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LEADING TERMS OF ANTICYCLOTOMIC STICKELBERGER

ELEMENTS AND p-ADIC PERIODS

FELIX BERGUNDE AND LENNART GEHRMANN

Abstract. Let E be a quadratic extension of a totally real number field. We
construct Stickelberger elements for Hilbert modular forms of parallel weight 2
in anticyclotomic extensions of E. Extending methods developed by Dasgupta

and Spieß from the multiplicative group to an arbitrary one-dimensional torus
we bound the order of vanishing of these Stickelberger elements from below
and, in the analytic rank zero situation, we give a description of their leading
terms via automorphic L-invariants. If the field E is totally imaginary, we
use the p-adic uniformization of Shimura curves to show the equality between
automorphic and arithmetic L-invariants. This generalizes a result of Bertolini
and Darmon from the case that the ground field is the field of rationals to
arbitrary totally real number fields.
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1. Introduction

Let A be an elliptic curve over the field of rational numbers. In the seminal
article [18] Mazur, Tate, and Teitelbaum formulate a p-adic Birch and Swinnerton-
Dyer conjecture for the p-adic L-function Lp(A, s) associated to A. Generically, the
order of vanishing of Lp(A, s) at s = 0 should be equal to the rank of A(Q). But in
the case of split multiplicative reduction at p the vanishing of an Euler like factor
forces Lp(A, s) to vanish at s = 0 even though the complex L-function L(A, s)
might not vanish at s = 1. In this situation one expects that

ords=0 Lp(A, s) = ords=1 L(A, s) + 1.
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Thus, if the complex L-function does not vanish at s = 1, the p-adic L-function
should have a simple zero. In [18] the following leading term formula is proposed:

L′
p(A, 0) = L(A)

L(A, 1)

ΩA
.(1.1)

Here ΩA is a real period attached to A and L(A) is the L-invariant of A at p, which
is defined as follows: Since A has split multiplicative reduction there exists a rigid
analytic uniformization

Gm/qTatep −→ AQp

with qTatep ∈ Q∗
p the Tate period of AQp

. The L-invariant is given by the quotient

L(A) =
logp(q

Tate
p )

ordp(qTatep )
.

Formula (1.1) was proven by Greenberg and Stevens (cf. [15]) utilizing the two-
variable Kitagawa-Mazur p-adic L-function, which is defined by varying the mod-
ular form associated with A in a Hida family.

In [3] Bertolini and Darmon prove an analogue of (1.1) for the anticyclotomic
p-adic L-function of the base change of A to an imaginary quadratic field in which p
splits. In contrast to the proof of Greenberg and Stevens and many other proofs of
similar exceptional zero formulae, they do not make use of p-adic families of auto-
morphic forms. Instead they use the Cerednik-Drinfeld uniformization of Shimura
curves. The main purpose of this note is to generalize their result to Hilbert mod-
ular forms of parallel weight 2. Let us give a more detailed account of the content
of this article:

We fix a quadratic extension E/F of number fields with totally real base field
F . In addition, we fix a non-split quaternion algebra B/F in which E can be
embedded. We assume that at the Archimedean places of F the algebra B is split
if and only if E is split. Let πB be an automorphic representation of B∗/F ∗ that
is cohomological with respect to the trivial coefficient system. For every allowable
modulus m (see Definition 4.10) we can pull back the cohomology class κ associated
to the new-vector of πB via an embedding T = E∗/F ∗ −→ B∗/F ∗ of conductor m
to get a distribution valued cohomology class Δm(κ).

Let L/E be an anticyclotomic extension with Galois group G. Following Das-
gupta and Spieß the cap-product of the Artin reciprocity map with a fundamental
class for the group of relative units of E/F gives a homology class cL. Let Rπ

be the ring of integers of the field of definition of πB. By the assumption on the
splitting behaviour at infinite places we can define the Stickelberger element

Θm(L/F, κ) = Δm(κ) ∩ cL ∈ Rπ[G].
An analysis of the action of local points of the torus T on Bruhat-Tits trees gives
functional equations for Stickelberger elements (Proposition 5.6) and norm relations
between Stickelberger elements of different moduli (Theorem 5.4). Some crucial
calculations on the tree have already been carried out by Cornut and Vatsal in [10].

In Section 5.2 we use results of File, Martin, and Pitale (cf. [13]) on toric period
integrals to show that our Stickelberger elements interpolate (square roots of) spe-
cial values of the L-function of the base change of πB with respect to E/F ; i.e., for
every character χ : G → C∗ of conductor m we have

|χ(Θm(L/F, κ))|2 ·
= L(1/2, πB,E ⊗ χ),
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where “
·
=” means equality up to explicit fudge factors. In the CM case, i.e., if the

field E is totally imaginary, our construction is closely related to van Order’s con-
struction of p-adic L-functions (see [25]). Note that if E is totally real, one expects
that there exists no anticyclotomic Zp-extension, but anticyclotomic Stickelberger
elements at finite level can still be defined.

For a ring R and and abelian group H let IR(H) ⊆ R[H] be the kernel of the
augmentation map R[H] → R given by h �→ 1. We define the order of vanishing
ordR(ξ) of an element ξ ∈ R[H] as

ordR(ξ) =

{
r if ξ ∈ IR(H)r − IR(H)r+1,

∞ if ξ ∈ IjR(H) for all j ≥ 1.

By generalizing methods developed by Dasgupta and Spieß in [12] from the split
torus to an arbitrary one-dimensional torus we show that

ordRπ
(Θm(L/F, κ)) ≥ |Sm|,

where Sm is the set of all primes p of F such that p | m and either πB,p is Steinberg
or p is inert in E and πB,p is the non-trivial unramified twist of the Steinberg rep-
resentation. More generally, in Theorem 5.5 we show that the above anticyclotomic
Stickelberger element lies in a product of partial augmentation ideals.

In Section 6.2 we prove the following leading term formula: Suppose that all
primes p in Sm are split in E and πB, p is Steinberg. Then we define “automorphic
periods” qp ∈ F ∗

p ⊗Rπ such that∏
p∈Sm

ordp(qp) ·Θm(L/F, κ)
·
=

∏
p∈Sm

(recp(qp)− 1) ·
√

L(1/2, πB,E) mod IRπ
(G)|Sm|+1

holds, where recp is the local reciprocity map at a prime of E lying above p. This
generalizes Molina’s work [19] on exceptional zeros of anticyclotomic p-adic L-
functions in the CM case and is heavily inspired by Spieß’ article [23]. Crucial
in the definition of these automorphic periods are extension classes of the Steinberg
representation, which were first studied by Breuil in [7]. More precisely, for each
continuous homomorphism l : F ∗

p → A to some topological group A we construct a
short exact sequence

0 −→ Stp(A) −→ E(l) −→ Z −→ 0,

where Stp(A) = C(P1(Fp), A)/A is the A-valued continuous Steinberg representa-
tion.

Finally, if E is totally imaginary and therefore B is totally definite, we compare
automorphic periods of πB and Tate periods of the abelian variety associated to
πB. The first step is to show that we have a commutative diagram

0 Div0(Hp(Cp)) Div(Hp(Cp)) Z 0

0 Stp(C∗
p) E(σp) Z 0

Ψ =

with exact rows. Here Hp denotes the p-adic upper half plane, Ψ is the map that
associates to each divisor D a rational function with divisor D, and σp : F

∗
p → C∗

p

is a fixed embedding. Combined with Dasgupta’s variant of the Manin-Drinfeld
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uniformization theorem, which was implicitly already given in [2], we get a descrip-
tion of the Jacobian of certain Mumford curves via the universal extension of the
Steinberg representation (see Theorem 6.9). By applying this description to Jaco-
bians of Shimura curves associated to quaternion algebras B̄, whose invariants only
differ from that of B at p and one Archimedean place, we are able to compare the
different periods.

2. Notation

We will use the following notation throughout the article. All rings are commu-
tative and unital. The group of invertible elements of a ring R will be denoted by
R∗. Given a group H and a group homomorphism χ : H → R∗ we let R(χ) be the
representation of H whose underlying R-module is R itself and on which H acts
via the character χ. If N is another R[H]-module, we put N(χ) = N ⊗RR(χ). Let
Θ be an element of R[H]. We write Θ∨ for the image of Θ under the map induced
by inversion on H.

For a set X and a subset A ⊆ X the characteristic function �A : X → {0, 1} is
defined by

�A(x) =
{
1 if x ∈ A,

0 else.

Given topological spaces X,Y we will write C(X,Y ) for the set of continuous
functions from X to Y . For a topological ring R we define Cc(X,R) ⊆ C(X,R) as
the subset of continuous functions with compact support. If we consider Y (resp. R)
with the discrete topology, we will often write C0(X,Y ) (resp. C0

c (X,R)) instead.
For a ring R and an R-module N , we define the R-module of N -valued distri-

butions on X as Dist(X,N) = HomZ(C
0
c (X,Z), N). If X is discrete, we have the

pairing

C0
c (X,Z)× C0(X,N) −→ N

given by

(ψ, φ) �−→
∑
x∈X

(ψ · φ)(x),

which induces an isomorphism of R-modules

C0(X,N)
∼=−−→ Dist(X,N).(2.1)

We will always identify these two R-modules via the above isomorphism if X is
discrete. In the case that X is a compact space, we denote the space of N -valued
distributions of total volume 0 by Dist0(X,N).

We say that an R-module N is prodiscrete if N is a topological group such that
there exist open R-submodules

. . . ⊆ N2 ⊆ N1 ⊆ N

with
⋂

i Ni = {0} and N = lim←−i
N/Ni. Let X be a totally disconnected compact

space X and let N be a prodiscrete R-module. We restrict the canonical pairing

lim←−
i

C0(X,N/Ni)⊗Dist(X,R) −→ lim←−
i

N/Ni = N
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to C(X,N) via the embedding

C(X,N) ↪−→ lim←−
i

C0(X,N/Ni).

This yields an integration pairing

C(X,N)⊗Dist(X,R) −→ N.(2.2)

Throughout the article we fix a totally real number field F with ring of integers
OF . For a non-zero ideal a ⊆ OF we set N(a) = |OF /a|. If v is a place of F , we
denote by Fv the completion of F at v. If p is a finite place, we let OFp

denote the
valuation ring of Fp and write ordp for the normalized valuation.

For a finite (possibly empty) set S of places of F we define the “S-truncated
adeles” AS as the restricted product of the completions Fv over all places v which
are not in S. We often write AS,∞ instead of AS∪S∞ . Here S∞ denotes the set
of Archimedean places of F . If G is an algebraic group over F and v is a place of
F , we write Gv = G(Fv) and put GS =

∏
v∈S Gv. Furthermore, if K ⊆ G(A) is a

subgroup, we define KS as the image of K under the quotient map G(A) → G(AS).
If S is a set of finite places of F and m ⊆ OF is a non-zero ideal we put

Sm = {p ∈ S | p divides m} .

