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AVERAGE ZSIGMONDY SETS, DYNAMICAL GALOIS GROUPS,

AND THE KODAIRA-SPENCER MAP

WADE HINDES

Abstract. Let K be a global function field and let φ(x) ∈ K[x]. For all
wandering basepoints b ∈ K, we show that there is a bound on the size of
the elements of the dynamical Zsigmondy set Z(φ, b) that depends only on
φ, the poles of the b, and K. Moreover, when we order b ∈ OK,S by height,
we show that Z(φ, b) is empty on average. As an application, we prove that

the inverse limit of the Galois groups of iterates of φ(x) = xd + f is a finite
index subgroup of an iterated wreath product of cyclic groups. In particular,
since our methods translate to rational function fields in characteristic zero,
we establish the inverse Galois problem for these groups via specialization.

1. Introduction

Given a rational map φ(x) ∈ K(x) over a global field K and a basepoint
b ∈ P1(K), we study the prime factors of φn(b) as we iterate φ. Specifically,
we are interested in knowing whether or not φn(b) has a primitive prime factor,
that is, whether or not there is a prime dividing φn(b) that does not divide any
lower order iterates. This problem is analogous to a classical problem of Bang [2],
Zsigmondy [49], and Schinzel [33] on the prime factorization of integer sequences
defined dynamically on the multiplicative group.

Our motivation for studying primitive prime divisors comes from the Galois
theory of iterates. For instance, in the family φf (x) = xd + f , the existence of d-
power free primitive prime divisors in the orbit of zero implies a dynamical version
of Serre’s open image theorem ([8, Theorem 25], [17, Theorem 3.3] and [35]), and
we prove this over global function fields.

To begin, we fix some notation. Let K be a global field and let VK be a complete
set of valuations on K (corresponding to prime ideals). We say that v ∈ VK is a
primitive prime divisor of φn(b) if

v(φn(b)) > 0 and v(φm(b)) = 0 for all 1 ≤ m ≤ n− 1

such that φm(b) �= 0. Likewise, we define the Zsigmondy set of φ and b to be

Z(φ, b) := {n | φn(b) has no primitive prime divisors}.
Over number fields, there are many results regarding the finiteness and size of

Z(φ, b) in special families; see for example [7, 14, 15, 24, 41]. However, it remains
difficult to bound Z(φ, b) in general. Nevertheless, over function fields K/Fq(t), we
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show that there is a bound on #Z(φ, b) depending only on φ, the poles of b, and
on K; see Theorem 1.1.

The main technique we use to prove this result is to associate to every element
of Z(φ, b) a rational point on some curve, and then use height bounds for points
on curves to bound the size of the corresponding element of the Zsigmondy set. As
one may expect, there are certain complications that arise in characteristic p > 0 if
the associated curve is defined over the field of constants. Therefore, we need the
following geometric condition:

Definition 1. Let K/Fq(t) and � ≥ 2 be an integer coprime to the characteristic
of K. Then we say that φ is dynamically �-power non-isotrivial if there exists an
integer m ≥ 1 such that

(1) C�,m(φ) : Y � = φm(X) = (φ ◦ φ ◦ · · · ◦ φ
m

)(X)

is a non-isotrivial curve (meaning that the associated Kodaira-Spencer map is non-
zero on some open set [28]) of genus at least 2. As a motivating example, we
show that φf (x) = xd + f is dynamically 2-power and d-power non-isotrivial over
K = Fp(t); see Theorem 1.5. Moreover, we show that most quadratic polynomials
are dynamically 2-power non-isotrivial in Corollary 1.2.

In particular, if S ⊆ VK is any finite subset, OK,S is the ring of S-integers of K,
and φ is dynamically �-power non-isotrivial for some � ≥ 2, then we show that

(2) Z(φ, S) :=
{
n |n ∈ Z(φ, b) for some b ∈ OK,S , ĥφ(b) > 0

}
is finite; in particular, #Z(φ, b) is uniformly bounded over all b ∈ OK,S . Moreover,
we prove an analogous result when K = Q or K is an imaginary quadratic field,
assuming the Vojta conjecture.

On the other hand, one expects that Z(φ, b) is empty if we choose the basepoint
b ∈ K “at random”. A reasonable interpretation of this statement can be formu-
lated in terms of averages. To wit, for all B ≥ 0, let OK,S(B) be the set of points
of OK,S of height at most B, a finite set by the Northcott property [42, Theorem
3.7]. Then we study the average

(3) Avg(Z(φ), S) := lim sup
B→∞

∑
b∈OK,S(B) #Z(φ, b)

#OK,S(B)

as we vary over all b ∈ OK,S . In particular, we show that Avg(Z(φ), S) = 0 for all
S; in other words, the naive heuristic is correct: one expects to see primitive prime
divisors at every stage of iteration. Both the uniform bound and average-result
are summarized below (in what follows, Per(φ) and PrePer(φ) denote the set of
periodic and preperiodic points of φ, respectively):

Theorem 1.1. Let φ(x) ∈ K[x] be such that deg(φ) ≥ 2 and 0 �∈ Per(φ).

(1) If K/Fq(t) and φ is dynamically �-power non-isotrivial for some � ≥ 2, then

Z(φ, S) is finite and Avg(Z(φ), S) = 0.

(2) When K = Q or K is a quadratic imaginary field, we have the following
cases.



ZSIGMONDY SETS, GALOIS GROUPS, AND THE KODAIRA-SPENCER MAP 6393

(a) If 0 ∈ PrePer(φ), then Z(φ, S) is finite and Avg(Z(φ), S) = 0.

(b) If 0 �∈ PrePer(φ) and the Vojta conjecture [47, Conj. 25.1] holds, then
Z(φ, S) is finite and Avg(Z(φ), S) = 0.

In other words, there is a bound on the elements of Z(φ, b) depending only on φ,
the poles of b, and K. Moreover, if we order OK,S by height, then Z(φ, b) is empty
on average.

For quadratic polynomials φ(x) = (x − γ)2 + c ∈ K[x], the curve C2,m(φ) for
m ≥ 2 maps to the elliptic curve

(4) Eφ : Y 2 = (X − c) · φ(X)

via (X,Y ) →
(
φm−1(X), Y · (φm−2(X) − γ)

)
. In particular, if the j-invariant

[39, III.1 Prop. 1.4] of Eφ is non-constant, then it follows from [11, Proposition 3.3]
that C2,m(φ) is non-isotrivial for all m ≥ 2; see Remark 2.10 below. Therefore, we
have an explicit form of Theorem 1.1 in the quadratic case:

Corollary 1.2. Let K/Fq(t) be a finite extension of odd characteristic. For all
monic, quadratic polynomials φ(x) ∈ K[x], write φ(x) = (x− γ)2 + c by completing
the square. If φ(γ) · φ2(γ) �= 0 and the quantity( 27

1728

)
· j(Eφ) =

− γ6 +6 γ5 c− 15 γ4 c2 + 9 γ4 c+ 20 γ3 c3 − 36 γ3 c2 + · · ·+ 27c3

γ4 c− 4 γ3 c2 + 6 γ2 c3 + 2 γ2 c2 − 4 γ c4 − 4 γ c3 + c5 + 2c4 + c3

is non-constant, then φ is dynamically 2-power non-isotrivial. Hence, Z(φ, S) is
finite and Avg(Z(φ), S) = 0 for all S.

By analogy with the function field case, we conjecture that Theorem 1.1 holds
over all number fields without assuming the Vojta conjecture or that 0 is preperi-
odic.

