.17) again, we obtain

R1,2(ξτ̄ ,π)(1) =

∫
Y1,2(A)

∫
Y2,3(A)

R′
2,3(ξτ̄ ,π)(y1y2) dy1 dy2.

Repeating this argument, we obtain

(5.18) R1,2(ξτ̄ ,π)(1) =

∫
Y0(A)

R′
1,n(ξτ̄ ,π)(y) dy,
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where Y0 is the group generated by

Y1,n · · ·Yn−1,n · · ·Y1,3, Y2,3, Y1,2.

Similarly, we may apply [GRS11, Lemma 7.1] for

An,n+1, Bn,n+1, Cn,n+1, D
0
n,n+1, X

0
n,n, and Yn,n+1

with η
(n,n+1)
ψ,a , and thus we obtain

R1,2(ξτ̄ ,π)(1) =

∫
Y00(A)

(R′
1,n)

0(ξτ̄ ,π)(y) dy,

where

(R′
1,n)

0(ξτ̄ ,π)(h) =

∫
D0

n,n+1(F )\D0
n,n+1(A)

ξτ̄ ,π(vhν
′)η

(n,n+1)
ψ,a (v) dv

and
Y00 = 〈Yn,n+1, Y0〉.

Now, we shall show that

(5.19)

∫
F\A

(R′
1,n)

0(ξτ̄ ,π)(v(12n, 0, ιaen,n − ιaen+1,n+1)h)ψF (λa) da = 0

for any λ ∈ F×. Define a character η
(n,n+1),0
ψ,a on Dn,n+1(A) = Cn,n+1(A)Xn,n(A)

by

η
(n,n+1),0
ψ,a (cv(12n, 0, ten,n − t̄en+1,n+1)) := η

(n,n+1)
ψ,a (c)ψ(λι−1t)

for c ∈ Cn,n+1(A) and t ∈ AE . Then we see that the integral (5.19) is equal to∫
Dn,n+1(F )\Dn,n+1(A)

ξτ̄ ,π(vhν
′)η

(n,n+1),0
ψ,a (v) dv.

We note that as an inner integral, this integral contains the integral

(5.20)

∫
D∗

n,n+1(F )\D∗
n,n+1(A)

ξτ̄ ,π(vhν
′)η

(n,n+1),0
ψ,a (vv) dv,

where D∗
n,n+1 denotes the group

{d ∈ Dn,n+1 : when we consider d as a block matrix of size n× n,

its (2, 2)-block is 1n}.
Then for our purpose, it suffices to show that the integral (5.20) is identically zero.

For 1 ≤ i ≤ n − 1, let us define subgroups A∗
i,n+1(A), B

∗
i,n+1(A), C

∗
i,n+1(A),

and D∗
i,n+1(A) of Ai,n+1(A), Bi,n+1(A), Ci,n+1(A), and Di,n+1(A) satisfying the

same condition in the definition of D∗
n,n+1, respectively. Then we can extend the

character η
(n,n+1),0
ψ,a to B∗

i,n+1(A), C
∗
i,n+1(A), and D∗

i,n+1(A) so that it is trivial on

corresponding Xp,q(A), Yp,q(A), X
′
p,q(A), Y

′
p,q(A). We denote each such character

by η
(i,n+1),0
ψ,a .

Repeatedly using [GRS11, Lemma 7.1] for groups A∗
i,n+1, B

∗
i,n+1, C

∗
i,n+1, D

∗
i,n+1,

Yi,n+1 and Xn,i for 1 ≤ i ≤ n− 1 with the character η
(i,n+1),0
ψ,a , as in (5.18), we see

that the integral (5.20) is equal to∫
Y ∗(A)

∫
D∗

1,n+1(F )\D∗
1,n+1(A)

ξτ,π(vyν
′)η

(1,n+1),0
ψ,a (vy) dv dy,
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where Y ∗ is the group generated by

Y1,n+1Y2,n+1 · · ·Yn−1,n+1.

This integral contains the following integral as an inner integral:∫
U6n

n (F )\U6n
n (A)

ξτ,π(uν
′)η

(1,n+1),0
ψ,a (u) du.

As in the beginning of the proof of this theorem, this should be zero by Lemma A.2.
In summary, the integral (5.19) is zero. Further, we see that taking the Fourier
expansion of (R′

1,n)
0(ξτ̄ ,π)(h) along Xn,n,

(R′
1,n)

0(ξτ̄ ,π)(h) =

∫
Dn,n+1(F )\Dn,n+1(A)

ξτ̄ ,π(vhν
′)η

(n,n+1)
ψ,a (v) dv

and

R1,2(ξτ̄ ,π)(1) =

∫
Y00(A)

R′
n,n+1(ξτ̄ ,π)(y) dy.

Repeating the above argument, we see that

(5.21) R1,2(ξτ̄ ,π)(1) =

∫
Y (A)

R′
1,n+1(ξτ̄ ,π)(y) dy,

where Y is the group generated by

Y1,n+1 · · ·Yn,n+1 · · ·Y1,3, Y2,3, Y1,2.

Let us consider the Fourier expansion of R′
1,n+1(ξτ,π)(h) along Xn+1,n. Then

each Fourier coefficient with respect to a non-trivial character contains a Fourier

coefficient Fψ
V 6n
n+1

,a(ξτ̄ ,π) of ξτ̄ ,π as an inner integral, and it is zero by the first part
of this theorem. Thus, only trivial character contributes to the Fourier expansion,
and we get

(5.22) R′
1,n+1(ξτ̄ ,π)(h) =

∫
Xn+1,n(F )\Xn+1,n(A)

R′
1,n+1(ξτ̄ ,π)(xh) dx

=

∫
Xn+1,n(F )\Xn+1,n(A)

∫
D1,n+1(F )\D1,n+1(A)

ξτ̄ ,π(vxhν
′)η

(1,n+1)
ψ,a (v) dv dx.

For 1 ≤ i ≤ n−1, let us define Ci,n+2 and Di,n+2 as follows. First, we let Cn−1,n+2

be the subgroup of D1,n+1Xn+1,n generated by Z2n and all roots in D1,n+1Xn+1,n

except Yn−1,n+2. Then we put Dn−1,n+2 = Cn−1,n+2Xn+1,n−1. Inductively, we
may define the subgroup Ci,n+2 of Di+1,n+2 generated by Z2n and all roots except
Yi,n+2 and

Di,n+2 = Ci,n+2Xn+1,i.

As in the proof of (5.17), by [GRS11, Lemma 7.1] we may exchange Yn−1,n+2 and
Xn+1,n−1. Further, we may use root exchange [GRS11, Lemma 7.1] to exchange

Yn−2,n+2, . . . , Y1,n+2

with
Xn+1,n−2, . . . , Xn+1,1,

respectively. In a similar manner for X ′
n+1,2n−i and Y ′

2n−i,n+2, i = 0, 1, . . . , 2n −
1, we may define a unipotent group D′

1,n+2. Similarly, we may use [GRS11,
Lemma 7.1] to exchange the roots

Y ′
2n,n+2, . . . , Y

′
1,n+2
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with

X ′
n+1,2n, . . . , X

′
n+1,1,

respectively. Then we see that

(5.23) R′
1,n+1(ξτ̄ ,π)(1) =

∫
Ln+2(A)

R′
1,n+2(ξτ̄ ,π)(y) dy,

where Ln+2 is the group generated by

Y ′
2n−i,n+2 (i = 0, 1, . . . , 2n− 1) and Yi,n+2 (i = 1, . . . , n− 1)

and

(5.24) R′
1,n+2(ξτ̄ ,π)(h) =

∫
D′

1,n+2(F )\D′
1,n+2(A)

ξτ,π(vhν
′)η′ψ,a(v) dv.

Here, we extend that character η
(1,n+1)
ψ,a from D1,n+1(A) to D1,n+1(A)Xn+1,n(A),

and similarly we extend the character to Di,n+2(A), Ci,n+2(A), and D′
1,n+2(A), and

we denote such character by η′ψ,a. In particular, we see that as a functional on Eτ̄ ,π,

R1,2(·)(1) �≡ 0 ⇐⇒ R′
1,n+2(·)(1) �≡ 0.

We repeat the same argument in a proof of the identity (5.22). Indeed, Fourier
coefficients of R′

1,n+2(ξτ̄ ,π)(h) along Xn+2,n−1 with respect to a non-trivial charac-

ter give Fourier coefficients corresponding to Fψ
V 6n
n+2

,a
(ξτ̄ ,π), and it is zero by the

first part of this theorem. Thus, we get

R′
1,n+2(ξτ̄ ,π)(h) =

∫
Xn+2,n−1(F )\Xn+2,n−1(A)

R′
1,n+2(ξτ̄ ,π)(xh) dx.

Repeat the above argument by exchanging the roots

(5.25) Yn−i+1,n+i, Yn−i,n+i, . . . , Y1,n+i, Y
′
2n,n+i, Y

′
2n−1,n+i, . . . , Y

′
1,n+i

with

Xn+1−i,n−i+1, Xn+1−i,n−i, . . . , Xn+1−i,1, X
′
n+i−1,2n, Xn+i−1,2n−1, . . . , Xn+i−1,1

for 3 ≤ i ≤ n. We denote the resulting unipotent group by D′
1,n+i. Define

R′
1,n+i(ξτ̄ ,π) as in (5.24). Further, from the first part of this theorem, Eτ̄ ,π has

no non-zero Fourier coefficient along V 6n
l with respect to ψV 6n

l ,a for all n < l < 3n,

and thus

(5.26) R′
1,n+i(ξτ̄ ,π)(h) =

∫
Xn+i,n−i+1(F )\Xn+i,n−i+1(A)

R′
1,n+i(ξτ̄ ,π)(xh) dx.

