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LIMITS OF GEOMETRIES

DARYL COOPER, JEFFREY DANCIGER, AND ANNA WIENHARD

Abstract. A geometric transition is a continuous path of geometric structures
that changes type, meaning that the model geometry, i.e., the homogeneous
space on which the structures are modeled, abruptly changes. In order to
rigorously study transitions, one must define a notion of geometric limit at
the level of homogeneous spaces, describing the basic process by which one
homogeneous geometry may transform into another. We develop a general
framework to describe transitions in the context that both geometries involved
are represented as sub-geometries of a larger ambient geometry. Specializing
to the setting of real projective geometry, we classify the geometric limits
of any sub-geometry whose structure group is a symmetric subgroup of the
projective general linear group. As an application, we classify all limits of
three-dimensional hyperbolic geometry inside of projective geometry, finding

Euclidean, Nil, and Sol geometry among the limits. We prove, however, that

the other Thurston geometries, in particular H2 ×R and S̃L2R, do not embed
in any limit of hyperbolic geometry in this sense.

1. Introduction

Following Felix Klein’s Erlangen Program, a geometry is given by a pair (Y,H)
of a Lie group H acting transitively by diffeomorphisms on a manifold Y . Given
a manifold of the same dimension as Y , a geometric structure modeled on (Y,H)
is a system of local coordinates in Y with transition maps in H. The study of
deformation spaces of geometric structures on manifolds is a very rich mathematical
subject, with a long history going back to Klein and Ehresmann, and more recently
Thurston. In this article we are concerned with geometric transition, an idea that
was recently promoted by Kerckhoff, and studied by Danciger in his thesis [11,12].
A geometric transition is a continuous path of geometric structures for which the
model geometry (Y,H) abruptly changes to a different geometry (Y ′, H ′). The
process involves the limiting of the two different geometric structures to a common
transitional geometry which, in some sense, interpolates the geometric features of
the two geometries. For this to make sense, one must define a notion of geometric
limit at the level of homogeneous spaces which describes the basic process by which
one homogeneous geometry may transform or limit to another. In this article
we develop a general framework to describe such geometric transitions, focusing
on the special situation in which both geometries involved are sub-geometries of
a larger ambient geometry (X,G). Working in this framework, we then study
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transitions between certain sub-geometries of real projective geometry, giving an
explicit classification in some cases.

The best-known examples of geometric transition arise in the context of
Thurston’s geometrization program. For example, the transition between hyper-
bolic and spherical geometry, passing through Euclidean geometry, was studied by
Hodgson [20] and Porti [27] and plays an important role in the proof of the orb-
ifold theorem by Cooper, Hodgson, Kerckhoff [10], and Boileau, Leeb, Porti [4].
More recently, a transition going from hyperbolic geometry to its Lorentzian ana-
logue, anti de Sitter (AdS) geometry, was introduced by Danciger [11] and studied
in the context of cone-manifold structures on Seifert-fibered three-manifolds. The
hyperbolic-AdS transition plays an important role in very recent work by Danciger,
Maloni, and Schlenker [14] on the classical subject of combinatorics of polyhedra
in three-space, which characterizes the combinatorics of polyhedra inscribed in the
one-sheeted hyperboloid, generalizing Rivin’s famous characterization of polyhedra
inscribed in the sphere. The transition between constant curvature Lorentzian ge-
ometries very recently found applications in the setting of affine geometry. One of
the most striking features differentiating affine geometry from Euclidean geometry is
the existence of properly discontinuous actions by non-abelian free groups. In three-
dimensions, such proper actions of free groups preserve a flat Lorentzian metric
and their quotients are called Margulis space-times. In [13], Danciger, Guéritaud,
and Kassel study Margulis space-times as limits of collapsing complete AdS three-
manifolds, giving related characterizations of the geometry and topology of both
types of geometric structures. In particular, they give a proof of the tameness con-
jecture for Margulis space-times [13] (also proved using a different approach by Choi
and Goldman [8]). Each of the results mentioned here involves the construction of
a geometric transition in some specialized geometric setting. This paper seeks to
broaden the scope of transitional geometry by initiating a classification program for
geometric transitions within a very general framework. We expect our results to
be useful in a wide array of problems, for example the study of boundaries or com-
pactifications of deformation spaces of geometric structures, and the construction
of interesting proper affine actions in higher dimensions.

Let us now illustrate the general context in which the construction of a geo-
metric transition is desirable. Consider a sequence Yn of (Y,H) structures on a
manifold M , and suppose that as n → ∞, the structures Yn fail to converge, mean-
ing that the charts fail to converge as local diffeomorphisms, even after adjusting by
diffeomorphisms of M and coordinate changes in H. Of central interest here is the
case that the Yn collapse: The charts converge to local submersions onto a lower
dimensional sub-manifold of Y and the transition maps converge into the subgroup
of H that preserves this sub-manifold. Next suppose that (Y,H) is a sub-geometry
of (X,G); this means that Y is an open sub-manifold of X and H is a closed sub-
group of G. The sequence Yn of collapsing (Y,H) structures need not collapse as
(X,G) structures, because the larger group G of coordinate changes could be used
to prevent collapse. In certain cases, one may find a sequence (cn) ⊂ G, so that the
conjugate structures cnYn converge to a (non-collapsed) (X,G) structure Y∞. This
limiting structure Y∞ is modeled on a new sub-geometry (Z,L) of (X,G) which is,
in a sense to be defined presently, a geometric limit of (Y,H).

Consider two sub-geometries (Y,H) and (Z,L) of (X,G). First, at the level of
structure groups, we say L is a limit of H, if there exists a sequence (cn) in G so
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that the conjugates cnHc−1
n converge to L in the Chabauty topology [7] on closed

subgroups (i.e., cnHc−1
n converges to L in the Hausdorff topology in every compact

neighborhood of G). If in addition there exists z ∈ Z ⊂ X so that z ∈ cnY for all n
sufficiently large, then we say (X,G) is a geometric limit of (Y,H) as sub-geometries
of (X,G). See Section 2. The description of limit groups and limit geometries in
general is a difficult problem. We give a complete classification in certain special
cases.

Symmetric subgroups. Let G be a semi-simple Lie group of non-compact type
with finite center. A subgroup H ⊂ G is called symmetric if H = Gσ is the
fixed point set of an involution σ : G → G, or more generally Gσ

0 ⊂ H ⊂ Gσ,
where Gσ

0 denotes the identity component of Gσ. The coset space G/H is called
an affine symmetric space. Affine symmetric spaces have a rich structure theory,
generalizing the structure theory of Riemannian symmetric spaces. In particular,
there is a Cartan involution θ : G → G which commutes with σ. Let K = Gθ and
g = k⊕p be the corresponding Cartan decomposition. The involution σ analogously
defines a decomposition of g = h ⊕ q into (±1)–eigenspaces. An important tool
in determining the limits L of symmetric subgroups H is the following well-known
factorization result: Let b be a maximal abelian subalgebra of p∩q. Then any g ∈ G
can be written as g = kbh with k ∈ K, b ∈ B = Exp(b), and h ∈ H. Moreover, b is
unique up to conjugation by the Weyl group WH∩K := NH∩K(b)/ZH∩K(b). Using
this factorization theorem we can characterize all limits of symmetric subgroups as
follows (see Section 4 for a more precise version).

Theorem 1.1. Let H be a symmetric subgroup of a semi-simple Lie group G with
finite center. Then any limit L′ of H in G is the limit under conjugacy by a one
parameter subgroup. More precisely, there exists an X ∈ b such that the limit
L = limt→∞ exp(tX)H exp(−tX) is conjugate to L′. Furthermore,

L = ZH(X)�N+(X),

where ZH(X) is the centralizer in H of X, and N+(X) is the connected nilpotent
subgroup

N+(X) := {g ∈ G : lim
t→∞

exp(tX)−1g exp(tX) = 1}.

In the special case when H = K (in other words σ is a Cartan involution), the
limit groups are determined by Guivarc’h, Ji, and Taylor [17] and also by Haettel
[18]. Moreover, in these articles the Chabauty-compactification of G/K is shown to
be isomorphic to the maximal Satake-Furstenberg compactification. The analysis
leading to Theorem 1.1 bears a lot of similarity with the analysis in [16], where the
maximal Satake-Furstenberg compactification for affine symmetric spaces G/H is
defined. We would like to raise the question whether the Chabauty-compactification
of G/H is homeomorphic to its maximal Satake-Furstenberg compactification.

The groups G = PGLn K with K = R or C are of particular interest, since
they are the structure groups for projective geometry. In this case, Theorem 1.1
implies that the limits of symmetric subgroups have a nice block matrix form. Let
H ⊂ PGLn K be a symmetric subgroup and let L be a limit of H. Then, there is a
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decomposition Kn = E0⊕ · · ·⊕Ek of Kn with respect to which L has the following
block form: ⎛⎜⎜⎜⎜⎝

A1 0 0 · · · 0
∗ A2 0 · · · 0
∗ ∗ A3 · · · 0
· · · · · · · · · · · · · · ·
∗ ∗ ∗ · · · Ak

⎞⎟⎟⎟⎟⎠ .