Conjecture 1.3. Let K/Q and φ(x) ∈ K[x] be a polynomial of degree d ≥ 2. If
φ(x) �= c · xd, then Z(φ, S) is finite and Avg(Z(φ), S) = 0 for all finite subsets
S ⊆ VK .

As for the key condition over function fields, we expect that most rational func-
tions φ ∈ K(x) are dynamically �-power non-isotrivial for some � ≥ 2. In fact, it is
likely that one can choose many such exponents.

Conjecture 1.4. Suppose that φ(x) ∈ K[x]KFp[x] satisfies the following conditions:

(1) deg(φ) ≥ 2,

(2) gcd(deg(φ), p) = 1,

(3) φ(x) �= c · xd for all c ∈ Fp .

Then there exists � ≥ 2 and m ≥ 1, such that gcd(�, p) = 1 and C�,m(φ) : Y � =
φm(X) is a non-isotrivial curve of genus at least 2.

As an application of Theorem 1.1, we study dynamical Galois groups. For n ≥ 1,
let Kn(φ) be the field obtained by adjoining all solutions of φn(x) = 0 to K.
Generically, the extension Kn(φ)/K is Galois, and we let GK,n(φ) := GalK(φn) be
the Galois group of Kn(φ)/K. Since Kn−1(φ) ⊆ Kn(φ) for all n ≥ 1 (under some
mild separability assumptions), we may define

(5) GK(φ) = lim
←−

GK,n(φ)
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with respect to the restriction maps. Dynamical analogs on P1 of the Galois repre-
sentations attached to abelian varieties [35] (where one instead considers iterated
preimages of multiplication maps), the groups GK(φ) have obtained much attention
in recent years; for instance, see [3, 12, 16, 29, 30, 45], among other places.

Of course, a key difference in this setting is the lack of group structure on projec-
tive space, and as such GK(φ) may often only be viewed as a subgroup of a wreath
product (or the automorphism group of a tree) and not inside a group of matrices.
Explicitly, let T (d) denote the infinite d-ary rooted tree. If we write φn = fn/gn for
some fn, gn ∈ K[x] such that disc(fn) �= 0 for all n ≥ 1, then we may identify T (d)
with the set of iterated preimages of zero (under φ) in K with the edge relation
given by evaluation; see [3] for more details. In particular, GK(φ) ≤ Aut(T (d)),
since Galois commutes with evaluation.

As in the case of abelian varieties, one expects that GK(φ) is a large subgroup
of Aut(T (d)). However, given the unruly nature of Aut(T (d)) and its subgroups,
we focus our attention on polynomials of a special form. To do this, fix a faithful
permutation representation of the cyclic group Cd ≤ Sd and let W (d) be the infinite
iterated wreath product of Cd acting on T (d); see [27] or [20, Defs. 2.3 and 2.4].
In particular, if μd is the group of d-th roots of unity in K and φf (x) = xd + f
for some f ∈ K, then we have the refinement GK(μd)(φf ) ≤ W (d) ≤ Aut(T (d));
see [20, Lemma 2.5]. Moreover, it follows from Theorem 1.1 and some calculations
involving the Kodaira-Spencer map of Cm,�(φ), that GK(μd)(φf ) ≤ W (d) is a finite
index subgroup:

Theorem 1.5. Let K = Fp(t), let f ∈ K and let let d ≥ 2 be coprime to p. If
f �∈ Kp and φ(x) = xd + f , then φ is dynamically d-power non-isotrivial and:

(1) Z(φ, S) is finite and Avg(Z(φ), S) = 0 for all finite subsets S ⊆ VK .

(2) If d is an odd prime, d �≡ 1 (mod p), f ∈ OK and f �∈ K(μd)
d
, then

GK(μd)(φ) ≤ W (d) is a finite index subgroup.

In fact, it follows from Theorem 1.5 that GK(μd)(φf ) ≤ W (d) is a finite index
subgroup for all non-constant f ∈ Fp(t) and d �≡ 1 (mod p); see Remark 3.2
below. In particular, the number of irreducible factors of φn over Fp(t) is bounded
independently of n (a phenomenon called eventual stability [16, §5]), and we recover
a stronger version of [8, Corollary 7]. For applications of eventual stability to the
study of integral points in reverse orbits, see [18, §3] and [43, Theorem 2.6]. As for
characteristic zero function fields K/k(t), a finite index statement for

GK(μd)(x
d + f) ≤ W (d)

follows from [7] and [8, Theorem 25]. However, we can improve upon this result,
making the index bounds explicit and uniform when K = k(t) is a rational function
field.

Theorem 1.6. Let K = k(t) be a rational function field of characteristic zero, let
d be an odd prime, and let φ(x) = xd+ f for some non-constant f ∈ k[t]. Then the
following statements hold:

(1) If f /∈ K(μd)
d, then we have the index bound

logd [W (d) : GK(μd)] ≤
d10 − 1

d− 1
+ 10.
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(2) If GalK(μd)(φ
10) ∼= [Cd]

10, then GK(μd)(φ)
∼= W (d).

(3) If d ≥ 367 and GalK(μd)(φ
5) ∼= [Cd]

5, then GK(μd)(φ)
∼= W (d).

Moreover, if φ(x) = xd + t, then GK(μd)(φ)
∼= W (d) for all d ≥ 2 (not necessarily

prime). In particular, if k/Q is a number field and φc(x) = xd + c for some c ∈ k,
then there are infinitely many values of c satisfying Galk(μd)(φ

n
c )

∼= [Cd]
n.

Remark 1.7. In particular, Theorem 1.6 establishes the inverse Galois problem for
iterated wreath products of cyclic groups.

2. Primitive prime divisors and averages

In this section, we make the following conventions:

• K is a number field or a finite extension K/Fq(t).
• If K is a function field, then k is its field of constants.
• p is a finite prime of K.
• kp is the residue field of p.

• If K is a number field, then Np :=
log#kp

[K:Q] .

• If K is a function field, then Np := [kp : k].
• If K is a function field, then p0 is a fixed prime of K.

We normalize Np in the number field case, since it streamlines our proofs. Moreover,
given a finite set of primes S ⊆ VK , we let OK := {a ∈ K : v(a) ≥ 0, v ∈ VK}
be the ring of integers of K and OK,S := {a ∈ K : v(a) ≥ 0, v /∈ S} be the
ring of S-integers. Similarly, when K is a function field, we fix a prime p0 and set
OK :=

{
α ∈ K : vp(α) ≥ 0, p �= p0

}
and let OK,S :=

{
α ∈ K : vp(α) ≥ 0, p /∈ S

}
for all S containing p0. Moreover, we let O∗

K and O∗
S,K be the corresponding unit

groups.
We now define the relevant global Weil-height functions; see [42, §3.1] and [44,

Theorem 1.4.11] for more details. If K is a function field, then we define the height
of α ∈ K to be

(6) h(α) = −
∑
p∈VK

min(vp(α), 0) ·Np =
∑
p∈VK

max(vp(α), 0) ·Np .

On the other hand, if K is a number field, the height of α ∈ K is

(7) h(α) = −
∑
p∈VK

min(vp(α), 0) ·Np +
1

[K : Q]

∑
σ:K→C

max(log |σ(α)|, 0).

Remark 2.1. The key advantage in the function field setting when studying primi-
tive prime divisors is that one can compute heights of integers by keeping track of
positive valuations only.

As was mentioned in the introduction, the main technique we use to prove Theo-
rem 1.1 comes from the theory of rational points on curves. However, over function
fields, we must stipulate that our curve not be defined over the field of constants,
otherwise certain results (such as the Mordell conjecture) are false. The most con-
venient way to achieve this is to define the Kodaira-Spencer map.