3. Anticyclotomic characters and homology classes

In Section 3 of [12] Dasgupta and Spieß develop a machinery to bound the order
of vanishing of Stickelberger elements coming from distributions on the split one-
dimensional torus. In this section we indicate how to generalize their methods to
non-split tori. At primes at which the torus splits essentially the same arguments
as in [12] apply. At a non-split prime p the situation turns out to be even simpler:
the local torus is compact, and thus the rank does not change if one passes from
arithmetic subgroups to p-arithmetic subgroups of the torus.

Let us fix a quadratic extension E of F with ring of integers O and Galois group
generated by τ . We write d for the number of Archimedean places of F which are
split in E. For a finite place p of F all OFp

-orders in Ep are of the form OFp
+pmOp

for some m ≥ 0, where Op denotes the maximal OFp
-order in Ep.

We consider the algebraic torus T = E∗/F ∗ over F . If p is a finite place of F ,

we write U
(m)
Tp

for the image of (OFp
+ pmOp)

∗ in Tp. If v is an Archimedean place

of F , we define UTv
as the connected component of 1 in Tv. Further, we put

UT∞ =
∏

v∈S∞

UTv
⊂ T∞.

Given a non-zero ideal m ⊆ OF we define

UT (m) =
∏

p/∈S∞

U
(ordp(m))
Tp

× UT∞ ⊆ T (A).

To ease the notation we write UT instead of UT (OF ).
For every prime p of F we fix once and for all a prime P of E lying above p and a

local uniformizer �P at P. If p is split, the choice of P determines an isomorphism
Tp

∼= F ∗
p . We will always identify these two groups via the above isomorphism.

Likewise, for every split Archimedean place v of F we fix a place w of E above v
and identify Tv with F ∗

v .



6302 F. BERGUNDE AND L. GEHRMANN

3.1. Fundamental classes. Suppose that there exists an Archimedean place v of
F which splits in E. The group UTv

∼= R∗
>0 is torsion free. Therefore, for every

subgroup A ⊆ T (F ) the group

A+ = ker (A −→ UT∞/UT∞)

is torsion free.
In the CM case, i.e., there is no Archimedean place that splits in E, we choose an

auxiliary finite place q of F and a maximal open torsion free subgroup U+
Tq

⊆ UTq
. If

A ⊆ T (F ) is a subgroup such that the image of A under the embedding T (F ) ↪→ Tq

is contained in UTq
, we define

A+ = ker
(
A −→ UTq

/U+
Tq

)
.

Similarly, if Ũ ⊆ UT is any subgroup, we define Ũ+ ⊆ Ũ to be the subgroup of
elements whose q-component lies in U+

Tq
. To avoid distinguishing the two cases we

simply put Ũ+ = Ũ if there is one Archimedean place that splits.

Remark 3.1. For the rest of the article we use the following convention in the CM
case: whenever we choose a set of finite primes S (resp. a non-zero ideal m) of F
we will assume that the fixed prime q is not contained in S (resp. coprime to m).

Given a finite (possibly empty) set S of places of F , an open subgroup Ũ ⊆ US
T

and a ring R we define

C?(Ũ , R)S = C0
? (T (A

S)/Ũ+, R)

for ? ∈ {∅, c}. For a non-zero ideal m ⊆ OF we set

C?(m, R)S = C?(UT (m)S , R)S .(3.1)

If S is the empty set, we drop it from the notation.
Further, we define

US = ker
(
T (F ) −→ T (AS)/US

T

)
.

By Dirchlet’s unit theorem U+
S is a free group of rank d+ r, where r is the number

of places in S which are split in E. Thus, the homology group Hd+r(U+
S ,Z) is free

of rank one. We fix a generator ηS of this group. Further, we fix a fundamental

domain FS for the action of T (F )/U+
S on T (AS)/US,+

T . By Shapiro’s lemma the
identification

Cc(O,Z)S = c-ind
T (F )

U+
S

C(FS ,Z)

induces an isomorphism

Hd+r(U+
S , C(FS ,Z))

∼=−−→ Hd+r(T (F ), Cc(O,Z)S).

The fundamental class ϑS is defined as the image of the cap-product of ηS with the
characteristic function �FS under the above isomorphism. Similarly as before, we
drop the superscript S if it is the empty set.

Remark 3.2. Let S+ ⊆ S∞ be the set of all split Archimedean places of F . A gen-
erator η of Hd(U+,Z) can be identified with the fundamental class of the compact
torus UTS+ /U+.
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If p ∈ S is either inert or ramified in E, the group H0(Tp, C(Tp/UTp
,Z)) is free of

rank one. Let cp be the normalized generator, i.e., the function that is constantly
one. If p ∈ S is split, we have a sequence of Tp-modules

0 −→ Cc(F
∗
p ,Z) −→ Cc(Fp,Z)

g 	→g(0)−−−−−→ Z −→ 0,(3.2)

where the torus acts via the identification Tp
∼= F ∗

p . Taking UTp
-invariants yields

the exact sequence

0 −→ Cc(F
∗
p /UTp

,Z) −→ Cc(Fp,Z)
UTp

g 	→g(0)−−−−−→ Z −→ 0.(3.3)

We define cp as the image of 1 ∈ Z under the connecting homomorphism Z →
H1(Tp, Cc(Tp/UTp

,Z)).

Remark 3.3. If p is split, the group Tp/UTp
is a free abelian group of rank one.

The exact sequence (3.3) is a projective resolution of the trivial Tp/UTp
-module.

Therefore, if ηp is a generator of the free abelian group H1(Tp/UTp
,Z) of rank one

we get

cp ∩ ηp = ±1 ∈ H0(Tp/UTp
, Cc(Tp/UTp

,Z)) ∼= Z.

The canonical pairing

Cc(O,Z)S × Cc(Tp/UTp
,Z) −→ Cc(O,Z)S−{p}

induces a cap-product pairing on (co)homology groups. The following lemma es-
sentially follows from Remark 3.3.

Lemma 3.4. For every p ∈ S the equality ϑS−{p} = ±cp∩ϑS holds. The sign only

depends on the choice of the generators ηS and ηS−{p}.

3.2. Derivatives of local characters. In this section we fix a finite place p of
F . Let A be a group and let lp : Tp → A be a locally constant homomorphism.
We can view lp as an element of C0(Tp, A). Since lp is a group homomorphism the
map y �→ y.lp − lp is constant. Thus, the image of lp in C0(Tp, A)/A is fixed by the
Tp-action.

If p is inert or ramified in E, we define

clp ∈ H0(Tp, C
0(Tp, A)/A)

to be the image of lp.
On the other hand, if p is split in E, we define

clp ∈ H1(Tp, C
0
c (Fp, A))

to be the class given by the cocycle

zlp(x)(y) = �xOF,p
(y) · lp(x) + ((�OF,p

− �xOF,p
) · lp)(y)(3.4)

for x ∈ Tp and y ∈ Fp.

Remark 3.5. For a prime p, which is split in E, we consider the unique Tp-
equivariant homomorphism

αp : Cc(Tp/UTp
,Z) −→ Cc(Fp,Z)(3.5)

that sends �Up
to �OFp

. The class cordp
associated to the homomorphism

ordp : Tp
∼= F ∗

p −→ Z
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is equal to the image of the class cp under the homomorphism

H1(Tp, Cc(Tp/UTp
,Z))

(αp)∗−−−−→ H1(Tp, Cc(Fp,Z)).

More generally, the class clp can be constructed as the image of lp under a boundary
map

δ : H0(Tp, C
0(Tp, A)/A) −→ H1(Tp, C

0
c (Fp, A)).

See Section 3.2 of [12] for more details.

We are mostly interested in the following situation. We fix a ring R and an ideal
a ⊆ R. We set R = R/a and, similarly, we write N = N ⊗R R for every R-module
N . Let χp : Tp → R∗ be a character. Suppose we have given an ideal ap ⊆ a such
that χp ≡ 1 mod ap. Then

dχp : Tp −→ ap, x �−→ χp(x)− 1 mod aap

defines a group homomorphism, which yields a cohomology class cdχp
.

3.3. Derivatives of global characters. As above we fix a ring R and an ideal
a ⊆ R. Let χ : T (A)/T (F ) → R∗ be a locally constant character and write

χ : T (A)/T (F ) → R
∗
for its reduction modulo a. For a place v of F we denote

by χv the local component of χ at v, i.e., the composition

χv : Tv ↪−→ T (A)
χ−−→ R∗.

Since the kernel of χ is open there exists a non-zero ideal m ⊆ O such that χ
restricted to UT (m) is trivial. The smallest such ideal is called the conductor of
χ. Similarly, for a finite place p of F we define the conductor of χp to be the
p-component of the conductor of χ. We will fix such an ideal m (not necessarily
the conductor) in the following and view χ as an element of H0(T (F ), C(m, R)).

Suppose we have given a finite set S of finite places of F and ideals ap ⊆ a for
p ∈ S such that χp ≡ 1 mod ap holds. In this case, we can regard the restriction

χS of χ to T (AS) as an element of H0(T (F ), C(m, R)S). Further, we want to
take the Archimedean places into account. Let χS,∞ be the restriction of χ to
T (AS,∞) For every Archimedean place v of F which is split in E we fix a character
εv : T (Fv)/UTv

→ {±1} and an ideal av ⊆ a with

χv(−1) ≡ −εv(−1) mod av.

Thus, ψv := 1+(χvεv)(−1) is an element of av. If v is non-split, we set ψv = εv = 1
and av = R. Let us write ε =

∏
v∈S∞

εv : T∞ → {±1}. An easy calculation shows

that χ̃S :=
∏

v∈S∞
ψv ·χS,∞ defines an element of H0(T (F ), C(m,

∏
v∈S∞

av)
S,∞(ε)).

The ε-isotypical projection

C(T∞/UT∞ , R) −→ R(ε), f �−→
∑

x∈T∞/UT∞

ε(x)f(x)

yields a T (A)-equivariant map

Cc(m, R) −→ Cc(m, R)∞(ε).(3.6)

Let r be the number of primes in S which are split in E. We define ϑS,∞ to be
the image of ϑS under the map

Hd+r(T (F ), Cc(O,Z)S) −→ Hd+r(T (F ), Cc(O,Z)S,∞)
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induced by (3.6) with ε = 1. Furthermore, we define

cχ = cχ(m, S, ε) ∈ Hd+r(T (F ), Cc(m,
∏

v∈S∞

av)
S,∞(ε))

as the cap-product of χ̃S with ϑS,∞.
Next, we are going to attach a homology class cχ to the character χ and compare

it with the class cχ associated to its reduction. For this, we need to consider a slight
generalization of (3.1). Let S′ be another (possibly empty) finite set of finite places

of F disjoint from S. For an open subgroup Ũ ⊆ US∪S′,∞
T we define

Cc(Ũ , S,R)S
′,∞ = Cc(Ũ , R)S∪S′,∞ ⊗

⊗
p∈S

p non-split

C0
c (Tp, R)/R⊗

⊗
p∈S

p split

C0
c (Fp, R) .