Let Li be the group generated by (5.25). Then as in (5.23), we see that

(5.27) R′
1,n+1(ξτ̄ ,π)(1) =

∫
L2n(A)

· · ·
∫
Ln+1(A)

R′
1,2n(ξτ̄ ,π)(y1 · · · yn) dy1 · · · dyn.

Now, we note that

V 6n
2n = D′

1,2nX2n,1.

Because of the property (5.26), the inner integral of (5.13) is R′
1,2n(ξτ,π)(h). In

summary, since L is generated by Li (n + 1 ≤ i ≤ 2n) and Y , (5.21) and (5.27)
show that (5.11) is equal to (5.13).
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We remark that from [GRS11, Corollary 7.2] (see also [GJS12, p. 967]), we find
that for any h ∈ G3n(A) and ξτ̄ ,π ∈ Eτ̄ ,π, there exists ξ′τ̄ ,π ∈ Eτ̄ ,π:∫

L(A)

∫
V 6n
2n (F )\V 6n

2n (A)

ξτ̄ ,π(vyhν
′)ψ′

a(v) dv dy =

∫
V 6n
2n (F )\V 6n

2n (A)

ξ′τ̄ ,π(vh)ψ
′
a(v) dv.

In particular, (5.11) is non-zero if and only if the integral

(5.28)

∫
V 6n
2n (F )\V 6n

2n (A)

ξτ̄ ,π(v)ψ
′
a(v) dv

is not identically zero. �

Let us show that (5.28) is equal to

(5.29)

∫
U6n

2n (F )\U6n
2n (A)

ξτ̄ ,π(v)ψ
′′
a(v) dv.

Here, we recall that U6n
2n is the unipotent radical of the standard parabolic subgroup

whose Levi part M6n
2n is isomorphic to ResE/FGL2n

1 ×Gn, and ψ′′
a is the character of

U6n
2n (A) defined by the same formula as (5.12). First, consider the Fourier expansion

of (5.28) along X2n,1. Then from the first part of this theorem, the constant term
only contributes to the Fourier expansion. Further, we shall consider the Fourier
expansion along

x �→

⎛⎜⎜⎜⎜⎝
12n−1

1 x n(x)
12n x′

1
12n−1

⎞⎟⎟⎟⎟⎠
where

x′ = t(x4, x3,−x2,−x1) and n(x) =
1

2
(x1x4 − x1x4 + x2x3 − x2x3).

Then we can write (5.28) as∑
γ∈P1\Gn(F )

∫
U6n

2n (F )\U6n
2n (A)

ξτ,π(γ̂v)ψ
1
a(v) dv

+
∑

γ∈P0\Gn(F )

∫
U6n

2n (F )\U6n
2n (A)

ξτ,π(γ̂v)ψ
0
a(v) dv

+

∫
U6n

2n (F )\U6n
2n (A)

ξτ,π(v)ψ
′′
a(v) dv,

where we define characters ψ1
a and ψ0

a by

ψ1
a(v) = ψ(v1,2 + · · ·+ vn−1,n − avn,n+1 − vn+1,n+2 · · · − v2n,2n+1)

and

ψ0
a(v) = ψ(v1,2 + · · ·+ vn−1,n − avn,n+1 − vn+1,n+2 · · · − v2n,2n+1 − v2n,4n),

and we denote the stabilizer of ψ1
a and ψ0

a in Gn(F ) ⊂ M6n
2n (F ) by P1 and P0,

respectively. The first sum is zero from the following lemma, and the second sum
should be zero from Lemma A.2. Then we see that (5.28) is equal to (5.29).
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Lemma 5.4. The following integral is identically zero on Eτ̄ ,π:∫
U6n

2n (F )\U6n
2n (A)

ξτ̄ ,π(v)ψ
1
a(v) dv, ξτ̄ ,π ∈ Eτ̄ ,π.

Proof. For 0 ≤ � ≤ n and any φ ∈ Eτ̄ ,π, let us define

p�(φ) =

∫
U6n

3n−�(F )\U6n
3n−�(A)

φ(v)ψ1
a;�(v) dv,

where U6n
3n−� is the unipotent radical of the standard parabolic subgroup whose

Levi part is ResE/FGL3n−� ×G�, and we define a character ψ1
a;� of U6n

3n−�(A) by

ψ1
a;�(v) = ψ(v1,2 + · · ·+ vn−1,n − avn,n+1 − vn+1,n+2 · · · − v3n−�,3n−�+1).

Our assertion is that pn(·) is identically zero on Eτ̄ ,π. Indeed, we shall show that
p�(·) is identically zero on Eτ̄ ,π for any 0 ≤ � ≤ n.

We note that p0(·) is identically zero on Eτ,π by Lemma A.3. Then we shall
prove our assertion by an induction. Suppose that p�(·) is identically zero for any
0 ≤ � < �0. Then we shall show that p�0(·) is identically zero.

Define

R�0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩u(x, t) :=
⎛⎜⎜⎜⎜⎝
13n−�0

1 x t
12�0−2 x′

1
13n−�0

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Then consider the function

(x, t) �→
∫
U6n

3n−�0
(F )\U6n

3n−�0
(A)

φ(u(x, t)v)ψ1
a;�(v) dv.

Each non-constant term of Fourier expansion along {u(0, t) : t ∈ Ga} is zero
by Lemma A.3. Further, consider the Fourier expansion along {u(x, n(x)) : x ∈
ResE/FG

2�0−2
a }. First, its constant term is written by∫

Z3n−�0+1(F )\Z3n−�0+1(A)

(∫
U6n

3n−�0+1(F )\U6n
3n−�0+1(A)

φ(un) du

)
ψ1
a;�0(n) dn.

The inner integral is zero because it is a constant term of a maximal parabolic sub-
group which is not conjugate to P 6n

2n . Secondly, each Fourier coefficient associated
to η ∈ E2�0−2 such that tηJ−

2nη = 0 is of the form∫
U6n

3n−�0+1(F )\U6n
3n−�0+1(A)

φ(vγ)ψ1
a;�0−1(v) dv

with some γ ∈ G�0−1(F ). This is zero by our assumption. Finally, each Fourier
coefficient associated to η ∈ E2�0−2 such that tηJ−

2nη �= 0 is of the form∫
U6n

3n−�0+1(F )\U6n
3n−�0+1(A)

φ(vγ)ψ0
a,b;�0−1(v) dv,

where γ ∈ G�0−1(F ) and for b ∈ E×, we define

ψ0
a,b;�0−1(v)

= ψ(v1,2+· · ·+vn−1,n−avn,n+1−vn+1,n+2 · · ·−v3n−�+1,3n−�+2+bv3n−�0+1,3n+�0).
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This is zero by Lemma A.2, and this completes our proof. �

As a consequence, it suffices to show that (5.29) is not identically zero. First,
we note that (5.29) is equal to∫

Z2n(F )\Z2n(A)

(∫
N6n

2n (F )\N6n
2n (A)

ξτ̄ ,π(nv) dn

)
ψ′′
a(v) dv,

and it is the residue of∫
Z2n(F )\Z2n(A)

(∫
N6n

2n (F )\N6n
2n (A)

E(nv, fτ̄ ,π,s̄) dn

)
ψ′′
a(v) dv.

From the proof of Lemma 4.3, this is equal to

(5.30)

∫
Z2n(F )\Z2n(A)

(M(w0)fE(τ̄ ,s̄),π,s̄′)(v)ψ
′′
a(v) dv,

where E(τ̄ , s̄) is the Eisenstein series on GL2n(AE) corresponding to τ1| det |s1E ⊗
· · · ⊗ τr| det |srE . Then the residue of the image of the intertwining operator is in

| det |2n−1
E E(τ̄ ,−1)⊗ π

with 1 = (1, . . . , 1). Since E(τ̄ ,−1) is generic with respect to ψ′′
a , (5.30) is not

identically zero. �

Theorem 5.5. Let π be an irreducible (possibly non-generic) cuspidal automorphic
representation of Gn(A), which has a weak lift to an irreducible isobaric automor-
phic representation �r

i=1(τi ⊗ η−1) of GL2n(AE). Then the following hold.

(1) As an automorphic representation of G2n(A), the descent D6n,η
4n,ψ−1(Eτ̄ ,π) is

non-trivial and square-integrable. Moreover, it is a subrepresentation of the
space of the automorphic discrete spectrum of G2n(A).

(2) The descent D6n,η
4n,ψ−1(Eτ̄ ,π) is cuspidal if and only if π is not ψ−1-generic.

(3) If π is ψ−1-generic, then the descent D6n,η
4n,ψ−1(Eτ̄ ,π) is a direct sum of resid-

ual representation Eτ̄ and a cuspidal automorphic representation of G2n(A).

Proof. This theorem is proved in a similar argument as in the proof of [GRS11,
Theorem 2.5].

The non-vanishing of the descent D6n
4n,ψ−1(Eτ̄ ,π) in the first part follows from

Theorem 5.2 and the first part of Lemma 5.1.
In order to show other statements, we shall compute constant terms along all

standard parabolic subgroups. Recall that P 4n
r (1 ≤ r ≤ 2n) is the standard maxi-

mal parabolic subgroup ofG2n whose Levi part is isomorphic to ResE/FGLr×G2n−r

and its unipotent radical is denoted by N4n
r .

Let φ = φ1 ⊗ φ2 with φ1 ∈ S(Ar
E) and φ2 ∈ S(A2n−r

E ) and regard it as the
element of S(A2n

E ). Let us study the constant term of the Fourier-Jacobi coefficient

FJψ
−1,η

φ,2n (ξτ̄ ,π) along P 4n
r :

CN4n
r
(FLψ−1,η

φ,2n (ξτ̄ ,π)).