To do this, we think of a curve X/K as a surface over k. In particular, X is
equipped with a map f : X → C to a curve C/k satisfying K = k(C). Abstractly,
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the Kodaira-Spencer map (or KS) is constructed on any open set U ⊆ C over
which f is smooth from the exact sequence

0 → f∗Ω1
U → Ω1

XU
→ Ω1

XU/U → 0

by taking the coboundary map KS : f∗(ΩXU/U ) → Ω1
U ×R1f∗(OXU

). Fortunately
for us, the KS map has been made explicit for superelliptic curves in [22, §5.2],
and we are therefore able to sidestep most of this abstraction when dealing with
C�,m(φ) : Y � = φm(X); see Section 3.

Proof of Theorem 1.1. To estimate the size of elements in Z(φ, b), we refine our
proof of the finiteness of Z(φ, b) in [11, Theorem 1] and follow the conventions
therein. Note that S ⊆ S′ implies Z(φ, S) ⊆ Z(φ, S′). Therefore, to prove that
Z(φ, S) is finite, we may enlarge S and assume that

(a). b ∈ OK,S , (b). φ ∈ OK,S [x],

(c). v(ad) = 0 for all v /∈ S, (d). OK,S is a UFD,

where ad is the leading term of φ. Note that condition (d) is made possible by the
finiteness of the class group; see [32, Prop. 14.2 ] over function fields. Likewise, we
may assume that p0 ∈ S.

We first bound Z(φ, b) when 0 is not in the orbit of b, true of all but finitely
many b ∈ K: this follows from the following stronger statement.

Lemma 2.2. Let B > 0. There exists a positive integer nφ(B) such that h(φn(b)) ≤
B implies n < nφ(B) for all b ∈ K satisfying ĥφ(b) �= 0.

To bound Z(φ, b) when φn(b) �= 0 for all n, we use the following decomposition
of φn(b) into an � and �-free part.

Lemma 2.3. Let φ, K, and S be as above and let � ≥ 2. Then we have a decom-
position

(8) φn(b) = un · dn · y�n for some dn, yn ∈ OK,S , un ∈ O∗
K,S ,

satisfying the following properties:

(1) 0 ≤ vp(dn) ≤ �− 1 for all p �∈ S.

(2) There is a constant r(S) such that 0 ≤ vp(dn) ≤ r(S) for all p ∈ S when
K/Q and all p ∈ S K {p0} when K/Fq(t).

(3) The height h(un) is bounded independently of n.

Proof of Lemma 2.3. By assumptions (a) and (b) on S = S(φ, b), we see that
φn(b) ∈ OK,S for all n. Hence, for any integer � ≤ 2, we may write φn(b) = un ·dn ·y�n
as on (8) since OK,S is a UFD. Furthermore, we can assume that 0 ≤ v(dn) ≤ �− 1
for all v /∈ S. To see this, we use the correspondence VK K S ←→ Spec(OK,S)
discussed in [32, Ch. 14] and write:

dn = pe11 · pe22 · · · pess
(
pq11 · pq22 · · · pqss

)�
, pi ∈ Spec(OK,S)

for some integers ei, qi satisfying vpi
(dn) = qi · �+ ei and 0 ≤ ei < �. In particular,

by replacing dn with
(
pe11 · pe22 · · · pess

)
and yn with

(
yn · pq11 · pq22 · · · pqss

)
, we may

assume that 0 ≤ v(dn) ≤ �− 1 for all v ∈ VK K S as claimed.
On the other hand, let pi ∈ S whenK is a number field and let pi ∈ SK{p0} when

K is a function field. Since the class group of K is finite, there exists ai ∈ OK and
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ni ≥ 1 such that pni

i = (ai). In particular, vpi
(ai) = ni > 0 and vp(ai) = 0 for all

p ∈ Spec(OK)K{pi}. Therefore, if we write vpi
(dn) = qi ·ni+ri for some 0 ≤ ri < ni

and set d′n := dn/(
∏

i a
qi
i ), then we have that 0 ≤ vp(d

′
n) = vp(dn) ≤ � − 1 for all

p �∈ S and vpi
(d′n) = ri for all pi. Hence, after replacing dn with d′n and un with

un · (
∏

i a
qi
i ), we see that conditions (1) and (2) of Lemma 2.3 are satisfied for

r(S) := max{ri}.
Finally, since O∗

K,S is a finitely generated group ([32, Prop. 14.2 ]), we can

absorb �-powers into yn and write un = ur1
1 ·ur2

2 . . .urt
t for some basis {ui} of O∗

K,S

and some integers 0 ≤ ri ≤ � − 1. In particular, we may assume that the un are
in a finite set, independent of n, and this shows that the height h(un) is uniformly
bounded. �

It is our goal to show that dn ∈ OK contains primitive prime divisors
outside of S. To do this, first note that conditions (b) and (c) imply that φ has
good reduction (see [42, Theorem. 2.15]) modulo the primes in VKKS. In particular,
if p ∈ VK K S is such that vp(dn) > 0 and vp(φ

m(b)) > 0 for some 1 ≤ m ≤ n − 1,
then

(9) φn−m(0) ≡ φn−m(φm(b)) ≡ φn(b) ≡ 0 (mod p);

see [42, Theorem. 2.18]. Therefore, if n ≥ 1 is such that dn has no primitive prime
divisors outside of S, then we have the refined factorization of ideals in OK,S :

(10) (dn) =
∏

p
ej
j , where pj

∣∣φtj (b) or pj
∣∣φtj (0) for some 1 ≤ tj ≤

⌊n
2

⌋
.

Moreover, we may assume that 0 ≤ ej ≤ �− 1 and 0 ≤ vp(dn) ≤ r(S) for p ∈ S by
Lemma 2.3. On the other hand, since dn ∈ OK , we can calculate the height of dn
by computing positive valuations only:

Lemma 2.4. If K is one of the global fields in Theorem 1.1, then

(11)
∑

p⊆OK ,vp(α)≥0

vp(α) ·Np = h(α)

for all non-zero α ∈ OK . On the other hand,
∑

vp(α)≥0 vp(α) Np ≤ h(α) for all

α ∈ K∗.

Remark 2.5. For number fields K/Q, the height calculation in Lemma 2.4 fails
whenever the group of units O∗

K is infinite. In particular, one cannot in general
calculate heights of algebraic integers by solely keeping track of divisors. Therefore,
in order to generalize Theorem 1.1 to all number fields, one would need to estimate
|φn(b)|σ for the archimedean places σ : K → C as well.

Hence, Lemma 2.3, Lemma 2.4, and (10) imply that there is a constant c(K,S)
such that

h(dn) =
∑
p 
∈S

vp(dn) Np +
∑
p∈S

vp(dn) Np

≤ (�− 1) ·
∑

p 
∈S,vp(dn)≥0

Np + r(S) ·
∑
p∈S

Np

≤ (�− 1)

( �n
2 �∑

i=1

h(φi(b)) +

�n
2 �∑

j=1

h(φj(0))

)
+ c(K,S);

(12)
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here the last line follows from (10) and the lower bound in Lemma 2.4 applied to
α = φi(b) and α = φj(0) for 1 ≤ i, j ≤ �n

2 , valid since φi(b) �= 0 and φj(0) �= 0 for
all i, j ≥ 1. Now choose an integer m = mφ and � = �φ such that

C := C�,m(φ) : Y � = φm(X)

is a non-singular curve of genus at least 2. This is possible in the function field
case since φ is dynamically �-power non-isotrivial. As for the number field case,
since zero is not periodic, the Riemann-Hurwitz formula implies that #φ−m(0) ≥
dm−2 for all m ≥ 1; see [42, Exercise 3.37]. Hence, we may choose m such that
#φ−m(0) ≥ 5. Now choose � coprime to the multiplicities of all roots of φm(x),
and apply [4, Corollary 2.2] or [44, Proposition 3.7.3].