As before, we put Cc(m, S, R)S
′,∞ = Cc(UT (m)S∪S′,∞, S, R)S

′,∞ and drop S′ from
the notation if it is the empty set. Extension by zero at the split places together
with the canonical projection at non-split places induces a map

Cc(m, R)∞ −→ Cc(m, S, R)∞.(3.7)

Let cχ = cχ(m, S, ε) denote the image of χ under the composition

H0(T (F ), C(m, R))
·∩ϑ−−−→ Hd(T (F ), Cc(m, R))

(3.6)−−−→ Hd(T (F ), Cc(m, R)∞(ε))

(3.7)−−−→ Hd(T (F ), Cc(m, S, R)∞(ε)).

(3.8)

From now on we assume that a ·
∏

v∈S∪S∞
av = 0. Hence, multiplication in R

induces a multilinear map

μ : ap1
× . . .× aps

×
∏

v∈S∞

av −→
∏

v∈S∪S∞

av ↪−→ R,

where S = {p1, . . . , ps}. The next proposition can be proved along the same lines
as Proposition 3.8 of [12].

Proposition 3.6. The following equality of homology classes holds:

cχ = ± μ∗((cdχp1
∪ . . . ∪ cdχps

) ∩ cχ).

In particular, cχ = 0 if
∏

v∈S∪S∞
av = 0.

4. Quaternionic Stickelberger elements

In this section we study Stickelberger elements coming from cohomology classes
of arithmetic subgroups of the multiplicative group of quaternion algebras. Stickel-
berger elements are constructed by firstly pulling back these classes via embeddings
of the multiplicative group of E into one of the quaternion algebra and secondly
taking cap-products with homology classes associated to the Artin reciprocity map.
As an immediate consequence of the results of Section 3 we can bound their order
of vanishing from below.

Let us fix a non-split quaternion algebra B over F such that

- E can be embedded into B; i.e., all places of F at which B is non-split are
non-split in E as well, and

- B is non-split at all Archimedean places of F which are non-split in E.
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The set of finite places of F at which B is ramified will be denoted by ram(B). We
choose once and for all an embedding ι : E ↪→ B. By the Skolem-Noether Theorem
there exists a J ∈ B∗, unique up to multiplication by an element of E∗, such that

ι(τ (e)) = Jι(e)J−1

holds for all e ∈ E. Let us fix such an element J ∈ B∗. We consider the reductive
F -algebraic group G = B∗/F ∗ and view T as an algebraic subgroup of G via the
embedding ι. In addition, we fix a maximal order R ⊆ B such that ι(O) ⊆ R.
For all primes p of F we write Rp ⊆ Bp for the induced maximal order and Kp for
the image of R∗

p in Gp. Let p ∈ ram(B) be a prime which is inert in E. From the
explicit description of the non-split quaternion algebra over a p-adic local field one
gets that the element J is an E∗

p-multiple of a uniformizer of a ramified quadratic
extension of Fp. Therefore, we have J /∈ Kp in this case.

4.1. Local norm relations. This section contains all local computations that we
need to prove norm relations between Stickelberger elements of different moduli and
functional equations for Stickelberger elements. If the prime under consideration
is split in E, explicit versions of the following computations are given in [1]. Most
local norm relations were already proven by Cornut and Vatsal in Section 6 of [10].

We fix a finite place p of F at which B is split. In particular, the group Gp is

isomorphic to PGL2(Fp). Let Tp = (Vp, �Ep) be the Bruhat-Tits tree of Gp, i.e.,

- Vp is the set of maximal orders in Bp and

- there exists an oriented edge e = (v, v′) ∈ �Ep between two vertices v, v′ ∈ Vp

if and only if the intersection of the corresponding orders is an Eichler order
of level p.

Note that (v, v′) ∈ �Ep if and only if (v′, v) ∈ �Ep. In this situation we say that v and
v′ are neighbours and write v ∼ v′. Each vertex has N(p) + 1 neighbours.

For an integer n ≥ 0 we define �Ep,n as the set of non-backtracking paths in Tp of
length n, i.e.,

�Ep,n =
{
(v0, . . . , vn) ∈ Vn+1

p | (vi, vi+1) ∈ �Ep and vi �= vi+2 for all i
}
.

In particular, we have �Ep,0 = Vp and �Ep,1 = �Ep. The group Gp acts on �Ep,n via
conjugation in each component.

Let R be a ring and let N be an R-module. In the following we consider �Ep,n
as a discrete topological space. The Atkin-Lehner involution Wpn on C0(�Ep,n, N)
is given by interchanging the orientation, i.e.,

Wpn(φ)(v0, . . . , vn) = φ(vn, . . . , v0).

The Hecke operator

Tp : C
0(�Ep,n, N) −→ C0(�Ep,n, N)(4.1)

is defined by

φ �−→

⎛⎝(v0, . . . , vn) �−→
∑

vn−1 �=v∼vn

φ(v1, . . . , vn, v)

⎞⎠ .
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Note that if n = 0, the condition vn−1 �= v is empty. For (v0, . . . , vn) ∈ �Ep,n we
define

∂(v0,...,vn) : C
0(�Ep,n, N) −→ Dist(Tp/ StabTp

((v0, . . . , vn)), N)

to be the Tp-equivariant map given by

φ �−→ (t �→ φ(t.(v0, . . . , vn))) .

Here we used the identification (2.1) of distribution and function spaces on the
discrete space Tp/ StabTp

((v0, . . . , vn)). For v ∈ Vp let lp(v) be the uniquely deter-
mined integer given by

U
(lp(v))
Tp

= StabTp
(v).

Remark 4.1. Let Rp(p
n) ⊆ Bp be an Eichler order of level pn contained in the fixed

maximal order Rp. We write Kp(p
n) for the image of Rp(p

n)∗ in Gp. There exists
a unique vertex in Vp fixed by Kp, and thus we get a canonical isomorphism

C(Gp/Kp, N)
∼=−−→ C(Vp, N).

In the case n ≥ 1 there is an up-to-orientation unique element in �Ep,n fixed by
Kp(p

n). Therefore, there are two natural isomorphisms

C(Gp/Kp(p
n), N)

∼=−−→ C(�Ep,n, N),

which are interchanged by the Atkin-Lehner involution.

We will construct a compatible sequence of elements in �Ep,n. Key to this is the
following lemma, which is essentially Lemma 6.5 of [10].

Lemma 4.2. Let v ∈ Vp be a vertex of Tp.
(i) Let lp(v) = 0.

- If p is split in E, there are exactly two neighbours v′ of v such that
lp(v

′) = 0. They are given by �Pv and �τ
Pv.

- If p is ramified in E, there is exactly one neighbour v′ of v such that
lp(v

′) = 0. It is given by �Pv.
- If p is inert in E, there is no such neighbour.

(ii) Let lp(v) ≥ 1. Then there exists a unique neighbour v′ of v with

lp(v
′) = lp(v)− 1.

(iii) In both cases, (i) and (ii), the remaining neighbours v′ of v satisfy

lp(v
′) = lp(v) + 1.

They are permuted faithfully and transitively by U
(lp(v))
Tp

/U
(lp(v)+1)
Tp

.

Let �Ep,∞ = lim←−n
�Ep,n be the set of infinite, non-backtracking sequences of ad-

jacent vertices. Let w0 be the vertex corresponding to Rp or, equivalently, the
unique vertex fixed by the action of Kp. By our assumptions we have lp(w0) = 0.
Using Lemma 4.2(iii) we consecutively choose vertices wi such that wi ∼ wi−1 and

lp(wi) = i for all i ≥ 1. We set w∞ = (w0, w1, w2, . . . ) ∈ �Ep,∞. Further, we define

w−1 = �Pw0 if p is ramified in E. If p splits in E, we set w−j = �−j
P

w0 for every
integer j > 0.
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It will be convenient to introduce the following notation:

ηp =

⎧⎪⎨⎪⎩
0 if p is inert in E,

−1 if p is ramified in E,

−∞ if p is split in E.

By definition we have

StabTp
(wm−n, . . . , wm) = U

(m)
Tp

(4.2)

for all integers m,n ≥ 0 such that m− n ≥ ηp.
We define

∂m := ∂(wm−n,...,wm) : C
0(�Ep,n, N) → Dist(Tp/U

(m)
Tp

, N)

for all integers m,n as above.

For m ≥ 0, the projection πm : Tp/U
(m+1)
Tp

→ Tp/U
(m)
Tp

yields maps

(πm)∗ : Dist(Tp/U
(m)
Tp

, N) −→ Dist(Tp/U
(m+1)
Tp

, N))

f �−→ f ◦ πm

and

(πm)∗ : Dist(Tp/U
(m+1)
Tp

, N) −→ Dist(Tp/U
(m)
Tp

, N)

f �−→
∑

t∈U
(m)
Tp

/U
(m+1)
Tp

t.f.

The proof of the following lemma is an easy calculation. Most of the cases were
already dealt with by Cornut and Vatsal in Section 6 of [10].

Lemma 4.3. Let n ≥ 0 be an integer. The following formulae hold for all φ ∈
C0(�Ep,n, N):

(i) For m ≥ max {1, n+ ηp + 1} the equality

(∂m ◦ Tp)(φ) = ((πm)∗ ◦ ∂m+1)(φ) + �p(pn)((πm−1)
∗ ◦ ∂m−1)(φ)

holds with

�p(pn) =
{
1 if n = 0,

0 else.

(ii) If n+ ηp ≤ 0, the following equality holds:

(∂0 ◦ Tp)(φ) = ((π0)∗ ◦ ∂1)(φ) + (∗),
where

(∗) =

⎧⎪⎨⎪⎩
0 if p is inert in E,

�p(pn)�P∂0(φ) if p is ramified in E,

�p(pn)�P∂0(φ) + (�P)
−1∂0(φ) if p is split in E.

(iii) If p is inert in E and n = 1, then

(∂1 ◦ Tp ◦Wp)(φ) + ∂1(φ) = ((π0)∗ ◦ ∂1)(φ)
holds.

