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DIFFERENTIABLE CONJUGACY FOR GROUPS

OF AREA-PRESERVING CIRCLE DIFFEOMORPHISMS

DANIEL MONCLAIR

Abstract. We study groups of circle diffeomorphisms whose action on the
cylinder C = S1 × S1 \ Δ preserves a volume form. We first show that such a
group is topologically conjugate to a subgroup of PSL(2,R), then discuss the
existence of a differentiable conjugacy.

For some groups, we find that this conjugacy is automatically differentiable.
These rigidity results can be seen as particular cases of theorems of Herman
(for circle diffeomorphisms conjugate to rotations) and Ghys (for actions of
surface groups), with much simpler proofs.

For other groups (typically deformations in Diff(S1) of Schottky groups in
PSL(2,R)), we show that there is much more flexibility and that a differentiable
conjugacy does not always exist.
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1. Introduction

The question of knowing whether a group action on the circle ρ : Γ → Homeo(S1)
is conjugate in Homeo(S1) to the action of a subgroup of PSL(2,R) (where the action
is the projective action on S1 = RP1) has an answer in a theorem proved by Gabai
[Gab92] and Casson-Jungreis [CJ94] (following the work of many authors), which
states that such a conjugacy exists if and only if the induced action on the space
of distinct triples of points is proper. This condition is known as the convergence
property.

For differentiable actions ρ : Γ → Diff(S1), the conjugacy provided by this
theorem is not necessarily differentiable. As it turns out, this question is much more
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intricate, and there is no general statement ensuring the existence of a conjugacy
in Diff(S1) with a subgroup of PSL(2,R). Such results exist in particular cases,
mainly for the conjugacy of a circle diffeomorphism with a rotation (this is solved
by a theorem of Herman [Her79]) and for some actions of surface groups (this is a
theorem of Ghys [Ghy93]).

Our goal is to study the differentiability of such a conjugacy via the diagonal
actions on product spaces. The diagonal action of PSL(2,R) on the space of distinct

couples of points C = S
1 × S

1 \Δ preserves the volume form 4dx∧dy
(x−y)2 . The existence

of an invariant volume form on C is a notion that is invariant under conjugacy in
Diff(S1). Given a representation ρ : Γ → Diff(S1), we will study the link between
the existence of an invariant volume form on C and conjugacy with the action of a
subgroup of PSL(2,R).

The first result of this paper states that this condition implies the convergence
property, thus guarantees the existence of a topological conjugacy with a subgroup
of PSL(2,R).

Theorem 1.1. Assume that ρ : Γ → Homeo(S1) preserves a continuous volume
form on C. Then ρ is conjugate in Homeo(S1) to a representation in PSL(2,R).

The proof consists of remarking that preserving a volume form on pairs of points
implies preserving a distance on triples of points.

1.1. Fuchsian groups and generalizations. We identify PSL(2,R) and its image
in Diff(S1) given by the projective action on S1 ≈ RP1 and call a group action on
the circle ρ : Γ → Homeo(S1) Fuchsian if ρ(Γ) ⊂ PSL(2,R) (note that we do not
ask for ρ(Γ) to be discrete, even though it will be the case in most of our examples).

We will say that ρ : Γ → Homeo(S1) is topologically Fuchsian if there is
h ∈ Homeo(S1) such that h−1ρ(Γ)h ⊂ PSL(2,R).

1.1.1. Differential conjugacy. When considering actions by diffeomorphisms, the
natural notion of conjugacy is the conjugacy in the group Diff(S1). We will say
that ρ : Γ → Diff(S1) is differentially Fuchsian if there is h ∈ Diff(S1) such that
h−1ρ(Γ)h ⊂ PSL(2,R) (in the absence of precision, Diff(S1) denotes the group of
C∞ diffeomorphisms).

There is no general condition under which a topologically Fuchsian represen-
tation ρ : Γ → Diff(S1) is automatically differentially Fuchsian. However, there
are two known results assuring the existence of a differential conjugacy under spe-
cific hypotheses: a theorem of Herman on diffeomorphisms conjugate to irrational
rotations and a theorem of Ghys on representations of surface groups.

1.1.2. Area-preserving groups. We will say that an action ρ : Γ → Diff(S1) is area-
preserving if the diagonal action on C = S1 × S1 \Δ preserves a smooth volume
form.

Theorem 1.1 states that an area-preserving representation is topologically Fuch-
sian. If h ∈ Diff(S1) and ρ : Γ → Diff(S1) preserves the volume form ω on C,
then h−1ρh preserves the volume form h�ω. If h is only continuous, then h�ω is
only a measure; it is not always absolutely continuous with respect to the Lebesgue
measure.

Since the action of PSL(2,R) preserves a volume form, all differentially Fuchsian
representations are area-preserving.

We will show that under some specific hypotheses, it is an equivalence.
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Theorem 1.2. Assume that ρ : Γ → Diff(S1) satisfies (at least) one of the following
conditions:

• There is a dense orbit on S1.
• ρ(Γ) ⊂ Diffω(S1) and Γ has no finite orbit on S1.
• Γ = Z, ρ(1) ∈ Diffω(S1), and ρ(1) has exactly two fixed points.
• Γ = Z and ρ(1) has no fixed point on S

1.

Then ρ is area-preserving if and only if it is differentially Fuchsian.

The proof is obtained by combining Proposition 1.6 and Theorems 1.8, 1.9, and
1.10. We will also see that this equivalence is not always true.

1.1.3. L-differential conjugacy. A group Γ ⊂ Homeo(S1) with no finite orbit has
a unique minimal closed invariant set LΓ ⊂ S1, called the limit set. It is either
the whole circle or a Cantor set. In the latter case, we call LΓ an exceptional
minimal set. Examples of such groups are given by Schottky groups (free groups in
PSL(2,R) generated by appropriately chosen hyperbolic elements). In this case, we
will show that area-preserving actions are not necessarily differentially Fuchsian.

However, the examples that we will give share a property with minimal actions
(i.e., all orbits on S1 are dense): the conjugacy is always differentiable along the
limit set.

Definition 1.3. We say that two representations ρ1, ρ2 : Γ → Diff(S1) with no
finite orbits are L-differentially conjugate if there is h ∈ Homeo(S1) such that
h−1ρ2h = ρ1 and such that there is ϕ ∈ Diff(S1) with the same restriction ϕ/Lρ1(Γ)

=

h/Lρ1(Γ)
. We say that ρ : Γ → Diff(S1) is L-differentially Fuchsian if it is L-

differentially conjugate to a Fuchsian action.

Knowing that L-differentially Fuchsian actions are not necessarily differentially
Fuchsian, the following statement shows that area-preserving actions are not nec-
essarily differentially Fuchsian.

Theorem 1.4. If ρ : Γ → Diff(S1) is L-differentially conjugate to a convex cocom-
pact representation in PSL(2,R). Then ρ is area-preserving.

1.1.4. Spectral conditions. Finally, a weaker generalization of Fuchsian actions con-
sists of looking only at the derivatives at fixed points. A hyperbolic element
γ ∈ PSL(2,R) has exactly two fixed points N,S ∈ S1. The derivatives satisfy
γ′(N)γ′(S) = 1 and γ′(N) �= 1.

Definition 1.5. We say that ρ : Γ → Diff(S1) is spectrally Möbius-like if nontrivial
elements have at most two fixed points and if elements γ with two fixed points N,S
satisfy ρ(γ)′(N)ρ(γ)′(S) = 1 and ρ(γ)′(N) �= 1.

This is a condition that concerns individual elements of the group rather than
the group structure (hence the terminology, in reference to Möbius-like actions,
i.e., such that every element is topologically conjugate to an element of PSL(2,R)).
Differentially Fuchsian and L-differentially Fuchsian actions are spectrally Möbius-
like. It is also quite straightforward to see that area-preserving actions are spectrally
Möbius-like (see Proposition 1.7).

One can also define the spectrum S(ρ) : Γ → R2 as the data of the derivatives
at fixed points for all elements of Γ.
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1.2. The case of a single diffeomorphism. The problem of knowing when a
diffeomorphism that is topologically conjugate to a rotation is differentially conju-
gate to this rotation has been deeply studied. A well-known theorem of Herman
([Her79]) states that a differentiable conjugacy always exists provided the diffeo-
morphism has its rotation number in a certain set of full Lebesgue measure (more
precisely, if it satisfies a Diophantine condition; see [Yoc84] for an exact descrip-
tion), but there are smooth examples where a differentiable conjugacy does not
exist. In the area-preserving case, we do not have different behaviors.

Proposition 1.6. Let f ∈ Diff(S1) be a fixed point free diffeomorphism. If f is
area-preserving, then it is differentially conjugate to a rotation.

This result does not extend to diffeomorphisms with fixed points: there are
some area-preserving circle diffeomorphisms that are not differentially conjugate
to an element of PSL(2,R). The following result treats the case corresponding to
hyperbolic elements of PSL(2,R).

Proposition 1.7. Let f ∈ Diff(S1) have exactly two fixed points N and S. It is
area-preserving if and only if it is spectrally Möbius-like.

For parabolic diffeomorphisms (i.e., having one fixed point), the situation is more
complicated. We will see there are some area-preserving examples that are not
differentially conjugate to elements of PSL(2,R), but that some diffeomorphisms
with one fixed point do not preserve any volume form on the cylinder C.

1.3. The analytic case. The counterexamples produced by Proposition 1.7 never
give an analytic volume form. Indeed, it appears that the analytic case is rigid.

We say that ρ : Γ → Diffω(S1) is analytically Fuchsian if there is a real
analytic diffeomorphism h ∈ Diffω(S1) such that h−1ρ(Γ)h ⊂ PSL(2,R).

Theorem 1.8. Let f ∈ Diffω(S1) have exactly two fixed points. If f preserves an
analytic volume form on C, then f is analytically conjugate to a hyperbolic element
of PSL(2,R).

For parabolic diffeomorphisms, there are some straightforward analytic coun-
terexamples. However, for nonelementary representations, i.e., without any finite
orbit on S1, there is also a rigidity phenomenon.

Theorem 1.9. If ρ : Γ → Diffω(S1) is a nonelementary representation preserving
an analytic volume form on C, then ρ is analytically Fuchsian.

The treatment of the nonelementary case will be very different from the case of
a single diffeomorphism, mainly since the preserved volume form is unique (up to
a scalar factor) for an analytic nonelementary group.

1.4. The topologically transitive case. A theorem of Ghys, proved in [Ghy93],
states that any representation of a surface group (i.e., the fundamental group of
a compact surface without boundary) into Diff(S1) with maximal Euler number is
differentially Fuchsian. One particularity of these representations is that they are
topologically transitive (they are even minimal: all orbits are dense). Given the
condition of preserving a volume on C, we also obtain a rigidity result.

Theorem 1.10. Let ρ : Γ → Diff(S1) be a topologically transitive representation
that preserves a C2 volume form on C. Then ρ is differentially Fuchsian.
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Remark. This result actually contains Proposition 1.6, since diffeomorphisms that
are topologically conjugate to a rational rotation are automatically differentially
conjugate to this rotation, and irrational rotations are topologically transitive.

The C2 regularity hypothesis is not only practical for the proof (it is linked to a
notion of curvature), but it is important as there are some counterexamples if we
do not ask for enough regularity on the volume form.

1.5. The exceptional minimal set case. The case of a single diffeomorphism
suggests that the preservation of a volume form on C can be understood by looking
at the fixed points. In the setting of Theorem 1.10, fixed points (when they exist)
are dense in S1. We will now study groups for which the closure of fixed points is
a Cantor set.

1.5.1. Differential structure on the Cantor set. The definition of L-differential con-
jugacy suggests that we define a notion of diffeomorphisms between Cantor sets.

If C ⊂ S
1 is a closed set, then a function f : C → S

1 is Ck in the Whitney sense
if f admits a Taylor development of order k at every point of C, the coefficients
being continuous functions. This is equivalent to asking that f be the restriction
to C of a Ck function on S1.

We say that f : C1 → C2 (where C1 and C2 are two Cantor sets in S
1) is a

Ck diffeomorphism if f is a cyclic order-preserving homeomorphism such that f
and f−1 are Ck in the Whitney sense. This is equivalent to asking that f be the
restriction to C1 of a circle diffeomorphism.