Here, the blocks denoted ∗ are arbitrary, and the diagonal part diag(A1, . . . , Ak)
is an element of H. The groups POn C, P(GLpC × GLqC), P Sp(2m,C), where
n = 2m, PGLn R, PU(p, q), where n = p + q, and SL(m,H), where n = 2m are
some of the symmetric subgroups of PGLn C. The symmetric subgroups of PGLn R

up to conjugacy are P(GLpR×GLqR), PO(p, q), where p+ q = n, or P Sp(2m,R)
and P(GL(m,C)), where n = 2m. See Section 4 for a full characterization of the
limit groups in each of these cases.

Limits of constant curvature semi-Riemannian geometries. Let β denote
a quadratic form on Rn of signature (p, q), meaning β ∼ −Ip ⊕ Iq. The group
P Isom(β) = PO(p, q) acts transitively on the domain

X(p, q) = {[x] ∈ RPn−1 : β(x) < 0} ⊂ RPn−1,

with point stabilizer isomorphic to O(p − 1, q). The geometry (X(p, q),PO(p, q))
is the projective model for semi-Riemannian geometry of constant curvature, of
dimension p+ q − 1 and of signature (p− 1, q). In the cases (p, q) is (n, 0), (1, n−
1), (n − 1, 1), or (2, n − 2) we obtain spherical geometry, hyperbolic geometry, de
Sitter geometry, and anti de Sitter geometry, respectively.

By applying Theorem 1.1, we characterize the limits of these constant curva-
ture semi-Riemannian geometries inside real projective geometry. Here is a brief
description of the limit geometries. A partial flag F = {V0, V1, · · · , Vk+1} of Rn is
a descending chain of vector subspaces

Rn = V0 ⊃ V1 ⊃ · · · ⊃ Vk ⊃ Vk+1 = {0}.

A partial flag of quadratic forms β = (β0, · · · , βk) on F is a collection of non-
degenerate quadratic forms βi defined on each quotient Vi/Vi+1 of the partial flag.
Define Isom(F ,β) to be the group of linear transformations which preserve F and
induce an isometry of each βi, and denote its image in PGLn R by P Isom(F ,β).
Define the domain X(β) ⊂ RPn−1 by

X(β) := {[x] ∈ RPn−1 : β0(x) < 0}.

Then P Isom(F ,β) acts transitively on X(β). When the flag and quadratic forms
are adapted to the standard basis, we denote X(β) and Isom(β) by

X(β) =: X((p0, q0), . . . , (pk, qk)),

Isom(β) =: O((p0, q0), . . . , (pk, qk))

=

⎛⎜⎜⎜⎜⎝
O(p0, q0) 0 0 · · · 0

∗ O(p1, q1) 0 · · · 0
∗ ∗ O(p2, q2) · · · 0
· · · · · · · · · · · · · · ·
∗ ∗ ∗ · · · O(pk, qk)

⎞⎟⎟⎟⎟⎠ ,
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where ∗ denotes an arbitrary block. Note that X(β) is non-empty if and only if
p0 > 0. As a set, the space X((p0, q0) . . . (pk, qk)) depends only on the first signature
(p0, q0) and the dimension n =

∑
i(pi+ qi). However, we include all k signatures in

the notation as a reminder of the structure determined by PO((p0, q0), . . . , (pk, qk)).

Theorem 1.2. The limits of the constant curvature semi-Riemannian geometries
(X(p, q),PO(p, q)) inside (RPn−1,PGLn R) are all of the form (X(β),P Isom(F ,β)).
Further, X(β) is a limit of X(p, q) if and only if p0 �= 0, and the signatures
((p0, q0), . . . , (pk, qk)) of β partition the signature (p, q) in the sense that

p0 + · · ·+ pk = p and q0 + · · ·+ qk = q,

after exchanging (pi, qi) with (qi, pi) for some collection of indices i in {1, . . . , k}
(the first signature (p0, q0) must not be reversed).

See Section 5.1 for a detailed discussion of these partial flag geometries.

The Thurston geometries. One motivation for our work is the study of transi-
tions between the eight three-dimensional Thurston geometries, homogeneous Rie-
mannian geometries which play an essential role in the classification of compact
three-manifolds. Since each of the eight geometries (almost) admits a representa-
tion in real projective geometry [24], [30], it is natural to study transitions between
them in the projective setting.

From the point of view of Thurston’s picture of hyperbolic Dehn surgery space,
one expects to find five of the eight Thurston geometries as limits of hyperbolic
geometry. There are various methods, due to Porti and collaborators [21,27,28], to
realize Euclidean, Nil, and Sol geometry structures as limits of certain families of
collapsing hyperbolic structures. However, efforts to realize the Thurston geome-

tries which fiber over the hyperbolic plane, namely H2 × R and S̃L2 R, as limits of
three-dimensional hyperbolic geometry have so far proved fruitless. Many Seifert-

fibered three-manifolds which admit a structure modeled on either H2×R or S̃L2 R

also admit hyperbolic cone-manifold structures with cone angles arbitrarily close
to 2π. Commonly in examples, such structures are found to collapse down to a
hyperbolic surface (the base of the Seifert fibration) as the cone angle increases to
2π. Recent work of Danciger [11, 12] shows that in this context, the most natu-
ral sequence of conjugacies in projective space yields a non-metric geometry called
half-pipe geometry as limit. However, Danciger’s construction does not rule out the
possibility that some other clever sequence of conjugacies could produce H2 × R

or S̃L2 R geometry as limit. As an application of Theorem 1.2, we enumerate the
limits of hyperbolic geometry inside of projective geometry and prove:

Theorem 1.3. The Thurston geometries which locally embed in limits of hyper-
bolic geometry (within real projective geometry) are: E3, Solv geometry, and Nil

geometry. In particular, neither H2 × R nor S̃L2 R locally embed into any limit of
hyperbolic geometry.

In future work we intend to give a complete description of the possible transitions
between the eight Thurston geometries inside of projective geometry.

Structure of the paper. In Section 2 we introduce the notion of (geometric)
limits of groups and limits of geometries and revisit the transition from hyperbolic
geometry through Euclidean geometry to spherical geometry (within real projective
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geometry). In Section 3 we describe several notions of limits of groups, illustrate
their differences, show when they agree, and describe some basic properties of
geometric limits of real algebraic Lie groups. In Section 4 we recall the basic
structure theory of affine symmetric spaces, and prove (a more descriptive version
of) Theorem 1.1, determining the limit groups of symmetric subgroups. We then
apply the theorem to give explicit descriptions of the limits of symmetric subgroups
of the general linear group. The limit geometries of the semi-Riemannian real
hyperbolic geometries in terms of partial flags geometries are described in Section 5.
In the end of that section we discuss the applications to Thurston geometries.

2. Limits of geometries

Definition 2.1. A geometry is a pair (X,G) where G is a Lie group acting transi-
tively by analytic maps on a connected, smooth manifold X.

The requirement in the definition that the action be transitive implies that X
identifies with G/Gx, where Gx denotes the stabilizer of a point x ∈ X. Note
that we do not require the point stabilizer Gx to be compact. Some examples of
geometries are

(1) Euclidean geometry En: The space X = Rn and the structure group G is
the semi-direct product of the orthogonal group O(n) and the translation
group Rn.

(2) Spherical geometry Sn: The space X is the unit sphere in Rn+1 and the
group G is the orthogonal group O(n+ 1).

(3) Hyperbolic geometry Hn: The space X = {[x] ∈ RPn : −x2
n+1 + x2

1 + · · ·+
x2
n < 0} is the set of negative lines with respect to the standard quadratic

form of signature (1, n). The structure group G = PO(1, n) is the group of
projective transformations preserving X.

(4) Real projective geometry: X = RPn, G = PGLn+1 R.

Definition 2.2. Given geometries (X,G) and (X ′, G′) a morphism (X,G) →
(X ′, G′) is a Lie group homomorphism Φ : G → G′ such that for some (and hence
any) x ∈ X there is an x′ ∈ X ′ such that Φ(Gx) ⊂ G′

x′ . The map Φ induces
an analytic map F : X → X ′ defined by F (x) = x′ and the property that F is
Φ-equivariant:

F (g · y) = Φ(g)F (y).

The map Φ defines an isomorphism of geometries if Φ is an isomorphism of Lie
groups and Φ(Gx) = G′

x′ . If Φ is surjective, we say (X,G) fibers over (X ′, G′).