If n ≤ mφ for all n ∈ Z(φ, b) with b ∈ OK,S and ĥφ(b) > 0, then we are done.
Otherwise, we may assume that n > mφ so that (8) implies that

Pn(b) :=
(
φn−mφ(b) , yn · �

√
un · dn

)
∈ C(K) .

It follows from the Vojta conjecture [47, Conj. 24.1 or 25.1] for number fields or any
of the bounds (suitable to positive characteristic) discussed in the introductions of
[21,28] for function fields, that there are positive constants A1 = A1(d, �φ,mφ) and
A2 = A2(φ, d, �φ,mφ) such that

(13) hκ(C)(Pn(b)) ≤ A1 · d(Pn(b)) +A2;

here κ(C) is a canonical divisor class of C with associated height function hκ(C) :
C → R≥0 (see [22, §2.2]), d(Pn(b)) is the logarithmic discriminant of K(Pn(b))/K
relative to K (see [47, §23]) over number fields, and

d(Pn(b)) :=
2 · genus

(
Kn(b)

)
− 2[

Kn(b) : K
] for Kn(b) := K

(
�
√
un · dn

)

over function fields. We note that the bounds on (13) have been made more explicit
in [22, §2.2] over function fields, although we do not need them here.

On the other hand, if K is a function field, then it follows from [44, Prop.
3.7.3] and the remark [44, Remark 3.7.5] that there is a constant B1 = B1(gK),
depending only on the genus gK ofK, such that d(Pn(b)) ≤ h(un·dn)+B1. Likewise,
h(un · dn) ≤ h(dn) +B(K,S), since the height of un is absolutely bounded. Hence,
there is a constant B(K,S), depending only on K and S, such that d(Pn(b)) ≤
h(dn) + B(K,S). Similarly, d(Pn(b)) ≤ h(dn) + B(K,S) over number fields; see
[47, §23]. In either case, we deduce from (13) that

(14) hκ(C)(Pn(b)) ≤ A1 · h(dn) +A3,

where

A3 = A3(φ, d,mφ, �φ, gK , S) = (B1(gK) +B2(K,S)) ·A1(d,mφ) +A2(φ, d, �φ,mφ).

In particular, all of the constants appearing above are independent of the basepoint
b. However, we want a bound relating h(φn−m(b)) and h(dn) instead of one relating
hκ(C)(Pn(b)) and h(dn). To do this, we note that if D1 is any ample divisor on C
and D2 is an arbitrary divisor, then

(15) lim
hD1

(P )→∞

hD2
(P )

hD1
(P )

=
degD2

degD1
, P ∈ C(K);

see [38, Thm III.10.2]. In particular, if π : C → P1 is the covering π(X,Y ) = X,
then a degree one divisor on P1 (giving the usual height hK on projective space)
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pulls back to a deg(π) divisor D2 on C satisfying hD2
(P ) = h(π(P )). Therefore,

we deduce from (15) that there exists a constant δ = δ(φ,m, �) satisfying:

(16) hκ(C)(P ) > δ implies h(π(P )) ≤ �

2gC − 2
·hκ(C)(P )+1 ≤ �

2
·hκ(C)(P )+1

for all P ∈ C(K); here gC ≥ 2 is the genus of C and deg(π) ≤ �. As an alternative
to the height ratio on (15) over function fields, we could use explicit calculations
of hκ(C) in [22, §4]; however, we prefer a uniform approach over global fields when

possible. On the other hand, we note that the set of points {Pn(b)} ⊆ C(K) where
(16) fails:

nTC :=
{
Pn(b)

∣∣ hκ(C)(Pn(b)) ≤ δ}
⊆

{
P ∈ C(K̄)

∣∣ hκ(C)(P ) ≤ β and [K(P ) : K] ≤ �
}
,

is finite, since the canonical class κ(C) is ample in genus at least 2; see [38, Thm.
10.3]. In particular, we deduce that Pn(b) ∈ TC implies h(φn−m(b)) is bounded.
Hence, Lemma 2.2 implies that n is bounded independently of b as claimed. Con-
versely, if Pn(b) �∈ TC , then (12), (14), and (16) imply that

(17) h(φn−mφ(b)) ≤ �(�− 1)

2
·A1 ·

( �n
2 �∑

i=1

h(φi(b)) +

�n
2 �∑

j=1

h(φj(0))

)
+ A4,

for A4 = A4(φ, d, �φ,mφ, gK ,K, S) = �/2 · (A1 · c(K,S) + A3) + 1. However, for
wandering basepoints the left hand side of (17) grows like dn−m and the right hand
side of (17) grows like d�

n
2 �+1. In particular, since m is fixed, it follows that n

is bounded. To make this formal, we use properties of ĥφ, the canonical height
function attached to φ(x). Specifically, it is known that:

(18) (a). ĥφ = h+O(1), (b). ĥφ(φ
s(α)) = ds · ĥφ(α)

for all α ∈ K and all integers s ≥ 0; see [42, Thm. 3.20]. In particular, we deduce
from (17) that
(19)

dn−mφ ·ĥφ(b) ≤
(
�(�− 1)

2

(
ĥφ(b)+ĥφ(0)

)
A1

)
d�

n
2 �+1 − 1

d− 1
+

(
�(�− 1)

2
A1Bφ

)
n+A5;

here |ĥφ − h| ≤ Bφ from (18) and A5(φ, d, �φ,mφ, gK ,K, S) = A4 +Bφ. Moreover,

since ĥφ(b) �= 0 and ĥmin
φ,K is positive (see the proof Lemma 2.2), it follows that

(20) dn−mφ ≤ B4 · d�
n
2 �+1 +B5 · n+B6,

where the constants B4, B5, and B6 are all independent of the basepoint b ∈ OK,S .
However, such an inequality implies for instance that

(21) n ≤ 5 + 2mφ + 2 logd
(
Bmax

)
,

where Bmax := max{B4, B5, B6}. Hence, we have shown that the elements of
Z(φ, b) are bounded by a constant that depends only on φ, S, and K whenever 0 is
not in the orbit of b. On the other hand, suppose that φm(b) = 0 for some m ≥ 1.
Lemma 2.2 implies that there exists nφ (depending only on φ and K) such that
φn(a) �= 0 for all n ≥ nφ and all a ∈ K. It follows that the set Zφ,K :=

{
a ∈ K :

0 ∈ Oφ(a)
}
is finite. In particular, the set of primes

S0 :=
{
primes p ∈ VK : vp(φ

n(a)) > 0 for some a ∈ Zφ,K , n ≤ nφ, φ
n(a) �= 0

}
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is also finite. Let S′ = S0 ∪ S, where S satisfies the conditions (a)-(d) above. We
have already shown that there exists N(φ, S′) such that φn(c) contains primitive
prime divisors outside of S′ for all n ≥ N(φ, S′) and all c ∈ OK,S K Zφ,K . Hence,
we may apply this to c := φnφ(b), from which it follows that all n ∈ Z(φ, b) must
satisfy n ≤ nφ +N(φ, S′). As in the previous case, the bound nφ +N(φ, S′) only
depends on φ, S, and K and not the basepoint. In particular, this completes the
proof that Z(φ, S) is finite.