With this definition, we see that two nonelementary representations ρ1, ρ2 : Γ →
Diff(S1) are L-differentially conjugate if there is a homeomorphism h ∈ Homeo(S1)
such that hρ1h

−1 = ρ2 and such that the restriction h/Lρ1(Γ)
: Lρ1(Γ) → Lρ2(Γ) is a

diffeomorphism.
If ρ : Γ → Diff(S1) is L-differentially Fuchsian, then let h ∈ Homeo(S1) be

such that ρ0 = hρh−1 is Fuchsian and such that h/Lρ(Γ)
: Lρ(Γ) → h(Lρ(Γ)) is a

diffeomorphism. Let ϕ ∈ Diff(S1) be such that ϕ/Lρ(Γ)
= h/Lρ(Γ)

. We set h1 =

ϕ ◦ h−1 and ρ1 = h1ρ0h
−1
1 = ϕρϕ−1. Since ρ1 and ρ are differentially conjugate,

we see that ρ is area-preserving if and only if ρ1 is area-preserving. That way, we
reduce the problem to a representation ρ1 such that ρ1 = h1ρ0h

−1
1 , where ρ0 is

Fuchsian and h1 is the identity on Lρ0(Γ). We get a reformulation of Theorem 1.4,
which we will use for its proof.

Theorem 1.11. Let ρ : Γ → PSL(2,R) be a convex cocompact representation and
let h ∈ Homeo(S1) be such that h/Lρ(Γ)

= Id and ρ1 = hρh−1 has values in Diff(S1).

Then ρ1 preserves a C2 volume form on C.

We will also show that some specific deformations of Schottky groups provide
nondifferentially Fuchsian representations that satisfy the hypothesis of this theo-
rem. The proof of Theorem 1.11 will take a substantial part of this paper (sections 6
and 7). Because of the lower regularity examples in the topologically transitive case
mentioned above, it will be necessary to pay particular attention to the regularity
of the obtained volume form.

A natural development would be to ask whether the converse is true.

Question 1.12. If ρ : Γ → Diff(S1) is nonelementary and area-preserving, is it
L-differentially Fuchsian?



6362 DANIEL MONCLAIR

1.5.2. Infinitesimal rigidity. Even though we do not have an answer to this exact
question, we will see that there is some rigidity on the limit set by observing order

three derivatives. The Schwarzian derivative, defined by S(f) = ( f
′′′

f ′ − 3
2 (

f ′′

f ′ )
2)dx2,

is a quadratic differential that vanishes only for f ∈ PSL(2,R). We obtain the
following:

Theorem 1.13. If ρ : Γ → Diff(S1) is a nonelementary representation that pre-
serves a smooth volume form on C, then there is h ∈ Diff(S1) such that

S(h ◦ ρ(γ) ◦ h−1)(x) = 0

for all γ ∈ Γ and x ∈ Lhρ(Γ)h−1 .

1.5.3. Spectrally Möbius-like groups. In the case of a single hyperbolic diffeomor-
phism, preserving a volume form on C is equivalent to a condition on the derivatives
at the fixed points. We can ask ourselves if it is also the case for more complicated
groups.

So far, it seems that spectrally Möbius-like is the weakest of all the properties
defined above. However, for a group generated by a hyperbolic diffeomorphism, it
is equivalent to being area-preserving. A natural question is to ask whether it is
true for all group actions.

Question 1.14. If ρ : Γ → Diff(S1) is topologically Fuchsian and spectrally
Möbius-like, is it area-preserving?

Note that even though they seem to be indicating different directions, there is
no obvious contradiction between this statement and Question 1.12; i.e., we can
ask whether spectrally Möbius-like actions are L-differentially Fuchsian. However,
conditions on individual elements of the group are usually not enough to guarantee
a global conjugacy, as there are examples of Möbius-like groups (i.e., all elements
are topological conjugates of elements of PSL(2,R)) which are not topologically
Fuchsian (the first examples were given in [Kov]), even in analytic regularity (see
[Nav06b]).

We will see that there is a positive answer to Question 1.14 for actions close to
Fuchsian actions. For convenience, we will only treat the case of free groups.

Theorem 1.15. Let ρ0 : Fn → PSL(2,R) be a convex cocompact representation. If
ρ1 : Fn → Diff(S1) is sufficiently C1-close to ρ0, and if ρ1 is spectrally Möbius-like,
then ρ1 is area-preserving.

Note that the hypothesis that ρ0 is Fuchsian could be weakened by asking for ρ0
to be L-differentially Fuchsian.

For representations of surfaces groups, a theorem of Ghys in [Ghy92] (which
preceded the result mentioned above) states that given ρ0 : Γg → PSL(2,R) defined
by a hyperbolic metric on the surface of genus g, any C1-close representation ρ1 :
Γg → Diff(S1) is differentially Fuchsian (notice that this does not mean that ρ1
is differentially conjugate to ρ0, but to another Fuchsian representation). In our
context, we could ask if a representation ρ1 : Γ → Diff(S1) that is spectrally
Möbius-like and C1-close to a convex cocompact representation ρ0 → PSL(2,R) is
L-differentially Fuchsian. As in the case of surface groups, this does not mean that
the existing topological conjugacy is a diffeomorphism between the limit sets. For
this to be true, elements should have the same derivatives at their fixed points.
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Similarly, given ρ0, ρ1 : Γ → Diff(S1) such that ρ0 is Fuchsian and they are
topologically conjugate, if we assume that ρ0 and ρ1 have the same spectrum, are
ρ1 and ρ0 L-differentially conjugate? In the context of hyperbolic dynamics, this is
linked to understanding differentiable conjugacy by looking at the periodic data, i.e.,
the eigenvalues of the derivatives at periodic points (for Anosov diffeomorphisms of
surfaces, the periodic date defines the system up to smooth conjugacy; see [LMM88]
and [dlL92]).

1.6. Structure of the paper. We will start by studying topological conjugacy,
then treat the elementary case (i.e., a single diffeomorphism). In section 4, we
will introduce tools for the study of the nonelementary case, mainly a notion of
curvature associated to a smooth volume form on C. The rigidity results concerning
the nonelementary case, i.e., Theorems 1.10, 1.9, and 1.13, will be proved in section
5. Finally, we will prove Theorem 1.11 in sections 6 and 7 and Theorem 1.15 in
section 8.

2. Topological conjugacy

We deal with an action of a group Γ on S
1 and we wish to understand when it

can preserve a measure on C = S1 × S1 \ Δ. A result of Navas (Proposition 1.1
in [Nav06a]) states that for a certain type of measure, the action is topologically
Fuchsian.

Theorem 2.1 (Navas). Let μ be a measure on C that is finite on compact sets such
that horizontal and vertical lines are negligible and such that μ([a, b[×]b, c]) = ∞
for a < b < c < a in S1. The group Γμ of circle homeomorphisms that preserve μ
is topologically Fuchsian.

Navas used this result in [Nav02] to show that infinite Kazhdan groups cannot
act on the circle by C2 diffeomorphisms. Theorem 1.1 deals with measures that
are absolutely continuous with respect to the Lebesgue measure with a continuous
density. If ω is a volume form on C, then we will denote by Γω the group of circle
homeomorphisms f such that the map (x, y) 	→ (f(x), f(y)) of C preserves the
measure defined by ω.

In order to prove Theorem 1.1, we have to show that Γω is topologically Fuchsian
when ω is continuous.

Lemma 2.2. If ω is a continuous volume form, then Γω ⊂ Diff(S1).

Proof. Since the map (f, f) preserves a measure in the class of the Lebesgue measure
on C, it is absolutely continuous, and so is f on S1. The derivative of f satisfies
the relation ω(f(x), f(y))f ′(x)f ′(y) = ω(x, y) for almost every x, y; therefore f ′ is
continuous and f is C1. A bootstrap argument shows that if ω is Ck with k ≥ 0,
then Γω ⊂ Diffk+1(S1). �

The fact that Γω is a group of diffeomorphisms gives us a more practical defini-
tion:

Γω = {f ∈ Diff(S1)|∀x �= y ω(f(x), f(y))f ′(x)f ′(y) = ω(x, y)}.
Finding a conjugacy between a topologically Fuchsian group Γ ⊂ Diff(S1) and a

subgroup of PSL(2,R) is a rather complicated exercise. But there is a characteri-
zation of topologically Fuchsian groups that does not require us to find an explicit
conjugacy.
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First, we define the set Θ3(S
1) of distinct triples:

Θ3(S
1) = {(x, y, z) ∈ (S1)3|x �= y �= z �= x}.

Definition 2.3. A group Γ ⊂ Homeo(S1) is a convergence group if the action
on Γ of the space of distinct triples Θ3(S

1) is proper (i.e., for all compact sets
K ⊂ Θ3(S

1), the set ΓK = {g ∈ Γ|g.K ∩K �= ∅} is relatively compact).

Note that the definition of the properness of an action depends on a topology
on the group. Here, the two candidates are the topology of Homeo(S1) and the
compact open topology of Homeo(Θ3(S

1)), which happen to be identical.
There is another classical definition of convergence groups, based on the dynam-

ics of sequences in Γ. Their equivalence is shown in [Bow99]. The main result on
convergence groups is the following, proved in [Gab92] and [CJ94].

Theorem 2.4. A convergence group Γ ⊂ Homeo(S1) is topologically Fuchsian.

Proof of Theorem 1.1. Let h be the Riemannian metric on Θ3(S
1) defined by

h(x,y,z) =
ω(x, y)ω(x, z)

ω(y, z)
dx2 +

ω(y, z)ω(y, x)

ω(z, x)
dy2 +

ω(z, x)ω(z, y)

ω(x, y)
dz2.

It is a Riemannian metric on Θ3(S
1) that is preserved by the action of Γω. This

implies that this action is proper (it is a straightforward consequence of Ascoli’s
Theorem); therefore Γω is a convergence group and is topologically Fuchsian.

�

3. The elementary case

In this section, we study the problem of differentiable conjugacy for a single
diffeomorphism preserving a volume form on C. Because such an element is topo-
logically conjugate to an element of PSL(2,R), we know that if it fixes at least three
points, then it is the identity (this could actually be proved directly, without using
the result for any group preserving a volume form on C). We will study separately
diffeomorphisms with a different number of fixed points. This corresponds to the
classification of elements in PSL(2,R): elliptic (no fixed point), parabolic (one fixed
point), or hyperbolic (two fixed points).

3.1. The elliptic case. We first look at the elliptic case, i.e., fixed point free dif-
feomorphisms. All elliptic elements of PSL(2,R) are conjugate (in PSL(2,R), hence
in Diff(S1)) to rotations. The problem of knowing when a diffeomorphism topo-
logically conjugate to a rotation is differentially conjugate to it has been studied
deeply. There are examples for which a smooth conjugacy does not exist (including
some irrational rotation numbers); however Herman proved that a smooth conju-
gacy exists when the rotation number lies in a set of full Lebesgue measure ([Her79]
discusses the general problem of differentiable conjugacy with a rotation). Luckily
for us, the volume-preserving case is much more simple.

Proposition 3.1. Let ϕ be a fixed point free diffeomorphism of S1. If it preserves
a Ck volume form on C, then it is Ck+1 conjugate to a rotation.

Proof. Let ω be a volume form on C preserved by ϕ. We can define a Riemannian
metric on S1 by ‖h‖2x = ω(x, ϕ(x))ϕ′(x)h2. It is preserved by ϕ; therefore ϕ is
differentially conjugate to a rotation (because all Ck Riemannian metrics on the
circle are Ck+1 homothetic to the euclidean metric whose isometries are rotations).

�
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Note that the Riemannian metric that we used can be seen as the restriction of
the Lorentzian metric ω(x, y)dxdy on C to the graph of ϕ.

3.2. The parabolic case. We now deal with a diffeomorphism ϕ that has exactly
one fixed point x0 ∈ S

1. Unlike the elliptic case, we will see that there is no rigidity.
We can start by observing that the proof of the elliptic case does not apply here:
the graph of ϕ is not included in C. Therefore the Riemannian metric that we
used is only defined on S1 \ {x0} and it only gives a conjugacy on S1 \ {x0} with a
translation of the real line, which only extends to a continuous conjugacy on S

1 with
a parabolic element of PSL(2,R), but this conjugacy is (in general) not smooth.

There are immediate counterexamples to differential conjugacy: we can consider
the family of diffeomorphisms ϕ(x) = x(1 + xn)−

1
n (for n odd) of RP1 = R ∪ {∞}.

A preserved volume form is given by |xn − yn|−1− 1
n dx ∧ dy. For n �= 1, these

diffeomorphisms are not differentially conjugate to an element of PSL(2,R).
However, all diffeomorphisms with one fixed point do not preserve a volume form

on C.

Proposition 3.2. We see S1 as R ∪ {∞}. Let f ∈ Diff(S1) be such that:

(1) Fix(f) = {0}.
(2) ∀x ∈ ]0 , 1] f(x) = (Log(1 + e x−2

))−
1
2 .

(3) ∀x ∈ [−1 , 0[ f(x) = −(Log(1 + e x−4

))−
1
4 .

Then f does not preserve any continuous volume form on C.

Proof. Start by considering sequences xn ∈ ]0 , 1] and yn ∈ [−1 , 0[ such that xn →
x �= 0 and vn = fn(yn) → v ∈ [−1 , 0[ (this implies that fn(xn) → 0 and yn → 0).