Recall that a local homomorphism ϕ : G ��� G′ of Lie groups is a map ϕ : V →
G, defined on a neighborhood V of the identity in G, such that ϕ(gh) = ϕ(g)ϕ(h)
and ϕ(g)−1 = ϕ(g−1) whenever all terms are defined. A local homomorphism ϕ is
a local isomorphism if ϕ is locally injective, meaning injective when restricted to
some small neighborhood of the identity in G, and locally surjective, meaning has
image containing a small neighborhood of the identity in G′. Note that if g and
g′ denote the Lie algebras of G and G′, then the differential ϕ∗ : g → g′ of a local
homomorphism of Lie groups ϕ is a homomorphism of Lie algebras ϕ∗ : g → g′

and conversely any homomorphism of Lie algebras is the differential of a local
homomorphism of Lie groups as above.
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Definition 2.3. A local morphism of geometries (X,G) ��� (X ′, G′) is a local
homomorphism ϕ : G ��� G′ such that for some (and hence any) x ∈ X, there is
an x′ ∈ X ′ with the property that the restriction of ϕ to Gx has image in G′

x′ .
The local homomorphism ϕ induces a local analytic map f : X ��� X ′, defined on
a neighborhood of x, which is locally ϕ-equivariant, meaning f(g · y) = ϕ(g)f(y)
whenever all terms are defined. The local morphism is a local isomorphism if ϕ is
a local isomorphism G ��� G′ and ϕ restricts to a local isomorphism Gx ��� G′

x′ .

Note that given ϕ as in the definition, the differential ϕ∗ : g → g′ satisfies that
ϕ∗(gx) ⊂ g′x′ , where gx and g′x′ are the Lie algebras of the point stabilizers Gx and
G′

x′ . Conversely, a Lie algebra homomorphism g → g′ taking infinitesimal point
stabilizers into infinitesimal point stabilizers (which could be called an infinitesimal
morphism of geometries) determines a local morphism of geometries. The map
ϕ : G ��� G′ determines a local isomorphism if and only if ϕ∗ is an isomorphism
and ϕ∗(gx) = g′x′ .

If G is connected, then the universal cover (X̃, G̃) −→ (X,G) of a geometry
(X,G) is defined as follows: Let Gx ⊂ G be the stabilizer of a point x ∈ X so that

X = G/Gx. Then G̃ → G is the universal covering Lie group of G, and X̃ = G̃/G̃x,

where G̃x ⊂ G̃ is the identity component of the inverse image of Gx. Indeed X̃ → X
is the universal cover of X. Note that the action of G̃ on X̃ might not be faithful,
even if the action of G on X was faithful. In this case, one may replace G̃ with its
quotient by the kernel of the action. Every geometry is locally isomorphic to its
universal cover. A local morphism (resp., local isomorphism) of geometries induces
a morphism (resp., isomorphism) of the universal covering geometries.

Definition 2.4. The geometry (Y,H) is a sub-geometry of (X,G), written (Y,H) ⊂
(X,G), if H is a closed subgroup of G and Y is an open subset of X on which H
acts transitively. We say that a geometry (Y,H) locally embeds in (X,G) if (Y,H)
is locally isomorphic to a sub-geometry (Y ′, H ′) ⊂ (X,G).

For example, both hyperbolic and Euclidean geometry, in the forms described
above, are sub-geometries of real projective geometry. Spherical geometry is a two
fold covering of a sub-geometry of projective geometry, and, therefore, spherical
geometry locally embeds in projective geometry but it is not a sub-geometry. Sim-

ilarly, the Thurston geometry known as S̃L2 R is not a sub-geometry of projective
geometry, but it does locally embed.

In this article we are concerned with limits of geometries, in particular with
limits of sub-geometries of a given geometry (X,G). First we introduce the notion
of limit of closed subgroups.

Definition 2.5.

(1) A sequenceHn of closed subgroups of a Lie group G converges geometrically
to a closed subgroup L if every g ∈ L is the limit of some sequence hn ∈ Hn,
and if every accumulation point of every sequence hn ∈ Hn lies in L. We
also say that L is the geometric limit of the sequence Hn. Note that L is
the geometric limit of Hn if and only if Hn converges to L in the Chabauty
topology on closed subgroups.

(2) We say L is a conjugacy limit (or just limit) of H if there exists a sequence
cn ∈ G so that the conjugate groups Hn = cnHc−1

n converge geometrically
to L.
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The set C(G) of closed subgroups with the Chabauty topology is a compact space
[7], [5], [15], so for every sequence of closed subgroups there is some subsequence
which has a geometric limit. We remark that the topology on the set of all closed
subsets of a non-compact space is commonly defined to be the topology of Haus-
dorff convergence in compact neighborhoods. The Chabauty topology is simply the
subspace topology on the set of closed subgroups.

Definition 2.6.

(1) A sequence of sub-geometries (Yn, Hn) ⊂ (X,G) converges to the sub-
geometry (Z,L) ⊂ (X,G) if Hn converges geometrically to L and there
exists z ∈ Z ⊂ X such that for all n sufficiently large z ∈ Yn.

(2) We say that a sub-geometry (Z,L) is a conjugacy limit (or just limit) of
(Y,H) if there exists a sequence gn ∈ G so that the sequence of conjugate
sub-geometries (gnY, gnHg−1

n ) converges to (Z,L).

The motivating situation, as described in the introduction, is that of collapsing
(Y,H) structures on a manifold: structures for which each chart (or alternatively
the developing map) collapses to a local submersion onto a lower-dimensional sub-
set N of Y and each transition map (alternatively the holonomy representations)
converges into some smaller subgroup P ⊂ H that preserves N . The goal is to con-
jugate the (Y,H)-structures inside of (X,G), so that the charts (developing maps)
no longer collapse and the transition maps (holonomy representations) converge
into some limit group L of H which contains P . Then, setting Z = L · N , the
geometry (Z,L) is a limit of (Y,H) in the sense of Definition 2.6 and the limiting
geometric structure is a (Z,L) structure.

2.1. The transition from spherical to Euclidean to hyperbolic. Let us now
illustrate the definitions in a familiar example.

Consider the path of quadratic forms βt = −x2
n+1 − t(x2

1 + · · · + x2
n) on Rn+1,

and assume t ≥ 0. These quadratic forms define sub-geometries (X(βt),PO(βt)) of
projective geometry where

X(βt) = {[x] ∈ RPn : βt(x) < 0},
PO(βt) = P {A ∈ GL(n+ 1) : A∗βt = βt} .

For all t > 0, PO(βt) is conjugate to PO(β1) which is the standard copy of PO(n+1),
and the geometry (X(βt),PO(βt)) is conjugate to the standard realization (found at
t = 1) of spherical geometry Sn as a (covering) sub-geometry of projective geometry.
The element ct ∈ PGL(n+1) conjugating (X(β1),PO(β1)) to (X(βt),PO(βt)) is the
diagonal matrix ct = diag(1/

√
t, . . . , 1/

√
t, 1) with the first n diagonal entries equal

to 1/
√
t and the final diagonal entry equal to one (note c∗tβt = β1). This corresponds

to scaling the plane Rn ⊂ Rn+1 spanned by the first n coordinate directions.
At time t = 0, the quadratic form becomes degenerate. The group preserving

β0 is simply the group of matrices that preserve the last coordinate |xn+1|; this is
a copy of the affine group

Aff(n) =

{(
A b
0 1

)}
⊂ PGL(n+ 1,R).

However, the affine group is not the limit of the groups PO(βt) as t → 0+. In fact,
the limit of the conjugate subgroups PO(βt) as t → 0+ is the group of Euclidean
isometries. In order to simplify the discussion, let us demonstrate this at the level
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of Lie algebras. The Lie algebra so(βt) of PO(βt) is conjugate to the Lie algebra
so(β1) = so(n+ 1):

so(βt) =

⎛⎜⎜⎜⎜⎝
√
t
−1

√
t
−1

. . .

1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

0 aij
...

. . . b

−aij
. . .

...
. . . −bT . . . 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
√
t √

t
. . .

1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
0 aij

...
. . .

√
t
−1

b

−aij
. . .

...

. . . −
√
tbT . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

It is easy to read off the limit Lie algebra via the following heuristic reasoning. To
find an element of the limit Lie algebra, we are allowed to vary the entries aij , b of

the matrix as t → 0+ in any way that produces a limit. Since
√
t
−1 → ∞, it follows

that we must have b = O(
√
t). Thus the limit Lie algebra has the form:

lim
t→0+

so(βt) =

⎛⎜⎜⎜⎜⎜⎝
0 aij

...
. . . b′

−aij
. . .

...
. . . 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ = isom(En),

where b′ can be any column vector. We recognize this limit as the Lie algebra of
the subgroup of the affine group preserving the standard Euclidean metric on the
affine patch xn+1 �= 0. In fact, it is only slightly more difficult to show that the
limit of the Lie groups PO(βt) is indeed the group of Euclidean isometries

Isom(En) = P

((
O(n)

±1

)
�

(
In Rn

1

))
.

To determine the limit of the homogeneous spaces X(βt), we use Definition 2.6.
Consider any point z in the affine patch En = {[x] : xn+1 �= 0}. Then, of course
z is in X(βt) = RPn for all t > 0. Note that if we choose z to be the usual origin
of En, then z is fixed by ct. The notion that the limit of a constant sequence of
spaces (RPn) could be anything other than (En) that space again may seem counter-
intuitive. However, the important thing to realize is that the orbit of z under the
groups PO(βt) is RPn while the orbit of z under the limit group Isom(En) is now
the smaller space En. This is indeed the relevant notion of limit in the context of
geometric structures.