Remark 4.4. Let m ≥ 1 and n ≥ 0 be integers such that m − n ≥ ηp. The only
cases where we do not have a formula involving (πm−1)∗ ◦ ∂m are the following:
n ≥ 2 and either p is inert in E and m = n or p is ramified and m = n− 1.
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Let us denote by

inv : Dist(Tp/UT
(m)
p

, N) −→ Dist(Tp/UT
(m)
p

, N)

the map induced by inversion. The following lemma is the main ingredient for
proving a functional equation for Stickelberger elements.

Lemma 4.5. Let n ≥ 0 be an integer.

(i) Assume n ≤ −ηp. Then for all φ ∈ C0(�Ep,n, N) the equality

(∂0 ◦Wpn)(φ) = (inv ◦∂0)(Jφ)
holds up to multiplication by an element of Tp.

(ii) Assume m ≥ n. Then for all φ ∈ C0(�Ep,n, N) the equality

∂m(φ) = (inv ◦∂m)(Jφ)

holds up to multiplication by an element of Tp.

Proof. To prove (i), note that for t ∈ Tp/UTp
we have

inv(∂0(Jφ))(t) = (Jφ)(t−1(w−n, . . . , w1, w0))

= φ(J−1t−1(w−n, . . . , w1, w0))

= φ(tJ−1(w−n, . . . , w1, w0))

= φ(t(�n
PJ

−1w0, . . . , �PJ
−1w0, J

−1w0)).

Since t′J−1w0 = J−1t′−1w0 = J−1w0 holds for all t′ ∈ UTp
it follows from Lemma

4.2 that J−1w0 = �k
Pw0 for some k ∈ Z. This leads to

inv(∂0(Jφ))(t) = φ(t(�n
PJ

−1w0, . . . , �PJ−1w0, J
−1w0))

= φ(t(�k+n
P

w0, . . . , �
k−1
P

w0, �
k
Pw0)),

and we get

�−k−n
P

inv(∂0(Jφ))(t) = φ(t(w0, . . . , �
−n+1
P

w0, �
−n
P

w0))

= (Wn
p φ)(t(w−n, . . . , w1, w0)).

Claim (ii) follows by a similar calculation as in the first part using that, by
Lemma 4.2, there exists an element x ∈ Tp such that

x(J−1wm−n, . . . , J
−1wm) = (wm−n, . . . , wm)

holds. �
4.2. Ends and the Steinberg representation. We will give a quick review of
the theory of ends of the Bruhat-Tits tree. By realizing the Steinberg representation
as a space of functions on the set of ends, we construct a map δ∗p from the dual of
the Steinberg representation to the space of distributions on the local torus which
is compatible with the maps ∂m for m ≥ 1.

We say that two elements (vi)i≥0 and (v′i)i≥0 in �Ep,∞ are equivalent if there exist
integers N,N ′ ≥ 0 such that vN+i = v′N ′+i for all i ≥ 0. An end in Tp is defined as

an equivalence class of elements in �Ep,∞. The set of ends is denoted by Endsp. To

an edge e ∈ �Ep we assign the set V (e) of ends that have a representative containing
e. The sets V (e) form a basis of a topology on Endsp, which turns Endsp into a

compact space. The natural action of Gp on �Ep,n extends to an action on Endsp.
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Let F ⊆ Endsp be the set of fixed points under the action of Tp. As a consequence
of Lemma 4.2 we see that Tp acts simply transitively on the complement of F.
Hence, choosing a base point [v∞] in the complement yields a homeomorphism
κ[v∞] : Tp → Endsp −F via t �→ t[v∞]. In the following we will choose the class of
w∞ as our base point and write κ = κ[w∞].

Remark 4.6. The set F is non-zero only in the split case, where it consists of two
elements given as follows: Clearly, the equivalence classes of the elements

oP = (w0, �Pw0, �
2
Pw0, . . . ) and oPτ = (w0, �

τ
Pw0, (�

τ
P)

2w0, . . . )

are fixed by Tp. Using Lemma 4.2 one can show that F = {[oP], [oPτ ]} holds. In
particular, the choice of the prime P lying above p (and hence, the choice of the
vertices wi for i ≤ −1) is equivalent to the choice of the element [oP] of F.

We define the Steinberg representation Stp to be the space of locally constant Z-
valued functions on Endsp modulo constant functions, i.e., Stp = C0

c (Endsp,Z)/Z.
The Gp-action on Endsp extends to an action on Stp via (γ.ϕ)([v∞]) = ϕ(γ−1 [v∞])
for γ ∈ Gp, ϕ ∈ Stp, and [v∞] ∈ Endsp. The open embedding κ : Tp ↪→ Endsp
induces a Tp-equivariant map

δp : C
0
c (Tp,Z) −→ Stp,

and thus, by dualizing, we get a map

δ∗p : Hom(Stp, N) −→ Dist(Tp, N).

In the split case we can extend κ to a map from Fp to Endsp by mapping 0 to oP.
Thus, we can extend δp to a map

δp : C
0
c (Fp,Z) −→ Stp,(4.3)

which in turn induces a Tp-equivariant map

δ∗p : Hom(Stp, N) −→ Dist(Fp, N).

If p is non-split, the image of κ is equal to Endsp. Therefore, δp descends to a map

δp : C
0
c (Fp,Z)/Z −→ Stp,(4.4)

and thus we have

δ∗p : Hom(Stp, N) −→ Dist0(Tp, N) ⊆ Dist(Tp, N).

Dualizing the canonical map �Ep,1 → Stp given by e �→ �V (e) yields the Gp-
equivariant evaluation map

evp : Hom(Stp, N) −→ C0(�Ep,1, N).(4.5)

Further, there is the natural map

Dist(Tp, N) −→ Dist(Tp/U
(m)
Tp

, N)

induced by the projection Tp → Tp/U
(m)
Tp

. By definition we have

V ((wm−1, wm)) = κ(U
(m)
Tp

)(4.6)

for all m ≥ 1 and, if p is split in E, we also have

V ((w−1, w0)) = κ(OFp
).



ANTICYCLOTOMIC STICKELBERGER ELEMENTS 6311

From this, one easily gets

Lemma 4.7.

(i) Let m ≥ 1 be an integer. The following diagram is commutative:

Hom(Stp, N) C0(�Ep,1, N)

Dist(Tp, N) Dist(Tp/U
(m)
Tp

, N)

evp

δ∗p ∂m

(ii) Suppose that p is split in E. Let

α∗
p : Dist(Fp, N) −→ Dist(Tp/UTp

, N)

be the dual of the map (3.5). Then the following diagram is commutative:

Hom(Stp, N) C0(�Ep,1, N)

Dist(Fp, N) Dist(Tp/UTp
, N)

evp

δ∗p ∂0

α∗
p

There is also a twisted version of the above constructions if p is inert in E. Let
nr : B∗

p → F ∗
p denote the reduced norm. The character

χ−1 : B
∗
p −→ {±1} , g �−→ (−1)ordp(nr(g))

is trivial on the center and thus descends to a character on Gp. The twisted Stein-
berg representation is defined by

Sttwp = Stp(χ−1).

Since p is inert in E we have ordp(nr(t)) ≡ 0 mod 2 for all t ∈ Tp. Therefore, the
map

δtwp : C0(Tp,Z)/Z −→ Sttwp , f �−→ δp(f)⊗ 1(4.7)

is Tp-equivariant.
There is also a (Gp-equivariant) twisted evaluation map

evtwp : Hom(Sttwp , N) −→ C0(�Ep,1, N).(4.8)

It is given by dualizing the map

�Ep,1 −→ Sttwp , e �−→ χ−1(ge) · �V (e) ⊗ 1,

where ge ∈ Gp is any element such that ge.(w0, w1) = e. Again, using (4.6) we get
the following.
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Lemma 4.8. Let m ≥ 1 be an integer and let p be a prime, which is inert in E.
The following diagram is commutative:

Hom(Sttwp , N) C0(�Ep,1, N)

Dist0(Tp, N) Dist(Tp/U
(m)
Tp

, N)

evtwp

(δtwp )∗ (−1)m+1∂m

4.3. Global cohomology classes and pullback to the torus. In this section
we globalize the constructions of the previous sections.

We fix pairwise disjoint finite sets SSt, Stw, and S′ of finite places of F disjoint
from ram(B) and put S = SSt ∪ Stw. For an R-module N and a compact open
subgroup K ⊆ G(AS,∞) we consider

A(K,SSt, Stw;N)S
′
= C

(
G(AS∪S′,∞)/K,Hom

( ⊗
p∈SSt

Stp ⊗
⊗

p∈Stw

Sttwp , N
))

with its natural G(F )-action; i.e., for every p ∈ SSt (resp. p ∈ Stw) we view Stp
(resp. Sttwp ) as a G(F )-module via the embedding G(F ) ↪→ Gp and put

(g.Φ)(x)(fSt ⊗ ftw) = Φ(g−1x)((g−1fSt)⊗ (g−1ftw))

for g ∈ G(F ), Φ ∈ A(K,SSt, Stw;N)S
′
, x ∈ G(AS∪S′,∞)/K, fSt ∈

⊗
p∈SSt

Stp, and

ftw ∈
⊗

p∈Stw
Sttwp . Further, we fix a locally constant character

ε : T∞ −→ {±1} .
We will often view ε as a character on T (F ) via the embedding T (F ) ↪→ T∞. There
exists a unique extension ε : G∞ → {±1} such that the diagram

T∞ {±1}

G∞

ε

ε
ι

is commutative. Again, we view ε also as a character on G(F ) via the embedding
G(F ) ↪→ G∞.

Definition 4.9. The space of N -valued, (SSt, Stw)-special modular symbols on G
of level K and sign ε is defined to be

M(K,SSt, Stw;N)ε = Hd(G(F ),A(K,SSt, Stw;N)(ε)).

Let n ⊆ OF be a non-zero ideal coprime to ram(B). We fix an Eichler order
R(n) ⊆ R of level n contained in the fixed maximal order R. As in the local case,
we write Kp (resp. Kp(n)) for the image of R∗

p (resp. R(n)∗p) in Gp and set

K =
∏

p/∈S∞

Kp

⎛⎝resp. K(n) =
∏

p/∈S∞

Kp(n)

⎞⎠ .

We put

M(n, SSt, Stw;N) = M(K(n)S , SSt, Stw;N)
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and

M(n;N) = M(n, ∅, ∅;N).

Without loss of generality we will always assume that every p ∈ S divides n exactly
once.

For an open subgroup Ũ ⊆ US∪S′,∞
T we define

D(Ũ , S;N)S
′,∞ = HomR(Cc(Ũ , S,R)S

′,∞, N).