If f preserves a volume form ω on C, then we find that

(∗) (fn)′(xn)(f
n)′(yn) =

ω(xn, yn)

ω(fn(xn), fn(yn))
→ ω(x, 0)

ω(0, v)
∈ ]0 ,+∞[.

By rewriting (fn)′(yn) = 1/(f−n)′(vn), we see that computing the product
(fn)′(xn)(f

n)′(yn) only uses f on [−1 , 1].

For x ∈ ]0 , 1], we find fn(x) = (Log(n+ e x−2

))−
1
2 for all n > 0, which gives

(fn)′(x) =
1

x3

1

1 + ne−x−2 (Log(n+ e x−2

))−
3
2 .

Similarly, for y ∈ [−1 , 0[, we find f−n(y) = −(Log(n+ e y−4

))−
1
4 and

(f−n)′(y) =
−1

y5
1

1 + ne−y−4 (Log(n+ e y−4

))−
5
4 .

This shows that

(fn)′(xn)(f
n)′(yn) =

(fn)′(xn)

(f−n)′(vn)
∼ −v5

x3
e x−2−v−4

(Log(n))−
1
4 → 0.

This is in contradiction with (∗). �
We will not try to give a necessary and sufficient condition for a diffeomorphism

with one fixed point to preserve a volume form on C. Note that the example
in Proposition 3.2 is C∞-tangent to the identity at its fixed point. The same
calculations could give a smooth preserved volume form for a diffeomorphism that
is not infinitely tangent to the identity, as well as for some examples that are
infinitely tangent to the identity. It seems that the key for preserving a volume
form on C is having the same behavior on each side of the fixed point.
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3.3. The hyperbolic case. In the hyperbolic case (i.e., a diffeomorphism with two
fixed points), we can start by seeing that all north/south diffeomorphisms cannot
preserve a smooth volume.

Lemma 3.3. Let f ∈ Diff(S1) have exactly two fixed points N and S. If f is
volume-preserving, then f ′(N) �= 1 and f ′(N)f ′(S) = 1.

Proof. Let ω be a continuous volume form on C preserved by f . The identity
ω(f(x), f(y))f ′(x)f ′(y) = ω(x, y) considered at the point (N,S) ∈ C shows that
f ′(N)f ′(S) = 1. Assume that f ′(N) = 1 (hence f ′(S) = 1).

Let x(t) be a maximal solution of the Cauchy problem:{
x′(t) = 1

ω(x(t),S) ,

x(0) = N.

Not only does x exist (Cauchy-Peano Theorem), but it is also unique (so are so-
lutions to all equations y′ = F (y) in R where F > 0). Since x′ > 0, it is a
diffeomorphism from an open interval I ⊂ R onto its image J ⊂ S1 \ {S}. Let
α = x−1 ◦ f ◦ x. A simple calculation shows that α′(t) = 1 for all t ∈ I. Since
α(0) = 0, we see that α = Id and f(x) = x for all x ∈ I. Therefore the set of
points x ∈ S1 \ {S} such that f(x) = x and f ′(x) = 1 is open. It is also closed, and
S1 \ {S} is connected, so f = Id. �

This property is satisfied by a hyperbolic element of PSL(2,R) (the derivatives
at the fixed points are the squares of the eigenvalues of the matrix) and therefore
by any diffeomorphism that is differentially conjugate to a hyperbolic element of
PSL(2,R), but there are examples of diffeomorphisms satisfying this property that
have no differential conjugate in PSL(2,R).

Indeed, start with γ ∈ PSL(2,R) a hyperbolic element. Let N and S be its fixed
points. Let ϕ ∈ Homeo(S1) be such that:

• ϕ fixes N and S.
• ϕ is a diffeomorphism on S1 \ {S}.
• ϕ is the identity in a neighborhood of N .
• ϕ commutes with γ in a neighborhood of S.

Set f = ϕ−1γϕ ∈ Diff(S1). If f were differentially conjugate to an element of
PSL(2,R), then this element could be chosen to be γ. If h−1fh = γ, then ϕ ◦h is a
diffeomorphism of S1 \ {S} that commutes with γ. This implies that there is some
t ∈ R such that ϕ ◦ h = γt on S1 \ {S} where γs is the one parameter subgroup
of PSL(2,R) generated by γ. Indeed, in projective charts, we can see ϕ ◦ h as a
diffeomorphism that commutes with a nontrivial homothety x 	→ λx. The derivative
is a continuous function on R invariant under x 	→ λx, hence constant, and ϕ ◦ h
fixes 0, hence is equal to some x 	→ μx in projective charts.

By continuity, the equality ϕ ◦ h = γt holds on all S1, and ϕ is differentiable.
Hence, if we choose ϕ nondifferentiable, then f is not differentially conjugate to an
element of PSL(2,R).

The obstruction for a diffeomorphism with two fixed points to be differentially
conjugate to an element of PSL(2,R) is encoded in an element of Diff(S1)/PSL(2,R)
called the Mather invariant (see [Yoc95b] for more details).

Knowing this, the following result shows that preserving a volume form on C is
not enough in order to be differentially conjugate to a homography.
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Proposition 3.4. Let f ∈ Diffk+1(S1) (k ≥ 0) have exactly two fixed points N
and S. It preserves a Ck volume form on C if and only if f ′(N)f ′(S) = 1 and
f ′(N) �= 1.

Proof. Let λ = f ′(N) and let hN : S1 \ {S} → R and hS : S1 \ {N} → R be the
linearizations of f at N and S (i.e. hN ◦f ◦h−1

N (x) = λx and hS◦f ◦h−1
S (x) = λ−1x).

Let U1 (resp. U2) be a neighborhood of (N,S) (resp. (S,N)) in C delimited by
graphs of maps that commute with f (hence invariant by f). The linearizations
give us invariant volume forms (e.g. dx ∧ dy in coordinates) on U1 and U2. Since
the action of f on the complement of U1∪U2 is proper (it is differentially conjugate
to a translation on the plane), we can find a smooth invariant volume form on C

that coincides on U1 and U2 with the ones chosen above. �
3.4. Analytic conjugacy. In the fixed point free case, the conjugacy obtained is
analytic when the diffeomorphism and the volume form are analytic. The previous
construction in the hyperbolic case can never give a real analytic metric (given that
the diffeomorphism is real analytic). In order to see this, we will introduce the
Lorentz metric associated to a volume form on C, which will give us a notion of
curvature. In the previous construction, the curvature is constant in a neighborhood
of the axes; therefore any analytic prolongation to the whole cylinder would have
constant curvature and the isometry group (that contains the diffeomorphism f)
would be analytically Fuchsian.

We can associate to the volume form ω(x, y)dx ∧ dy on C the Lorentz metric
g = ω(x, y)dxdy. If ω is Ck with k ≥ 2, then it defines the curvature as a real
valued function K on C that is Ck−2 (it is analytic when ω is analytic). The
isometries of g are the diagonal actions of circle diffeomorphisms that preserve ω.
In [Mon15], we adopt the Lorentzian point of view and give a generalization of
Theorem 1.1 to a wider category of Lorentz surfaces.

Lorentzian metrics, as well as Riemannian metrics, are examples of rigid geomet-
ric structures. We will use the fact that for an analytic rigid geometric structure,
local vector fields generating isometries can be extended.

Theorem 3.5. 1.8 Let f be an analytic diffeomorphism of S1 with exactly two
fixed points. If it preserves an analytic volume form on C, then it is analytically
conjugate to an element of PSL(2,R).

Proof. Let ω be an analytic volume form preserved by f . By Lemma 3.3, if N and
S are the fixed points of f , then λ = f ′(N) �= 1 and f ′(S) = λ−1. By considering
the linearizations of f around its fixed points, we see that the diagonal action of f is
analytically conjugate in a neighbourhood of (N,S) to the map (x, y) 	→ (λx, λ−1y)
in a neighbourhood of (0, 0). Since it preserves the volume form dx ∧ dy in those
coordinates, we can write ω = eσdx ∧ dy in coordinates where σ is an analytic
function that satisfies σ(λx, λ−1y) = σ(x, y). By writing σ in its power series
around (0, 0) and considering the invariance equation, we see that all the terms
in xnyp with n �= p must have zero as their coefficient. Therefore we can write
σ = f(xy) where f is an analytic function, and the form ω is preserved (around the
fixed point (N,S)) by the one parameter group associated to f .

We will now apply the main result of [Amo79]: a local Killing field (i.e., a
vector field that generates a flow of isometries) on a simply connected real analytic
Lorentz manifold admits a unique extension to the whole manifold (the paper treats
the more general case of finite type G-structures, which includes Lorentz metrics).
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In order to apply this result, consider a map from [N ,S] to [S ,N ] that com-
mutes with the (topological) one parameter group associated to f , and let U be the
complement of the graph of this map. It is a simply connected open set of C that is
invariant under the one parameter group associated to f and that contains (N,S)
and (S,N). There is a vector field X on U that preserves ω and such that the time
one map is (f, f). Since the vector field X has the form X(x, y) = (x(x), x(y)) where
x is defined on all S1, it is complete, and the map f is the time 1 of the flow of the
analytic vector field x; hence f is analytically conjugate to an element of PSL(2,R)
(the Mather invariant of the time one map of a flow is trivial; see [Yoc95b]). �

However, there are non-Fuchsian examples in the parabolic case. Indeed, for
n ∈ N odd and greater than 1, consider the examples f(x) = x(1+xn)−1/n discussed
in the differentiable case. It is analytic on RP

1 = R ∪ {∞} (because 1
f is analytic

in a neighbourhood of −1). It preserves the volume form |xn − yn|−1−1/ndx ∧ dy
which extends analytically to S1 × S1 \Δ.

The example of a parabolic diffeomorphism that does not preserve a volume form
given in Proposition 3.2 is not analytic. We suspect that in the parabolic case, all
analytic diffeomorphisms preserve an analytic volume form on C.

4. Tools for the nonelementary case

4.1. The limit set. Given a group Γ ⊂ Homeo(S1), exactly one of the following
conditions is satisfied (see [Ghy01] for a proof and more detail):

(1) Γ has a finite orbit.
(2) All orbits of Γ are dense.
(3) There is a compact Γ-invariant subset LΓ ⊂ S1 which is infinite and different

from S1 such that the orbits of points of LΓ are dense in LΓ.

In the third case, the set LΓ is unique, and it is homeomorphic to a Cantor set.
It is called an exceptional minimal set. We can call a group Γ ⊂ Homeo(S1)
nonelementary if it does not have any finite orbit (this definition is not standard
since we usually want to call the group generated by an irrational rotation elemen-
tary) and use LΓ to denote S1 in the second case and the Γ-invariant compact set
K in the third case (we call LΓ the limit set of Γ).

If Γ ⊂ PSL(2,R) is nonelementary and possesses hyperbolic elements (to avoid
the case mentioned above), then LΓ is the intersection of the circle at infinity ∂∞H2

with the closure of the orbit Γ.x in H2, independently of the point x ∈ H2.

4.2. Projective structures and curvature. One of the advantages of consider-
ing the Lorentz metric associated to a volume form on C is that it gives us a notion
of curvature. In the two-dimensional case, it is a function K : C → R that is Ck−2

when the volume form is Ck. In our setting, it has a simple expression:

K =
2

ω

∂2Logω

∂x∂y
.

It is invariant under the diagonal actions of circle diffeomorphisms that preserve
the volume form (because they are isometries). This will give an important subset
of C on which the curvature is constant.

Lemma 4.1. Let ρ : Γ → Diff(S1) be a nonelementary representation that preserves
a C2 volume form on C. Assume that there is a least one hyperbolic element. Then
the curvature K is constant on (Lρ(Γ) × S1 ∪ S1 × Lρ(Γ)) \Δ.
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Proof. Let ω be such a volume form. If γ ∈ Γ and ρ(γ) has two fixed points N,S in
S1, then we can consider the fixed point p = (N,S) ∈ C. The orbits of points of the
axes {N} × S

1 \ {N} and S
1 \ {S} × {S} accumulate on p; therefore the curvature

at these points have the same value K(p). Given two hyperbolic elements of Γ, the
axes meet; therefore the curvature has the same value on the axes of all hyperbolic
elements of Γ. Since a fixed point of a hyperbolic element has a dense orbit in
Lρ(Γ), we find that K is constant on (Lρ(Γ) × S

1 ∪ S
1 × Lρ(Γ)) \Δ. �

Note that the exact same proof works for any continuous function on C invariant
under the action of Γ. The specificity of the curvature is that when it is constant,
the metric is locally isometric to a model space. We will now see how this can
give a global conjugacy for the isometry group. It is in general more difficult to
have global results on constant curvature Lorentz manifolds than on Riemannian
manifolds, because the associated (G,X)-structure is not always complete (the
developing map may not be a covering map, whereas it is always the case for
Riemannian isometries).