Next, for t < 0, the βt have signature (1, n) and the corresponding sub-geometries
(X(βt),PO(βt)) are all conjugate to the standard copy (X(β−1),PO(β−1)) of the
projective model for hyperbolic space Hn. The reasoning above applies similarly in
this case to show that the limit of PO(βt) as t → 0− is again the group Isom(En)
of Euclidean isometries. In this case the spaces X(βt) are expanding balls in RPn

which eventually engulf any point z in the affine patch En = {[x] : xn+1 �= 0}. Thus
(En, Isom(En) is the limit of (X(βt),PO(βt)) as t → 0−.
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It is worth noting that this transition of homogeneous spaces can be seen nicely in
terms of certain quadric hypersurfaces in Rn+1. For, the level sets of the quadratic
forms βt are either ellipsoids if t > 0, or hyperboloids of two sheets if t < 0.
Any such level set βt = −k is preserved by the lift O(βt) of PO(βt) and projects
(two to one) to X(βt) in projective space; hence it gives a nice model for the same
geometry. In the case t = 1, the level set βt = −1 is the unit sphere and describes
the standard model for spherical geometry, while in the case t = −1, the level set
βt = −1 is the standard hyperboloid model for hyperbolic geometry. Note that for
all t, the level set βt = −1 contains the two points (0, . . . , 0,±1). As t → 0 (from
either direction), the limit of the surfaces βt = −1, in the topology of Hausdorff
convergence on compact sets, is the surface β0 = −1, which is two parallel affine
hyperplanes xn+1 = ±1. See Figure 1. If one wishes, one may define invariant
metrics on the X(βt) which transition from uniform positive curvature to uniform
negative curvature as t changes from positive to negative. However, it’s important
to note that there is no natural such continuous path of metrics defined from the
ambient geometry. In particular, the natural metric on the surfaces βt = −1 induced
by the quadratic forms βt have curvature +1 when t > 0 and curvature −1 when
t < 0 (and, of course, β0 itself does not define any metric). Hence the projective
geometry formulation of the transition from spherical to Euclidean to hyperbolic is
independent of any metric formulation.

t = −1

t = − 1
2

t = 0

t = 1
2

t = 1

Figure 1. Ellipsoids and hyperboloids defined by βt = −1 limit
as t → 0 to a pair of opposite affine hyperplanes (only one of these
planes is drawn).

3. Limits of groups

Classifying the limits of closed subgroups H of G is the central problem when
classifying the limits of a sub-geometry (Y,H) in (X,G). Thus in the next two
sections, we restrict our attention to limits of Lie groups and momentarily forget
about homogeneous spaces.

We are mainly interested in geometric limits of Lie subgroups (Definition 2.5).
However, there are other inequivalent definitions of limit of a group, and it is
helpful to understandhow they differ and when they coincide. We explore a few
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of these alternative notions in Section 3.1 and illustrate them through examples in
Section 3.2. In Section 3.3 we derive some basic properties of geometric limits of
linear algebraic Lie groups.

3.1. Various notions of limit. Let Hn be a sequence of closed Lie subgroups, of
constant dimension, of the Lie group G. We introduced the geometric limit of Hn

in Definition 2.5. Here are several related notions of limit.

(1) The connected geometric limit lim0 Hn is the connected component of the
identity in the geometric limit. In general this is different from the geomet-
ric limit of the connected component of the identity.

(2) In the specific case that Hn = cnHc−1
n are all conjugate, we may define the

local geometric limit, denoted local-limHn, as the union of the geometric
limits of conjugates cnCc−1

n of compact neighborhoods C ⊂ H of the iden-
tity. It might have smaller dimension than H. This limit is contained in
the geometric limit, but excludes conjugates of elements moving to infinity.
One may also define a notion of local geometric limit with respect to a sub-
group P ⊂ H; this means the union of geometric limits of neighborhoods
of the form P · C for C a compact neighborhood of the identity.

(3) Very much related to the local geometric limit is the notion of expansive
limit. Again, we work in the case that Hn = cnHc−1

n are all conjugate
and we consider a subgroup P ⊂ H, such that cnPc−1

n = P . A (local)
geometric limit is called an expansive limit, if every element of the limit
group L is of the form � = lim cnhnc

−1
n , for some sequence hn ∈ H with

hn → h∞ ∈ P . Intuitively, an expansive limit is a limit obtained by
blowing up an infinitesimal neighborhood of P . Expansive limits are often
the relevant limits to study in the context of collapsing geometric structures
and geometric transitions. See the discussion following Definition 2.6. In
Section 4, we will demonstrate that all limits of symmetric subgroups of
semi-simple Lie groups are expansive.

(4) The Lie algebra limit is the Lie subalgebra of g = Lie(G) obtained from
the limit of the sequence of Lie subalgebras hn ⊂ g of the subgroups Hn.
As the hn are vector subspaces of g, we may (up to subsequence) extract a
limit l, which is a vector subspace of the same dimension as the hn and in
fact a Lie subalgebra. Then l defines a local group near the identity in G
and generates a subgroup that we call a-limHn. It has the same dimension
as the Hn. Note, however, that this subgroup might not be closed. We
call the closure of a-limHn the algebraic limit, denoted a-limHn. It is a
connected Lie subgroup which might have larger dimension than the Hn.

(5) Let us mention a related, but distinct notion of limit at the level of Lie
algebras. The Lie algebra h is determined by its Lie bracket [ , ] : h×h → h.
This is a bilinear map and so is determined by its values on a basis, and thus
by a finite collection of structure constants. One may continuously change
these constants, taking care to ensure they still determine a Lie algebra, and
in this way pass between the Lie algebras of different geometries. A path
corresponding to change of bases leads to the theory, due to Inönü-Wigner,
of contractions of Lie algebras which is useful in some physics contexts [6],
[22]. This notion is independent of any embedding of h into a larger Lie
algebra.
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(6) Although we do not pursue it here, there is also a notion of geometric limit
of a Lie group that does not involve conjugacy inside a larger group. It
is based on the idea that an arbitrarily large compact subset of the limit
is almost isomorphic to a (possibly small) subset of the original group. A
Lie group L is an intrinsic limit of a Lie group G if for every compact
subset C ⊂ L and ε > 0 there is an open set U ⊂ G and an immersion
f : U −→ L such that f(U) ⊃ C and f is ε-close to an isomorphism in the
sense that if a, b, ab ∈ C there are α, β, αβ ∈ U with f(α) = a, f(β) = b
and dL(f(αβ), ab) < ε. Here dL is a metric on L. It is easy to see that if
L is a geometric limit of a closed subgroup H of a Lie group G, then L is
an intrinsic limit of H in this sense. Moreover, this definition extends in
an obvious way to pairs (H,K) with K a closed subgroup of H and gives
a notion of limit of the homogeneous geometry H/K independent of an
ambient geometry G/R.

3.2. Examples of limits of groups. We now give some examples to demonstrate
various possible behaviors of limits. In what follows we make use of three one
parameter subgroups of SL(2,R):

D(t) =

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
, R(t) =

(
cos(t) − sin(t)
sin(t) cos(t)

)
, P (t) =

(
1 t
0 1

)
,

All groups in this section will be groups of matrices, described in terms of at most
three parameters t, s, u ∈ R. Whenever one of these parameters is present, the
reader is meant to take the union over such matrices for all possible values of the
parameters. We will abuse notation as such throughout, because it is cumbersome
to write the definitions properly using set notation.

(1) Let cn=

(
n 0
0 n−1

)
. Then as n → ∞, the sequence of conjugates cnD(t)c−1

n

⊂ SL(2,R) converges (for all notions of limits introduced above) to the
parabolic subgroup P (t).

(2) In SL(2,R) the sequence of conjugates cnR(t)c−1
n , with cn as in (1), con-

verges geometrically to the parabolic subgroup ±P (t) with two connected
components. This illustrates that the geometric limit of a connected group
might not be connected.

(3) A subgroup of SL(3,R) containing non-diagonalizable elements may have
a geometric limit containing only diagonal elements:

lim
n→∞

⎛⎝ 1/n 0 0
0 n 0
0 0 1

⎞⎠⎛⎝ 1 t 0
0 1 0
0 0 e−2t

⎞⎠⎛⎝ 1/n 0 0
0 n 0
0 0 1

⎞⎠−1

=

⎛⎝ 1 0 0
0 1 0
0 0 e−2t

⎞⎠ .

(4) Next, we give an example of a one-dimensional group with a two-dimensional
conjugacy limit. Let H be the one-parameter closed subgroup of SL(4,R)
defined by

H =

(
P (t) 0
0 R(t)

)
.

The geometric limit under conjugacy by cn = diag(n−1, n, 1, 1) is two-
dimensional:

lim
n→∞

cnHc−1
n =

(
P (s) 0
0 R(t)

)
,
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where t, s are independent parameters. The group H is a one parameter
subgroup of R× S1 that looks like a helix, and conjugating by cn coils the
helix more tightly. The algebraic limit is the one-dimensional group

a- lim
k→∞

PkHP−1
k =

(
I 0
0 R(t)

)
because the limit of Lie algebras is described by:⎛⎜⎜⎝

0 n−1t
0 0

0 −t
t 0

⎞⎟⎟⎠ −−−−→
n→∞

⎛⎜⎜⎝
0 0
0 0

0 −t
t 0

⎞⎟⎟⎠ .