Then by [GRS11, Theorem 7.8], this constant is written as

(5.31)
r∑

j=0

∑
γ∈Pr−j,1j (F )\GLr(E)

∫
Sr(A)

φ1(i(λ))FJ
ψ−1,η
φ2,2n−r(CN6n

r−j
(ξτ̄ ,π))(γ̂λβr) dλ,
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where FJψ
−1,η

φ2,2n−r(CN6n
r−j

(ξτ̄ ,π)) denotes the Fourier-Jacobi coefficient of an automor-

phic form CN6n
r−j

(ξτ̄ ,π) on G3n−r+j . We put

βr =

(
1r

1n

)∧
and we define

Pr−j,1j =

{(
g x
0 z

)
∈ ResE/FGLr : z ∈ Zr

}
,

Sr =

{
λ(x) =

(
1r
x 1n

)∧
∈ G3n : x ∈ ResE/FMatr×n

}
,

and i(λ) = i(λ(x)) denotes the last row of x. Then from the computation in the
proof of Lemma 4.3, the constant term (CN6n

r−j
(ξτ̄ ,π))(γ̂λβr) is zero unless r = j or

r − j = 2n. Let us consider the first case. In this case, the corresponding term in

(5.31) is an integral of FJψ
−1,η

2n−r (ξτ̄ ,π) . Since this Fourier-Jacobi coefficient contains

the Fourier coefficient F
ψ

V 6n
2(n+r)

,a
as an inner integral, it is zero by the first part

of Theorem 5.2. Hence, we should have r − j = 2n. Moreover, since r ≤ 2n, we
should have j = 0 and r = 2n. Then we can write the Fourier coefficient of (5.31)
along P 4n

2n as

(5.32)

∫
Sn(A)

φ1(i(λ))FJ
ψ−1

φ2,0
(CN6n

2n
(ξτ̄ ,π))(λβ2n) dλ.

We note that by [GRS11, Corollary 7.2], (5.32) is not identically zero if and only if

FJψ
−1

φ2,0
(CN6n

2n
(ξτ̄ ,π)) is not identically zero.

As we explained in the proof of Theorem 5.2, the constant term CN6n
2n
(ξτ̄ ,π) is

equal to the residue at s = 1 of the intertwining operator corresponding to the
longest Weyl element, and it takes values in the space of

(5.33) (δ
1
2

P 6n
2n

⊗ E(τ̄ ,−1))⊗ π.

In (5.32), FJψ
−1

φ2,0
(CN6n

2n
(ξτ̄ ,π)) is the ψ

−1-Whittaker Fourier coefficient of CN6n
2n
(ξτ̄ ,π)

when we regard this as an automorphic form on Gn(A). Hence, (5.32) is not
identically zero if and only if π is ψ−1-generic.

Let U be a unipotent radical of a standard parabolic subgroup of G2n, which
may not be maximal. Then from the above discussion, we see that the constant

term of FLψ−1,η
φ,2n (ξτ̄ ,π) along U is zero unless N4n

2n ⊂ U . In this case, we may write

U = N4n
2n � (U1 × U2) where U1 (resp. U2) is a unipotent radical of a standard

parabolic subgroup of ResE/FGL2n (resp. Gn). Since π is cuspidal it suffices to

consider the case U2 = 1. Then the constant term of FJψ
−1,η

φ,2n (ξτ̄ ,π) along U is given
by

(5.34)

∫
U1(F )\U1(A)

∫
Sn(A)

φ1(i(λ))FJ
ψ−1

φ2,0
(CN6n

2n
(ξτ̄ ,π))(uλβ2n) dλ du.

If π is not ψ−1-generic, then (5.32) is zero, and thus this integral is zero. On the
other hand, if this integral is zero for any U , then taking U1 = 1, (5.32) is not

identically zero and thus π is ψ−1-generic. Therefore, D6n,η
4n,ψ−1(Eτ̄ ,π) is cuspidal if

and only if π is not ψ−1-generic. This proves the second part.
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Suppose that π is ψ−1-generic. In this case, D6n,η
4n,ψ−1(Eτ̄ ,π) has non-zero con-

stant term (5.34). In order to prove the square integrability, we should show

that D6n,η
4n,ψ−1(Eτ̄ ,π) has cuspidal support with negative exponent. From (5.34)

and (5.33), it suffices to study the exponent of E(τ̄ ,−1). Since its exponent is
−1, in particular negative, by the square-integrability criterion of Langlands (see
[MW95, I.4.11 Lemma]), D6n

4n,ψ−1(Eτ̄ ,π) is square integrable.

Let U[ni],GL be the unipotent radical of the standard parabolic subgroup of
ResE/FGL2n whose Levi part is isomorphic to ResE/FGLn1

× · · · × ResE/FGLnr
.

Then using (5.34) for U1 = U[ni],GL, we see that its constant term is

δ
1
2

P 4n
2n
| det |−1

E τ1 ⊗ · · · ⊗ | det |−1
E τr ⊗ π.

This implies that D6n,η
4n,ψ−1(Eτ,π) appears in the discrete spectrum.

It is easy to see that Eτ̄ (which is non-zero because of Theorem 4.2 in the
generic case and Assumption 1 in the non-generic case) has the same exponent
as D6n

4n,ψ−1(Eτ̄ ,π) by (5.33) and the proof of [GRS11, Theorem 2.1]. Recall that Eτ̄
is irreducible by [GRS11, Theorem 2.1]. Therefore this irreducibility implies that
D6n

4n,ψ−1(Eτ̄ ,π) is a direct sum of Eτ̄ and cuspidal representations. �

6. Certain nearly equivalent sets

Recall that two irreducible automorphic representations πi =
⊗

πi,v for i = 1, 2
of G(A) are said to be nearly equivalent if the local components π1,v and π2,v are
equivalent as representations of G(Fv), at almost all places v of F . We are going to
define certain nearly equivalent subsets in Ad(Gn), which will be main objects in the
following sections. Throughout the remainder of this paper, we fix τ̄ = (τ1, . . . , τr)
where τi is an irreducible unitary cuspidal automorphic representation of GLni

(AE)
such that τi �� τj if i �= j, and L(s, τi,Asai) has a pole at s = 1.

Definition 6.1. We denote by Nn(τ̄ , η) the set of all irreducible cuspidal automor-
phic representations of Gn(A) which weakly lift to �r

i=1τi ⊗ η−1.

We note that for a given π ∈ Nn(τ̄ , η), if an irreducible cuspidal automorphic
representation π′ of Gn(A) is nearly equivalent to π, then π′ is also in Nn(τ̄ , η).

Lemma 6.2. The set Nn(τ̄ , η) is not empty. Moreover, there is a ψ−1-generic
element in Nn(τ̄ , η).

Proof. By Theorem 4.2, the residual representation Eτ̄ exists. Then by Theorem 4.1,
the descent D4n,η

2n,ψ(Eτ̄ ) is non-trivial and any irreducible constituent of this descent

is a ψ−1-generic element of Nn(τ̄ , η). �

Let us define a nearly equivalent set of an automorphic representation of G2n(A).

Definition 6.3. We denote by N2n(τ̄ , η, ψ) the set of all irreducible automorphic
representations π of G2n(A) such that

(1) it appears in the discrete spectrum Ad(G2n),
(2) it is of type (GL2n, τ̄ ,

1
2 ),

(3) the Fourier coefficient FψV 4n
n ,1 is not identically zero on π, which means

D4n,η
2n,ψ(π) �= 0.
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From the definition and Theorem 4.1, we have Eτ̄ ∈ N2n(τ̄ , η, ψ). In particular,
this nearly equivalent set is not empty.

Let N 0
2n(τ̄ , η, ψ) be the subset of cuspidal representations in N2n(τ̄ , η, ψ), and

define

N ′
2n(τ̄ , η, ψ) := N 0

2n(τ̄ , η, ψ) ∪ {Eτ̄}.
Then we have

N ′
2n(τ̄ , η, ψ) ⊂ N2n(τ̄ , η, ψ),

and it is expected that (see Mok [Mo15])

N ′
2n(τ̄ , η, ψ) = N2n(τ̄ , η, ψ).

For π ∈ Nn(τ̄ , η), by Lemma 4.3, we may define the residual representation Eτ̄ ,π,
and we define

Φ(π) := D6n,η
4n,ψ−1(Eτ̄ ,π),

which is an automorphic representation of G2n(A). We also write

Φ′(π) = Φ(π)⊗ η.

Lemma 6.4. Φ′(π) is a non-trivial square integrable automorphic representation,
and every irreducible constituent of Φ′(π) satisfies the conditions (1) and (2) in the
definition of N ′

2n(τ̄ , η, ψ).

Proof. By Theorem 5.5, Φ(π) is non-trivial and a square integrable automorphic
representation of G2n(A), and so is Φ′(π). Again by Theorem 5.5, Φ′(π) is a
direct sum of Eτ̄ and cuspidal automorphic representations. From Lemma A.4, any
irreducible constituent of Φ′(π) is of type (GL2n, τ̄ ,

1
2 ). �

We define a sort of inverse map of Φ′. For π ∈ N2n(τ̄ , η, ψ), we define

Ψ(π) := D4n,η
2n,ψ(π).

Lemma 6.5. Ψ(π) is a non-trivial cuspidal automorphic representation of Gn(A).

Proof. By the definition of N2n(τ̄ , η, ψ), the non-triviality follows. We may prove
the cuspidality in a similar way as the proof of the cuspidality of global descents.
Indeed, by [GRS11, Theorem 7.10], the cuspidality of Ψ(π) follows from

(6.1) D4n,η
�,ψ (π) = 0

for any � > 2n. When π = Eτ̄ , this result was proved in [GRS11, Proposition 7.4].
Recall their proof of this fact.