Another tool that we get with a Lorentz metric is geodesics. Horizontal and
vertical lines in C = S

1 × S
1 \Δ are geodesics (because they are the only isotropic

curves), which gives us some specific parametrizations. We will translate them in
terms of projective structures on one-dimensional manifolds.

A projective structure on a one-dimensional manifold I is an atlas (Ui, fi)
with fi : Ui → RP

1 such that the transition maps fi ◦ f−1
j are projective diffeo-

morphisms (i.e., restrictions of elements of PSL(2,R)). If f is a diffeomorphism
between two projective one-dimensional manifolds I and J , then one can define
a quadratic differential s(f) on I, called the Schwarzian derivative of f , by

s(f) =
(

f ′′′

f ′ − 3
2 (

f ′′

f ′ )
2
)
dx2 in projective charts. Then f is a projective diffeomor-

phism (i.e., f has the form x 	→ ax+b
cx+d in projective charts) if and only if s(f) = 0

(see [Ghy93] for more details).
Note that some links between the Schwarzian derivative and Lorentzian geometry

have been studied, mostly concerning the geodesic curvature (see [DO00]).
Geodesics inherit a projective structure, the charts being given by the differ-

ent parametrizations of the geodesic (the coordinate changes are affine, therefore
projective). Recall that the geodesic equations are the following:

x′′ +
1

ω

∂ω

∂x
x′2 = 0,

y′′ +
1

ω

∂ω

∂y
y′2 = 0.

A representation ρ : Γ → Diff(S1) is differentially Fuchsian if and only if it pre-
serves a projective structure on S1 that is equivalent to the standard structure on
RP1 (because a conjugacy between ρ and a Fuchsian representation is the same as
a projective diffeomorphism with RP1). Therefore in order to show that a repre-
sentation is differentially Fuchsian, we can proceed in two steps: first we find an
invariant projective structure, then we show that it is equivalent to the standard
projective structure on RP1. This is what we will use in the proof of the following
result.

Lemma 4.2. Let ρ : Γ → Diff(S1) be a representation that preserves a C2 volume
form on C. Assume that its curvature is constant. Then ρ is differentially Fuchsian.
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Proof. Given y ∈ S1, we consider a diffeomorphism fy : S1 \ {y} → R given by a
parametrization of the horizontal circle S1 \ {y}×{y} as a geodesic for the Lorentz
metric associated to ω. This gives us an atlas of S1, and we will first show that it
is a projective structure, i.e., that the transition maps fy′ ◦ f−1

y are projective. For

any sequence y1, . . . , yn, we can decompose fy′ ◦ f−1
y :

fy′ ◦ f−1
y = (fy′ ◦ f−1

yn
) ◦ (fyn

◦ f−1
yn−1

) ◦ · · · ◦ (fy1
◦ f−1

y ).

Since the composition of projective maps is projective, it is enough to show that
fy′ ◦ f−1

y is projective when y and y′ are sufficiently close.
Given (x, y) ∈ C, we can find a local isometry with the model space of constant

curvature, which can also be seen (locally) as a volume form on C (dx∧ dy for zero

curvature, ± 4dx∧dy
(x−y)2 for curvature ±1). An isometry sends parametrized geodesics

onto parametrized geodesics; hence fy′ ◦ f−1
y is equal to the analogue in the model

space, and it is projective because it is the case in the model space.
Given an element γ ∈ Γ, we know that fy ◦ ρ(γ) is also the inverse of the

parametrization of a geodesic; hence fy′ ◦ρ(γ)◦f−1
y is projective, and the projective

structure that we defined is preserved by ρ.
To conclude, we separate two cases. If there is an element of Γ with a fixed

point in S
1, then Lemma 5.1 of [Ghy93] concludes that the projective structure is

equivalent to the standard structure on RP1, and ρ is differentially Fuchsian.
If all elements are elliptic, then applying Theorem 1.1 shows that ρ is topologi-

cally conjugate to a representation in PSL(2,R) with only elliptic elements, and it is
therefore conjugate to a subgroup of SO(2,R) (see §7.39 in [Bea83]). In particular,
it is abelian, and the same argument as in Proposition 1.6 (ρ preserves the Rie-
mannian metric ω(x, ρ(γ0)x)ρ(γ0)

′(x)dx2 on S1 where γ0 is any element in Γ \ {e})
shows that ρ is differentially conjugate to a representation in SO(2,R) ⊂ PSL(2,R).

�

One could ask if, more generally, the projective structures given by the para-
metrizations of isotropic geodesics are invariant under the isometry group (which
is the same as asking for the maps fy′ ◦f−1

y to be projective). In [Mon14] (Chapter

4, section 3), we compute the Schwarzian derivative of the maps fy′ ◦f−1
y and show

that it only vanishes when the curvature is constant. We will see in Proposition 5.3
that it is not always the case.

5. Rigidity results for nonelementary groups

5.1. Topologically transitive actions. In the topologically transitive case, i.e.,
when the limit set is the whole circle, the situation is rigid (provided sufficient
regularity). We will use the results stated above to show that the curvature is
constant.

Theorem 5.1. Let ρ : Γ → Diff(S1) be a topologically transitive representation
that preserves a C2 volume form on C. Then ρ is differentially Fuchsian.

Proof. If there is a hyperbolic element, then Lemma 4.1 states that the curvature
is constant on C and Lemma 4.2 allows us to conclude.

We now treat the case where there are no hyperbolic elements; i.e., all elements
are elliptic or parabolic. First assume that there is a parabolic element γ. Let
x0 ∈ S1 be its fixed point. If there is another parabolic element δ with a different
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fixed point, then either γδ or γ−1δ is hyperbolic; hence we can assume that all
parabolic elements fix x0. Since the group is not elementary, there is a nontrivial
elliptic element α. The conjugate αγα−1 is a parabolic element whose fixed point
is ρ(α)(x0) �= x0, and as we just showed this implies the existence of a hyperbolic
element in Γ. We have shown that the existence of a parabolic element in a nonele-
mentary group preserving a volume form on C implies the existence of a hyperbolic
element.

We are left with the case where all elements are elliptic, where we simply notice
that we did not use the fact that the curvature is constant in this case in the proof
of Lemma 4.2. �

The regularity of the preserved volume form is essential in this result. If (S, h)
is a smooth compact Riemannian surface of negative curvature, then the funda-

mental group π1(S) acts isometrically on the universal cover S̃; hence it acts on

its boundary at infinity ∂∞S̃ ≈ S1. To find an invariant volume form, consider the

space of oriented geodesics of S̃. It can be seen as T1S̃/R where the action of R
is the geodesic flow, and π1(S) preserves the form ω = dλ where λ is the projec-

tion of the Liouville 1-form on T1S̃. An oriented geodesic is given by a starting

point and an endpoint on ∂∞S̃, which gives an identification between T1S̃/R and

C = ∂∞S̃ × ∂∞S̃ \Δ. This identification is only a C1-diffeomorphism (its regular-
ity is exactly the regularity of the weak stable and weak unstable foliations of the
geodesic flow), so the volume form obtained on S

1 × S
1 \Δ is only continuous. A

result of Ghys in [Ghy87] states that if the identification T1S̃/R ≈ C is C2, then
(S, h) has constant curvature.

It is not even clear whether the regularity required in Theorem 1.10 can be
lowered to C1,1 (i.e., C1 with a Lipschitz derivative). In this case, the curvature
is defined almost everywhere and is locally L∞. To ensure that such a function is
constant almost everywhere, the right notion is no longer topological transitivity
but ergodicity. A group action by diffeomorphisms on a manifold is ergodic if all
invariant measurable sets are either negligible or of full measure (for the class of
the Lebesgue measure). If an action on the circle ρ : Γ → Diff(S1) is ergodic, then
the diagonal action on C is also. The question of knowing whether topologically
transitive actions on the circle are ergodic is very important in the theory of circle
diffeomorphisms. It has been proven to be true for analytic actions of finitely
generated free groups (in [Her79] for Z and in [DKN09], [DKN13] for Fn, n ≥ 2),
and it is expected to be true for C2 actions of finitely presented groups. This could
be applied in our situation (if the metric is C1,1, then isometries are C2,1), but we
would still have to prove that if the curvature is constant almost everywhere, then
we have an isometry with the model space.

5.2. Analytic rigidity. As in the elementary case, analyticity also provides more
rigidity in the nonelementary case.

Theorem 5.2. Let ρ : Γ → Diffω(S1) be a nonelementary representation that
preserves an analytic volume form on C. Then ρ is analytically Fuchsian.

Proof. Applying Lemma 4.1 we see that the curvature is constant on the set (Lρ(Γ)×
S1∪S1×Lρ(Γ))\Δ. The analyticity of the curvature implies that it is constant on C

(consider the function along horizontal and vertical lines and the fact that Lρ(Γ) is
without isolated points), and Lemma 4.2 implies that ρ is analytically Fuchsian. �
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5.3. Exceptional minimal set and curvature. We saw that the curvature is
constant on (Lρ(Γ) × S1 ∪ S1 × Lρ(Γ)) \ Δ, but we cannot have anything better
than this. Indeed, we can construct metrics with nonconstant curvature that are
preserved by nonelementary Fuchsian groups. Since such a group Γ preserves a
volume form, any other preserved volume form is given by the product with an
invariant function.

Proposition 5.3. Let Γ ⊂ PSL(2,R) be a nonelementary and nontopologically
transitive subgroup. Then there is a nonconstant smooth function σ : C → R that
is Γ-invariant.

Proof. Start by writing S1\LΓ =
⋃

i∈N
Ii as the union of its connected components.

We start by setting σ = 0 on (Lρ(Γ) × S
1 ∪ S

1 × Lρ(Γ)) \Δ and on Ii × Ii \Δ for
i ∈ N. For x ∈ Ii × Ij with i �= j, consider R1, R2, R3, R4 the four rectangles that
have x as one corner and a corner of Ii × Ij as the opposite corner (see Figure 1).

Let σ(x) = ω(R1)ω(R2)ω(R3)ω(R4) where ω is the volume form 4dx∧dy
(x−y)2 . By using

the explicit formula ω([a , b] × [c , d]) = 4Log([a, b, c, d]) where [a, b, c, d] = a−c
a−d

b−d
b−c

is the cross-ratio, we see that σ is continuous. The function σ is smooth in the
interior of rectangles Ii × Ij , i.e., where it is nonzero. If F : R → R is smooth and
constant on a neighbourhood of 0 sufficiently small so that F ◦ σ is not constant,
then F ◦ σ is Γ-invariant, nonconstant, and smooth.

There are many other ways of constructing invariant functions. We could set
σ(x) on Ii × Ii to be F (ω(R)) where R is the rectangle amongst R1, R2, R3, and
R4 defined above that is included in S

1 × S
1 \Δ (see Figure 1).

Finally, we could also choose σ arbitrarily on the squares Ii × Ii where i is in a
fundamental domain for the action of Γ on the connected components of S1 \ LΓ,
and let σ be constant on rectangles Ii × Ij with i �= j. �

Ii

Ij

R1 R2

R3 R4

x x

R

Figure 1. Construction of invariant functions
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This result takes away all hope of finding a differential conjugacy with the in-
variance of the curvature (there are enough ways to produce an invariant function
to ensure that there are preserved metrics with nonconstant curvature).

5.4. Infinitesimal rigidity on the limit set. The question of differentiable con-
jugacy appears to be difficult, and a way of dealing with a simpler problem is to
linearize the conjugacy equation, i.e., considering the derivatives of the equations
ρ1(γ) = h−1 ◦ ρ0(γ) ◦ h where ρ1 : Γ → Diff(S1) is the data and h ∈ Diff(S1) and
ρ0 : Γ → PSL(2,R) are the unknowns. First and second order derivatives remain
quite complicated, but the third order is simpler because elements of PSL(2,R) can
be defined as the solutions of a third order differential equation. But since we know
that it is not always possible to have a differentiable conjugacy on the whole circle
(the proof will be exposed in sections 6 and 7), we can only look at subsets of the
circle. In the counterexample that we will construct, the conjugacy is differentiable
along the limit set. This is interesting because the limit set is the subset of the
circle that contains the nontrivial dynamical behavior.

We have already seen that a volume form on C endows the horizontal and vertical
lines with projective structures. We showed that in the constant curvature case,
they give the same projective structure on S1. Before we give a statement of a
result, we will reformulate this.