In case Ũ = UT (m) with m ⊆ OF a non-zero ideal we write D(m, S;N)S
′,∞ for the

corresponding distribution space.
From now on we assume that every prime p in Stw is inert in E. Thus, the local

maps (4.3) and (4.4) (resp. (4.7)) induce the semi-local map

δSSt
=

⊗
p∈SSt

δp :
⊗

p∈SSt,
p split

Cc(Fp,Z)⊗
⊗

p∈SSt,
p non-split

Cc(Tp,Z)/Z −→
⊗
p∈SSt

Stp,

respectively

δtwStw
=

⊗
p∈Stw

δtwp :
⊗

p∈Stw

Cc(Tp,Z)/Z −→
⊗

p∈Stw

Sttwp .

For every compact open subgroup K ⊆ G(AS∪S′,∞) and every g ∈ G(AS∪S′,∞)
we get a T (F )-equivariant homomorphism

ΔS′

g,SSt,Stw
: A(K,SSt, Stw;N)S

′ −→ D(ι−1(gKg−1), S;N)S
′

via

ΔS′

g,SSt,Stw
(Φ)(x)(fSSt

⊗ fStw
) = Φ(ι(x)g)(δSSt

(fSSt
)⊗ δtwStw

(fStw
))

for x ∈ T (AS∪S′,∞)/ι−1(gKg−1) and fSSt
, as well as fStw

, in the appropriate semi-
local function spaces.

Composing Δg,SSt,Stw
with the restriction map

M(K,SSt, Stw;N)ε −→ Hd(T (F ),A(K,SSt, Stw;N)(ε))

on cohomology yields a map

M(K,SSt, Stw;N)ε −→ Hd(T (F ),D(ι−1(gKg−1), S;N)∞(ε)),

which we will also denote by Δg,SSt,Stw
.

Note that by Remark 4.1 there is an up-to-orientation unique G(Aram(B)∪S,∞)-
equivariant isomorphism

G(Aram(B)∪S,∞)/K(n)ram(B)∪S ∼=
∏′

p �∈ram(B)∪S∪S∞

�Ep,ordp(n).(4.9)

Definition 4.10. A non-zero ideal m ⊆ OF is called n-allowable if m is coprime to
ram(B) and ordp(m)− ordp(n) > ηp for all p /∈ ram(B).

Let us fix an n-allowable ideal m. For a finite place p of F that is not in S∪ram(B)
we define ep = (wordp(m)−ordp(n), . . . , wordp(m)), where the wi are the vertices chosen

in Section 4.1. Let gm = (gp)p ∈ G(AS,∞)/K(n)S be the element that is equal to
one at places in ram(B) and corresponds to (ep)p under the above isomorphism for
all places p /∈ S ∪ ram(B). In this case, the equality

UT (m) = ι−1(gmK(n)g−1
m )
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holds, and hence we have a map

Δm,SSt,Stw
= Δgm,SSt,Stw

: M(n, SSt, Stw;N)ε −→ Hd(T (F ),D(m, S;N)∞(ε)).

As always, we drop SSt and Stw from the notation if they are empty.
For every p /∈ ram(B) the Hecke operator Tp as defined in (4.1) acts on M(n;N)ε

via the isomorphism (4.9). Similarly, for n′ | n the global Atkin-Lehner involution
Wn′ is given by applying the local Atkin-Lehner involutions W

pordp(n′) at the places

p | n′. Also, for every p ∈ ram(B) the local Atkin-Lehner involution Wp is given by
interchanging the two elements in the set Gp/Kp.

4.4. Anticyclotomic Stickelberger elements. We are going to define anticyclo-
tomic Stickelberger elements, bound their order of vanishing from below, and prove
a functional equation. Throughout this section we fix a ring R, an R-module N , a
non-zero ideal n ⊆ O, which is coprime to ram(B), and a character ε as before. In
addition, we fix a modular symbol κ ∈ M(n;N)ε. Stickelberger elements will be
defined by taking cap-products of various pullbacks of κ with the homology class
defined in Section 3.3 associated to the Artin reciprocity map.

Definition 4.11. A finite Abelian extension L over E is called anticyclotomic if it
is Galois over F and τστ−1 = σ−1 holds for all σ ∈ Gal(L/E).

We fix an anticyclotomic extension L/E with Galois group G = GL/E . The Artin
reciprocity map induces a group homomorphism

recL/E : T (A)/T (F ) −→ G.
In addition, we fix an n-allowable ideal m of OF that bounds the ramification of
L/E; i.e., UT (m) is contained in the kernel of recL/E . Let

cL = crecL/E
∈ Hd(T (F ), C(m,Z[G])∞(ε))

be the image of recL/E under (3.8) with S = ∅. We adopt similar notation if S is
not the empty set; e.g. we set cL(m, S, ε) = crecL/E

(m, S, ε).
The natural pairing

Cc(m,Z[G])∞ ×D(m;N)∞ −→ Z[G]⊗N

induces a cap-product pairing

Hd(T (F ), Cc(m,Z[G])∞(ε))×Hd(T (F ),D(m;N)∞(ε)) −→ Z[G]⊗N.

Definition 4.12. The anticyclotomic Stickelberger element of modulus m associ-
ated with κ and L/F is defined as the cap-product

Θm(L/F, κ) = Δm(κ) ∩ cL ∈ Z[G]⊗N.

As a direct consequence of functoriality of the Artin reciprocity map we get the
following compatibility property:

Proposition 4.13. Let L′ be an intermediate extension of L/E. Then we have

πL/L′(Θm(L/F, κ)) = Θm(L
′/F, κ),

where

πL/L′ : Z[GL/E]⊗N −→ Z[GL′/E ]⊗N

is the canonical projection.
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Let k be an R-algebra and let χ : G → k∗ be a character. Via the Artin reciprocity
map we can view χ as a character of T (A). The character also induces an R-linear
map χ : Z[G]⊗N −→ k⊗RN . Orthogonality of characters immediately implies the
following result. See [1, Proposition 1.12] for a more detailed proof.

Proposition 4.14. Let k be an R-algebra which is a field and let χ : G → k∗ be a
character. If χ∞ �= ε, we have

χ(Θm(L/F, κ)) = 0.

Let SSt and Stw be finite disjoint sets of finite places of F with

- p divides n exactly once for all p ∈ S = SSt ∪ Stw,
- S is disjoint from ram(B), and
- every prime in Stw is inert in E.

The local evaluation maps (4.5) and (4.8) induce a map

EvSSt,Stw
: M(n, SSt, Stw;N)ε −→ M(n;N)ε.

For a place v of F we let Gv ⊆ G be the decomposition group at v. If p ∈ S, we
define Ip ⊆ Z[G] as the kernel of the projection Z[G] � Z[G/Gp]. If v ∈ S∞ is split
in E, we let σv be a generator of Gv and define I±1

v ⊆ Z[G] as the ideal generated
by σv ∓ 1. For non-split Archimedean places we define I±v = Z[G].

Lemma 4.15. Assume that N is Z-flat and that there exists an (SSt, Stw)-special
modular symbol κ′ ∈ M(n, SSt, Stw, ;N)ε lifting κ; i.e., EvSSt,Stw

(κS) = κ holds.
Then we have

Θm(L/F, κ) ∈

⎛⎝ ∏
v∈S∞

I−εv(−1)
v ·

∏
p∈Sm

Ip

⎞⎠⊗N.

In particular, if N = R is a Z-flat ring and ε is trivial, we have

2−dΘm(L/F, κ) ∈ R[G]

and

ordR(2
−dΘm(L/F, κ)) ≥ |Sm| .

Proof. By Lemma 4.7(i) and Lemma 4.8 we have

Θm(L/F, κ) = Δm(κ) ∩ cL(m, ∅, ε)
= ± Δm,SSt,Stw

(κ′) ∩ cL(m, S, ε).

We set I =
∏

v∈S∞
I
−εv(−1)
v ·

∏
p∈Sm

Ip and consider the ring A = Z[G]/I together

with the projection maps π : Z[G] → A and πN : Z[G]⊗N → A⊗N . We have

πN (Θm(L/F, κ)) = ± Δm,SSt,Stw
(κ′) ∩ π∗(cL(m, S, ε)) = 0

since the homology class π∗(cL(m, S, ε)) = cπ◦recL/E
(m, S, ε) vanishes by applying

Proposition 3.6 with a = A. �

Lemma 4.16. Suppose that every p ∈ ram(B) is inert in E and that we can
decompose n = n1n2 such that n1 is coprime to m and n2 | m. Write n1 =

∏r
i=1 p

ni
i ,

with ni ≥ 1 for 1 ≤ i ≤ r. Let κ be an eigenvector of Wp
ni
i

with eigenvalue εi ∈ {±1}
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for 1 ≤ i ≤ r and of Wp with eigenvalue εp ∈ {±1} for every p ∈ ram(B). Further,
write εn1

=
∏r

i=1 εi for the eigenvalue of Wn1
. Then

Θm(L/F, κ)
∨ = (−1)d · ε(−1) · εn1

∏
p∈ram(B)

εp ·Θm(L/F, κ)

holds up to multiplication with an element in G.

Proof. This follows directly from Lemma 4.5. See [1, Proposition 1.15] for more
details. �

5. Automorphic forms

We will apply the results of the previous section to cohomology classes coming
from automorphic forms. To this end, let π be a cuspidal automorphic representa-
tion of PGL2(A) with the following properties:

- πv is a discrete series representation of weight 2 for all Archimedean places
v of F , and

- πp is special, i.e., a twist of the Steinberg representation, for all p ∈ ram(B).

We write Γ0(n) ⊆ PGL2(A) for the usual adelic congruence subgroup of level n.
By the automorphic formulation of Atkin-Lehner theory due to Casselman (see
[8]) there exists a unique non-zero ideal f(π) ⊆ OF such that (π∞)Γ0(f(π)) is one-
dimensional. Thus, the standard Hecke operator Tp (resp. the Atkin-Lehner invo-

lutions Wp) acts on (π∞)Γ0(f(π)) via multiplication by a scalar which we denote by
λp (resp. ωp). A result of Clozel (cf. [9]) tells us that there exists a smallest subfield
Qπ ⊆ C, which is a finite extension of Q, such that π∞ can be defined over Qπ.
More precisely, the Hecke eigenvalues λp are elements of the ring of integers Rπ of
Qπ.

5.1. Stickelberger elements associated to automorphic representations.
Under our assumptions on π, Jacquet and Langlands have proven in [17] that there
exists a transfer of π to B; i.e., there exists an automorphic representation πB of
G(A) such that

- πB,v
∼= πv for all places v at which B is split,

- πB,v is the trivial one-dimensional representation for all v ∈ S∞ at which
B is non-split, and

- πB,p is the trivial (resp. non-trivial) smooth one-dimensional representa-
tion of Gp for every p ∈ ram(B) for which πp is the (twisted) Steinberg
representation. In particular, the eigenvalue of Wp acting on πB,p is the
negative of the root number of πp.