Let σ be an irreducible constituent of D4n,η
�,ψ (Eτ̄ ). Let v be a finite place such

that σv and τi,v are unramified, and let Ev be an unramified quadratic extension
of Fv. Then σv is the unramified constituent of

Ind
G2n(Fv)
P[ni]

(Fv)
(τ1,v| det |

1
2 ⊗ · · · ⊗ τr,v| det |

1
2 ).

By [GRS11, Theorem 6.4], this induced representation does not have a linear func-
tional corresponding to the character ψV 4n

�,1
. Therefore, the triviality (6.1) follows.

On the other hand, when π �= Eτ̄ , there is a finite place satisfying the above con-
dition since π is in N2n(τ̄ , η, ψ). Therefore, in this case, the same argument shows
the triviality (6.1), and this gives the cuspidality of Ψ(π). �
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7. Some basic identities

7.1. Fourier-Jacobi coefficients of residual representations of G3n and G4n.
The following identity is proved in the same way as the proof of [GJS12, Theo-
rem 5.1].

Theorem 7.1. Let π be an element of Nn(τ̄ , η). Let φ1 ∈ S(An
E) and φ2 ∈ S(A2n

E ),
and let ξτ̄ ,π ∈ Eτ̄ ,π. Assume that φ2 = φ21 ⊗ φ22 with φ21, φ22 ∈ S(An

E). Then the
following identity holds as functions in h ∈ Gn(A):

(FJψ,η
φ1,n

◦ FJψ
−1,η

φ2,2n
)(ξτ̄ ,π)(h)

= η−1(deth) ·
∫
An

E

∫
Y (A)

∫
A2n

E

∫
L0(A)

∫
U6n

2n (F )\U6n
2n (A)

ξτ̄ ,π(vhy
′ν′ l̂2b̂yωl̂1)

· ψ′′
−1(v)φ

′
3(l2)φ21(l1) dv dy

′ dl2 dy dl1.

Here, b̂, ω, and ν′ are as in (5.6), (5.2), and (5.9), respectively; ψ′′
−1 is the

character of U6n
2n (A) defined as in (5.29); and we put

φ′
3 = ωψ−1,η−1(γ−1)(φ22 ⊗ φ1) ∈ S(A3n

E )

and

l̂1=v(12n+r1en,1+· · ·+rnen,n, 02n, 0) and l̂2=v(12n,m1e2n,2n+1+· · ·+m2ne2n,4n).

Finally, Y and L0 are unipotent subgroups of G3n given in (5.5) and Lemma 5.3,
respectively.

Proof. By the same argument as in the proof of [GJS12, Theorem 5.1], practically

word for word, we can show that (FJψφ1,n
◦ FJψ

−1

φ2,2n
)(ξτ̄ ,π)(h) is equal to∫

An
E

∫
Y (A)

∫
L′(F )\L′(AE)

∫
A2n

E

ωψ−1,η−1(�(v)h(l2, 02n; 0))φ
′
3(0)

× ξτ̄ ,π(vhb̂yωl̂1)ψ1(v)φ21(l1) dl2 dv dy dl1

where L′ is the one in (5.8). Then by the direct computation of the explicit action
of the Weil representation (3.5), we find that this is equal to

η−1(deth)

·
∫
An

E

∫
Y (A)

∫
A2n

E

∫
L′(F )\L′(A)

ξτ̄ ,π(vhl̂2b̂yωl̂1)ψL′,−1(v)φ
′
3(l2)φ21(l1) dv dl2 dy dl1,

where for l2 = (m1, . . . ,m2n) ∈ A2n
E , we define

l̂2 = v(12n,m1e2n,2n+1 + · · ·+m2ne2n,4n).

Then by (5.29) and Lemma 5.3, this integral is equal to

η−1(deth) ·
∫
An

E

∫
Y (A)

∫
A2n

E

∫
L0(A)

∫
U6n

2n (F )\U6n
2n (A)

ξτ̄ ,π(vhy
′ν′ l̂2b̂yωl̂1)ψ

′′
−1(v)φ

′
3(l2)φ21(l1) dv dy

′ dl2 dy dl1.

�
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Proposition 7.2. The space of automorphic forms on Gn(A) generated by all
elements

(FJψ,η
φ1,n

◦ FJψ
−1,η

φ2,2n
)(ξτ̄ ,π)(h),

for φ1 ∈ S(An
E), φ2 ∈ S(A2n

E ), ξτ̄ ,π ∈ Eτ̄ ,π, is equal to the space of the automorphic
representation π ⊗ η−1. In other words, the space of the double descent of the
residual representation Eτ̄ ,π is equal to π ⊗ η−1:

(7.1) D4n,η
2n,ψ ◦ D6n,η

4n,ψ−1(Eτ̄ ,π) = π ⊗ η−1.

Proof. By [GRS11, Corollary 7.2], we see that (FJψ,η
φ1,n

◦ FJψ
−1,η

φ2,2n
)(ξτ̄ ,π)(h) is equal

to

η−1(deth) ·
∫
U6n

2n (F )\U6n
2n (A)

ετ̄ ,π(vh)ψ
′′
−1(v) dv

for some ετ̄ ,π ∈ Eτ̄ ,π. Then as in the end of the proof of Theorem 7.1, this is in
π ⊗ η−1 as an automorphic form on Gn(A). Since π is irreducible, our assertion
follows. �

We may restate the above results in the following way. Recall that for π ∈
Nn(τ̄ , η), we may write Φ′(π) = Π1 ⊕ · · · ⊕Πr with irreducible automorphic repre-
sentations Πi of Gn(A). We note that by Lemma 6.4, each Πi satisfies conditions
(1) and (2) in Definition 6.3.

Remark 7.3. We may also check the condition (3) as in the proof of [GJS12, Propo-
sition 3.4]. However, this fact is not necessary for our purpose and we do not
consider it.

For simplicity, we write

Ψ(Φ′(π)) := Ψ(Πi) + · · ·+Ψ(Πr),

where Ψ(Πi) is zero if Πi does not satisfy the condition (3). Then the above theorem
can be stated as follows.

Corollary 7.4. For any π ∈ Nn(τ̄ , η), we have the equality

Ψ(Φ(π)) = π ⊗ η−1, i.e., Ψ(Φ′(π)) = π,

as subspaces in the space of square-integrable automorphic functions on Gn(A). In
particular, for each π ∈ Nn(τ̄ , η), there is Π ∈ N2n(τ̄ , η, ψ) such that Ψ(Π) =
π ⊗ η−1.

We study a similar double decent for residual representations of another type.
Let Π ∈ N2n(τ̄ , η, ψ). Then there is a residual representation Eτ̄ ,Π of G4n(A) by
Proposition 4.6.

Theorem 7.5. For all integers l such that n < l ≤ 4n and for any a ∈ F×,

Fourier coefficient FψV 8n
n

,a
(·) is trivial on the residual representation Eτ̄ ,Π. Also,

the Fourier coefficient FψV 8n
n

,a
(·) is non-trivial on Eτ̄ ,Π for all a ∈ F×.

Proof. In a similar way as in the proof of Theorem 5.2, we can prove all assertions.
See also the proof of [GJS12, Theorem 5.4]. �
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In a similar way as in the proof of Theorem 7.1, we can prove the following
identity. We omit the proof. See also [GJS12, Theorems 5.1 and 5.5].

Theorem 7.6. Let Π be an element of N2n(τ̄ , η, ψ). Let φ1 ∈ S(A2n
E ) and let

φ2 ∈ S(A3n
E ) and ξτ̄ ,π ∈ Eτ̄ ,π. Assume that φ2 = φ21 ⊗ φ22 with φ21 ∈ S(An

E) and
φ22 ∈ S(A2n

E ). Then the following identity holds as functions in h ∈ G2n(A):

(FJψ
−1,η

φ1,2n
◦ FJψ,η

φ2,3n
)(ξτ̄ ,Π)(h)

=

∫
U6n

n (F )\U6n
n (A)

∫
U8n

n (F )\U8n
n (A)

ξτ̄ ,Π(uvh)θ
ψ−1,η−1

φ2,3n
(�3n(u)h)

× ψU8n
n
(u)θψ,η−1

φ1,2n
(�2n(v)h)ψU6n

n
(v) du dv

= η−1(deth) ·
∫
An

E

∫
Y ′(A)

∫
A4n

E

∫
L′

0(A)

∫
U8n

2n (F )\U8n
2n (A)

ξτ̄ ,Π(vhy
′ν′′ l̂2b̂

′yω′ l̂1)

× ψ
−1(v)φ(l1, l2) dv dy

′ dl2 dy dl1.

Here, Y ′ is the subgroup of lower unipotent matrices of the form

v′(T,C, Z) :=

⎛⎝T C Z
14n C ′

T ∗

⎞⎠ ,

where the last row of C is zero and T ∈ ResE/FGL2n satisfies the conditions right
after (5.4), and L′

0 is the lower unipotent matrices of the form (5.10), replacing
12n by 14n. We define the character ψ

−1 of U8n
2n (A) by

ψ
−1(v) = ψ(v1,2 + · · ·+ vn,n+1 − vn,n+1 − · · · − v2n−1,2n).

Let ν′′ (resp. ω′) be the Weyl element of G4n(F ) obtained by replacing 12n by 14n
in ν′ (resp. ω) defined in (5.9) (resp. (5.2)). Similarly, b̂′ is the matrix of G4n(F )

obtained by replacing 12n by 14n in b̂ defined in (5.6). For l1 = (m1, . . . ,mn) ∈ An
E

and l2 = (m1, . . . ,m4n) ∈ A4n
E , we define

l̂1 = v′(12n + r1en,1 + · · ·+ rnen,n, 04n×2n, 02n×2n)

and

l̂2 = v′(12n,m1e2n,2n+1 + · · ·+m4ne2n,6n, 02n×2n).

Finally, φ ∈ S(A5n
E ) is defined explicitly from φ1, φ21, and φ22.