We will denote by E1 (resp. E2) the sub-bundle of TC consisting of horizontal
(resp. vertical) lines. If p ∈ X and u ∈ E2(p), then αu is the geodesic with initial
condition u, and Cu

t is the horizontal circle passing through αu(t). We will consider
the holonomy map Hu

t : Cu
0 → Cu

t (which is defined everywhere on the circle except
at two points; see Figure 2). The Schwarzian derivative Ku(t) = S(Hu

t ) relative to
the projective structure on Cu

t given by the Lorentzian metric is a field of quadratic
forms on E1, and we will mostly consider ku(t) = Ku(t)(p) ∈ S2(E1(p)). Note that
if ρ were Fuchsian, then ku(t) would vanish everywhere (this is what we have shown
in the constant curvature case). If it were L-differentially Fuchsian, then it would
vanish when the base point of u is in LΓ ×LΓ; therefore the following result can be
interpreted as a rigidity result.

Theorem 5.4. If ρ : Γ → Diff(S1) preserves a smooth volume form on C, and
if ρ(Γ) is nonelementary, then ku(t) = 0 for all p ∈ Lρ(Γ) × Lρ(Γ) \ Δ and all

u ∈ E2(p), t ∈ R.

Proof. If γ ∈ Γ, then Hγ.u
t = γ ◦ Hu

t ◦ γ−1. Since the group Γ acts isometrically
with respect to the Lorentz metric, it preserves the projective structures, and the
cocycle relation on the Schwarzian derivative gives us Kγ.u(t) = γ∗Ku(t).

Let us now remark that since the space S2(E1(p)) is one-dimensional, we can
write ku(t)(v) = F (u, t)〈u, v〉2 for all v ∈ E1(p) (where 〈·, ·〉 is the Lorentz metric
associated to the preserved volume form). The relation Kγ.u(t) = γ∗Ku(t) gives us
F (γ.u, t) = F (u, t).

If a > 0, then we have αau(t) = αu(at), which gives us Kau(t) = Ku(at).
We will now study the case where p is a fixed point of γ. We write p = (x, y) and

γ′(x) = λ−1, γ′(y) = λ, with λ �= 1. Since γ.u = λu, we have ku(λt) = kλu(t) =
kγ.u(t) = γ∗ku(t) = λ2ku(t), which implies that F (u, λt) = λ2F (u, t). Therefore
(because of the differentiability of the map t 	→ F (u, t)) there is a real number c(u)
such that F (u, t) = c(u)t2.



6374 DANIEL MONCLAIR

p

u

αu(t)

Hu
t

Cu
t

Cu
0

Figure 2. The holonomy map Hu
t

We now wish to extend this to Lρ(Γ) × Lρ(Γ) \ Δ. If we fix t ∈ R and k > 2,

the function ∂k

∂tk
F (u, t) is invariant under the action of Γ, and it is equal to 0 on

all vectors tangent to fixed points of Γ. Therefore by continuity it is equal to 0 on
Lρ(Γ) × Lρ(Γ) \ Δ, i.e., F (u, t) = a(u) + b(u)t + c(u)t2. Since the coefficients are

continuous, we have a(u) = b(u) = 0, i.e., F (u, t) = c(u)t2.
We will finally compute ku(t + s) in two ways in order to conclude. We choose

p ∈ Lρ(Γ) × Lρ(Γ) \Δ and t > 0 such that αu(t) ∈ Lρ(Γ) × Lρ(Γ) \Δ. For s ∈ R, we

have Hu
t+s = H

α′
u(t)

s ◦Hu
t ; hence ku(t+ s) = ku(t) + (Hu

t )
∗Kα′

u(t)
(s), which we can

write

c(u)(t+ s)2〈u, v〉2 = c(u)t2〈u, v〉2 + c(α′
u(t))s

2〈dHu
t (v), α

′
u(t)〉2.

By computing the derivative with respect to s at s = 0 on both sides, we obtain
c(u) = 0, i.e., ku(t) = 0. �

Note that this result could also have been proven with the explicit computation
of the Schwarzian derivative in Chapter 4, section 3, of [Mon14].

We can now prove Theorem 1.13, which can be slightly reformulated:

Theorem 5.5. If ρ : Γ → Diff(S1) is a nonelementary representation that preserves
a smooth volume form on C, then there is a projective structure on S1, equivalent
to the standard structure on RP1, such that S(ρ(γ))(x) = 0 for all γ ∈ Γ and
x ∈ Lρ(Γ).

Proof. Let I be a connected component of S1 \ Lρ(Γ) and let x0, x−, x+ ∈ I be
such that x− < x0 < x+ < x− and the interval consisting of points x such that
x− < x < x+ < x− is included in I. We can choose a parametrization ϕ : S1 \ {x0}
of the horizontal geodesic S1 \ {x0} × {x0} such that the image ϕ(S1 \ ]x− , x+[) is
equal to [−1 , 1].
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Let ψ : S1 → RP1 be a diffeomorphism such that the restriction of ψ to S1 \
]x− , x+[ is equal to the restriction of ϕ. It equips S1 with a projective structure
equivalent to the standard structure on RP

1.
Let x ∈ Lρ(Γ) and let γ ∈ Γ. Since Lρ(Γ) ⊂ S1 \ ]x− , x+[, the projective structure

is defined by ϕ. Hence it is sent by γ to a parametrization of another horizontal
geodesic, and the Schwarzian derivative of γ at x is the Schwarzian derivative of
the holonomy at x, and it is equal to 0. �

6. Actions on the circle and flows in dimension 3

The rest of this paper is dedicated to Theorem 1.11, which we recall (convex
cocompact groups will be defined in subsection 6.3):

Theorem 6.1 (1.11). Let ρ0 : Γ → PSL(2,R) be a convex cocompact representation
and let h ∈ Homeo(S1) be such that h/Lρ0(Γ)

= Id and ρ1 = hρ0h
−1 has values in

Diff(S1). Then ρ1 preserves a C2 volume form on C.

The main ingredient in this proof is to construct a flow on a 3-manifold (a
deformation of the geodesic flow on T1H2/ρ0(Γ)) that has a transverse structure
given by ρ1. This construction follows an idea of Ghys used in two different settings.
The first one, found in [Ghy93], was to show a rigidity theorem for actions of surface
groups on the circle, and the second was the construction of (the only) exotic
Anosov flows with smooth weak stable and weak unstable foliations on 3-manifolds
in [Ghy92], called quasi-Fuchsian flows. However, Ghys used a local construction
(given a certain atlas on T1H2/ρ0(Γ)), whereas we will take a global approach.

We will see in subsection 7.4 that there are some nondifferentially Fuchsian
examples satisfying the hypothesis of Theorem 1.11.

6.1. Hyperbolic flows. Let us recall a few basic notions of hyperbolic flows. Let
ϕt be a complete flow generated by a vector field X on a manifold M . We say that
a compact invariant set K ⊂ M is hyperbolic if there are positive constants C, λ
and a decomposition of tangent spaces TxM = Es

x⊕Eu
x ⊕R.X for each x ∈ K such

that
∀x ∈ K ∀v ∈ Es

x ∀t ≥ 0 ‖Dϕt
x(v)‖ ≤ Ce−λt‖v‖,

∀x ∈ K ∀v ∈ Eu
x ∀t ≤ 0 ‖Dϕt

x(v)‖ ≤ Ceλt‖v‖.
The norm ‖.‖ denotes the norm given by any Riemannian metric on M (since K is
compact, the definition does not depend on the choice of a Riemannian metric). If
the whole manifold M is a hyperbolic set, then we say that ϕt is an Anosov flow.

Let ϕt be a smooth flow on a manifold M . If K ⊂ M is a compact hyperbolic
set and x ∈ K, then we define the stable and unstable manifolds through x:

W s(x) = {z ∈ M |d(ϕt(x), ϕt(z)) −→
t→+∞

0},

Wu(x) = {z ∈ M |d(ϕt(x), ϕt(z)) −→
t→−∞

0}.

The Stable Manifold Theorem states that they are submanifolds of M tangent to
Es and Eu at x (see [HP69]).

The most important fact for us is that the limit d(ϕt(x), ϕt(z)) → 0 is a uniformly
decreasing exponential: for all compact set A and all ε > 0, there is a constant
C ′ > 0 such that

∀x ∈ K ∀z ∈ W s(x) ∩ A ∀t ≥ 0 d(ϕt(x), ϕt(z)) ≤ C ′e−(λ−ε)t,
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∀x ∈ K ∀z ∈ Wu(x) ∩ A ∀t ≤ 0 d(ϕt(x), ϕt(z)) ≤ C ′e(λ−ε)t.

We will denote by W s(K) (resp. Wu(K)) the union W s(K) =
⋃

x∈K W s(x) (resp.
Wu(K) =

⋃
x∈K Wu(x)).

6.2. A cohomological reformulation. Searching for an invariant volume form
is equivalent to solving a cohomological equation. Let ω0 be a volume form on
C. Any other volume form on C is a multiple of ω0; hence if γ ∈ Γ, then we can
write ρ(γ)∗ω0 = e−αγω0. The chain rule shows that αγ satisfies the cocycle relation
αγ′γ = αγ′ ◦ ρ(γ) + αγ .

Let ω = eσω0 be a volume form on C. We can compute the pullback ρ(γ)∗ω =
eσ◦ρ(γ)ρ(γ)∗ω0 = eσ◦ρ(γ)−σ−αγω; hence ω is preserved by Γ if and only if σ ◦ ρ(γ)−
σ = αγ for all γ ∈ Γ. In other words, we wish to show that the cocycle αγ is a
coboundary.

The issue with this formulation of the problem is that we do not know much
about the cohomology of Γ. We will now see how we can translate the problem to
a cohomological equation for a hyperbolic flow, which is a much simpler situation.
In this setting, a cocycle is a smooth function α : M → R (where M is the manifold
on which we study a flow ϕt), and we look for a smooth function σ : M → R such

that σ(ϕt(x))− σ(x) =
∫ t

0
α(ϕs(x))ds for all (x, t) ∈ M × R.

There is a first necessary condition for the existence of a solution: if x ∈ Per(ϕ),

i.e., if there is T > 0 such that ϕT (x) = x, then
∫ T

0
α(ϕs(x))ds = 0. Livšic’s

Theorem states that this condition is sufficient in order to find a solution on a
compact hyperbolic set.

Theorem 6.2. Let ϕt be a smooth flow on a manifold M , and let K be a compact
hyperbolic set, such that the action on K has a dense orbit. If α : K → R is a

Hölder continuous function such that
∫ T

0
α(ϕs(x))ds = 0 for all x ∈ K such that

ϕT (x) = x, then there is a unique Hölder continuous function σ : K → R such that

σ(ϕt(x))− σ(x) =
∫ t

0
α(ϕs(x))ds for all (x, s) ∈ K × R.

As stated, the proof can be found in [KH95] (Livšic’s work in [Liv71] deals
with Anosov flows on compact manifolds). We will discuss the different versions of
Livšic’s Theorem (especially concerning regularity conditions) in section 8.

However, Livšic’s Theorem will not be of any use in the proof of Theorem 1.11,
because we will already have a solution on the hyperbolic set (but we will use it
in section 8 for Theorem 1.15). Instead, we will show that given a solution on a
compact hyperbolic set K, we can extend it to W s(K)∪Wu(K). When translating
the problem back to the action on C = S1 × S1 \ Δ, this will give a volume form
invariant at points of LΓ × S1 ∪ S1 ×LΓ, and there will still be some work involved
in order to extend the solution to C (which is the content of section 7).

6.3. Convex cocompact groups and geodesic flows. Let Γ ⊂ PSL(2,R) be a
discrete nonelementary subgroup such that the limit set LΓ is a Cantor set. The
convex hull of Γ is the subset CΓ of H2 bounded by geodesics joining fixed points of
hyperbolic elements of Γ. We say that Γ is convex cocompact if CΓ/Γ is compact.
A particular case of Ahlfors’ Finiteness Theorem (see [Ahl64] or [Ber65]) states that
any finitely generated discrete subgroup of PSL(2,R) with only hyperbolic elements
is convex cocompact.
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If Γ ⊂ PSL(2,R) is convex cocompact, then denote by ϕt the geodesic flow on
T1H2/Γ (remark that even if H2/Γ is not a manifold, the unit bundle T1H2/Γ
always is when Γ is discrete).

The nonwandering set Ωϕ of a flow is the set of points x such that there are
sequences xn → x and tn → ∞ satisfying ϕtn(xn) → x. For the geodesic flow,
Ωϕ can be described as follows: its lift to T1H2 is the set of vectors tangent to
a geodesic that lies entirely in CΓ. The important property of ϕt is that it is an
Axiom A flow: Ωϕ is a compact hyperbolic set for ϕt, and it is equal to the closure
of periodic orbits Per(ϕ) (Axiom A flows are a generalization of Anosov flows that
can be defined even on noncompact manifolds). We will now use a presentation of
the geodesic flow that is particularly convenient when we define perturbations.