In fact, the local geometric limit is also strictly smaller than the geometric
limit; it coincides with the algebraic limit. This is because every element
with non-trivial entries in the P (s) block of the geometric limit comes from
a sequence of elements of H which go to infinity.

(5) To construct a limit of a connected group with infinitely many components,
consider again the group from (4):

H =

(
P (t) 0
0 R(t)

)
.

The geometric limit under conjugacy by the sequence cn = diag(1, 1, n, n−1)
is

L =

{(
P (Nπ) 0

0 (−1)NP (t)

)
: N ∈ Z, t ∈ R

}
and this has countably many components.

(6) Next, here is an example where the conjugacy limit of a group is a proper
subgroup of itself. Consider the group L from (5). Now conjugate L by the
sequence cn = diag(n, n−1, 1, 1). The limit is:

L′ =

(
I2 0
0 P (t)

)
.

(7) The following subgroup of GL(6,R) has infinitely many non-conjugate geo-
metric limits. Fix α and define

H = H(s, t) =

⎛⎜⎜⎜⎜⎝
es 0 0 0 0
0 et 0 0 0
0 0 1 s t
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ , cn =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 n αn
0 0 0 n n−1 + αn

⎞⎟⎟⎟⎟⎠ .

Then

cnHc−1
n =

⎛⎜⎜⎜⎜⎝
es 0 0 0 0
0 et 0 0 0
0 0 1 n−1 + n(αs− t) −n(αs− t)
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ .
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The limit as n → ∞ is the two-dimensional group

Lα = Lα(s, u) =

⎛⎜⎜⎜⎜⎝
es 0 0 0 0
0 eαs 0 0 0
0 0 1 u −u
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ .

Consideration of the character shows that if α �= β, then Lα is not conjugate
to Lβ .

(8) We modify the previous example to obtain algebraic limit groups. For
β ∈ R define a two-dimensional representation of R2 by

σβ : R2 −→ SL(2,R) σβ(x, y) =

(
1 βx− y
0 1

)
,

and define also the three-dimensional representation of R2, by

τ (s, t) =

⎛⎝1 s t
0 1 0
0 0 1

⎞⎠ .

Now define a three parameter algebraic subgroup H(r, s, t) of SL(11,R) as
a direct sum of representations

H(r, s, t) = σ0(r, s)⊕ σ1(r, s)⊕ σ2(r, s)⊕ σ1(t, r)⊕ τ (s, t).

Let cn = Id9⊕bn, where bn =

(
n αn
n n−1 + αn

)
. Then the limit of H under

conjugacy by cn is the algebraic group

Lα(r, s, u) = σ0(r, s)⊕ σ1(r, s)⊕ σ2(r, s)⊕ σ1(αs, r)⊕ τ (u,−u).

We claim that the function which sends α ∈ R to the conjugacy class of Lα

is finite to one. This requires an invariant.
Given a unipotent representation ρ : RN −→ SL(k,R) and 0 �= x ∈ RN ,

the nullity of (ρ(x) − Id) only depends on [x] ∈ RPN−1. This defines a
function Nρ : RPN−1 −→ {0, 1, · · · , k}. If ρ and ρ′ have conjugate images
there is a projective transformation T ∈ PGL(N,R) such thatNρ′ = Nρ◦T .

Thinking of Lα, in the above example, as a representation of R3 in terms
of the parameters r, s, u, we have that NLα

([r : s : u]) = 8 iff u = 0 and
[r : s] is one of four points

[1 : 0], [1 : 1], [1 : 2], [1 : α],

on the projective line [∗ : ∗ : 0] in RP 2. The cross ratio of {0, 1, 2, α}, up
to the action of the finite group that permutes these points, provides an
invariant which shows there is a continuum of non-conjugate Lα.

3.3. Properties of limits. As we saw in the previous section, it is possible for the
dimension of a subgroup to increase under taking limits. However, in the algebraic
setting, this does not happen. Therefore, in this setting, the connected component
of the geometric limit (the connected geometric limit) is equal to the Lie algebra
limit (the group generated by taking the limit at the Lie algebra level first and
then exponentiating). For background in algebraic geometry and, in particular, the
definition of degree of a variety we use see [25] section 5A.
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Proposition 3.1. Let G be an algebraic group (defined over C or R). Suppose that
H is an algebraic subgroup and L a conjugacy limit of H. Then L is algebraic and
dimL = dimH.

Proof. Suppose cn ∈ G and Hn = c−1
n Hcn converges in the Chabauty topology

to a subgroup L. Assume, for contradiction, that dimL > dimH. Then for every
neighborhood U of the identity in G the number of connected components of U∩Hn

goes to infinity as n → ∞. Let V be a variety of dimension dimG− dimH passing
through the identity, and smooth there. Choose V so that it is transverse to each
Hn (for n sufficiently large) in a fixed neighborhood U of the identity. The set
V ∩Hn ∩ U is a finite set of points, with cardinality going to infinity as n goes to
infinity. However, this is impossible, because the degree of the variety V is constant
and the degree of the varieties Hn is also constant equal to that of H. Therefore,
the degree of V ∩Hn is bounded and the cardinality of the finite sets V ∩Hn ∩ U
must also be bounded.

In the case G is defined over C, the fact that the limit group L is algebraic follows
from a theorem of Tworzewski and Winiarski [31] using work of Bishop [3]. They
showed that the set of all pure dimensional algebraic subsets of Cn of bounded
degree is compact in the topology of local uniform convergence. From this one may
deduce the case G is defined over R by complexification. �

In particular, Proposition 3.1 holds when G is the general or special linear group
over R or C and also when G = PGL(n,R), which are the main cases of interest in
this article. For the last case observe that PGL(n,R) is isomorphic to the algebraic
subgroup that is the image of SL±(n,R) in SL(n(n+ 1)/2,R) given by the action
on quadratic forms.

Next, we investigate the behavior of multiple limits taken in succession, with
the goal of showing that the relation “L is a limit of H” induces a partial order
of the space of closed subgroups of G. To begin, we study the behavior of the
normalizer. Given a closed subgroup H of G, let H0 denote its identity component.
The normalizer of H0 in G will be denoted NG(H0).

Proposition 3.2. Let G be an algebraic Lie group (defined over C or R), let H be
an algebraic subgroup, and let L be any conjugacy limit of H. Then dimNG(H0) ≤
dimNG(L0) with equality if and only if L and H are conjugate.

Proof. Let h and l denote the Lie algebras of H and L, respectively. Then the
normalizers NG(H0) and NG(L0) are equal to the normalizers of the respective Lie
algebras NG(h) and NG(l). By Proposition 3.1, dim h = dim l =: k. So h and l

define points in the projectivization PV of the kth exterior power V = Λkg. The
orbit G ·h under the adjoint action of G is a smooth subset of PV corresponding to
the Lie algebras of conjugates of H. The closure (in the classical topology) G · h,
which contains l, is a union of G · h and orbits of strictly smaller dimension (in the
case that G is defined over R, this follows because the orbit G · h is semi-algebraic
by the Tarski-Seidenberg theorem; see [2] Theorem (1.5)). If l ∈ G · h, then L is
conjugate to H and, of course, NG(L0) is conjugate to NG(H0). Assume then that
l ∈ G · h \G · h, so that dimG · l < dimG · h. Then

dimNG(l) = dimG− dimG · l
> dimG− dimG · h = dimNG(h).

�
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Let Grp0(G) denote the set of conjugacy classes of connected, algebraic, Lie
subgroups of an algebraic Lie group G. If L is the connected geometric limit of H
under some sequence of conjugacies (so L is the identity component of a limit of
H), then we write H →0 L.

Theorem 3.3. Let G be an algebraic Lie group. The relation of being a con-
nected geometric limit induces a partial order on the connected, algebraic, sub-
groups Grp0(G). Moreover, the length of every chain is at most dimG.

Proof. It follows from Proposition 3.2 that H →0 L and L →0 H implies L is con-
jugate to H. It remains to show transitivity. Suppose limHn = L and K = limLm

with Hn = anHa−1
n and Lm = bmLb−1

m . Let C(G) denote the closed subgroups of
G, equipped with the Chabauty topology (i.e., the topology of Hausdorff conver-
gence in compact sets). The map θm : C(G) −→ C(G) given by θm(P ) = bmPb−1

m

is continuous. Hence limn→∞ θm(Hn) = Lm in C(G). It follows there is a sequence
θmn

(Hn) which converges to K in C(G). �

Now we restrict our attention to the case when G is locally isomorphic to GLnR.
If L is a limit of H, the eigenvalues of elements of L are related to those of H. This
leads to an obstruction to L being a limit of H. The idea is that under degeneration
eigenvalues either are unchanged or degenerate.