In a similar way as in the proof of Proposition 7.2, this theorem gives the following
result.

Proposition 7.7. Let τ̄ and Π be as above. Then the space of automorphic forms
on G2n(A) generated by the elements

(FJψ
−1,η

φ1,2n
◦ FJψ,η

φ2,3n
)(ξτ̄ ,Π)(h), ξτ̄ ,Π ∈ Eτ̄ ,Π,

is equal to the space of Π⊗ η−1. In other words, the space of the double descent is
identically equal to the space of Π⊗ η−1, i.e.,

D6n,η
4n,ψ−1

(
D8n,η

6n,ψ(Eτ̄ ,Π)
)
= Π⊗ η−1.

Finally, we give a relation between several global descents. It is proved in a
similar argument as in the proof of [GJS12, Theorem 5.8], and we omit a proof.
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Theorem 7.8. Let Π ∈ N ′
2n(τ̄ , η, ψ). Then D8n,η

6n,ψ(Eτ̄ ,Π) is a square-integrable
automorphic representation. Moreover, there is an irreducible subrepresentation π
of Ψ(Π) such that there is an irreducible automorphic representation σ of G3n(A)
satisfying the conditions:

(1) σ ⊂ D8n,η
6n,ψ(Eτ̄ ,Π),

(2) σ ⊂ Eτ̄ ,π,
(3) D6n,η

4n,ψ−1(σ) �= 0.

8. Irreducibility of global descents and a bijection

between N ′
2n(τ̄ , η, ψ) and Nn(τ̄ , η)

Theorem 8.1. Let Π be an element of N ′
2n(τ̄ , η, ψ). Then the descent

Ψ(Π) = D4n,η
2n,ψ(Π)

is an irreducible cuspidal automorphic representation of Gn(A). In particular, the

global descent D4n,η
2n,ψ(Eτ̄ ) is irreducible.

Proof. This theorem is proved in the same way as the proof of [GJS12, Theorem 4.1]
using Proposition 7.7, Theorem 7.8, and Corollary 7.4 instead of Theorem 4.1,
Theorem 5.7, and Theorem 4.2 of [GJS12], respectively. For the convenience of the
reader, we shall prove it when Π = Eτ̄ taking Assumption 1 and the character η
into account.

By Proposition 7.7, we have

Eτ̄ ⊗ η−1 = D6n,η
4n,ψ−1

(
D8n,η

6n,ψ(Eτ̄ ,Eτ̄
)
)
.

From Theorem 4.1, any irreducible constituent of Ψ(Eτ̄ ) = D4n,η
2n,ψ(Eτ̄ ) is ψ−1-generic

and cuspidal. Then we note that for any such irreducible constituent π0, we have
the residual representation Eτ̄ ,π0

, where we do not need Assumption 1. Let π and
σ be automorphic representations of Gn(A) and G3n(A) given in Theorem 7.8 for
Π = Eτ̄ . Then we have

Eτ̄ ⊗ η−1 = D6n,η
4n,ψ−1(σ)

since Eτ̄ is irreducible. From condition (2) in Theorem 7.8, we have

D6n,η
4n,ψ−1(σ) ⊂ D6n,η

4n,ψ−1(Eτ̄ ,π), i.e., D6n,η
4n,ψ−1(σ) ⊂ Φ(π).

Therefore, we obtain

(8.1) Eτ̄ ⊗ η−1 ⊂ Φ(π).

From the definition of the descent, we have

(8.2) Ψ(Eτ̄ ⊗ η−1) = Ψ(Eτ̄ )⊗ η−1.

Hence, (8.1), (8.2), and Corollary 7.4 show that

Ψ(Eτ̄ )⊗ η−1 = Ψ(Eτ̄ ⊗ η−1) ⊂ Ψ(Φ(π)) = π ⊗ η−1,

and thus Ψ(Eτ̄ ) = π is irreducible without Assumption 1. �

Theorem 8.2. For each representation Π ∈ N2n(τ̄ , η, ψ), Π is a subrepresentation
of Φ(Ψ(Π)), which is an inclusion as spaces of square-integrable automorphic forms.

Proof. This theorem is proved in the same way as the proof of [GJS12, Theorem 4.3]
using Proposition 7.7 and Theorem 7.8. �
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In order to consider the opposite direction, let us consider the following assump-
tion.

Assumption 2. For any π ∈ Nn(τ̄ , η), the residual representation Eτ̄ ,π of G3n(A)
is irreducible.

We remark that this assumption should follow from Mok [Mo15] if assumptions
there are proved. When we assume Assumption 2, we can refine the above result.

Theorem 8.3. Suppose that Assumption 2 holds. Then for Π ∈ N ′
2n(τ̄ , η, ψ),

Φ(Ψ(Π)) = Π⊗ η−1, i.e., Φ′(Ψ(Π)) = Π.

In particular, Φ′(π) and Φ(π) are irreducible. Moreover, the mappings

Ψ : N ′
2n(τ̄ , η, ψ) → Nn(τ̄ , η)

and
Φ′ : Nn(τ̄ , η) → N ′

2n(τ̄ , η, ψ)

are bijective and satisfy

Ψ ◦ Φ′ = IdNn(τ̄ ,η), Φ′ ◦Ψ = IdN ′
2n(τ̄ ,η,ψ).

Proof. All assertions are proved in the same way as the proofs of [GRS11, Theo-
rem 4.4, 4.5] using Assumption 2. �

9. Applications of the irreducibility of global descents

In this section, as an application of the irreducibility of global descents, we shall
show the rigidity theorem and a local converse theorem for generic representations
and the irreducibility of explicit local descents.

9.1. Global application. In this section, we use the same notation as in the
previous sections.

Theorem 9.1. Let σ and σ′ be irreducible ψ−1-generic cuspidal automorphic rep-
resentations of Gn(A). Suppose that σ and σ′ are nearly equivalent; i.e., for almost
all places v of F , σv � σ′

v. Then
σ = σ′.

Hence, the multiplicity one theorem for the generic spectrum holds for Gn.

Proof. Let τ and τ ′ be base change lifts of σ and σ′ to GL2n(AE), respectively (see
Theorem 4.2). Since σv � σ′

v for almost all v, we have τv � τ ′v at these places v.
Then by the strong multiplicity one theorem for GL2n(AE), we have

τ = τ ′.

Let us write τ = �n
i=1τi ⊗ η−1 and denote the global descent for τ̄ = (τ1, . . . , τr)

by D4n,η
2n,ψ(Eτ̄ ). From [GRS11, Theorem 3.1(6)], the complex conjugates of σ and σ′

have L2-pairings with D4n,η
2n,ψ(Eτ̄ ). Since D4n,η

2n,ψ(Eτ̄ ) is irreducible by Theorem 8.1,
we obtain

σ = D4n,η
2n,ψ(Eτ̄ ) = σ′.

�
Remark 9.2. This theorem should follow from Ma [Mo15] if we admit certain as-
sumptions in his paper.

Form Theorem 9.1, the following corollary readily follows.
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Corollary 9.3. Let U igca
2n,ψ be the set of all equivalence classes of irreducible ψ−1-

generic cuspidal automorphic representations of Gn(A) and let GLia
2n(AE) be the set

of all equivalence classes of irreducible automorphic representations of GL2n(AE).

Then the base change lift from U igca
2n,ψ to GLia

2n(AE) is injective. More precisely,
when we have

σ �→ π̄ ⊗ η−1

under the base change lift from Gn(A) to GL2n(AE),

σ = D4n,η
2n,ψ(Eπ̄).

9.2. Local applications. In this section, we shall consider local applications of
the irreducibility of global descents. Let us set some notation. Let k be a non-
archimedean local field of characteristic zero and let k′ be a quadratic extension of
k. Let ψk be a non-trivial additive character of k, and define an additive character
ψk′ of k′ by

ψk′(x) = ψk

(
x+ x̄

2

)
, x ∈ k′,

where x �→ x̄ is the action of the non-trivial element of Gal(k′/k). Then we define
a generic character ψGL

k′ of upper unipotent matrices Zm(k′) of GLm(k′) by

u �→ ψk′(u1,2 + · · ·+ um−1,m).

First of all, as a local counterpart of the irreducibility of global descents, we
shall prove the irreducibility of local descents. Recall that we have two kinds of
local descents, called explicit local descents and abstract local descents (e.g. see
[LM16, Section 5.1]). In this section, we shall show the irreducibility of explicit
local descents, which we call simply local descents from now on.

Let us recall the definition of local descents. Let ni (1 ≤ i ≤ r) be positive
integers such that n1 + · · · + nr is even, say 2n. Let τ̄ = (τ1, . . . , τr) with an
irreducible supercuspidal representation τi of GLni

(k) such that L(s, τi,Asai) has
a pole at s = 0, and if i �= j, then τi �� τj . Here, the L(s, τi,Asai) is the Asai
L-function defined by the Langlands-Shahidi method [Sh90b] or the L-function
introduced by Flicker [Fl88], [Fl93] since both L-functions match (see [AR05]).
Then we consider a parabolic induction of GL2n(k

′):

π := �τi = Ind
GL2n(k

′)

PGL
[ni]

(k′)
(τ1 ⊗ · · · ⊗ τr).

LetWψGL
k′ (π) be the Whittaker model of π with respect to ψGL

k′ and let Ind(WψGL
k′ (π))

be the space of G2n(k)-smooth left N2n
n (k)-invariant functions W : G2n(k) → C

such that for all g ∈ G2n(k), the function m �→ δP 2n
n
(m)−

1
2W (mg) on M2n

n (k)

belongs to W
ψk′ (π).

Let KGL2n be the standard maximal compact subgroup of GL2n(k
′) and let

K2n = KGL2n
∩G2n(F ). Then the function on D4n

2n(k) defined by(
g �

g∗

)
�→ | det g|

extends to the function on G2n(k) so that it is trivial on K2n. We denote this
function by ν(g) for g ∈ G2n(k).