Let Σ3 = {(x−, x0, x+) ∈ (S1)3|x− < x0 < x+ < x−} be the set of ordered
triples of S1. We can identify T1H2 and Σ3 in the following way: given a unit
vector v ∈ T1

H
2, we consider x− and x+ the limits at −∞ and +∞ of the geodesic

given by v, and x0 is the limit at +∞ of the geodesic passing through the base
point of v in an orthogonal direction, oriented to the right of v (see Figure 3).

v

x+

x−

x0

Figure 3. Identification between T1H2 and Σ3

On Σ3, the geodesic vector field is a rescaling of the constant vector field (0, 1, 0),
and the action α of PSL(2,R) is the diagonal action. The geodesic flow ϕt is
defined on the quotient manifold M = Σ3/α(Γ) ≈ T1

H
2/Γ. The image of a point

(x−, x0, x+) in M is in Ωϕ if and only if (x−, x+) ∈ LΓ × LΓ, and it is in Per(ϕ) if
and only if (x−, x+) is the pair of fixed points of an element γ ∈ Γ.

6.4. The flow associated to ρ1. From now on, we consider a convex cocompact
representation ρ0 : Γ → PSL(2,R) and another representation ρ1 : Γ → Diff(S1)
such that there is h ∈ Homeo(S1) satisfying h/Lρ0(Γ)

= Id and ρ1 = hρ0h
−1. Let

us start by remarking that Lρ0(Γ) is a compact invariant set for ρ1. Because of
the uniqueness of the minimal invariant compact set, we see that Lρ1(Γ) ⊂ Lρ0(Γ).
Since the actions ρ0 and ρ1 restricted to Lρ0(Γ) are equal and have dense orbits, we
have Lρ1(Γ) = Lρ0(Γ). We will call this set LΓ.
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We are now going to construct a flow ψt on a 3-manifold N that will have the
same relation to ρ1 as the geodesic flow ϕt on M = T1H2/ρ0(Γ) has with ρ0. We
consider Σ = {(x−, x0, x+) ∈ (S1)3|x− < h−1(x0) < x+ < x−}, and the action α1

of Γ on Σ given by

α1(γ)(x−, x0, x+) = (ρ1(γ)(x−), ρ0(γ)(x0), ρ1(γ)(x+)).

The quotient N is a smooth manifold homeomorphic to M : consider the map

H̃ : Σ3 → Σ defined by H̃(x−, x0, x+) = (h(x−), x0, h(x+)). It is a homeomorphism

satisfying H̃ ◦ α0 = α1 ◦ H̃ that is differentiable in restriction to LΓ × S1 × LΓ. It
induces a homeomorphism H : M → N .

The projection on N of the constant vector field (0, 1, 0) on Σ can be reparame-
trized into a smooth flow ψt. The homeomorphism H sends ϕt to a reparametriza-
tion of ψt and is a diffeomorphism from Ωϕ to Ωψ (recall that the nonwandering
set ΩΦ of the flow Φt is the set of points x such that there are sequences xn → x
and tn → ∞ satisfying Φtn(xn) → x). From this we deduce that Ωψ is a compact
hyperbolic set for ψt. If the image x ∈ N of (x−, x0, x+) ∈ Σ is in Ωψ, then the
stable (resp. unstable) manifold of x is the set of images of points (y−, y0, y+) such
that y+ = x+ (resp. y− = x−).

The classical result for solving a cohomological equation for hyperbolic flows is
Livšic’s Theorem. However, it only provides solutions on the hyperbolic set, and
we already have an invariant volume on Ωψ (because the flow ψt and the geodesic
flow ϕt are differentially conjugate on their nonwandering sets). The hyperbolicity
gives us an extension to W s(Ωψ)∪Wu(Ωψ), which consists of projections of points
(x−, x0, x+) ∈ Σ such that x− ∈ LΓ or x+ ∈ LΓ.

Lemma 6.3. There is a smooth volume form ω1 on N that is invariant under ψt

at points of W s(Ωψ) ∪Wu(Ωψ).

Proof. The differentiable conjugacy on the nonwandering set implies that there is
a smooth volume form ω0 on N that is preserved by the flow at points of the
nonwandering set. Hence, if ψt∗ω0 = e−A(t,x)ω0 and α(x) = ∂A

∂t (0, x), then α = 0
on Ωψ. We will now construct a smooth function σ on N such that

σ(ψt(x))− σ(x) =

∫ t

0

α(ψs(x))ds

for all x ∈ W s(Ωψ) ∪Wu(Ωψ), so that ω1 = eσω0 meets our requirements.
If x ∈ W s(z) with z ∈ Ωψ, and if we have found such a function σ, then

σ(ψt(x)) ≈ σ(ψt(z)) = 0 for t large enough, hence σ(x) = −
∫∞
0

α(ψt(x))dt. We
will use this formula as a definition of σ. If it is well defined, then it satisfies the
cohomological equation.

Let C > 0 be such that d(ψt(x), ψt(z)) ≤ Ce−t (locally C can be chosen inde-
pendently from x and z). Let k be a Lipschitz constant for α in a neighbourhood
U of Ωψ. For t such that ψt(x) ∈ U (which is locally uniform in x), we have

|α(ψt(x))| ≤ |α(ψt(z))|︸ ︷︷ ︸
=0

+k d(ψt(x), ψt(z))︸ ︷︷ ︸
≤Ce−t

.

This gives us uniform convergence; hence σ is well defined and continuous. By
applying the same reasoning with negative times, we define σ on Wu(Ωψ).

We now wish to see that it is differentiable (i.e., it is the restriction to W s(Ωψ)∪
Wu(Ωψ) of a differentiable function). Since the problem of differentiation is local,
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we can assume that the underlying manifold is R3 (so that tangent vectors at z and
at x can be identified). Let k′ be a Lipschitz constant for d2α in U . For t large
enough, we have

dαψt(x)(dψ
t
x(v)) = dαψt(z)(dψ

t
x(v))︸ ︷︷ ︸

=0

+

∫ 1

0

d2αψt(z)+s(ψt(x)−ψt(z))︸ ︷︷ ︸
≤k′Ce−t

(ψt(x)− ψt(z)︸ ︷︷ ︸
≤Ce−t

, dψt
x(v)︸ ︷︷ ︸

≤C′et

)ds;

hence

|dαψt(x)(dψ
t
x(v))| ≤ C ′′e−t

and σ is C1. By iterating this reasoning (to estimate dkα we have to use a Taylor
development at order 2k, so that we have k terms dominated by et and k+1 terms
dominated by e−t), we show that σ is C∞. �

7. Non-Fuchsian examples

7.1. Going back from N to C. Now that we have found an invariant volume
form on a larger set for the flow ψt, we need to translate it in terms of the action
on C.

Lemma 7.1. If there is a Cr volume form v on N preserved by ψt at points of
W s(Ωψ)∪Wu(Ωψ), then there is a Cr volume form ω2 on C preserved by ρ1(Γ) at
points of LΓ × S1 ∪ S1 × LΓ.

Proof. We have defined a smooth volume form ω1 = eσω0 that is invariant at points
of W s(Ωψ) ∪Wu(Ωψ). Let ω̃1 be its lift to Σ3 and write

ω̃1 = ω̃1(x−, x0, x+)dx− ∧ dx0 ∧ dx+.

If x− or x+ is in LΓ, then the image in N is in W s(Ωψ) ∪ Wu(Ωψ), and the
invariance under the flow ψt gives us ω̃1(x−, x0, x+) = ω̃1(x−, x

′
0, x+) for all x′

0

such that (x−, x
′
0, x+) ∈ Σ3.

Choose a smooth map i0 : C → S1 such that (x−, i0(x−, x+), x+) ∈ Σ3 for all
(x−, x+) ∈ C (such as a convex combination of x− and x+), and let ω2(x−, x+) =
ω̃1(x−, i0(x−, x+), x+) for (x−, x+) ∈ C. If x− or x+ is in LΓ and γ ∈ Γ, then the
invariance under ψt gives us:

ω2(ρ1(γ)(x−), ρ1(γ)(x+))ρ1(γ)
′(x−)ρ1(γ)

′(x+)

= ω̃1(ρ1(γ)(x−), i0(ρ1(γ)(x−), ρ1(γ)(x+)), ρ1(γ)(x+))ρ1(γ)
′(x−)ρ1(γ)

′(x+)

= ω̃1(ρ1(γ)(x−), ρ1(γ)(i0(x−, x+)), ρ1(γ)(x+))ρ1(γ)
′(x−)ρ1(γ)

′(x+)

= ω̃1(x−, i0(x−, x+), x+)

= ω2(x−, x+).

We have defined a smooth volume form ω2 on C that is ρ1(Γ)-invariant at points of
(LΓ × S1 ∪ S1 × LΓ) \Δ. �

7.2. Extension to vertical strips. The first step in extending ω2 to all of C is
to extend it to vertical strips delimited by elements of LΓ, so that we only need to
deal with invariance under one element of the group.
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Lemma 7.2. Let I be a connected component of S1 \ LΓ, and let γ ∈ Γ be a
generator of its stabilizer. There is a smooth volume form ω on I × S1 \Δ that is
invariant by γ and that is equal to ω2 on LΓ × S1 ∪ S1 × LΓ.

Proof. By Proposition 1.7, there is a smooth volume form ωγ on C that is invariant
under ρ1(γ).

Let a ∈ LΓ \ I. The interval [a , ρ1(γ)(a)[ is a fundamental domain for the
action of γ on S1 \ I; i.e., for every y ∈ S1 \ I there is a unique ny ∈ Z such that

ρ1(γ
ny )(y) ∈ [a , ρ1(γ)(a)[. We set ω = ω2 on I × [a , ρ1(γ)(a)[ and extend ω to

I × (S1 \ I) by using the equivariance formula:

ω(x, y)

ω2(ρ1(γny )(x), ρ1(γny )(y))
= ρ1(γ

ny )′(x)ρ1(γ
ny )′(y).

We have to show that ω is smooth. First, remark that it is continuous on I ×
[a , ρ1(γ)(a)[: if (xn, yn) → (a, y) with ρ1(γ)(xn) ∈ [a , ρ1(γ)(a)[. Using a ∈ LΓ, we
see that the volume ω2 is preserved at (a, y) and we get

ω(xn, yn) = ω2(ρ1(γ)(xn), ρ1(γ)(yn))ρ1(γ)
′(xn)ρ1(γ)

′(yn)

→ ω2(ρ1(γ)(a), ρ1(γ)(y))ρ1(γ)
′(a)ρ1(γ)

′(y)

= ω2(a, y) = ω(a, y).

This shows that ω is continuous on I × (S1 \ I). For the derivatives, we have

∂ω

∂x
(xn, yn) =

∂ω2

∂x
(ρ1(γ)(xn), ρ1(γ)(yn))ρ1(γ)

′(xn)
2ρ1(γ)

′(yn)

+ω2(ρ1(γ)(xn), ρ1(γ)(yn))ρ1(γ)
′′(xn)ρ1(γ)

′(yn)

→ ∂ω2

∂x
(ρ1(γ)(a), ρ1(γ)(y))ρ1(γ)

′(a)2ρ1(γ)
′(y)

+ω2(ρ1(γ)(a), ρ1(γ)(y))ρ1(γ)
′′(a)ρ1(γ)

′(y)

=
∂ω2

∂x
(a, y) =

∂ω

∂x
(a, y).

The last line comes from the fact that the derivatives of ω2 satisfy the associated
equivariance relations on LΓ × S

1 ∪ S
1 × LΓ. This is true because all points of LΓ

are accumulation points (it is a Cantor set). The same can be applied to all the
derivatives, which shows that ω is smooth on I × (S1 \ I).

If (xk, yk) → (x, y) ∈ C with y ∈ ∂I, then set nk = nyk
, as well as uk =

ρ1(γ
nk)(xk) and vk = ρ1(γ

nk)(yk). By definition, we have

ω(xk, yk) = ω2(uk, vk)ρ1(γ
nk)′(xk)ρ1(γ

nk)′(yk).

Since ωγ is invariant under ρ1(γ), we have

ρ1(γ
nk)′(xk)ρ1(γ

nk)′(yk) =
ωγ(xk, yk)

ωγ(uk, vk)
.

These two equalities give us

ω(xk, yk) =
ω2(uk, vk)

ωγ(uk, vk)
ωγ(xk, yk).

The continuity of ωγ gives us ωγ(xk, yk) → ωγ(x, y).
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Since yk → y ∈ ∂I, we have nk → ∞ and uk → u where u is the other extremal
point of I. By using the uniform continuity of ω2 and ωγ on I × [a , ρ1(γ)(a)], we
obtain

ω(xk, yk) ∼
ω2(u, vk)

ωγ(u, vk)
ωγ(x, y).

I

a

y

ρ1(γ)(a)
(uk, vk)

(xk, yk)

Iu

Figure 4. Defining ω on vertical strips

We now only have to deal with the restrictions of ω2 and ωγ to the axes {u} ×
S1∪S1×{y} (see Figure 4), where continuous volume forms, invariant under ρ1(γ),
are unique up to multiplication by a constant: there is λ > 0 such that ω2(s, t) =
λωγ(s, t) whenever s = u or t = y. We can finally conclude that

ω(xk, yk) → λωγ(x, y) = ω2(x, y) = ω(x, y).