An element A of gln = End(Rn) has a well-defined characteristic polynomial,
denoted char(A), which is an element of the vector space Rn[x] of polynomials of
degree at most n. Given a Lie subalgebra h of gl, we denote by Char(h) the closure
(in the classical topology) of the subset of Rn[x] consisting of characteristic polyno-
mials of all elements in h. Thus Char(h) is closed and invariant under conjugation
of h.

Proposition 3.4. Suppose H is a closed algebraic subgroup of GLnR, and L is a
conjugacy limit of H. Then Char(l) ⊂ Char(h), where h, l ⊂ gl(n) denote the Lie
algebras of H and L, respectively.

Proof. Suppose p(x) = char(�) for some � ∈ l. By assumption we have that
ckHc−1

k → L and since H is an algebraic subgroup, we have convergence at the Lie
algebra level as well: Adckh → l. Hence, there exists a sequence hk ∈ h so that
Adckhk → � as k → ∞. The characteristic polynomials char(hk) = char(Adckhk)
then converge to char(�) and therefore char(�) ∈ Char(h) since Char(h) is closed.

�

For example, if P (t) and R(t) are the one parameter subgroups of GL2R de-
scribed in Section 3.2, and p and r denote their respective Lie algebras, then
Char(r) = {x2 + θ2 : θ ∈ R} while Char(p) = {x2}. Proposition 3.4 implies
that R(t) is not a limit of P (t). This also follows from Theorem 3.3 because P (t)
is a (connected) limit of R(t) and they are not conjugate (see example (2) from
Section 3.2).

We conclude this section by applying Proposition 3.4 to prove that H2 × R

geometry is not contained in any limit of hyperbolic geometry, when both are
considered as sub-geometries of projective geometry. A more general statement on
which Thurston geometries can arise as limits of hyperbolic geometry will be given
in Theorem 1.3.
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Proposition 3.5. Isom+(H
2 × R) is not a subgroup of a limit of PO(3, 1) in

GL(4,R) and, therefore, H2 × R is not a sub-geometry of any limit of hyperbolic
geometry inside of projective geometry.

Proof. The (almost) embedding of H2 × R geometry in RP3 geometry represents
the isometries of H2 × R which preserve the orientation of the R direction as

Isom+(H
2 × R) =

{(
etA 0
0 e−3t

)
: A ∈ SO(2, 1), t ∈ R

}
.

The Lie algebra is described by

isom+(H
2 × R) =

{(
tI3 + a 0

0 −3t

)
: a ∈ so(2, 1), t ∈ R

}
.

We remark that any local embedding of H2×R in real projective geometry is isomor-
phic to this one. This follows from the fact that the infinitesimal action of the sub-
algebra so(2, 1) ∼= sl2R ⊂ isom+(H

2 × R) on RP3 must preserve a two-dimensional
foliation of an open ball. There is one irreducible representation of sl2R in each
dimension and any representation sl2R → gl4R is a direct sum of irreducibles. The
only representation of sl2R with the desired infinitesimal action is the direct sum
of the three-dimensional representation and the trivial one-dimensional representa-
tion. The action of the central R summand of isom+(H

2 × R) ∼= so(2, 1)⊕ R must
commute with the action of so(2, 1).

The eigenvalues of elements of the Lie subalgebra isom+(H
2 ×R)gl(4) are of the

form t, t+ λ, t− λ,−3t with λ2 ∈ R. The set of characteristic polynomials is:

Char(isom+(H
2 × R)) = {(x− t)((x− t)2 − λ2)(x+ 3t) : t, λ2 ∈ R}.

On the other hand, the isometries of H3 in the projective model are PO(3, 1) and

Char(so(3, 1)) = {(x2 − λ2)(x2 + θ2) : λ, θ ∈ R}.

Inspection of these two sets and an application of Proposition 3.4 proves the claim.
�

4. Symmetric subgroups

We turn now to a special class of Lie groups and their subgroups, namely semi-
simple Lie groups G with finite center and their symmetric subgroups H. We will
give an explicit description of the conjugacy limits of such symmetric subgroups and
a more descriptive version of Theorem 1.1 in Section 4.1. Then, Sections 4.2–4.7
are dedicated to symmetric subgroups of the (projective) general linear group and
their limits.

4.1. Symmetric subgroups in a semi-simple Lie group. Let G be a connected
semi-simple Lie group of non-compact type and with finite center. Let σ : G → G
be an involutive automorphism, i.e., σ is a continuous automorphism with σ2 = 1.
The subset of fixed points

Gσ = {g ∈ G : σ(g) = g }

is a closed subgroup of G. A closed group H with Gσ
0 ⊂ H ⊂ Gσ, where Gσ

0 denotes
the connected component of the identity, is called a symmetric subgroup of G. The
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quotient space G/H is an affine symmetric space. Let us give some examples of
affine symmetric spaces:

• When H = K is a maximal compact subgroup, K = Gθ, for θ a Cartan
involution. The quotient G/K is a Riemannian symmetric space.

• When G = L × L, σ : L × L → L × L is defined by σ(x, y) = (y, x) and
H = Gσ = Diag(L) is the diagonal, then G/H ∼= L, via (l1, l2) �→ l1l

−1
2 .

• Let G = PO(p, q), let σ be conjugation by the matrix J defined in standard
coordinates by J(x1, x2, . . . , xp+q) = (−x1, x2, . . . , xp+q). Then H = Gσ is
a copy of O(p− 1, q). The affine symmetric space

X(p, q) = PO(p, q)/O(p− 1, q)

is a model space for semi-Riemannian manifolds of signature (p− 1, q) and
of constant curvature −1. The geometries (X(p, q),PO(p, q)) are in fact
sub-geometries of real projective geometry (RPp+q−1,PGLp+q R). We will
describe their limiting geometries explicitly in Section 5.

• The symmetric subgroups of PGLn R are P(GLpR ⊕ GLqR) and PO(p, q)
where p+q = n, or P(GLmC) and P(Sp(2m,R)) where n = 2m, where for a
subgroup H ′ ⊂ GLnR, P(H

′) denotes the image of H ′ under the projection
GLnR → PGLn R. See Section 4.3.

In order to describe the conjugacy limits of symmetric subgroups, we will make
use of the rich structure theory of affine symmetric spaces and symmetric subgroups.
In order to keep the presentation concise we recall only the necessary details of the
structure theory and refer the reader for more details and proofs to [1,19,26,29]. We
denote by g and h the Lie algebra of G andH, respectively, and let the differential of
σ, an involution of g, be again denoted by σ : g → g. Then h is the +1 eigenspace of
σ and we denote the −1 eigenspace by q. This gives the orthogonal decomposition

g = h⊕ q.

Note also that [h, q] ⊂ q, [q, q] ⊂ h.
There exists a Cartan involution θ : g → g, which commutes with σ. We denote

by K = Gθ the maximal compact subgroup of G given by the fixed points of
θ and we let g = k ⊕ p be the corresponding Cartan decomposition of g. Since
the involutions σ, θ commute, the following decomposition is preserved by both
involutions:

g = k ∩ h⊕ k ∩ q⊕ p ∩ h⊕ p ∩ q.

Next, we may choose a maximal abelian subalgebra a ⊂ p so that the intersection
b = a ∩ q is a maximal abelian subalgebra of p ∩ q. Note that b is unique up to
the adjoint action of H ∩K. We let A := exp(a) be the corresponding connected
subgroup of G and B := exp(b) ⊂ A. Note that in some cases b = a while in
others the containment is strict. The following is well known (see, for example,
Proposition 7.1.3 of [19]).

Theorem 4.1 (KBH decomposition). For any g ∈ G there exists k ∈ K, b ∈ B
and h ∈ H, such that g = kbh. Moreover, b is unique up to conjugation by the
Weyl group WH∩K := NH∩K(b)/ZH∩K(b).

Remark 4.2. This factorization theorem will be our main tool in determining the
limits of H. In the case G = PGLn R, this is equivalent to a matrix decomposition
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theorem for GLnR. Furthermore, in this case we may conjugate so that A is a sub-
group of diagonal matrices. Hence every conjugacy limit of a symmetric subgroup
H < PGLn R is conjugate to a conjugacy limit by a sequence of diagonal matrices.

Using Theorem 4.1, we prove Theorem 1.1 from the introduction, restated here
for convenience.

Theorem 1.1. Let H be a symmetric subgroup of a semi-simple Lie group G with
finite center. Then for any geometric limit L′ of H in G, there exists X ∈ b, so
that L′ is conjugate to the limit group L = limt→∞ exp(tX)H exp(−tX) obtained
by conjugation by the one parameter group generated by X. Furthermore,

L = ZH(X)�N+(X),

where ZH(X) is the centralizer in H of X, and N+(X) is the connected nilpotent
subgroup

N+(X) := {g ∈ G : lim
t→∞

exp(tX)−1g exp(tX) = 1}.

Proof. Let (cn) ⊂ G be a sequence and L = limn→∞ cnHc−1
n . By Theorem 4.1, we

may factorize cn = knbnhn, where kn ∈ K, bn ∈ B, hn ∈ H. Then,

cnHc−1
n = knbnhnHh−1

n b−1
n k−1

n

= knbnHb−1
n k−1

n .