Let f(πB) be the maximal divisor of f(π) which is coprime to ram(B). We define

M(f(πB);Qπ)
ε,π ⊆ M(f(πB);Qπ)

ε

to be the common eigenspace of the operators Tp for p /∈ ram(B) with eigenvalues
λp. The formalism of (g,K)-cohomology together with the strong multiplicity one
theorem implies that M(f(πB);Qπ)

ε,π is one-dimensional for every sign character ε.
By Theorem 11.4.4 of [4] every arithmetic group Γ is of type (VFL), and therefore
the functor N �→ H∗(Γ, N) commutes with direct limits (cf. [21], p. 101). It follows
that the canonical map

M(f(πB);Rπ)⊗Qπ −→ M(f(πB);Qπ)
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is an isomorphism. Therefore, the intersection of M(f(πB);Qπ)
ε,π with the image

of M(f(πB);Rπ) in M(f(πB);Qπ) is a locally free Rπ-module of rank one. We
choose a maximal element κπB ,ε of this module.

Remark 5.1.

(i) If Rπ is a PID, the generator κπB ,ε is unique up to multiplication by an ele-
ment in R∗

π. In particular, if the automorphic representation π corresponds
to a modular elliptic curve over F , then Qπ is equal to Q, and thus κπB ,ε

is unique up to sign.
(ii) We could weaken the assumptions on πp for p ∈ ram(B). It is enough to

assume that πp is either special or supercuspidal. But in the supercuspidal
case there is no canonical local new vector for πB,p. To ease the exposition,
we stick to the special case.

Let L/E be a finite anticyclotomic extension with Galois group G and let m be
an f(πB)-allowable ideal of OF that bounds the ramification of L/E.

Definition 5.2. The anticyclotomic Stickelberger element of modulus m and sign
ε associated to πB and L/F is defined by

Θm(L/F, πB)
ε = Θm(L/F, κ

πB,ε) ∈ Rπ[G].

Remark 5.3. The element Θm(L/F, πB)
ε depends on the choice of UTp

-stable vertex
and an end of the Bruhat-Tits tree for every prime p /∈ ram(B). If we take different
choices, Θm(L/F, πB)

ε is multiplied by an element of G. Therefore, the element

Lm(L/F, πB)
ε = Θm(L/F, πB)

ε · (Θm(L/F, πB)
ε)∨ ∈ Rπ[G]

is independent of these choices.

Next, we study the behaviour of Stickelberger elements under change of modulus.

Theorem 5.4 (Norm relations).

(i) Let p be a finite place of F that does not divide m. Write σP for the image
of the uniformizer �P under the Artin reciprocity map recL/E. Then the
equality

Θmp(L/F, πB)
ε = (λp − (∗))Θm(L/F, πB)

ε

holds with

(∗) =

⎧⎪⎨⎪⎩
0 if p is inert in E,

�p(f(πB))σP if p is ramified in E,

σ−1
P

+ �p(f(πB))σP if p is split in E.

(ii) Let p be a finite place of F that does divide m and write m = ordp(m).
Then we have a decomposition

Θmp(L/F, πB)
ε = λpΘm(L/F, πB)

ε + �p(f(πB))vm(Θmp−1(L/F, πB)
ε),

where the elements vm(Θmp−1(L/F, πB)
ε) can be characterized by the fol-

lowing properties:
- πL/L′(vm(Θmp−1(L/F, πB)

ε)) = vm(Θmp−1(L′/F, πB)
ε) for all inter-

mediate extensions L′ of L/F .

- vm(Θmp−1(L/F, πB)
ε) = [U

(m−1)
Tp

: U
(m)
Tp

](Θmp−1(L/F, πB)
ε) in case

the Artin reciprocity map for L/E is trivial on UT (mp−1).
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- Let k be a field which is an Rπ-algebra and let χ : G → k∗ be a character
such that χp has conductor pm. Then we have

χ(vm(Θmp−1(L/F, πB)
ε)) = 0.

(iii) Suppose that p is inert and divides m as well as f(πB) exactly once. Let k
be an Rπ-algebra and let χ : G → k∗ be a character which is unramified at
p. Then we have

χ(Θm(L/F, πB)
ε) = 0.

Proof. This is a direct consequence of the local norm relations of Lemma 4.3. For
part (iii), note that the local representation at πp is a (twisted) Steinberg represen-
tation, and thus the eigenvalue of Tp ◦Wp on a local new vector is −1. �

In the following we use the same notation as in the discussion before Lemma
4.15. Let SSt (resp. Stw) be the set of finite places p of F which are disjoint
from ram(B) (and inert in E) such that the local component πp is the (twisted)
Steinberg representation. As always, we set S = SSt∪Stw. For every subset S ⊆ S
let tS ∈ Z be the product of the exponent of the 2-torsion subgroup of M(n;Rπ)

ε

and the exponent of the torsion subgroup of⊕
p∈S

M(np−1;Rπ)
ε.

In the case d = 0 the above cohomology groups are torsion-free, and hence tS = 1.

If d > 0, we define cS = gcd
{∏

p∈S′(N(p) + 1) | S′ ⊂ S with |S| = |S′|+ 1
}
.

For d = 0 we simply put cS = 1. Finally, we define nS = cS · tS.

Theorem 5.5 (Order of vanishing). For every anticyclotomic extension L/E and
every f(πB)-allowable modulus m that bounds the ramification of L/E we have

nSm
Θm(L/F, πB)

ε ∈

⎛⎝ ∏
v∈S∞

I−εv(−1)
v ·

∏
p∈Sm

Ip

⎞⎠⊗Rπ.

Proof. It is easy to see that the map

EvSSt,Stw
: M(f(πB), SSt, Stw;Qπ)

ε,π −→ M(f(πB);Qπ)
ε,π

is an isomorphism of one-dimensional Qπ-vector spaces (cf. [23, Proposition 5.8]
for a proof in the Hilbert modular setting). Therefore, the map

M(f(πB), SSt, Stw;Rπ)
ε,π −→ M(f(πB);Rπ)

ε,π

has finite cokernel. As in [1, Lemma 2.9], one can show that nSm
annihilates this

cokernel. Therefore, the claim is a direct consequence of Lemma 4.15. �

As a direct consequence of Lemma 4.16 we get the following.

Proposition 5.6 (Functional equation). Suppose that every p ∈ ram(B) is inert
in E and that we can decompose f(πB) = n1n2 with n1 coprime to m and n2 | m.
Let ε be the root number of π and let εn2

be the product of the local root numbers
of primes dividing n2. Then the equality

Θm(L/F, πB)
∨ = ε(−1) · ε · εn2

·Θm(L/F, πB)

holds up to multiplication with an element in G.
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Corollary 5.7 (Parity). Suppose that every p ∈ ram(B) is unramified in E and
that there is a decomposition f(πB) = n1n2 with n1 coprime to m and n2 | m. If
ordRπ[

1
2 ]
(Θm(L/F, πB)) = r < ∞ holds, we have

(−1)r = ε(−1) · ε · εn2
.

Proof. This follows from the fact that inversion acts as multiplication by (−1)r on
Ir
Rπ[

1
2 ]
/Ir+1

Rπ[
1
2 ]
. �

5.2. Interpolation formulae. We relate anticyclotomic Stickelberger elements to
special values of L-functions. The crucial input is a computation of toric period
integrals by File, Martin, and Pitale (cf. [13]). We keep the notation from the
previous section.

Let χE/F : Gal(E/F ) → C∗ be the non-trivial character. Given a character
χ : G → C∗ and a finite place p of F we denote by ε(1/2, πE,p⊗χp) the local epsilon
factor of the base change of π to PGL2(E) twisted by χ. Here we view characters
χ as characters on T (A) via the Artin reciprocity map. We say that χ fulfills the
Saito-Tunnell condition with respect to B if for all finite places p of F the following
equality holds:

ε(1/2, πE,p ⊗ χp) = χE/F,p(−1) inv(Bp).

Here inv(Bp) ∈ {±1} denotes the local invariant of B at p. By our assumptions on
the splitting behaviour of B there is no condition at the Archimedean places.

Given any automorphic representation π̃ of a reductive algebraic group over F
and a finite set S of places of F we write LS(s, π̃) for the L-function without the
Euler factors at places in S and LS(s, π̃) for the product of the Euler factors of
places in S.

Let S(π) be the set of finite places at which π is ramified. For characters χ as
above we set S(χ) to be the set of finite places at which χ is ramified. Finally, let
Σ(π, χ) be the set of all finite places p such that either the local conductor of π at p
is greater than one or the local conductor of π at p is exactly one, E/F is ramified
at p, and χp is unramified. The ramification index of E/F at a prime p will be
denoted by ep(Ep/Fp).

Theorem 5.8. There exists a constant C ∈ C∗ such that for all f(πB)-allowable
moduli m and all characters χ : G → C∗ of exact conductor m with χ∞ = ε we have

χ(Lm(L/F, πB)
ε) = C

[UT : UT (m)]2

N(m)
LS(χ)(1, η)LS(π)∪S(χ)(1, η)LS(π)∩S(χ)(1, 1F )

×
∏

p∈S(π)∩S(χ)c

ep(Ep/Fp) ·
LΣ(π,χ)(1/2, πE ⊗ χ)

LΣ(π,χ)(1, π,Ad)

if χ fulfills the Saito-Tunnell condition and

χ(Lm(L/F, πB)
ε) = 0

if χ does not fulfill the Saito-Tunnell condition.

Proof. The group cohomology of a discrete group is naturally isomorphic to the
singular cohomology of its associated classifying space. If the classifying space is a
manifold, its singular cohomology with complex coefficients is isomorphic to its de
Rham cohomology. Thus, by invoking Shapiro’s lemma we get an isomorphism

ES: M(K;C)ε −→ Hd
dR(G(F )\(G(A∞)/K ×Hd),C(ε)).
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ByMatsushima’s formula the space Hd
dR(G(F )\(G(A∞)/K×Hd),C(ε)) is generated

by cohomological automorphic forms. In particular, the image of κπB ,ε under ES is
the differential form associated with a global (cohomological) new vector Φ of πB.
The fact that the above identifications of cohomology groups behave well under
pullback and cup-products together with Remark 3.2 implies that

χ(Θm(L/F, πB)
ε) = [UT : UT (m)]PB(gm.Φ, χ)

holds up to multiplication by a non-zero constant, which is independent of χ and
m. Here gm ∈ G(A∞) is the element chosen at the end of Section 4.3, and

PB(φ, χ) =

∫
T (A)

φ(t)χ(t) dt

denotes the global toric period integral of φ ∈ π. Therefore, we also get the formula

χ(Lm(L/F, πB)
ε) = [UT : UT (m)]2|PB(gm.Φ, χ)|2

up to multiplication with a non-zero constant.
The second assertion follows from the vanishing criterion of toric period integrals

by Saito and Tunnell (see [20] and [24]). Since gm.Φ is a test vector in the sense of
[13, §7.1], the first assertion follows from the main theorem of [13]. �

6. L-invariants

In Section 3.7 of [23], Spieß constructs extensions of the Steinberg representation
associated to characters of the multiplicative group of a p-adic field. Such extensions
were already constructed by Breuil in [7] in case the character under consideration
is a branch of the p-adic logarithm. After introducing a slightly improved version
of Spieß’ construction we will use it to give formulae for the leading term of anti-
cyclotomic Stickelberger elements in the analytic rank zero situation. Finally, we
will relate the extension classes to a class coming from the p-adic upper half plane.
This in turn allows us to recast the uniformization of Jacobians of certain Mumford
curves purely in representation theoretic terms and prove the equality of arithmetic
and automorphic L-invariants in certain cases.