We note that the use of the Vojta conjecture in the number field setting is not
necessary to prove the finiteness of Z(φ, S) when zero is preperiodic. To see this,
note that Lemma 2.3 and (9) imply that {dn}n∈Z(φ,S) is finite, since there are only
finitely many primes not in S dividing elements of the orbit of zero (equivalently,
dn has bounded height by Lemma 2.4). Now define

K(φ, S) := K
(

�
√
un · dn : n ∈ Z(φ, S)

)
,

a finite extension of K. Hence, Faltings’ Theorem [6] implies that the set of K(φ, S)
rational points of C is finite. In particular, φn−mφ(b) has bounded height, and
Lemma 2.2 implies that n is bounded as claimed.

As for statements about averages, we consider the set

(22) Tφ,n,S :=
{
b ∈ OK,S | n ∈ Z(φ, b), ĥφ(b) �= 0

}
.

It follows from the fact that Z(φ, S) is finite that Tφ,n,S = ∅ for all n sufficiently
large. Although it may be the case that Tφ,n,S is an infinite set for some n, we
will show that Tφ,n,S is always a sparse subset of OK,S . With this in mind, for any

subset E ⊆ OK,S we define the (natural) upper density δNat,S(E) of E to be the
quantity

(23) δNat,S(E) := lim sup
B→∞

#{b ∈ E | h(b) ≤ B}
#{b ∈ OK,S | h(b) ≤ B} := lim sup

B→∞

#E(B)

#OK,S(B)
.

In particular, if we set N(φ, S) := sup{n : n ∈ Z(φ, S)}, then we see that

(24) Avg(Z(φ), S) ≤ N(φ, S) ·
(N(φ,S)∑

n=1

δNat,S

(
Tφ,n,S

))
.

Therefore, it suffices to prove that δNat,S(Tφ,n,S) = 0 for all 1 ≤ n ≤ N(φ, S), to

deduce that Avg(Z(φ), S) = 0. To do this, we make a few auxiliary definitions: for
all rational functions g(x) ∈ K(x) and all sets of primes P ⊆ VK , we define:

(25) Ig,S,P :=
{
b ∈ OK,S : Supp(g(b)) ⊆ P

}
.

Here, for any α ∈ K, the support Supp(α) is the set of all primes p such that
vp(α) > 0. Furthermore, let P0 be the finite set of prime divisors of the firstN(φ, S)-
elements of the orbit of zero, that is, P0 := {Supp(φn(0))}n≤N(φ,S). Finally, let Pg

be the set of primes of bad reduction of g(x).
In particular, it follows from (9) that

(26) Tφ,n,S ⊆ Iφn,S,P for P = S ∪ P0 ∪ Pφ .

Therefore, if we let g(x) := φn(x) for any n ≤ N(φ, S), then our average-zero
result follows from Lemma 2.6 below. However, because of its possible independent
interest, we state Lemma 2.6 for subsets P ⊆ VK of (Dirichlet) density zero, not
just finite subsets; see [26] and [36, §3] for the relevant background and results on
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densities over global fields. Moreover, in what follows N(p) = #kp is the size of the
residue field. �

Lemma 2.6. Let g : P1 → P1 be a non-constant rational function, let P ⊆ VK ,
and let

(27) δDir(P) := lim
s→1+

∑
q∈P N(q)−s∑
q∈VK

N(q)−s
= lim

s→1+

∑
q∈P N(q)−s

log(1/(s− 1))

be the Dirichlet density of P. If δDir(P) = 0, then δNat,S(Ig,S,P) = 0.

Proof of Lemma 2.6. Since Ig,S,P1
⊆ Ig,S,P2

whenever P1 ⊆ P2, we may enlarge P
and assume that P contains both S and Pg. Now let

P ′ = {p /∈ P : g(x) has a root (mod p)},

and for p ∈ P ′ let ap be such a root (mod p); note that this makes sense, i.e.,
g : P1(Fp) → P1(Fp) is well defined, since p /∈ Pg. It follows from the Chebotarev
Density Theorem, that δDir(P ′) is positive. Let P ′′ be any finite subset of P ′. By
definition of Ig,S,P we see that

(28) Ig,S,P ⊆
{
b ∈ OK,S : b �≡ ap (mod p) for all p ∈ P ′′}.

Fix p ∈ P ′′. Since δNat,S is translation invariant, δNat,S(a + p) is independent of
a ∈ OK,S . In particular, we can add up δNat,S(a + p) over coset representatives
a ∈ OK,S/pOK,S and see that the natural density of {b ∈ OK,S : b ≡ ap (mod p)}
is 1/N(p) as expected. In particular, one computes via the Chinese Remainder
Theorem and the inclusion-exclusion principle that the natural density of the set
displayed on the right hand side of (28) is

∏
p∈P′′

(
1− 1

N(p)

)
. On the other hand,

(29) δNat,S(Ig,S,P) ≤
∏

p∈P′, N(p)≤B

(
1− 1

N(p)

)
∼ c

log(B)δDir(P′)

as B → ∞ for some positive constant c ; see [36, Exercise 3.3.2.2]. In particular,
since the density δDir(P ′) �= 0, we see that δNat,S(Ig,S,P) = 0 as claimed. �

We conclude this section with the proofs of Lemmas 2.2 and 2.4 and some remarks
on possible generalizations of Theorem 1.1.

Proof of Lemma 2.2. Suppose that b ∈ K and h(φn(b)) ≤ B. Since ĥφ = h+O(1)

and ĥφ(φ
n(b)) = dn · ĥφ(b), we see that dn · ĥφ(b) = ĥφ(φ

n(b)) ≤ B′ for some
positive constant B′ depending on φ and B. Moreover,

(30) ĥmin
φ,K := inf

{
ĥφ(c) | c ∈ P1(K), ĥφ(c) > 0

}
is strictly positive. To see this, choose an arbitrary wandering point c0 ∈ P1(K)
for φ (possible, for instance, by the Northcott property [42, Theorem. 3.12]), and
note that

ĥmin
φ,K = inf

{
ĥφ(c) | c ∈ P1(K) and 0 < ĥφ(c) < ĥφ(c0)

}
.

However, this latter set is finite and consists of strictly positive numbers; hence

ĥmin
φ,K > 0. In particular, it follows that hK(φn(b)) ≤ B implies n ≤ logd

(
B′/ĥmin

φ,K

)
.

Hence, n is bounded as claimed. �
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Proof of Lemma 2.4. Let K be a function field. If α ∈ OK = Op0
is non-constant,

then vp0
(α) < 0 and the claim follows from (6), i.e., the number of zeros equals the

number of poles when counted with the correct multiplicity. On the other hand,
let K/Q be a number field. Then the product formula implies

(31) h(α) =
∑

p⊆OK ,vp(α)≥0

vp(α) ·Np − 1

[K : Q]

∑
σ:K→C

min(log |σ(α)|, 0).

In particular, if K = Q or K/Q is an imaginary quadratic extension, then one
verifies directly that |σ(α)| > 1 for all σ : K → C and all non-zero α ∈ OK K O∗

K .
Therefore, (31) implies the claim for such integers. Conversely, if α ∈ O∗

K , then α is
a root of unity and h(α) = 0. On the other hand, if α is a unit, then vp(α) = 0 for all
p and (11) holds. In either setting, we see that the inequality,

∑
vp(α)≥0 vp(α) Np ≤

h(α) for all α ∈ K∗, follows from the product formula. �
Remark 2.7. We note that Theorem 1.1 part 2(a) is a strengthening of the main
result of [31]. Moreover, for results on Z(φ, b) when 0 ∈ Per(φ), see [14].