We may assume, after passing to a subsequence, that kn → k ∈ K, so it follows that
cnHc−1

n converges if and only if bnHb−1
n converges and their limits are conjugate by

k. Hence we assume that kn = 1 = hn and consider only conjugacies by sequences
(bn) ∈ B.

Consider the set of roots

Σ(g, a) := {α ∈ a
∗ | there exists non-zero Z ∈ g with ad(X)(Z)

= α(X)Z, for all X ∈ a}.
Denote by gα := {Z ∈ g | ad(X)(Z) = α(X)Z, for all X} the root spaces and let
g =

∑
α∈Σ(g,a) gα be the corresponding root space decomposition of g. Choose

a basis for g compatible with this root space decomposition. We work with the
adjoint representation Ad : G → GL(g) ∼= GL(N), expressed in this basis, which
takes the subgroup B to a subgroup of diagonal matrices in GL(N). The diagonal
entries Ad(bn)ii of Ad(bn) are positive, and we may assume they are arranged in
increasing order: Ad(bn)jj ≥ Ad(bn)ii for all n and j > i. Further, we may assume
that for consecutive indices j = i+1, the diagonal entries of Ad(bn) satisfy exactly
one of the following:
(1){

• Ad(bn)jj = Ad(bn)ii holds for all n, or
• Ad(bn)ii < Ad(bn)jj holds for all n, and Ad(bn)jj/Ad(bn)ii→∞ as n→∞.

For if Ad(bn)jj/Ad(bn)ii remains bounded we may multiply (bn) by a sequence
(b′n) ⊂ B which remains in a compact subset of B so that the above holds; the
resulting limit differs only by conjugation (by the limit of b′n).

Now consider a sequence (hn) ⊂ H, so that bnhnb
−1
n → � ∈ L. Then, the matrix

entries

Ad(bnhnb
−1
n )ji =

Ad(bn)jj
Ad(bn)ii

Ad(hn)ji
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converge to Ad(�)ji as n → ∞. We therefore have that, for i ≤ j,

(2)

{
Ad(hn)ji −→ Ad(�)ji if Ad(bn)ii = Ad(bn)jj , or

Ad(hn)ji −→ 0 if
Ad(bn)jj
Ad(bn)ii

→ ∞ as n → ∞.

This gives us information about the block lower diagonal entries of Ad(hn). We
use the involution σ to obtain control over the block upper diagonal matrix entries.
Note first that the involution σ satisfies Ad(σ(bnhnb

−1
n ))ji = Ad(b−1

n hnbn)ji. Now
σ(bnhnb

−1
n ) → σ(�) as n → ∞ and, therefore, the matrix entries

Ad(σ(bnhnb
−1
n ))ji = Ad(b−1

n hnbn)ji

=
Ad(bn)ii
Ad(bn)jj

Ad(hn)ji

also converge. Then, similar to the above, we conclude that, for i ≥ j:

(3)

{
Ad(hn)ji −→ Ad(�)ji if Ad(bn)ii = Ad(bn)jj , or

Ad(hn)ji −→ 0 if
Ad(bn)jj
Ad(bn)ii

→ 0 as n → ∞.

Therefore, we conclude that Ad(hn) converges, and because G → Ad(G) is proper
(because Z(G) is finite), we may take a subsequence so that hn → h∞ as n → ∞,
where

(4)

{
Ad(h∞)ji = Ad(�)ji if Ad(bn)ii = Ad(bn)jj .
Ad(h∞)ji = 0 if Ad(bn)ii �= Ad(bn)jj .

In other words, Ad(h∞) belongs to the centralizer ZGL(N)(Ad(bn)). It follows that

h∞ ∈ ZH(bn).

This is because the commutator of h∞ with bn is in the kernel of Ad. However, bn
lies in a one parameter group that commutes with h∞ so their commutator lies in
a connected, hence trivial, subgroup of the center of G. In the above expressions,
note that ZGL(N)(Ad(bn)) and ZH(bn) are independent of n by the assumption (1)
on the sequence (bn).

Observe that ZH(bn) ⊂ L. In fact, we have shown that L is an expansive limit
of H about the subgroup ZH(bn) (see Section 3.1). From the above arguments, we
may also conclude that

Ad(�)ji = lim
n→∞

Ad(bn)jj
Ad(bn)ii

Ad(hn) = 0

in the case that Ad(bn)jj/Ad(bn)ii → 0. It then follows that Ad(b−1
n �bn) → Ad(h∞)

because
(5)

Ad(b−1
n �bn)ji =

Ad(bn)ii
Ad(bn)jj

Ad(�)ji

⎧⎨⎩
= Ad(h∞)ji if Ad(bn)ii = Ad(bn)jj
= 0 = Ad(h∞)ji if Ad(bn)jj < Ad(bn)ii
−→ 0 = Ad(h∞)ji if Ad(bn)jj > Ad(bn)ii.

Hence b−1
n �bn → h′

∞ ∈ ZH(bn) (in fact, h′
∞ = h∞, but we have only shown

Ad(h∞) = Ad(h′
∞)). Therefore, b−1

n (h′
∞)−1�bn → 1 as n → ∞ and, therefore,

(h′
∞)−1� lies in the group

N+ := {g ∈ G : b−1
n gbn → 1 as n → ∞}.

It follows that

(6) L ⊂ 〈ZH(bn), N+〉 = ZH(bn)�N+.



LIMITS OF GEOMETRIES 6605

We next show equality. We have that L = ZH(bn)�N ′ where N ′ = N+∩L ⊂ N+ is
a closed subgroup. We also have that N+ is connected because N+ is preserved by
conjugation by B, and conjugation by b−1

n , for large n, brings elements arbitrarily
close to the identity; hence all elements are in the identity component. So equality
in (6) will follow by showing that dimN+ + dimZH((bn)) = dimH since dimL ≥
dimH (indeed dimL = dimH then follows, though it can also be concluded from
Proposition 3.1). We show this at the Lie algebra level. Observe that g = z+n++n−
where

z = {Y ∈ g : Ad(bn)Y = Y for all n},
n+ = {Y ∈ g : Ad(b−1

n )Y → 0 as n → ∞},
n− = {Y ∈ g : Ad(bn)Y → 0 as n → ∞}.

The involution σ fixes z, and exchanges n+ and n−. Therefore, n+ and n−
have the same dimension and the dimension of the +1 eigenspace h of σ is equal
to dim z + dim n+ while the dimension of the −1 eigenspace is dim n+. Since z

is the Lie algebra of ZH(bn) and n+ is the Lie algebra of N+, we conclude that
L = ZH(bn)�N+. Observe that Ad(N+) is upper triangular and, therefore, N+ is
nilpotent.

The proof now concludes by observing that any sequence (bn) ⊂ B whose eigen-
values satisfy the above assumptions (1) will produce exactly the same limit. In
particular, let X = log(bm) for some m. Then conjugating H by the sequence
b′n = exp(tnX), also produces L as the limit for any sequence of reals (tn) such that
tn → ∞. In this case ZH(exp(tnX)) = ZH(X) and this implies the claim. �

The proof of Theorem 1.1 shows that the limit is determined up to conjugacy
by an ordered partition of the numbers {1, . . . , N}. Hence there are finitely many
limits, up to conjugacy, of a symmetric subgroup H of G. We now introduce some
notation in order to enumerate these limits. Consider the root system Σ(g, b) ⊂ b∗

defined by the adjoint action of b on g. The Weyl group W = NK(b)/ZK(b) acts
on b; it is the group generated by reflections in the hyperplanes determined by the
roots. We may similarly consider the adjoint action of b on the smaller Lie algebra
gτ := h ∩ k ⊕ p ∩ q; this is the Lie algebra of the symmetric subgroup defined by
the involution τ = σθ. Then the corresponding root system Σ(gτ , b) is contained
in Σ(g, b), and the corresponding Weyl group WH∩K := NH∩K(b)/ZH∩K(b) is a
subgroup ofW . Let Σ+ ⊂ Σ(g, b) denote a system of positive roots, and let Δ ⊂ Σ+

be a choice of simple roots. Define:

b
+ = {Y ∈ b : α(Y ) > 0 for all α ∈ Δ}, B+ = exp b+,

b+ = the closure of b+, B+ = exp b+.

Then b+ is the closed Weyl chamber corresponding to Σ+; it is (the closure of) a
fundamental domain for the action of W . A closed Weyl chamber for the action
of WH∩K is then given by a union W · b+ of translates of b+ by a set W of coset
representatives for the quotient W/WH∩K .

By Theorem 4.1, any element g ∈ G may be decomposed as g = kbh, where
k ∈ K, b ∈ B, h ∈ H. There exists w1 ∈ WH∩K so that the conjugate w−1

1 bw1 lies

in the exponential image of the closed Weyl chamber W · b+. Therefore, w−1
1 bw1 =

w−1b+w where b+ ∈ B+ and w ∈ W . Therefore, we may write

g = k′b+wh′,
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where k′ = kw1w
−1 and h′ = w−1

1 h. Here b+ ∈ B+ and w ∈ W are uniquely
determined.