We have shown that ω is continuous on (I × S
1 \ I) \ Δ. For the derivatives., we

will use the notation fx = ∂Logω
∂x and define fy, fxy and so on in the same way. We

also define fγ
x , f

γ
y , f

γ
xy, etc., the derivatives of Logωγ . The equivariance relation

for fx is

fx(x, y) = fx(ρ1(γ)(x), ρ1(γ)(y))ρ1(γ)
′(x) +

ρ1(γ)
′′(x)

ρ1(γ)′(x)
.

We keep the same notation uk, vk as above and find that

fx(xk, yk)− fγ
x (xk, yk) = ρ1(γ

nk)′(xk)(fx(uk, vk)− fγ
x (uk, vk)).

The Mean Value Theorem gives us u′
k, u

′′
k ∈ [u , uk] such that

fx(uk, vk)− fx(u, vk) = (uk − u)fxx(u
′
k, vk)

and

fγ
x (uk, vk)− fγ

x (u, vk) = (uk − u)fγ
xx(u

′′
k , vk).
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The forms ω and ωγ are proportional on the axis {u}× S1 \ {u}. This implies that
fx(u, vk) = fγ

x (u, vk) (the multiplicative constant disappears because we consider
the derivative of the logarithm). Finally, we obtain

fx(xk, yk)− fγ
x (xk, yk) = ρ1(γ

nk)′(xk)(u− uk)︸ ︷︷ ︸
bounded

(fxx(u
′
k, vk)− fγ

xx(u
′′
k, vk)︸ ︷︷ ︸

→0

).

Since fγ
x is continuous, we see that fx is also. The same technique (applying several

times the Mean Value Theorem to get rid of the term ρ1(γ
nk)′(xk) or ρ1(γ

nk)′(yk)
which explodes) shows that ω is smooth on (I × S1 \ I) \Δ.

Finally, we can extend ω to I × S1 \ Δ in a similar manner: we fix ω on a
fundamental domain [b , ρ1(γ)(b)[ × I \ Δ for some b ∈ I, making sure that the
derivatives on the boundary allow the extension on I × I \Δ to be smooth. �

7.3. From vertical strips to C. We can now extend ω to C. Getting an invariant
volume form is not complicated; however its regularity requires some work.

7.3.1. Continuity. Our proof of the regularity of ω on vertical strips relied on the
existence of a smooth invariant form by any element of Γ. To deal with the invari-
ance under the whole group, we will need a different method.

Proposition 7.3. There is a continuous invariant form ω on C that is invariant
under ρ1(Γ) and that is equal to ω2 on LΓ × S1 ∪ S1 × LΓ.

Proof. The action of Γ on the set of connected components of S1 \ LΓ has a finite
number of orbits (each orbit corresponds to a half cylinder in the surface H2/ρ0(Γ)).
Let I1, . . . , In be a choice of an interval of each orbit. Note that the stabilizer of Ii
is always nonempty (a generator of the stabilizer corresponds to a closed geodesic
bounding a half cylinder in the surface H2/ρ0(Γ)). By Lemma 7.2, there is a smooth
volume form ω on Ii×S

1 \Δ that is equal to ω2 in restriction to LΓ×S
1 ∪S

1×LΓ

and that is invariant under the stabilizer of Ii. If γ ∈ Γ, then we define ω on
ρ1(γ)(Ii)× S1 \Δ to be ρ1(γ)∗ω. This defines a volume form ω on C that is ρ1(Γ)-
invariant, smooth on all vertical strips I×S1 \Δ where I is a connected component
of S1 \ LΓ, and equal to ω2 on LΓ × S

1 ∪ S
1 ∪ LΓ.

To show that ω is continuous, assume that (xk, yk) → (x, y) with x ∈ LΓ (if
x /∈ LΓ, then there is a connected component I of S1\LΓ such that xk ∈ I for k large
enough, which gives us ω(xk, yk) → ω(x, y), and the same for the derivatives of ω).
If xk ∈ LΓ for all k, then ω(xk, yk) = ω2(xk, yk) and we already have the continuity;
hence we can assume that xk /∈ LΓ for all k. Up to considering a finite number of
subsequences, we can assume that there is γk ∈ Γ such that uk = ρ1(γk)(xk) ∈ I1.
By composing γk with an element of the stabilizer of I1, we can take uk in a compact
intervalK ⊂ I (take a fundamental domain K = [a , ρ1(δ)(a)] where δ is a generator
of Stab(I1)).

Let vk = ρ1(γk)(yk). The definition of ω is

ω(xk, yk) = ω(uk, vk)ρ1(γk)
′(xk)ρ1(γk)

′(yk).

We have already seen that ω is continuous on I1 × S1 \ Δ and uk ∈ I1. The
problem in finding the limit of ω(xk, yk) is the control of the Jacobian product
ρ1(γk)

′(xk)ρ1(γk)
′(yk). However, we know that ω is continuous on LΓ×S1∪S1×LΓ.

We will use this fact to get rid of the derivatives: if x′
k and y′k are sequences in
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LΓ such that x′
k �= y′k, x

′
k �= yk, and xk �= y′k, then we set u′

k = ρ1(γk)(x
′
k) and

v′k = ρ1(γk)(y
′
k). The equivariance equation for ω gives us

(1)
ω(xk, yk)

ω(xk, y′k)

ω(x′
k, y

′
k)

ω(x′
k, yk)

=
ω(uk, vk)

ω(uk, v′k)

ω(u′
k, v

′
k)

ω(u′
k, vk)

.

We are now looking for suitable points x′
k and y′k. Let I1 = ]a , b[, and assume

that vk does not admit a as a limit point (up to considering two subsequences and
replacing a by b in the following discussion, we can always assume that it is the
case), i.e., that vk lies in a compact interval J ⊂ S1 \ {a}. Let u′

k = a and let

x′
k = ρ1(γ

−1
k )(a) → x. If yk ∈ LΓ, then we choose y′k = yk. If yk /∈ LΓ, then we set

y′k to be an extremal point of the connected component of S1 \ LΓ containing yk,
in a way such that v′k = ρ1(γk)(y

′
k) ∈ J .

We now have x′
k → x and xk → x, which gives

ω(xk, yk)

ω(xk, y′k)

ω(x′
k, y

′
k)

ω(x′
k, yk)

∼ ω(xk, yk)

ω(x, y′k)

ω(x, y′k)

ω(x, y)
=

ω(xk, yk)

ω(x, y)
.

We wish to show that this quantity converges to 1 as k → ∞. The compact set
E = {b} × J ∪K × S1 \ I1 of C contains the sequences (uk, vk), (uk, v

′
k), (u

′
k, vk),

and (u′
k, v

′
k). Consequently, the ratio (1) lies in a compact set of ]0 ,+∞[, and it is

enough to see that its only possible limit is 1. If there is a subsequence such that
the ratio (1) converges to λ ∈ ]0 ,+∞[, then up to another subsequence, we can
assume that the sequence γk has the convergence property: there are N,S ∈ S1

such that ρ1(γk)(z) → N for all z �= S. Since ρ1(γ
−1
k )(z) → x for all z ∈ I1, we see

that S in necessarily equal to x; hence the sequences vk and v′k converge to N ∈ S1.
We get

ω(uk, vk)

ω(uk, v′k)

ω(u′
k, v

′
k)

ω(u′
k, vk)

→ ω(u,N)

ω(u,N)

ω(a,N)

ω(a,N)
= 1.

This shows that λ = 1; therefore ω(xk, yk) → ω(x, y), and ω is continuous. �

7.3.2. Differentiability. For higher regularity of ω, we will keep the same notation

as in the proof of Proposition 7.3 to show that we also have ∂n+mω
∂xn∂ym (xk, yk) →

∂n+mω2

∂xn∂ym (x, y). By considering the restrictions of ω to horizontal and vertical circles,

this will show that the partial derivatives of ω are well defined and that they are
continuous, which implies the smoothness of ω. To simplify the calculations, we
will use the notation fx = ∂Logω

∂x and define fy, fxy and so on in the same way. We
will make use repeatedly of an intermediate result.

Lemma 7.4. Let g, h : C → R be functions such that:

• The restrictions of g to vertical strips I×S1\Δ → R where I is a connected
component of S1 \ LΓ are C1.

• The restriction of g, h and the derivatives of g to LΓ × S1 ∪ S1 × LΓ are
continuous.

If h is a function such that h(xk, yk) = g(uk, vk)ρ1(γk)
′(xk) + hk(xk) for some

function hk : S1 → R and for any choice of the sequences uk, vk defined above, then
h is continuous.

Proof. The Mean Value Theorem gives us wk ∈ [vk , v
′
k] such that

h(xk, yk)− h(xk, y
′
k) = ρ1(γk)

′(xk)(vk − v′k)
∂g

∂y
(uk, wk).
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A change of variables s = ρ1(γk)(t) allows us to compute vk − v′k by setting ytk =
(1− t)y′k + tyk:

vk − v′k =

∫ vk

v′
k

ds =

∫ yk

y′
k

ρ1(γk)
′(t)dt = (yk − y′k)

∫ 1

0

ρ1(γk)
′(ytk)dt.

Let vtk = ρ1(γk)(y
t
k). Then

h(xk, yk)− h(xk, y
′
k) = ρ1(γk)

′(xk)(yk − y′k)

(∫ 1

0

ρ1(γk)
′(ytk)dt

)
∂g

∂y
(uk, wk)

= (yk − y′k)
∂g

∂y
(uk, wk)

∫ 1

0

ω(xk, y
t
k)

ω(uk, vtk)
dt.

This shows that the sequence h(xk, yk) is bounded, so all that we have to show
is that it only has one limit point. Up to a subsequence, we can assume that
y′k → y′ ∈ LΓ and that uk → u:

h(xk, yk)− h(xk, y
′
k) → (y − y′)

∂g

∂y
(u,N)

∫ 1

0

ω(x, yt)

ω(u,N)
dt.

We now only have to show that the limit does not depend on y′ and u. To see
this, we first notice that since the expression is independent on the choice of uk and
vk (which are defined up to composition with an element of Stab(I1)), and since

(y − y′)
∫ 1

0
ω(x, yt)dt �= 0, the function 1

ω
∂g
∂y is invariant under ρ1(Γ). Since it is

continuous on LΓ × S1 ∪ S1 × LΓ, it is constant on this set, and N ∈ LΓ. This
shows that the limit only depends on x, y, and y′, hence is the same for constant
sequences, and it is h(x, y)−h(x, y′). Since h(xk, y

′
k) → h(x, y′) (because y′k ∈ LΓ),

h is continuous. �

We achieve the proof of Theorem 1.11 by showing that ω is differentiable.

Proposition 7.5. ω is C2.

Proof. If γ ∈ Γ and (x, y) ∈ C, then the derivative of the equivariance relation
ω(ρ1(γ)(x), ρ1(γ)(y))ρ1(γ)

′(x)ρ1(γ)
′(y) = ω(x, y) with respect to x is

∂ω

∂x
(x, y) =

∂ω

∂x
(ρ1(γ)(x), ρ1(γ)(y))ρ1(γ)

′(x)2ρ1(γ)
′(y)

+ω(ρ1(γ)(x), ρ1(γ)(y))ρ1(γ)
′′(x)ρ1(γ)

′(y).

Applied to the sequence (xk, yk), we get

(2) fx(xk, yk) = fx(uk, vk)ρ1(γk)
′(xk) +

ρ1(γk)
′′(xk)

ρ1(γk)′(xk)
.

Lemma 7.4 shows that fx(xk, yk) converges to fx(x, y). For fy, we have

(3) fy(xk, yk) = fy(uk, vk)ρ1(γk)
′(yk) +

ρ1(γk)
′′(yk)

ρ1(γk)′(yk)
.

Just as in Lemma 7.4, we see that fy(xk, yk)−fy(x
′
k, yk) → 0 (because xk−x′

k → 0),
and we now know that ω is C1. Derivating once more with respect to y, we get

fyy(xk, yk)− fyy(x
′
k, yk) = ρ1(γk)

′(yk)
2(fyy(uk, vk)− fyy(uk, v

′
k))

+3(fy(xk, yk)− fy(x
′
k, yk))

ρ1(γk)
′′(yk)

ρ1(γk)′(yk)
.
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Since ρ1(γk)
′(yk) → 0 (if this were not the case, then ρ1(γk) would be equicon-

tinuous, which is impossible because ρ1(Γ) is discrete in Homeo(S1)), we see that
the first term tends to 0. The equivariance formula (3) for fy shows that the

ratio ρ1(γk)
′′(yk)

ρ1(γk)′(yk)
has a limit as k → ∞, hence is bounded. This shows that

fyy(xk, yk)− fyy(x
′
k, yk) → 0, i.e., that fyy is continuous.