For W ∈ Ind(WψGL
k′ (π)) and s ∈ C, we define

Ws(g) = ν(g)sW (g).
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Then we consider the integral

Aψ,η (W,Φ, g, s) =

∫
(U4n

n )γ\U4n
n (k)

Ws(γvg)ωψ−1

k′ ,η−1(vg)Φ(ξn),

where γ =

( 1n
1n

−1n
1n

)
, ξn = (0, . . . , 0, 1) ∈ (k′)n, and (U4n

n )γ = γ−1U2n(k)γ ∩

U4n
n (k). We know that for each g ∈ G2n(k), A

ψ,η (W,Φ, g, s) is entire as a function
of s, and it is (Un(k), ψ

−1
k′ )-invariant (see [LM16, Lemma 5.1]). Here, ψ−1

k′ denotes
the generic character of Un(k) defined as in (3.2).

Let us define an intertwining operator by

M(s)W (g) = ν(g)s
∫
U

Ws(wUug) du with wU =

(
12n

−12n

)
.

We note that by [LM16, Proposition 2.1], M(s) is holomorphic at s = 1
2 . Then

we denote by Dη
ψk′ (τ̄) the space of Whittaker functions on Gn(k) generated by

Aψ,η
(
M( 12 )W,Φ, ·,− 1

2

)
for W ∈ Ind(WψGL

k′ (π)). We call Dη
ψk′ (τ̄) the local descent

of τ̄ . We know that Dη
ψk′ (τ̄) is non-zero (see [LM16, Section 5.1]). Further, it is

easy to see that

(9.1) Dη
ψk′ (τ̄) � Dη

ψa
k′
(τ̄)

for any a ∈ (k×)2. Here, ψa
k′(x) = ψk′(ax) for x ∈ k′.

Theorem 9.4. The local descent Dη
ψk′ (τ̄) is an irreducible ψ−1

k′ -generic supercus-

pidal representation. Moreover, Dη
ψk′ (τ̄) is the unique ψ−1

k′ -generic supercuspidal

representation such that

(9.2) γSh
(
s,Dη

ψk′ (τ̄)× (τi ⊗ η−1), ψk′

)
has a simple pole at s = 1 for each 1 ≤ i ≤ r. Here, local γ-factors are the ones
defined in Shahidi [Sh90a], [Sh90b].

Proof. Let us prove the irreducibility. Let K be a number field and let K ′ be a
quadratic extension of K such that for some finite place v, Kv � k and K ′

v � k′.
We know that there is a character Υ of AK′/K ′ such that Υv � η and Υ|

A
×
K

is

the quadratic character of A×
K/K× corresponding to the quadratic extension K ′/K

(e.g. see [GI16, Section 6.6]). Further, from (9.1), we may suppose that ψk′ is a
v-component of some character ψAK′ of AK′/K ′ such that ψAK′ (x̄) = ψAK′ (x) for
any x ∈ AK′ .

From [Ka04, Theorem 4], we know that each τi is of unitary type; i.e., it has
a non-trivial GLni

(k)-invariant linear form. Then by [HM02, Theorem 1], there
exists an irreducible cuspidal automorphic representation Πi of GLni

(AK′) such
that Πi,v � τi and the following linear functional is not identically zero on Πi:

ϕ �→
∫
A

×
KGLni

(K)\GLni
(AK)

ϕ(g) dg, ϕ ∈ Πi.

Therefore, by [FZ95, Theorem], a partial L-function LS(s,Πi,Asai) has a pole at
s = 1. Then we have the residual representation EΠ̄ by [GRS11, Theorem 2.1]
where Π̄ = (Π1, . . . ,Πr).
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Lapid–Mao [LM16, Theorem 5.5] showed that under two working assumptions,

Dη
ψk′ (τ̄) � D4n,Υ

2n,ψ (EΠ̄)v is irreducible. One of their working assumptions is the

irreducibility of global descents, namely Theorem 8.1. The other working assump-
tion on analytic properties of local zeta integrals was proved by Ben-Artzi and
Soudry [BAS]. Hence, we obtain the above irreducibility without any assumption.

On the other hand, by Corollary 9.3, the base change lift of D4n,Υ
2n,ψ (EΠ̄) to

GL2n(AK) is �Πi ⊗ Υ−1. In particular, the local base change lift of Dη
ψ(τ̄) to

GL2n(k
′) is �Πi,v ⊗ Υ−1

v � �τi ⊗ η−1. In Kim–Krishnamurthy [KK05, Proposi-

tion 8.4 - 8.7], they constructed explicitly local base change lifts for ψ−1
k′ -generic

representations. Indeed, their construction implies that if an irreducible admissible
ψ−1
k′ -generic representation of Gn(k) lifts to �τi ⊗ η−1, then it is supercuspidal.

Hence, the local descent Dη
ψk′ (τ̄) is supercuspidal.

We note that the above local base change lift by Kim–Krishnamurthy [KK05] is
strong; in particular, we have the following identity:

γSh
(
s,Dη

ψk′ (τ̄)× (τi ⊗ η−1), ψk′

)
= λ(E/F, ψk′)2nni

r∏
j=1

γRS(s, (τj ⊗ η−1)× (τi ⊗ η−1), ψk′).

Here, the γ-factor on the right-hand side is the one defined by the Rankin-Selberg
method by Jacquet, Piatetski-Shapiro, and Shalika [JPSS83]. Since τi �� τj if i �= j,
γRS(s, (τj ⊗ η−1)× (τi ⊗ η−1), ψk′) does not have a pole and zero at s = 1. Hence,

(9.2) has a pole at s = 1 for each i. Conversely, let σ be a ψ−1
k′ -generic supercuspidal

representation of Gn(k) such that

γSh
(
s, σ × (τi ⊗ η−1), ψk′

)
has a simple pole at s = 1 for each i. Let ρ be the base change lift of σ to GL2n(k

′)
given by [KK05, Proposition 8.4]. Then we can write

ρ = ρ1 � · · ·� ρr′

with irreducible supercuspidal representation ρi of GLni
(k′) such that ρi �� ρj if

i �= j. By our assumption, we have that
r∏

j=1

γRS
(
s, ρj × (τi ⊗ η−1), ψk′

)
has a pole at s = 1. Then there is 1 ≤ j0 ≤ r′ such that

γRS
(
s, ρj0 × (τi ⊗ η−1), ψk′

)
has a pole at s = 1 and thus we should have ρj0 � τi ⊗ η−1. Therefore we should
have

ρ = �(τi ⊗ η−1).

From the proof of the irreducibility, we should have

σ = Dη
ψ(τ̄),

and this completes our proof. �
Remark 9.5. In Soudry–Tanay [ST15], they studied the local descent when r = 1. In
this case, they gave a characterization of local descent and proved the irreducibility
under a certain assumption.
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As another application, we prove a local converse theorem for generic represen-
tations of Gn(k).

Theorem 9.6. Let π and π′ be irreducible ψ−1
k′ -generic representations of Gn(k)

such that
γSh(s, π × σ, ψk′) = γSh(s, π′ × σ, ψk′)

holds for any irreducible supercuspidal representation σ of GLi(k
′) with 1 ≤ i ≤ n.

Then
π � π′.

Proof. First, suppose that π and π′ are supercuspidal. Let K and K ′ be as in the
proof of Theorem 9.4. First, we note that we may suppose that ψk′ is a v-component
of some character ψAK′ of AK′/K ′ such that ψAK′ (x̄) = ψAK′ (x) for any x ∈ AK′ .
This clearly follows from the identity

(9.3) γSh(s, π × σ, ψa
k′) = γSh(s, π′ × σ, ψa

k′)

for a ∈ (k×)2 where ψa
k′(x) := ψk′(ax). From the definition [Sh90b, Theorem 3.5] of

γ-factors, this identity follows from a similar relation for local coefficients. Further
from [Sh90b, (1.2)], such identity follows from an invariance of Whittaker function-
als, and it is easy to check this invariance from the definition.

By a standard argument as in [Sh90b, Proposition 5.1] (see also a proof of [ST15,
Theorem 7.3]), we see that there are irreducible cuspidal ψ−1

K′ -generic automorphic
representations Π and Π′ of Gn(AK) such that Πv = π and Π′

v = π′. Let Ξ =
�Ξi and Ξ′ = �Ξ′

i be the base change lift of Π and Π′ to ResK′/KGL2n(AK) �
GL2n(AK′) established by [KK05], respectively. Since this lift is strong, we have

λ(k′/k, ψk′)2niγRS(s,Ξv × σ, ψk′) = γSh(s, π × σ, ψk′)

and
λ(k′/k, ψk′)2niγRS(s,Ξ′

v × σ, ψk′) = γSh(s, π′ × σ, ψk′)

for any irreducible supercuspidal representation σ of GLi(k
′) with 1 ≤ i ≤ n.

Hence, we have
γRS(s,Ξv × σ, ψk′) = γRS(s,Ξ′

v × σ, ψk′).

By [JNS15, Corollary 2.7], Ξv and Ξ′
v have the same central character. Then

from the local converse theorem for GL2n(k
′) by [JL16, Theorem 1.3] and [Ch16,

Theorems 4.3, 4.4], we obtain

(9.4) Ξv � Ξ′
v.

Let Ξ̄ = (Ξ1, . . . ,Ξr) and Ξ̄′ = (Ξ′
1, . . . ,Ξr′). Then by Corollary 9.3, we have

(9.5) D4n,η
2n,ψ(EΞ̄⊗η) = Π and D4n,η

2n,ψ(EΞ̄′⊗η) = Π′.