Remark 2.8. In characteristic zero, the finiteness of Z(φ, S) holds for K = k(t)
with essentially the same proof: use the fact that OK,S is a unique factorization

domain for all S and that ĥmin
φ,K is positive [1, Remark 1.7(ii)]. On the other hand,

the proof of Theorem 1.1 breaks down when K �= k(t), since the class group of K
is not finite. Note also that Avg(Z(φ), S) does not make sense for characteristic
zero function fields, since the Northcott property fails.

Remark 2.9. Of course, one would like to know whether Theorem 1.1 holds for
rational functions. However, in Lemma 2.3 and elsewhere in the proof of Theorem
1.1, we used that φn(b) ∈ OK,S for all n, a property that will fail in general. For

instance, over number fields Silverman has shown that φ2(x) �∈ K[x] implies that
Oφ(b)∩OK,S is finite for all b ∈ K; see [40] for Silverman’s integral point theorem,
and see [10] for an average-version.

At present, Conjecture 1.4 seems quite difficult. On the other hand, there are for-
mulas for the relevant Kodaira-Spencer maps in [22] in terms of the iterated preim-
ages of zero. It is therefore possible that one can exploit knowledge of GalK(φm)
for some (hopefully small) m ≥ 1, to show that the KS map is non-zero.

We carry out these calculations for the polynomials φ(x) = xd + f , where the
KS map computation becomes a sum over cyclotomic characters. Although special
cases, these polynomials are important examples in several ways. First of all the
curves C�,1(φ), defined by the first iterate of φ(x), are isotrivial for all � ≥ 2 while
Cd,2(φ) and C2,2(φ) are not (see Remark 3.3). This Illustrates that one must
in general pass to a non-trivial iterate when studying primitive prime divisors.
Secondly, we can use Theorem 1.1 to show that the Galois groups of iterates of
φ(x) = xd+f form a finite index subgroup of an infinite iterated wreath product of
cyclic groups. In particular, they provide examples of a dynamical Serre-type open
image theorem over global fields; compare to results for quadratic rational maps
over number fields in [7, 19, 45].

Remark 2.10. It is worth pointing out that we could just as well use the more
standard notion of isotriviality in Definition 1, Theorem 1.1, and Conjecture 1.4:
a curve is said to be isotrivial (in the standard sense) if after a base extension it
may be defined over a finite field; see the Appendix in [48]. Strictly speaking, the
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key bounds in [21, 28] are for curves with non-zero Kodaira-Spencer class. How-
ever, the general case follows from this one as follows: assuming that C�,m(φ)/K
is a non-isotrivial curve (in the the standard sense), there is an r (a power of the
characteristic of K) and a separable extension L/K such that C�,m(φ) is defined
over Lr and that the Kodaira-Spencer class of C�,m(φ) over Lr is non-zero. Now,
if we apply any of the bounds in [21, 28] to C�,m(φ) over Lr, then we achieve the
bounds on (13); the rest of the proof of Theorem 1.1 is the same. However, we
prefer the more explicit (computational) condition that the Kodaira-Spencer map
be non-zero.

3. Dynamical Galois groups and the Kodaira-Spencer map

We now use our results on dynamical Zsigmondy sets to study dynamical Galois
groups. To do so, we first introduce the necessary background material on wreath
products, following the presentation in [42, §3.9] and the results in [20].

Definition 2. Let G be a group acting on an index set A, and let H be an abelian
group with its group law written additively. The set of maps Map(A,H) is naturally
a group: for i1, i2 ∈ Map(A,H), define

(i1 + 12) : H → H, (i1 + i+ 2)(a) = i1(a) + i2(a).

Since G acts on A, it comes equipped with an action on Map(A,H) as follows:

g : Map(A,H) → Map(A,H), g(i)(a) = i(g(a))

for all g ∈ G, i ∈ Map(A,H), and a ∈ A. The wreath product of G and H (relative
to A) is the set Map(A,H)×G with the group law

(g1, i1) ∗ (g2, i2) = (g2(i1) + i2 , g1g2)

and is denoted G[H].

Definition 3. If G acts on A, then [G]m acts on Am (the cartesian product) for all
m ≥ 1. Therefore, we may define the n-th iterated wreath power of G inductively:
[G]1 = G and [G]n = [G]n−1[G].

Definition 4. Since G[H] → G via projection onto the second coordinate, we
have a system of maps [G]n → [G]n−1 allowing us to define an inverse limit. In
the special case when G = Cd is the cyclic group of order d (acting on itself by
translation), we define

W (d) := lim
←−

[Cd]
n

to be the infinite iterated wreath product of Cd; for more on W (d), see [27].

Our primary interest in wreath products comes from their relationship to the
Galois groups of compositions of rational functions. We restate the following result
from [20, Lemma 2.5].

Lemma 3.1. Let K be a field and let ψ, γ ∈ K[x] with deg(ψ) = � and deg(γ) = d.
We assume that ψ ◦ γ has �d distinct roots in K and that ψ is irreducible over
K. Let α1, . . . , α� be the roots of ψ, let Mi be the splitting field of γ(x) − αi over
K(αi), and G = GalK(ψ). If H = Gal(Mi/K(αi)), then there is an embedding
GalK(ψ ◦ γ) ≤ G[H].
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As in the introduction, for φ(x) ∈ K(x) and n ≥ 1, we let Kn(φ) be the field
obtained by adjoining all solutions of φn(x) = 0 to K. Since φ has coefficients in K,
the extension Kn(φ)/K is Galois, and we let GK,n(φ) := GalK(φn) be the Galois
group of Kn(φ)/K. Since Kn−1(φ) ⊆ Kn(φ) for all n (with some separability as-
sumptions), we may define GK(φ) to be the inverse limit of the GK,n(φ). Eschewing
the generic situation for reasons of complexity, we focus our attention on the family
of iterates of φ(x) = xd + f for f ∈ Fp[t]. We now prove a Serre-type finite index
theorem for GK(φ) ≤ W (d) from the introduction; this is the first unconditional
finite index result over any global field in the non-quadratic case:

Proof of Theorem 1.5. To prove the first statement, it suffices to show that φ is
dynamically 2-power non-isotrivial; see Definition 1 and Theorem 1.1 above. When
d = 2, it suffices to calculate the j-invariant of the elliptic curve Eφ from (4) above.
In particular, we compute that

1

64
j(Eφ) =

−f3 + 9f2 − 27f + 27

f2 + 2f + 1
,

which cannot be constant unless f is constant. Therefore, we may assume that

d ≥ 3. If d is odd, then {xidx
y } for 0 ≤ i ≤ d2−1

2 − 1 is a basis for the space of

regular 1-forms [23, Theorem 3] on

C2,2(φ) : Y
2 = φ2(X) = (Xd + f)d + f.

To see that C2,2(φ) is non-singular, use the discriminant formula in [17, Lemma
2.6]; there we see that the discriminant of φ2(x) is zero if and only if φ(0) · φ2(0) =
f · (fd + f) = 0. This is impossible since f is non-constant.