6.1. Extensions of the Steinberg representation. Let us fix a finite place p of
F which is split in E. Further, let R be a ring and let N be a prodiscrete R-module.
We define the N -valued Steinberg representation by

Stp(N) = C(Endsp, N)/N.

A continuous homomorphism f : N → N ′ between prodiscrete R-modules induces
a homomorphism

f∗ : Stp(N) −→ Stp(N
′).

The canonical map

Stp ⊗N −→ Stp(N)

is an isomorphism if N is discrete. In this case, the map (4.3) induces a Tp-
equivariant isomorphism

δp,N : C0
c (Fp, N) −→ Stp(N).
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Let Up be the unipotent radical of StabB∗
p
(oPτ ); i.e., we have StabB∗

p
(oPτ ) =

E∗
p Up. As before, the choice of the prime P lying above p gives rise to an iden-

tification E∗
p
∼= F ∗

p × F ∗
p . For a continuous homomorphism lp : F

∗
p → N we define

Ẽ(lp) as the set of pairs (ϕ, y) ∈ C(B∗
p , N)×R with

ϕ (gu(t1, t2)) = ϕ(g) + y · lp(t1)

for all g ∈ B∗
p , u ∈ Up, and (t1, t2) ∈ F ∗

p × F ∗
p
∼= E∗

p . The group B∗
p acts on Ẽ(lp)

via

g.(ϕ(h), y) = (ϕ(g−1h), y).

The subspace Ẽ(lp)0 of tuples of the type (ϕ, 0) with constant ϕ is B∗
p-invariant.

Hence, we get an induced action of Gp on the quotient E(lp) = Ẽ(lp)/Ẽ(lp)0.

Lemma 6.1.

(i) Let π : Gp → Endsp be the projection given by g �→ g[oPτ ]. The following
sequence of R[Gp]-modules is exact:

0 −→ Stp(N)
(π∗,0)−−−−→ E(lp)

(0,idR)−−−−→ R −→ 0.

We define blp to be the associated cohomology class in H1(Gp, Stp(N)).
(ii) For every continuous homomorphism f : N → N ′ between prodiscrete R-

modules the equality

bf◦lp = f∗(blp)

holds.
(iii) Suppose that N is discrete. Then, for the cohomology class clp defined in

(3.4) we have

δ∗p,N (blp) = clp .

Proof. Parts (i) and (iii) are essentially proven in Lemma 3.11 of [23].
For the proof of (ii) let f∗(E(lp)) be the pushout of the following diagram:

Stp(N) E(lp)

Stp(N
′)

(π∗, 0)

f∗

The homomorphism

Ẽ(lp) −→ Ẽ(f ◦ lp), (ϕ, y) �−→ (f ◦ ϕ, y)

induces a map from f∗(E(lp)) to E(f ◦ lp). Hence, they yield isomorphic extensions.
�

Remark 6.2. Note that we get rid of the factor 2 showing up in Lemma 3.11 of
[23]; i.e., the extension class constructed above is “one half” of the extension class
constructed in [23].
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For every prodiscrete R-module N and p ∈ SSt the integration pairing

Hom(Stp, R)⊗ Stp(N) −→ N,

which was defined in (2.2), induces a cup-product pairing

M(n, SSt, Stw;R)ε ⊗H1(G(F ), Stp(N))

∪−−→ Hd+1(G(F ),A(n, SSt − {p}, Stw;N){p}(ε)).
(6.1)

As a direct consequence of Lemma 6.1(iii) we get

Corollary 6.3. Let R be a ring, let N be an R-module, and let l : Tp −→ N be a
locally constant character. For p ∈ SSt the following diagram is commutative:

M(n, SSt, Stw;R)ε Hd+1(G(F ),A(n, SSt − {p}, Stw;N){p}(ε))

Hd(T (F ),D(m, S;R)∞(ε)) Hd+1(T (F ),D(m, S − {p};N){p},∞(ε))

⋃
blp

Δm,SSt,Stw Δ
{p}
m,SSt−{p},Stw⋃

clp

6.2. Leading terms. In this section we will compute leading terms of anticyclo-
tomic Stickelberger elements. Let π be an automorphic representation as in Section
5.1 and let S be the set of finite places p of F which are disjoint from ram(B), split
in E, and such that the local component πp is the Steinberg representation. To
ease the notation, we are going to write M(n, S;N) instead of M(n, S, ∅;N), etc.
For simplicity we assume that Rπ is a principal ideal domain.

For a given anticyclotomic extension L/E with Galois group G we denote by IG
the augmentation ideal of Rπ[G], i.e., the kernel of the projection Rπ[G] � Rπ. For
p ∈ S we denote the local reciprocity map by recp, i.e.,

recp : Tp ↪−→ T (A)
recL/E−−−−→ G.

We also consider the homomorphism

univp : Tp → F ∗
p ⊗Rπ(6.2)

given by composing the isomorphism Tp
∼= F ∗

p with the inclusion of F ∗
p into F ∗

p ⊗Rπ.
Given an Rπ-module N and a subset S ⊆ S we let

M(f(πB), S;N)ε,π ⊆ M(f(πB), S;N)ε

be the submodule on which Tp acts via λp for all p /∈ S ∪ ram(B). Exactly as in
Lemma 6.2 of [23], one can prove that for every p ∈ S the map

∪bordp : M(f(πB),S;Rπ)
ε,π −→ Hd+1(G(F ),A(f(πB),S− {p};Rπ)

{p}(ε))π

has finite cokernel and that both modules are free of rank one modulo torsion.
By a theorem of Borel and Serre (cf. [5]) Sp-arithmetic groups are of type (VFL).

It follows that H∗(Γ, N) is finitely generated if N is a finitely generated Rπ-module
and that the functor N → H∗(Γ, N) commutes with direct limits. It follows that
the canonical map

ωS,p : H
d+1(G(F ),A(f(πB),S− {p};Rπ)

{p}(ε))π ⊗Rπ
(F ∗

p ⊗Rπ)

−→ Hd+1(G(F ),A(f(πB),S− {p};F ∗
p ⊗Rπ)

{p}(ε))π
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has finite kernel and cokernel. Let κS be a generator of the maximal torsion-free
quotient of M(f(πB),S;Rπ)

ε,π. For p ∈ S we define nS,p to be the lowest common
multiple of the exponents of

- the cokernel of ωS,p and

- the torsion submodule of Hd+1(G(F ),A(f(πB),S− {p};Rπ)
{p}(ε))π.

Let γS,p be the order of the cokernel of the homomorphism

nS,pM(f(πB),S;Rπ)
ε,π

∪bordp−−−−→ nS,pH
d+1(G(F ),A(f(πB),S− {p};Rπ)

{p}(ε))π.

Definition 6.4. An element qS,p ∈ F ∗
p ⊗Rπ fulfilling

nS,p((κS ∪ bordp
)⊗ qS,p) = nS,p(γS,p · κS ∪ bunivp

)(6.3)

is called the automorphic period of π at p (with respect to S). If S = {p} we
simply write qp = q{p},p.

From the discussion above it follows that automorphic periods exist and are at
least unique up to torsion. It is easy to see that the Qπ-vector subspace generated
by qS,p in F ∗

p ⊗Qπ is independent of S.

Theorem 6.5 (Leading term). For every anticyclotomic extension L/E and ev-
ery f(πB)-allowable modulus m that bounds the ramification of L/E, the following

equality holds in I
|Sm|
G /I

|Sm|+1
G (up to sign):

nSm

⎛⎝ ∏
p∈Sm

nSm,p ordp(qSm,p)

⎞⎠Θm(L/F, πB)
ε

=nSm

⎛⎝ ∏
p∈Sm

nSm,p (recp(qSm,p)− 1)

⎞⎠ΘmS (E/F, πB)
ε.

Here mS denotes the maximal divisor of m, which is coprime to S, and nSm
is the

non-zero integer defined in the discussion before Theorem 5.5.

Proof. As in the proof of Lemma 4.15 there exists κ′ ∈ M(f(πB), Sm;Rπ)
ε with

nSm
Θm(L/F, πB)

ε = Δm,Sm
(κ′) ∩ cL(m, Sm, ε).

If we apply Proposition 3.6 with ap = a = IG , we get

nSm
Θm(L/F, πB)

ε = Δm,Sm
(κ′) ∩ ((cdrecp1

∪ . . . ∪ cdrecps
) ∩ cL(m, Sm, ε)),

where Sm = {p1, . . . , ps}. By Corollary 6.3 we obtain

nSm
Θm(L/F, πB)

ε

=Δ
{pi}
m,Sm−{pi}(κ

′ ∪ bdrecpi
) ∩ ((cdrecp1

∪ . . . ∪ ĉdrecpi
∪ . . . ∪ cdrecps

) ∩ cL(m, Sm, ε))

for every i ∈ {1, . . . , s}.
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By Lemma 6.1(ii) the following diagram is commutative for every p ∈ Sm:

M(f(πB), Sm;Rπ)
ε Hd+1(G(F ),A(f(πB), Sm − {p};F ∗

p ⊗Rπ)
{p}(ε))

Hd+1(G(F ),A(f(πB), Sm − {p}; Ip/I2p){p}(ε))

Hd+1(G(F ),A(f(πB), Sm − {p};Rπ)
{p}(ε))

∪bunivp

∪bdrecp

∪bordp

(drecp)∗

(ordp)∗

Applying drecp to (6.3) and using the commutativity of the lower triangle of the
diagram we get

nSm,p(recp(qSm,p)− 1)κ′ ∪ bordp
= nSm,pγSm,pκ

′ ∪ bdrecp .

By the commutativity of the upper triangle of the diagram we see that

γSm,p = ordp(qSm,p).

Hence, it is enough to show the following lemma. �

Lemma 6.6. The equality

(Δm,Sm
(κ′) ∪ cordp1

∪ . . . ∪ cord ps
) ∩ cE(m, Sm, ε) = ±nSm

ΘmS (E/F, πB)
ε

holds in Rπ.