On the other hand, as in the proof of the previous theorem,

(9.6) D4n,η
2n,ψ(EΞ̄⊗η)v � Dηv

ψv
(Ξ̄v ⊗ ηv) and D4n,η

2n,ψ(EΞ̄′⊗η)v � Dηv

ψv
(Ξ̄′

v ⊗ ηv).

Therefore, since Πv � π and Π′
v � π′, (9.4), (9.5), (9.6), and Theorem 9.4 show

that
π � π′.

Let us consider the general case. First, we note that any irreducible ψ−1
k′ -generic

representation π is written as a subquotient of

Ind
Gn(k)
P[ai],a

(τ1| det |r1 ⊗ · · · ⊗ τr| det |r ⊗ ρ0),
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where τi is an irreducible supercuspidal representation of GLai
(k′), ρ0 is an irre-

ducible supercuspidal ψ−1
k′ -generic representation of Ga(k), and zi is a real number

such that z1 ≥ · · · ≥ zr ≥ 0. Then we say that π has supercuspidal support
(P[ai],a, τ1, . . . , τr; ρ0) and exponents (z1, . . . , zr).

In the same argument as in the proofs of [JS03, Proposition 3.2] and [Li11, Lem-
ma 3.3], we can prove the following lemma using the multiplicativity of γ-factors by
Shahidi [Sh90a] and the local base change lifts given by Kim and Krishnamurthy
[KK05]. We omit a proof.

Lemma 9.7. Let π be an irreducible admissible ψ−1
k′ -generic representation of

Gn(k) with supercuspidal support (P[ai],a, τ1, . . . , τr; ρ0) and exponents (z1, . . . , zr).
Then s = 1+ z1 is the rightmost real point at which the twisted local gamma factor
γSh(s, π × σ, ψk′) can possibly have a pole where σ is an irreducible unitary super-
cuspidal representation of GLai

(k′) with l ∈ Z≥0. If the pole at s = 1 + z1 occurs
for some (l, σ), then σ � τi0 for some 1 ≤ i0 ≤ r such that zi0 = z1.

Moreover, in the same argument as in [JS03, Theorem 5.1] (cf. [Li11, Theo-
rem 3.5]), we can prove the following result, which obviously finishes a proof of
Theorem 9.6 by the above argument. We omit a proof.

Proposition 9.8. Let π and π′ be irreducible ψ−1
k′ -generic representations of Gn(k),

with supercuspidal support (P[ai],a, τ1, . . . , τr; ρ0) and (P[a′
i],a

′ , τ ′1, . . . , τ
′
r′ ; ρ

′
0),

exponents (z1, . . . , zr) and exponents (z′1, . . . , z
′
r′), respectively. Suppose that

γSh(s, π × σ, ψk′) = γSh(s, π′ × σ, ψk′) for any irreducible supercuspidal represen-
tation σ of GLl(k

′), with 1 ≤ l ≤ n. Then after a possible rearrangement of
(τ ′1, z

′
1; . . . ; τ

′
r′ , z

′
r′), without affecting the decreasing order of z′1, . . . , z

′
r′ ,

(1) r = r′ and ai = a′i for 1 ≤ i ≤ r,
(2) zi = z′i and τi � τ ′i for 1 ≤ i ≤ r,
(3) γSh(s, ρ0 × σ, ψk′) = γSh(s, ρ′0 × σ, ψk′) for any irreducible supercuspidal

representation σ of GLl(k
′) with 1 ≤ l ≤ n.

�

Remark 9.9. We expect that a precise study of local theta correspondences between
even unitary groups and odd unitary groups should give a local converse theorem
for odd unitary groups.

By the above two theorems, we obtain the following characterization of local
base change lifts for supercuspidal representations.

Corollary 9.10. Let Irrgencusp(Gn(k)) be the set of isomorphic classes of irreducible

ψ−1
k′ -generic supercuspidal representations of Gn(k) and let Irrisobcusp(GL2n(k

′)) be
the set of isomorphic classes of irreducible representations of GL2n(k

′) of the form
ρ1 � · · · � ρr such that L(s, ρi ⊗ η,Asai) has a pole at s = 0 and ρi �� ρj if i �= j.
Then there is a unique bijection between

� : Irrgencusp(Gn(k)) → Irrisobcusp(GL2n(k
′))

satisfying

(9.7) γSh(s, π × τ, ψk′) = λ(E/F, ψk′)2niγRS(s, �(π)× τ, ψk′)

for any irreducible supercuspidal representation τ of GLi(k
′) with 1 ≤ i ≤ n.
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Proof. The base change lift given by Kim–Krishnamurthy [KK05] gives this bi-
jection. Indeed, the condition (9.7) is proved in [KK05], and the injectivity fol-
lows from Theorem 9.6. Moreover, in the proof of Theorem 9.4, for a given
�τi ⊗ η−1 ∈ Irrisobcusp(GL2n(k

′)), we showed that the base change lift of Dη
ψ(τ̄) to

GL2n(k
′) is �τi ⊗ η−1, and thus the surjectivity follows.

Finally, the uniqueness of the bijection satisfying the above condition follows
from Theorem 9.6. �

Remark 9.11. From this corollary, we obtain the uniqueness of a local Langlands
correspondence for even unitary groups given in [Mo15].

This corollary gives a characterization of (GL2n(k), ωk′/k)-distinguished super-
cuspidal representations of GL2n(k

′) in terms of local base change lifts, which is an
affirmative answer to a conjecture by Flicker and Rallis (see [Fl91]) in the case of
supercuspidal representations.

Corollary 9.12. Let π be an irreducible supercuspidal representation of GL2n(k
′).

Then π is (GL2n(k), ωk′/k)-distinguished if and only if π is a local base change lift

of an irreducible ψ−1
k′ -generic supercuspidal representation of Gn(k).

Proof. By [AKT04, Corollary 1.5], π is (GL2n(k), ωk′/k)-distinguished if and only
if L(s, π⊗ η,Asai) has a pole at s = 0. Then the above corollary gives the required
equivalence. �

Appendix A. Linear functionals and Jacquet modules

of unramified representations

In this appendix, we shall prove some results on unramified representations. This
is crucial for our computations of Fourier coefficients and Fourier-Jacobi coefficients.
Since we consider a local situation, we let the base F be a non-archimedean local
field of characteristic zero and let E be an unramified quadratic extension of F .
Let η be an unramified character of E× such that η|F× is the quadratic character
of F× corresponding to E/F . Further, other notation is the same as in the main
body of this paper.

Let σ be an irreducible unramified representation of Gn(F ). Assume that σ is
the unramified constituent of the parabolic induction

Ind
Gn(F )
Bn(F )(χ), χ =

n∏
i=1

χi.

Here χi are unramified characters of E×. Let τ be an unramified representation of
GL2n(E). We suppose that τ is the base change lift of σ; namely, τ is the unramified
constituent of

Ind
GL2n(E)
P2n(F ) (χ).

Here, we regard χ as a character of P2n(F ) by

χ(diag(t1, . . . , t2n)u) =
n∏

i=1

χi(ti) ·
2n∏

i=n+1

χ2n+1−i(t̄i)
−1, ti ∈ E×, u ∈ Z2n.

Let θτ denote the unramified constituent of I(τ ) := IndG2nk

Qk
(τ | det |k−1/2 ⊗ · · · ⊗

τ | det |1/2). Here, Qk is the standard parabolic subgroup of G2nk(F ) with the Levi
decomposition Qk = (GL2n(E)× · · · ×GL2n(E))U(Qk).
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Similarly, let θτ,σ denote the unramified constituent of the induced representation

I(τ, σ) := Ind
Gn(2k+1)(F )

Lk
(τ | det |k ⊗ · · · ⊗ τ | det | ⊗ σ). Here, Lk is the standard

parabolic subgroup of Gn(2k+1)(F ) with the Levi decomposition Lk = (GL2n(E)×
· · · ×GL2n(E)×Gn(F ))U(Lk).

Let Q̂k denote the standard parabolic subgroup of G2nk(F ) with the Levi decom-

position Q̂k = (GL2k(E) × · · · × GL2k(E))U(Q̂k) where GL2k(E) occurs n times.

Let L̂k denote the standard parabolic subgroup of Gn(2k+1)(F ) with the Levi de-

composition L̂k = (GL2k+1(E)× · · · ×GL2k+1(E))U(L̂k) where GL2k+1(E) occurs
n times. By the same argument as in [GRS05, Lemma 3.1], we can prove the
following result. Hence, we omit a proof.

Lemma A.1.

(1) Let τ be as above. Assume that τ is a conjugate self-dual unramified rep-
resentation of GL2n(E). Then the representation θτ is the unramified con-
stituent of the parabolic induction

Ind
G2nk(F )

Q̂k
(χ1(det)⊗ · · · ⊗ χn(det)).

(2) Let σ and τ be as above. Then the representation θτ,σ is the unramified
constituent of the parabolic induction

Ind
Gn(2k+1)(F )

L̂k
(χ1(det)⊗ · · · ⊗ χn(det)).

Let Up := U2r
p (F ) denote the unipotent radical of the standard parabolic sub-

group Q2r
p (F ) of Gr(F ) whose Levi part is isomorphic to GL1(E)p×Gr−p(F ). For

α ∈ E×, let ψp,α be a character of Up defined by

ψp,α(u) = ψ(u1,2 + · · ·+ up−1,p + up,p+1 + αup,2r−p).

For an admissible representation (π, Vπ) of Gr(F ), we consider linear functionals
νp,α on Vπ satisfying νp,a(π(u)v) = ψp,α(u)νp,α(v) for all u ∈ Up and v ∈ Vπ.

Lemma A.2. Let τ and σ be as in Lemma A.1. The representation θτ,σ of G3n(F )
(i.e., the case k = 1) has no non-zero linear functional νn,α for all α ∈ E×.

Proof. We shall prove this lemma in a similar way as the proof of [GRS05, Lem-
ma 3.3].