We now calculate the Kodaira-Spencer map associated to the surface C2,2(φ) →
P1 using [22]. In keeping with the notation in [22, §5.2], let {Ps} for 1 ≤ s ≤ d2

be the set of roots of φ2(x), and let φ2
x(x) and φ2

t (x) denote the partial derivatives
of φ2(x) with respect to x and t, respectively. In [22, §5.2], it is shown that the
Kodaira-Spencer matrix with respect to the standard basis above is

(32) mi,j =
∑
s

P i+j
s φ2

t (Ps)

2φ2
x(Ps)2

using Serre duality. One computes that φ2
x(x) = d2 · (φ(x) · x)d−1 and φ2

t (x) =
f ′ · (d · (φ(x))d−1 + 1). On the other hand, since 0 = φ2(Ps) = φ(φ(Ps)), we may
write φ(Ps) = ζs · αf where αf := d

√
−f is a fixed d-th root of −f in K and ζs is a

d-th root of unity. In particular, it follows from (32) that

(33) mi,j =

(
f ′

2d4f2

)
·
∑
s

P i+j−2d+2
s ·

(
ζ2sα

2
f − d · αf · f · ζs

)
.

To show that the Kodaira-Spencer map is non-zero, it suffices to find a single entry
mi,j �= 0. To do this, let i = d− 2 and j = 0. In this case, we see from (33) that

md−2,0 =

(
f ′

2d4f2

)
·
∑
s

1

ζsαf − f
·
(
ζ2sα

2
f − d · αf · f · ζs

)
.
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On the other hand, the formal identity xn − yn = (x − y) · (xn−1 + yxn−2 + · · ·+
yn−2x+ yn−1) applied to n = d, x = ζsαf and y = f implies that

md−2,0 =

(
f ′

2d4f2

) ∑
s

((−αd−1
f

fd + f

)
ζd−1
s +

(−αd−2
f · f

fd + f

)
ζd−2
s + · · ·+

(
−fd−1

fd + f

))

·
(
ζ2sα

2
f − d · αf · f · ζs

)
.

After regrouping terms and changing the order of summation, we see that

md−2,0 =

(
f ′

2d4f2

)
·
(
(1− d) · f
fd−1 + 1

+
d−1∑
k=1

∑
s

ck ζ
k
s

)

for some constants ck depending only on 1 ≤ k ≤ d − 1 (not on s). However,
because the function sending Ps → ζs is a d : 1 surjection onto μd (the group of
d-th roots of unity), the sum

∑
s ckζ

k = (d2ck)
∑

ζ∈μd
ζk = 0 for all indices k. We

deduce that

(34) md−2,0 =
(1− d) · f ′

2d4(fd + f)
.

In particular, md−2,0 �= 0 since f �∈ Kp and d �≡ 1 (mod p). It follows that C2,2(φ)
is a non-isotrivial curve of genus at least 2, and Theorem 1.1 implies that Z(φ, S)
is finite and Avg(Z(φ), S) = 0 for all finite subsets S ⊆ VK as claimed.

On the other hand, essentially the same argument shows that Cd,2 : Y d = φ2(x)
is a non-isotrivial curve of genus at least 2, and we take this approach to prove
Theorem 1.5 part (1) when d ≥ 4 is even. To see that Cd,2 is non-isotrivial, we use

the differentials xd−2dx
yd−1 and dx

y , which are both holomorphic by [23, Theorem 3], to

compute a non-zero entry of the Kodaira-Spencer matrix. In particular, the same
Serre duality argument in [22, §5.2] implies that

(35) m(d−2,d−1),(0,1) =
∑
s

ResPs

(
xd−2 φ2

t dx

yd φ2
x

)
dt =

∑
s

Ps
d−2 φ2

t (Ps) dx

d · φ2
x(Ps)2

dt,

since yd = φ2(x), so that φ2(x)/(x−Ps)|Ps
= φ2

x(Ps) and (x−Ps) is of degree d; here
we use Res to denote the residue map on the differentials of a curve [9, Theorem
7.14.1]. Hence, m(d−2,d−1),(0,1) is nothing but 2/d · md−2,0 from the hyperelliptic
case on (32). We deduce that

m(d−2,d−1),(0,1) =
(1− d) f ′

d5 (fd + f)
�= 0,

which completes the proof of the first statement.
Now for the proof of part (2). In what follows, we view φ(x) over K(μd). If d

is a prime and f �∈ K(μd)
d
, then we first show that φn is irreducible over K(μd)

for all n ≥ 1. To see this, we must rule out the presence of d-powers in the

orbit of zero. Suppose that φn(0) ∈ K(μd)
d for some n ≥ 2. Since, φn(0) =

(((fd+f)d+f)d · · ·+f)d+f and OK(μd) is a UFD, we may write φn(0) = f ·gn for
some gn ∈ OK(μd) coprime to f . It follows that f and gn must both be d-powers,

a contradiction. Hence, φn(0) �∈ K(μd)
d for all n ≥ 1, and [8, Theorem 8] implies

that all iterates of φ are irreducible over K(μd).
As for the Galois groups of iterates of φ, note that Lemma 3.1 (applied induc-

tively to ψ = φ and γ = φ) implies that GK(μd)(φ) ≤ W (d). On the other hand,
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we see that the proofs of Theorem 1.1 and Theorem 1.5 part (1) imply that the
d-free part of all but finitely many terms of the orbit Oφ(b) contains primitive

prime divisors whenever ĥφ(b) �= 0. In particular, since deg(φn(0)) = dn · deg(f)
goes to infinity, this holds for b = 0. Hence, if Km(φ) is a splitting field of φm(x)
over K(μd), then Gal(Kn(φ)/Kn−1(φ)) ∼= (Z/dZ)d

n

for all but finitely many n;
see [8, Theorem 25]. Therefore, GK(μd)(φ) ≤ W (d) is a finite index subgroup as
claimed. �

Remark 3.2. It follows from Theorem 1.5 that GK(μd)(φf ) ≤ W (d) is a finite index
subgroup for all non-constant f ∈ K. To see this, apply Theorem 1.5 to the field
K0 = Fp(f) ∼= Fp(t) = K and the polynomial φ(x) = x2 + t and then use the fact
that [Fp(t) : Fp(f)] = deg(f) to get the index bound[

W (d) : GK(μd)(φf )
]
≤

[
W (d) : GK(μd)(x

d + t)
]
· deg(f).

In particular, the number of irreducible factors of φn
f (x) over K(μd) (and hence

over K) is bounded independently of n (cf. [8, Corollary 7]).

Remark 3.3. We note that C�,1(φ) : Y � = Xd + f is isotrivial for all � ≥ 2: the

map (X,Y ) →
(

X
d
√
f
, Y

�
√
f

)
is an isomorphism (defined over K) onto the curve

Y � = Xd + 1. Alternatively, one can compute the Kodaira-Spencer map for the
surface C�,m(φ). For instance, when � = 2, it follows from the formulas in [22, §5.2]
that

mi,j =
f ′ d
√
−f

2d2
·
∑
ζ∈μd

ζ(yij), for some − 2d+ 2 ≤ yij ≤ −d− 1, yij ∈ Z.

In particular, we see that yij �≡ 0 (mod d), from which it follows that mij = 0

for all indices 0 ≤ i, j ≤ d−1
2 − 1; here again we use the standard basis {xidx

y } of

regular differentials on a hyperelliptic curve. In either case, the examples φ(x) =
xd + f underscore the importance of passing to an iterate (and its corresponding
superelliptic curve) to study primitive prime divisors.

Remark 3.4. Although it was enough to show that certain KS maps were non-
zero to prove Theorems 1.1 and 1.5, we believe that the KS maps for the curves
C2,2(φ) : Y 2 = (xd + f)d + f and Cd,2(φ) : Y d = (xd + f)d + f have maximal
rank, from which it follows that the best possible height bounds (involving a main
term of 2 + ε) hold in these families; see [21]. If such a statement were true, then
one could give relatively small bounds for the size of the elements of Z(φ, S). In
practice, one exploits the fact the KS matrix is symmetric (33) and the fact that
the cyclotomic sums

∑
ζms and power sums

∑
Pm vanish (a trace-zero fact), to

prove that the KS map has maximal rank.