For the crossed derivative fxy, we use the derivative with respect to y of (2):

fxy(xk, yk) = fxy(uk, vk)ρ1(γk)
′(xk)ρ1(γk)

′(yk)

= fxy(uk, vk)
ω(xk, yk)

ω(uk, vk)
.

Since ω is continuous, we have

fxy(xk, yk) → fxy(u,N)
ω(x, y)

ω(u,N)
.

This limit gives the impression that it depends on u; however the curvature function
1
ω fxy is ρ1(Γ)-invariant and continuous on LΓ × S1 ∪ S1 × LΓ, hence constant on
this set (the proof of Lemma 4.1 can be applied), and the limit does not depend on
u (because N ∈ LΓ). This shows that fxy is continuous. To get the convergence
for fxx, we first notice that it is sufficient to show that fxxy converges:

fxx(xk, yk) = fxx(xk, y
′
k) +

∫ yk

y′
k

fxxy(xk, t)dt

→ fxx(x, y
′) +

∫ y

y′
fxxy(x, t)dt = fxx(x, y).

The reason why we consider fxxy rather than fxx is to get control on the term
ρ1(γk)

′(xk)
2 by multiplying it with ρ1(γk)

′(yk). The equivariance formula is

fxxy(xk, yk) = fxxy(uk, vk)ρ1(γk)
′(xk)

2ρ1(γk)
′(yk)

+fxy(uk, vk)ρ1(γk)
′′(xk)ρ1(γk)

′(yk).

If we consider g = 1
ωfxxy and h = 1

ω fxy, we can simplify:

g(xk, yk) = g(uk, vk)ρ1(γk)
′(xk) + h(uk, vk)

ρ1(γk)
′′(xk)

ρ1(γk)′(xk)
.

The equivariance relation (2) for fx allows us to get rid of the term ρ1(γk)
′′(xk)

ρ1(γk)′(xk)
:

g(xk, yk) = ρ1(γk)
′(xk) (g(uk, vk)− fx(uk, vk)h(uk, vk)) + fx(xk, yk)h(uk, vk).

We now set k = g−fxh so that we have (by using the fact that h is ρ1(Γ)-invariant):

g(xk, yk) = k(uk, vk)ρ1(γk)
′(xk) + fx(xk, yk)h(xk, yk).

Lemma 7.4 gives the convergence of the first term, and we have already shown that
fx and h = 1

ωfxy are continuous. This shows that ω is C2. �

To get a smooth ω, first show that we can get ∂n+m

∂xn∂ymLogω when m > n, then

integrate with respect to y to get all derivatives.
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7.4. Constructing an example. In order to make Theorem 1.11 relevant, we will
see that such examples of groups exist. Start with a Schottky representation ρ0 :
F2 = 〈a, b〉 → PSL(2,R) generated by two hyperbolic elements ρ0(a) = γ1, ρ0(b) =
γ2. Consider two circle diffeomorphisms ϕ1, ϕ2 that are the identity on the limit
set Lρ0(F2), and set γ̃i = ϕ−1

i γiϕi. We define the representation ρ1 : F2 → Diff(S1)
by ρ1(a) = γ̃1 and ρ1(b) = γ̃2.

Lemma 7.6. ρ1 is differentially Fuchsian if and only if ϕ1 = ϕ2.

Proof. If ϕ1 = ϕ2, then ϕ1 is a differentiable conjugacy between ρ0 and ρ1, so ρ1
is differentially Fuchsian.

Assume that ρ1 is differentially Fuchsian. Let ϕ ∈ Diff(S1) be such that
ϕ−1ρ1(F2)ϕ ⊂ PSL(2,R). Up to composing ϕ with an element of PSL(2,R), we
can assume that ϕ−1ρ1(a)ϕ = ρ0(a). This implies that ϕ−1

1 ◦ ϕ commutes with
γ1, hence that there is t ∈ R such that ϕ−1

1 ◦ ϕ = γt
1 (where γt

1 denotes the one
parameter subgroup of PSL(2,R) generated by γ1; see subsection 3.3 for a proof).
Similarly, there is s ∈ R such that ϕ−1

2 ◦ ϕ = γs
2 (an element of the one parameter

group generated by γ2).
The equality ϕ2 ◦ γs

2 = ϕ1 ◦ γt
1 applied to the fixed points of γ1 and γ2 shows

that s = t = 0; hence ϕ1 = ϕ2. �

Proposition 7.7. There is h∈Homeo(S1) such that h/Lρ0(F2)
=Id and ρ1=hρ0h

−1.

Proof. Let S1 \Lρ0(F2) =
⋃

i∈N
Ii be its decomposition into connected components,

and let A ⊂ N be a fundamental domain for the action of F2 on the set of connected
components of S1 \ Lρ0(F2). Given i ∈ A, set h/Ii any homeomorphism that fixes
the endpoints of Ii such that h/Ii ◦ ρ0(δ) = ρ1(δ) ◦ h/Ii for δ in the stabilizer of Ii.

For γ ∈ F2, set h = ρ1(γ) ◦ h/Ii ◦ ρ0(γ−1) on ρ0(γ)(Ii) = ρ1(γ)(Ii). This defines an

element h ∈ Homeo(S1) that fixes all points of Lρ0(F2) such that h−1ρ1h = ρ0. �

Note that we proved here that ρ1(F2) remains a free group, which is a general
fact for a C1 perturbation of a Schottky group (see [Sul85]).

8. Spectrally Möbius-like deformations

In the proof of Theorem 1.11, we used the fact that the conjugacy is the identity
on the limit set for two purposes: in order to find an invariant volume form on
LΓ × S1 ∪ S1 ×LΓ \Δ and in order to show that Ωψ is a hyperbolic set. In the case
of spectrally Möbius-like actions, we only have an invariant volume form on pairs
of fixed points of elements of Γ.

In the context of the flow ψ, this means that we need to find an invariant volume
form on Ωψ, starting with some data on periodic orbits. This is exactly the context
of Livšic’s Theorem. However, we still need hyperbolicity for the flow ψ, which is
why we only prove Theorem 1.15 for small perturbations of Fuchsian groups.

Given a representation ρ0 : Γ → Diff(S1) of a finitely generated group Γ, we
say that ρ : Γ → Diff(S1) is C1-close to ρ0 if the images under ρ of a system of
generators of Γ are close to the images under ρ0 in the C1 topology.

Theorem 8.1. 1.15 Let ρ0 : Fn → PSL(2,R) be a convex cocompact representation.
If ρ1 : Fn → Diff(S1) is sufficiently C1-close to ρ0, and if ρ1 is spectrally Möbius-
like, then ρ1 is area-preserving.
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Proof. The central argument is the fact that the flow ψ associated to ρ1 is C1-close
to the geodesic flow ϕ. Since hyperbolicity is stable under C1 perturbations, it will
imply that Ωψ is a hyperbolic set for ψ.

In the definitions of these flows, they seem to be defined on different manifolds.
We will start by giving a slightly different construction so that they live on the
same manifold.

Consider a path ρu : Fn → Diff(S1) for u ∈ [0, 1] defined as convex combinations
of ρ0 and ρ1 (we chose free groups so that such a path can be easily defined). Recall
the definition of Σ3:

Σ3 = {(x−, x0, x+) ∈ (S1)3|x− < x0 < x+ < x−}.
We can define an action of Γ on Σ3 × [0 , 1] by

γ.(x−, x0, x+, u) = (ρu(γ)(x−), ρu(γ)(x0), ρu(γ)(x+), u).

This action preserves the slices Σ3 × {u}, which gives a map on the quotient π :
Σ3 × [0 , 1]/Γ → [0 , 1] which is a submersion. Each fiber π−1({u}) is diffeomorphic
to the manifold Nu on which the flow ψt

u associated with the representation ρu is
defined.

If U ⊂ Σ3 is a relatively compact neighbourhood of (Lρ0(Γ) × S1 × Lρ0(Γ)) ∩Σ3,
then the restriction of π to U × [0 , 1] is a proper submersion onto [0 , 1], hence a
trivial fibration; i.e., there is a diffeomorphism Φ : U × [0 , 1]/Γ → N × [0 , 1] such
that projection on the second factor is equal to π. This shows that the flows ψu

(restricted to a neighbourhood of the nonwandering set) can be considered as flows
on the manifold N , which vary continuously with u in the C1 topology. Therefore,
if ρ1 is sufficiently close to ρ0, then Ωψ1

is a hyperbolic set for ψ1.
We will now use the notation ψ for the flow associated to ρ1, and α1 for the

diagonal action of Γ on Σ3 (note that it is not exactly the same flow as defined in
the proof of Theorem 1.11, where we kept the action ρ0 on the middle factor of Σ3

so that the conjugacy with the geodesic flow would be differentiable along all the
nonwandering set).

Given a volume ω0 on N , we set ψt∗ω0 = e−A(t,x)ω0. To find a volume ω1 =
eσω0 that is invariant under ψ at points of Ωψ, we have to solve the equation
σ(ψt(x))−σ(x) = A(t, x) for all x ∈ Ωψ. A necessary condition on the cocycle A is
that A(T, x) = 0 whenever ψT (x) = x. Livšic’s Theorem states that this condition
is sufficient.

Let us show that A(T, x) = 0 for periodic orbits ψT (x) = x. Since A(T, x) =
−Logdet(DψT

x ), we have to show that the Jacobian det(DψT
x ) is equal to 1.

To compute this Jacobian, we consider the lift ψ̃t to Σ3, and p : Σ3 → Σ3/Γ the

covering map. Since the flow ψ̃t is a reparametrization of the vector field (0, 1, 0),
it can be written

ψ̃t(x−, x0, x+) = (x−, f(t, x−, x0, x+), x+).

If ψT (x) = x, then a lift x̃ = (x−, x0, x+) ∈ p−1({x}) satisfies ψ̃T (x̃) = α1(γ)(x̃)

for some γ ∈ Γ. For all y ∈ S1 such that (x−, y, x+) ∈ Σ3, we get ψ̃T (x−, y, x+) =

(x−, ρ1(γ)(y), x+), which shows that the matrix of Dψ̃T
x̃ has the form⎛

⎝ 1 ∗ 0
0 ρ1(γ)

′(x0) 0
0 ∗ 1

⎞
⎠ .
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Consequently, its determinant is ρ1(γ)
′(x0). The derivative DψT

x is similar to

(Dα1(γ)x̃)
−1Dψ̃T

x̃ . The matrix of Dα1(γ)x̃ is the diagonal matrix⎛
⎝ ρ1(γ)

′(x−) 0 0
0 ρ1(γ)

′(x0) 0
0 0 ρ1(γ)

′(x+)

⎞
⎠ .

Since the action ρ1 is spectrally Möbius-like and x− and x+ are fixed points of
ρ1(γ), we have ρ1(γ)

′(x−)ρ1(γ)
′(x+) = 1; hence det(Dα1(γ)x̃) = ρ1(γ)

′(x0), and
det(DψT

x ) = 1.
In order to apply Livšic’s Theorem, one has to be precise on the exact setting,

as well as on the required regularity. The first result, proved by Livšic in [Liv71],
concerns transitive Anosov flows and deals with Hölder solutions. Smooth solutions
for transitive Anosov flows are given in [LMM86]. Concerning compact topologi-
cally transitive hyperbolic sets, the existence of a Hölder-continuous and even C1

solutions can be found in [KH95] (Theorems 19.2.4 and 19.2.5). The main difficulty
appears while studying crossed derivatives for C2 regularity. For smoothness out-
side the Anosov setting (i.e., when the hyperbolic set is not the whole manifold),
the only result concerns diffeomorphisms of surfaces in [NT07]. However, flows on
3-manifolds are analogous to diffeomorphisms on surfaces.

Lemma 3.3 of [NT07] states that there is a continuous solution σ that is differ-
entiable in restriction to stable and unstable leaves ([NT07] deals with diffeomor-
phisms of surfaces, but the same proof, up to replacing discrete sums by integrals,
works for flows on 3-manifolds). Going back to the cylinder C, we get a function
that is (uniformly) differentiable in restriction to leaves {x} × S

1 and S
1 × {y}

for x, y ∈ Lρ1(Γ). Theorem 1.5 of [NT07] implies that this solution is smooth on

S1 × Lρ1(Γ) ∪ Lρ1(Γ) × S1 in the Whitney sense (i.e., that it is the restriction of a
smooth function on C).

From there, Lemma 7.2, Proposition 7.3, and Proposition 7.5 show that ρ1 is
area-preserving. �
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Amer. Math. Soc. 351 (1999), no. 12, 4823–4835, DOI 10.1090/S0002-9947-99-02188-1.
MR1473446
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