Proof. By Remark 3.5 we have cordpi
= (αpi

)∗(cpi
) for all 1 ≤ i ≤ s. Thus, we get

(cordp1
∪ . . . ∪ cordps

) ∩ cE(m, Sm, ε)

=(αp1
⊗ . . .⊗ αps

)∗((cp1
∪ . . . ∪ cps

) ∩ cE(m, Sm, ε))

=± (αp1
⊗ . . .⊗ αps

)∗(cE(m
S , ∅, ε)).

The second equality holds by Lemma 3.4. By Lemma 4.7(ii) we have

Δm,S(κ
′) ∩ (αp1

⊗ . . .⊗ αps
)∗ ∩ cE(m

S , ∅, ε)
=(αp1

⊗ . . .⊗ αps
)∗(Δm,S(κ

′)) ∩ cE(m
S , ∅, ε)

=ΔmS (nSm
κ) ∩ cE(m

S , ∅, ε)
=nSm

ΘmS (E/F, πB)
ε,

and thus the claim follows. �

Remark 6.7.

(i) Suppose we are in the CM case, i.e., d = 0, and that Sm = {p}. Then the
module

H1(G(F ),A(f(πB), ∅;Rπ)
{p}(ε))π

is torsion-free. Thus, nSm,p is just the exponent of the cokernel of ωSm,p.
(ii) Using the norm relations and the interpolation formulae one can deter-

mine ΘmS (E/F, πB)
ε explicitly in terms of the special value at 1/2 of the

untwisted L-function L(s, πE).



ANTICYCLOTOMIC STICKELBERGER ELEMENTS 6325

(iii) From the proof of Theorem 6.5 we see that ordp(qp) is non-zero for every
automorphic period qp.

6.3. Jacobians of Mumford curves. Let p be a finite place of F . In this section
we give a representation theoretic formulation of the p-adic uniformization of Jaco-
bians of certain Mumford curves. Let P be the algebraic variety Gp/ StabGp

(oPτ )
and Cp the completion of an algebraic closure of Fp. Let σp : F

∗
p → C∗

p denote the
natural embedding. Let Hp be the rigid analytic space

Hp(Cp) = P(Cp)− P(Fp).

The group Gp acts on Hp(Cp) and therefore, by linear extension, on the space
Div(Hp(Cp)) of (naive) divisors on Hp(Cp), i.e., the space of formal Z-linear com-

binations of points of Hp(Cp). The subspace Div0(Hp(Cp)) of divisors of degree 0 is
Gp-invariant. Sending a degree 0 divisor D to the unique (up to multiplication by a
constant) rational function with divisor D yields a Gp-equivariant homomorphism

Ψ: Div0(Hp(Cp)) �−→ C(P(Fp),C
∗
p)/C

∗
p = Stp(C

∗
p).

Lemma 6.8. Let badicp ∈ H1(Gp,Div0(Hp(Cp))) be the class of the extension

0 −→ Div0(Hp(Cp)) −→ Div(Hp(Cp))
deg−−→ Z −→ 0(6.4)

and let bunivp
∈ H1(Gp, Stp(F

∗
p )) be the universal class induced by (6.2) (with Rπ =

Z). The equality Ψ∗(badicp) = (σp)∗(bunivp
) holds.

Proof. Let us a choose an isomorphism Ξ: B∗
p

∼=−→ GL2(Fp) such that

Ξ(t1, t2) =

(
t1 0
0 t2

)
holds for all (t1, t2) ∈ E∗

p and Ξ(StabB∗
p
(oPτ )) is equal to the group of invertible

upper triangular matrices. Thus, there is also an induced isomorphism between P
and P1

Fp
. For z ∈ Hp(Cp) we define the function

Φz : GL2(Fp) −→ C∗
p,

(
a b
c d

)
�−→ cz − a.

A short calculation shows that the homomorphism

Ψ̃: Div(Hp(Cp)) −→ E(σp),
∑
z

nz[z] �−→ (
∏
z

(Φz)
nz ,

∑
z

nz)

is Gp-equivariant. One immediately checks that the diagram

0 Div0(Hp(Cp)) Div(Hp(Cp)) Z 0

0 Stp(C∗
p) E(σp) Z 0

Ψ Ψ̃ =

is commutative, and therefore the claim follows. �
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A discrete subgroup Γ ⊆ Gp is called a (p-adic) Schottky group if it is finitely
generated and torsion-free. Since the stabilizers of vertices and edges of the Bruhat-
Tits tree Tp are compact subgroups of Gp it follows that Schottky groups act freely
on Tp. A group acting freely on a tree is free. (See for example Section 3.3 of [22].)
Hence, we have that for a Schottky group Γ and an abelian group A the canonical
map

H1(Γ,Z)⊗A −→ H1(Γ, A)(6.5)

is an isomorphism. We consider the algebraic torus GΓ = H1(Γ,Z) ⊗ Gm. It
follows from (6.5) that we have a canonical isomorphism GΓ(Cp) ∼= H1(Γ,C∗

p). The
cup-product pairing (6.1) induces a homomorphism∫

univ

: H0(Γ, Stp(Z)
∨)

∪bunivp−−−−−→ H1(Γ,C∗
p) = GΓ(Cp).

We define LΓ to be its image.
Let X be a smooth proper curve over Fp with Jacobian JacX . We assume that X

admits a uniformization by the p-adic upper half plane; i.e., there exists a Schottky
group ΓX and a Gal(Cp/Fp)-equivariant rigid analytic isomorphism

X(Cp) ∼= ΓX\Hp(Cp).

Theorem 6.9 (p-adic uniformization). There is a Gal(Cp/Fp)-equivariant rigid
analytic isomorphism

JacX(Cp) ∼= GΓX
(Cp)/LΓX

.

Proof. Let

δ : H1(ΓX ,Z) −→ H0(ΓX ,Div0(Hp(Cp)))

be the boundary map coming from the short exact sequence (6.4). In Section 2 of
[11] Dasgupta defines a so-called multiplicative integral

×
∫

: H0(ΓX ,Div0(Hp(Cp))) −→ GΓX
(Cp).

We write L̃ΓX
for the image of the map ×

∫
◦δ. By Dasgupta’s variant of the Manin-

Drinfeld Theorem (see [11], Theorem 2.5) there is a rigid analytic isomorphism

JacX(Cp) ∼= GΓX
(Cp)/L̃ΓX

.

It follows from Lemma 6.8 that the diagram

H1(ΓX ,Z) H0(ΓX ,Div0(Hp(Cp))) GΓX
(Cp)

H1(ΓX ,Z) H0(ΓX , Stp(C∗
p)) GΓX

(Cp)

δ ×
∫

δuniv ×
∫= Ψ∗ =

is commutative. Here δuniv denotes the boundary map coming from the short exact
sequence corresponding to bunivp

.
Since ΓX acts freely on the Bruhat-Tits tree Tp of Gp it follows that Stp(Z) =

H1
c(Tp,Z) is a dualizing module for ΓX . In particular, H1(ΓX , Stp(Z)) is a free
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Z-module of rank one and taking a cap-product with a generator induces an iso-
morphism

D: H0(ΓX , Stp(Z)
∨) −→ H1(ΓX ,Z).

Going through Dasgupta’s construction one sees that∫
univ

= ±×
∫

◦ δuniv ◦D

holds. �

6.4. Comparison of L-invariants. We apply the results of the previous section
to Shimura curves in order to compare automorphic and algebraic periods. From
now on we assume that d = 0, i.e., that E is totally imaginary. In particular, the
quaternion algebra B is totally definite. We fix a prime p /∈ ram(B) of F such
that πp is the Steinberg representation and an arbitrary Archimedean place v of F .

Let B̃ be the quaternion algebra over F that has the same invariants at all places
away from p and v but is split at v and, therefore, non-split at p. There exists a

Jacquet-Langlands lift π
˜B of π to B̃ of conductor f(π

˜B) = p−1f(πB). Let X
˜B,f(π

˜B)

be the associated (not necessarily connected) Shimura curve of level Γ0(f(π ˜B)). We
define Aπ to be the maximal quotient of the Jacobian Jac(X

˜B,f(π
˜B)) on which the

Hecke algebra acts via the character induced by π
˜B. For simplicity, we assume that

the field of definition of π is equal to Q. Hence, Aπ is an elliptic curve with split
multiplicative reduction at p. Therefore, there exists a period qTatep ∈ F ∗

p and a
rigid analytic isomorphism

C∗
p/q

Tate
p

∼=−−→ Aπ(Cp).

By the Cerednik-Drinfeld Theorem (cf. [6]) every connected component of the
Shimura curve has a uniformization by the p-adic upper half plane. More pre-
cisely, the uniformization of the whole Shimura curve combined with Theorem 6.9
yields a Hecke-equivariant isogeny between Jac(X

˜B,f(π
˜B))(Cp) and the cokernel of

the map

M(f(πB), {p};Z)
∪buniv−−−−→ H1(G(F ),A(f(πB);C

∗
p)

{p}).

Taking πB-isotypical components we arrive at

Theorem 6.10 (Comparison of periods). Let E be totally imaginary and let p /∈
ram(B) be a prime of F such that πp is the Steinberg representation. Then the
lattices generated by the automorphic period qp and the algebraic period qTatep are
commensurable.

Remark 6.11. One also expects that the analogue of Theorem 6.10 holds for d > 0.
See for example [14, Conjecture 2], for the case that the narrow class number of
F is one and Conjecture 4.8 of [16] for the general case. The equivalence of their
formulations and ours follows from Lemma 6.8.
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French summaries), Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 3, 427–469, DOI
10.1016/j.ansens.2005.03.002. MR2166341

[12] S. Dasgupta and M. Spieß, The Eisenstein cocycle, partial zeta values and Gross-Stark units,
Journal of the European Mathematical Society, to appear.

[13] Daniel File, Kimball Martin, and Ameya Pitale, Test vectors and central L-values for
GL(2), Algebra Number Theory 11 (2017), no. 2, 253–318, DOI 10.2140/ant.2017.11.253.
MR3641876

[14] Matthew Greenberg, Stark-Heegner points and the cohomology of quaternionic Shimura
varieties, Duke Math. J. 147 (2009), no. 3, 541–575, DOI 10.1215/00127094-2009-017.
MR2510743

[15] Ralph Greenberg and Glenn Stevens, p-adic L-functions and p-adic periods of modular forms,
Invent. Math. 111 (1993), no. 2, 407–447, DOI 10.1007/BF01231294. MR1198816

[16] Xavier Guitart, Marc Masdeu, and Mehmet Haluk Şengün, Darmon points on elliptic curves
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