Let us set some notation. Let L̂3 = (GL3(E) × · · · × GL3(E))Z denote the

opposite parabolic subgroup of L̂3 where

Z := {tu : u ∈ U(L̂3)} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
13
∗ 13
∗ ∗ 13
...

...
. . .

∗ ∗ ∗ · · · 13

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.
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Then we note that Z is an n-step nilpotent subgroup. Let A ∈ Mat3×3(E). For

2 ≤ i ≤ n and 1 ≤ j ≤ i− 1, we define a matrix Âi,j in Z by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
. . .

13
...

. . .

A · · · 13
...

. . .

A∗ · · · 13
. . .

13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which means that the (i, j)-entry (resp. (2n+ 1− j, 2n+ 1− i)-entry) of Âi,j is A

(resp. A∗) when we consider Âi,j as a block matrix of size 3 × 3. Denote by Ẑi,j

the subgroup of Z consisting of Âi,j with A ∈ Mat3×3(E). Similarly, we define for
n+ 1 ≤ i ≤ 2n,

Ẑi,j=
{
Âi,j ;A∈Mat3,3(E) if i+ j �= 2n+ 1 and A∈Mat03×3(E) if i+ j = n+ 1

}
,

where Mat03×3(E) = {X ∈ Mat3×3(E) : tX̄ = X}.
For r ∈ E and 1 ≤ i ≤ n, we define

ui,i+1(r) = 16n+rei,i+1−r̄e6n−i,6n−i+1 and un,5n(r) = 16n+ren,5n−r̄en+1,5n+1.

From part (ii) of Lemma A.1, it suffices to show our claim for the unramified

principal series Ind
Gn(2k+1)(F )

L̂k(F )
(χ1(det)⊗ · · · ⊗ χn(det)).

Let γ ∈ L̂k(F )\G3n(F )/Un. Then by the Bruhat decomposition, we may write
γ = wuw, where w is a Weyl element and uw is an upper triangular matrix of
G3n(F ) given by ⎛⎝1n u′

w

1n

⎞⎠ , u′
w ∈ G2n(F ).

From Mackey theory, it suffices to show that we have either

(A.1) γûi,i+1(r)γ
−1 ∈ L̂k(F ) or γûn,5n(r)γ

−1 ∈ L̂k(F ).

Then in the same argument as in [GRS05, p. 201], we may suppose that uw = 1
and γ = w. If (A.1) does not hold, then we should have

wûi,i+1(r)w
−1 ∈ Z and wûn,5n(r)w

−1 ∈ Z

for all 1 ≤ i ≤ n. Then we shall deduce a contradiction.
Let us write

wûn,5n(r)w
−1 = (Â1)i1,j1

with some A1 ∈ Mat3×3(E). After conjugating by a Weyl element, we may assume
that only (1, 3)-entry of A1 is non-zero.

Since ûn,5n(r) does not commute with ûn,n+1(r), wûn,n+1w
−1 should be written

as

wûn,n+1(r)w
−1 = (̂A2)j1,j2 or wûn,n+1(r)w

−1 = (̂A2)i2,i1
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with some A2 ∈ Mat3×3(E). From the definition, we have i1 �= j1, and thus
wûn,5n(r)w

−1 and wûn,n+1(r)w
−1 are in different blocks. As above, we may sup-

pose that only the (3, 3)-entry of A2 is not zero.
By a similar reason as above, we may write

wûn−1,n(r)w
−1 = (̂A3)j2,j3 , (̂A3)i3,j1 , (̂A3)i1,j′3

, or (̂A3)i′3,i2

with some A3 ∈ Mat3×3(E). Since j1 �= j2 and i1 �= i2, wûn,n+1(r)w
−1 and

wûn−1,n(r)w
−1 should be in different blocks.

Assume that wûn,5n(r)w
−1 and wûn−1,n(r)w

−1 are in the same block. Since
ûn,5n(r) and ûn−1,n(r) have different entry, this is also true for wûn,5n(r)w

−1 and
wûn−1,n(r)w

−1. Thus only the (k1, k2)-entry of A3 is non-zero with k1 �= 1 and k2 �=
3. Then, by a direct calculation, we see that wûn−1,n(r)w

−1 and wûn,n+1(r)w
−1

commute. This is a contradiction; thus wûn,5n(r)w
−1, wûn−1,nw

−1, and wûn−1,n(r)
w−1 are in different blocks. Repeating this argument, we see that wûn,5n(r)w

−1

and wûi,i+1(r)w
−1 (1 ≤ i ≤ n) are in different blocks.

Roots corresponding to wûn,5nw
−1, wûi,i+1w

−1 (1 ≤ i ≤ n) form a set of simple
roots of split special orthogonal group SO(2n + 2) ⊂ GL(2n + 2). Thus Z should
be a k-step nilpotent group with k ≥ n + 1 if n �= 1. Hence, if n �= 1, this is a
contradiction, and this completes a proof of our lemma.

Suppose n = 1. Then Z has only one non-trivial block, and thus wûn,5n(r)w
−1

and wû1,2(r)w
−1 should be in the same block. Then these two matrices commute

since Z is abelian. This contradicts our definition of û1,2 and ûn,5n. �
Define a unipotent subgroup of Gr(F ) by

U0
p = {u = (ui,j) ∈ Up : up,j = 0; p+ 1 ≤ j ≤ 2r − p}.

For a ∈ F×, we define a character ψp,a of U0
p by

ψp,a(u) = ψ(u1,2 + · · ·+ up−1,p + aup,2r−p+1).

For an admissible representation (π, Vπ) of Gr(F ), we consider linear functionals
�p,a on the space Vπ satisfying �p,a(π(u)v) = ψp,a(u)�(v) for all u ∈ U0

p and v ∈ Vπ.
In a similar argument as in the proof of the above lemma (see also the proof of
[GRS05, Lemma 3.3]), we can prove the following result. We omit a proof.

Lemma A.3. Let τ and σ be as in Lemma A.1. The representation θτ (resp. θτ,σ)
of the group G2nk(F ) (resp. Gn(2k+1)(F )) has no non-zero functional �n+1,a for all

a ∈ F×.

Finally, we shall compute a certain Jacquet module of θτ,σ . Let ωψ,η be the Weil
representation of Fn := G2n(F )�H4n+1 defined as in (3.5) where H4n+1 denotes
the Heisenberg group in 4n + 1-variable defined as in (3.4). Then we denote the
twisted Jacquet module of θτ,σ with respect to ψn,a by

JU0
n,ψn,a

(θτ,σ).

Let C be the center of the Heisenberg group H4n+1. Further, we regard C\H4n+1

as a subgroup of G3n(F ) by

(x1, . . . , x4n; 0) �→

⎛⎜⎜⎜⎜⎝
1n−1

1 x 0
14n x′

1
1n−1

⎞⎟⎟⎟⎟⎠
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where x = (x1, . . . , x4n). This twisted Jacquet module is an admissible representa-
tion of G2n(F ). Then we consider the Jacquet module

(A.2) JC\H4n+1

(
JU0

n,ψn,1
(θτ,σ)⊗ ωψ−1,η−1

)
.

As in [GRS05, Proposition 5.4], we can prove the following lemma.

Lemma A.4. Let τ and σ be as above. Then as a representation of G2n(F ), the
Jacquet module (A.2) has a unique irreducible constituent, which is the unramified
constituent of

(A.3) Ind
G2n(F )

Q̂1
(χ1η

−1(det)⊗ · · · ⊗ χnη
−1(det)).

Proof. It suffices to compute the Jacquet module

JC\H4n+1

(
JU0

n,ψn,1
(ρχ)⊗ ωψ−1,η−1

)
,

where ρχ is the unramified principal series given in part (ii) of Lemma A.1. Then
by the same argument as in [GRS05, pp. 218–220], we see that as a representation
of G2n(F ), this is isomorphic to

(A.4) JC\H4n+1

(
JC,ψ(ind

Fn

L′ (βχ)⊗ ωψ−1,η−1)
)
,

where ind means the (unnormalized) compactly induced representation, L′ is the
subgroup of Fn consisting of elements of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 � � � 0
g1 · · · � · · · · · · � �

. . .
...

...
...

gn
... �

g∗n � 0
. . .

...
...

g∗1 0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and βχ is the character of L′ which maps the above matrix to

n−1∏
i=1

| det gi|i−n ·
n∏

i=1

(
|a−1

i | det gi|
) 3

2 (2n−2i+1)
χi(a

−1
i det gi).

We note that the representation (A.4) has a unique unramified constituent and has
finite length. Then we may define a linear functional

R : indFn

L′ (βχ)⊗ ωψ−1,η−1 → C

by

R(f ⊗ φ) =

∫
F 2n+1

f

⎛⎜⎜⎝
⎛⎜⎜⎝
1 x z

12n
12n x′

1

⎞⎟⎟⎠
⎞⎟⎟⎠ωψ−1,η−1(x, 0; z)φ(0) dx dz.

It is easy to check that R factors through JC,ψ(ind
Fn

L′ (βχ)⊗ ωψ−1,η−1) and is non-
trivial on the unramified constituent. Further, from the definition and the formula



THE IRREDUCIBILITY OF GLOBAL DESCENTS AND APPLICATIONS 6293

in (3.5), the map R satisfies

R

⎛⎜⎜⎝ρ
⎛⎜⎜⎝
1 �

g � �
g∗

1

⎞⎟⎟⎠ f ⊗
(
ωψ−1,η−1

(
g �

g∗

)
φ

)⎞⎟⎟⎠
= δ

1/2

Q̂1
(

(
g �

g∗

)
)

n∏
i=1

η−1χi(det gi)R(f, φ).

Therefore, R defines a G2n(F )-invariant map from (A.4) to (A.3), and our claim
readily follows. �
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