As for characteristic zero function fields, we can make the index bounds explicit
and uniform when K = k(t) is a rational function field; compare to uniform bounds
in the quadratic case [12]. Here we use work of Schmidt [34] and Mason [25] on Thue
Equations over function fields; conveniently, we need not worry about isotriviality,
since it does not affect the height bounds in this setting.

Proof of Theorem 1.6. We work over the ground field K(μd). We have already
seen that f /∈ K(μd)

d implies all iterates of φ(x) are irreducible over K(μd); see
the proof of Theorem 1.5 above. We show that for all n ≥ 11, there is a place
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vn ∈ VK(μd) such that: vn(φ
n(0)) > 0, v(φn(0)) �≡ 0 (mod d) and v(φm(0)) = 0 for

all 1 ≤ m ≤ n− 1.
If there is no such place for some n ≥ 2, then φn(0) = dn · ydn for some (d-power

free) dn satisfying

deg(dn) ≤ (d− 1)

�n
2 �∑

i=1

deg(φi(0)) = (d− 1) ·
�n

2 �∑
i=1

deg(f) ·di−1 = deg(f) · (d�n
2 �+1− 1);

see (10) in the proof of Theorem 1.1. Hence the twisted curve C
(dn)
φ : Y d =

dd−1
n · (Xd + f) has an integral point (φn−1(0), dn · yn). Let K1 be a splitting field

of φ over K(μd), let gK1
be the genus of K1, and let rK1

be the number of infinite
places of K1. Then it follows from [25, Theorem 15] that

hK1
(φn−1(0)) ≤ 18hK1

(C
(dn)
φ ) + 6gK1

+ 3rK1
− 3;

here hK1
(Cφ) is the maximum height (relative to K1) of the coefficients defining

C
(dn)
φ . However, [34, 2.11] implies that hK1

(α) = d · deg(α) for all α ∈ K(μd) and

[34, Lemma H] implies that gK1
≤ (d− 1)(deg(f)− 1). In particular, we see that

d · dn−2 · deg(f) ≤ 18 · d · deg(f) · d�n
2 �+1 + 6(d− 1)(deg(f)− 1) + 3d− 3.

Therefore,

dn−1 ≤ 18d�
n
2 �+2 + (3d− 3)

2 deg(f)− 1

deg(f)
≤ 18d�

n
2 �+2 + 6d− 6.

We deduce that n ≤ 2 logd(19) + 5 < 10.4 since d ≥ 3 and n ≥ 2; statements (2)
and (3) then follow from [8, Theorem 2.5].

As for the index bound in statement (1), let Kn(φ) be the splitting field of φn(x)
over K(μd). One computes inductively via [5, §3.3 Theorem 19] that [Cd]

n is a

group of order d
dn−1
d−1 for all n ≥ 1. On the other hand, since the subextensions

Kn(φ)/Kn−1(φ) are Kummer extensions of degree dd
n−1

for all n ≥ 11 by [8,
Theorem 2.5] and the first part of our proof, we have the index bound:

logd
[
[Cd]

n : GalK(μd)(φ
n)
]
= logd

d
dn−1
d−1

[K10(φ) : K(μd)] ·
∏n−1

j=10[Kj+1(φ) : Kj(φ)]
.

However, [K10(φ) : K(μd)] ≥ d10 since φ10(x) is an irreducible polynomial, and we
deduce that

logd
[
[Cd]

n : GalK(μd)(φ
n)
]
≤ dn − 1

d− 1
− (dn−1+dn−2+ . . . d10+10) ≤ d10 − 1

d− 1
+10.

Finally, we consider the special case φ(x) = xd + t for all d ≥ 2 (not necessarily
prime). We note that the discriminant of φn(0) (as an element of k[t]) is non-zero.
In particular, φn(0) is square-free for all n. To see this, let p|d be a prime. Then
the quotient map Z → Z/pZ induces a ring homomorphism Z[t] → (Z/pZ)[t] given
by reducing coefficients. Therefore, if φn(0) is not square-free in Q[t] (hence not
square-free in Z[t]), then the image of φn(0) ∈ (Z/pZ)[t] is not square-free. Hence,
[5, §13.5 Prop. 33] implies that φn(0) and its formal derivative in (Z/pZ)[t] must
share a root. However. one sees that the formal derivative of φn(0) is 1 in Fp[t]
for all n ≥ 2 by the power-rule. We deduce that φn(0) is square-free in k[t] for all
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n ≥ 1. It terms of valuations, this means that vp(φ
n(0)) = 1 for all p ∈ VK such

that vp(φ
n(0)) > 0. On the other hand, a simple degree computation shows

deg(φn(0)) = dn−1 >
dn−1 − 1

d− 1

= dn−2 + dn−3 + · · ·+ 1 = deg(φn−1(0)) + · · ·+ deg(φ(0)).

Therefore, it is impossible that all prime factors of φn(0) come from lower order
iterates. Moreover, since φn(0) is square-free, it follows from [8, Theorem 8] that
all iterates of φ are irreducible over K(μd). We deduce from [8, Theorem 25] that
GK(μd)(φ)

∼= W (d) as claimed. The statement about specializations follows from
Hilbert’s irreducibility theorem [37, Theorem 1, Theorem 3.4.1]. �
Remark 3.5. The proof of Theorem 1.6 implies that

max
{
n
∣∣ n ∈ Z(xd + f, 0, d) for some f ∈ k[t], deg(f) ≥ 1, d ≥ 2

}
≤ 10;

here Z(xd + f, 0, d) is the d-th Zsigmondy set [11, Definition 2], representing terms
which do not have d-power free primitive prime divisors. Equivalently, after the
10th stage of iteration, we always see d-power free primitive prime in the orbit of
zero (independent of both f ∈ k[t] and d) in characteristic zero (cf. [24, Theorem
1.1]).

Remark 3.6. It is tempting to think that the discriminant trick we used to prove
GK(μd)(φ)

∼= W (d) for φ(x) = xd + t works for all φ(x) = xd + f satisfying f �∈
K(μd)

d. However, surjectivity already fails for d = 2: when φ(x) = x2 − (t2 + 1),
we show in [12] that [W (2) : GK(φ)] = 2, even though −(t2 + 1) is never a square
in characteristic zero; this example is essentially due to Stoll [45]. Likewise, this
discriminant trick does not work in prime characteristic: for d = 5, p = 43 and
φ(x) = x5+ t, the discriminant of φ6(0) is zero in Fp[t]. Nevertheless, a finite index
statement (not necessarily surjective) holds by Theorem 1.5.

Remark 3.7. To the author’s knowledge, there is not a single pair (d, c) of values
d ≥ 3 and c ∈ Q for which GalQ(μd)(φ

n
c ) is known for large n. Therefore, Theorem

1.6 represents some progress and solves the inverse Galois problem for [Cd]
n.

Remark 3.8. To prove the surjectivity of the �-adic Galois representation attached
to an elliptic curve, it suffices to prove the surjectivity onto some finite quotient.
Namely, if G ≤ GL2(Z�) is a closed subgroup that surjects onto GL2(Z/�

nZ) for
some small n, thenGmust be equal to GL2(Z�); see, for instance, [46]. In particular,
this is a fact from group theory. On the other hand, such a property will fail in
general for closed subgroups of W (d). Nevertheless, we have proven such rigidity
for subgroups GK(φ) ≤ W (d) coming from dynamics in Theorem 1.6.
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