It follows that any limit of H may be obtained by conjugating by a sequence
in B+w for some w ∈ W . We next apply these observations in combination with
Theorem 1.1 to obtain an enumeration of the limit groups in terms of the element
w and the behavior of the sequence in B+. Let I ⊂ Δ be a subset, and Σ+

I the
span of Δ− I in Σ+. We set

bI =
⋂
α∈I

ker(α) ⊂ b, BI = exp(bI),

b
+
I =

⋂
α∈I

ker(α) ∩
⋂

α∈Δ−I

{X ∈ b |α(X) > 0}, B+
I = exp(b+I ).

Theorem 4.3. Let H be a symmetric subgroup of a semi-simple Lie group G with
finite center. Let L be a limit of H under conjugacy in G. Then L is conjugate to
a subgroup of the form

LI,w = ZHw
(bI)�NI ,

where w ∈ W and I ⊂ Δ is a subset of the set of simple roots Δ ⊂ Σ(g, b).
Here, Hw := wHw−1 and NI is the connected subgroup of G with Lie algebra
nI =

∑
α∈Σ+

I
gα. Further, any LI,w is achieved as a limit.

Proof. By Theorem 1.1, we may assume (after conjugating) that L = ZH(X) �
N+(X) for some X ∈ b. Define

I = {α ∈ Δ : α(X) = 0}
and let u ∈ WH∩K and w ∈ W be such that X ′ := Ad(wu)X lies in b+. Note that,
in fact, X ′ lies in b

+
I . Then, we have

ZH(X) = ZH(Ad(u−1w−1)X ′) N+(X) = N+(Ad(u−1w−1X ′)

= u−1w−1ZHwu
(X ′)wu = u−1w−1N+(X

′)wu

= (wu)−1ZHw
(X ′)wu = (wu)−1N+(X

′)wu,

where in the last step Hwu = Hw because u ∈ H. Therefore, L is conjugate
to ZHw

(X ′) � N+(X
′). Now, it’s clear that N+(X

′) = NI because their Lie al-
gebras agree. The Lie algebra of N+(X

′) consists of all elements Y ∈ g such
that Ad(exp(−tX ′))Y → 0 as t → ∞; this is exactly the span of the root spaces
gα for which α(X ′) > 0, in other words α ∈ Σ+

I . It remains to show that

ZHw
(X ′) = ZHw

(b+I ). The following lemma will complete the proof. �

Lemma 4.4. Let Y1, Y2 ∈ b
+
I . Then ZG(Y1) = ZG(Y2).

Proof of Lemma 4.4. By replacing G by Ad(G) ∼= G/Z(G), we may assume G is
an algebraic subgroup of GL(N). Let S1 and S2 denote the Zariski closures of the
one parameter subgroups generated by Y1 and Y2, respectively. Then S1 and S2 are
R-tori. Therefore, ZG(Y1) = ZG(S1) and ZG(Y2) = ZG(S2) are Zariski connected
closed subgroups of G. It follows that ZG(Y1) = ZG(Y2) since both groups have
the same Lie algebra. �

Corollary 4.5. Let Δ be a set of simple positive roots in Σ(g, b), let S denote
the power set of Δ, and let W denote a set of representatives of W/WH∩K . Let
us denote by L(H) the conjugacy classes of limits of H in G. Then there is a
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surjection from S × W onto L(H). In particular, there are up to conjugacy only
finitely many limits of H in G.

Remark 4.6. The map of S×W onto L(H) is in general not injective. For example
if I = ∅, then LI,w is conjugate to LI,w′ for any w,w′ ∈ W . The conjugacy classes
of limits can be labeled, with less redundancy, in the following way. First, two
subsets I1, I2 ⊂ Δ give rise to conjugate limit groups LI1,1, LI2,1 if and only if
I1 = I2. Next, consider a fixed subset I ⊂ Δ. Let WI ⊂ W be the subgroup of
the Weyl group which acts trivially on bI . Then for any w ∈ W and u ∈ WI , the
limit groups LI,w and LI,uw are conjugate. Let WI be a set of representatives of
the double cosets WI\W/WH∩K . For I = ∅, WI is trivial, so WI = W . Then the
pairs (I, w), where I ∈ S and w ∈ WI give all possible limits LI,w of H. We note
that this finer enumeration may still have some redundancy; see Remark 4.11.

Remark 4.7. Taking a different point of view, a more detailed analysis of the limits
under conjugation can lead to a description of the Chabauty-compactification of
the affine symmetric space X = G/H. The Chabauty-compactification is defined
as follows. Consider the continuous map φ : X = G/H −→ C(G), which sends
the left coset gH to the closed subgroup gHg−1. Since C(G), endowed with the
Chabauty topology is compact, the closure of φ(X) defines a compactification of
X, called the Chabauty-compactification [7].

In the case when H = K is a maximal compact subgroup the Chabauty-
compactification of G/K was determined by Guivárch, Ji, and Taylor [17] and
Haettel [18]. They also show that the Chabauty-compactification of G/K is home-
omorphic to the maximal Furstenberg-compactification.

The similarities of the above analysis with the definition of the maximal Satake-
compactification of G/H as defined in [16, Theorem 4.10] suggests that such a
homeomorphism might also hold for affine symmetric spaces.

4.2. Limits of symmetric subgroups of G = PGLn K and G = SLn K. We are
mainly interested in classifying the limits of sub-geometries of projective geometry
whose structure group H is a symmetric subgroup of G = PGLn K, with K = R

or C. So we now apply Theorem 4.3 to the setting of symmetric subgroups in
the projective linear group. However, we note that everything described in this
section can be easily adapted to the (very similar) case G = SLn K. We may choose
coordinates so that the Cartan involution θ on G that commutes with σ is the
standard one, i.e., θ(X) = X−T is the transpose inverse of a matrix X in the case

of PGLn R or θ(X) = X
−T

is the conjugate inverse transpose of a matrix X in the
case of PGLn C. Then, thinking of the Lie algebra g as trace-less n×n matrices, we
may choose the Cartan subalgebra a to be the trace-less (real) diagonal matrices
and so the algebra b from the previous section is a subspace of trace-less diagonal
matrices. These coordinates are particularly nice for calculating limit groups.

Let X ∈ b, and let E0, . . . , Ek be the eigenspaces of X, listed in order of in-
creasing eigenvalue. Consider the partial flag F = F(X), defined to be the chain
of subspaces V0 ⊃ V1 ⊃ . . . ⊃ Vk, where

Vj = Ej ⊕ · · · ⊕ Ek
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and by convention, we take Vk+1 = {0}. We define the partial flag group PGL(F)
to be the subgroup of PGLn R which stabilizes F . There is a natural surjection

πF : PGL(F) −→ P
( k⊕

i=0

GL(Vi/Vi+1)
)
,

where on the right-hand side, P denotes the projection GLn → PGLn. We call the
group U(F) = ker(πF ) the flag unipotent subgroup. It is connected and unipotent,
however, in general it is not maximal among unipotent subgroups of PGL(F). Here
is a simple corollary of Theorem 1.1:

Corollary 4.8. Let L = ZH(X) � N+(X) be any limit of H ⊂ PGLn R as in
Theorem 1.1, where X ∈ b. Then L ⊂ PGL(F), where F = F(X) is defined as
above. Further, the group ZH(X) consists of all elements of H which preserve the
decomposition Rn = E0 ⊕ · · · ⊕ Ek, while N+(X) = UF . So, in a basis respecting
the decomposition Rn = E0 ⊕ · · · ⊕ Ek, every element of L has the form:⎛⎜⎜⎜⎜⎝

A0 0 0 · · · 0
∗ A1 0 · · · 0
∗ ∗ A2 · · · 0
· · · · · · · · · · · · · · ·
∗ ∗ ∗ · · · Ak

⎞⎟⎟⎟⎟⎠
where diag(A0, . . . , Ak) ∈ H∩P(GL(E0)⊕· · ·⊕GL(Ek)) and each ∗ denotes a block
which may take arbitrary values.

Proof. That ZH(X) consists of all elements of H that preserve the eigenspaces of
X is clear. Next, we examine the action by conjugation of exp(tX) on PGLn.
Writing an element g ∈ PGLn K in block form with respect to the decomposition
Kn = E0 ⊕ · · · ⊕ Ek, we see that conjugation by exp(−tX) multiplies the (i, j)
block by the scalar e−t(di−dj), where di is the ith eigenvalue of X with eigenspace
Ei. Therefore, exp(−tX)g exp(tX) → 1 as t → ∞ if and only if g ∈ PGL(F) and
πF(g) = 1. �

4.3. Symmetric subgroups of G = GLnR. Although the general linear group
GLnR is not semi-simple, we abuse terminology and call a subgroup H < GLnR

symmetric if there exists an involution σ, commuting with the Cartan involution θ,
such that H is the set of fixed points of σ. It is sometimes more convenient to work
with symmetric subgroups in GLnR than with symmetric subgroups in PGLn R or
SLn R. Theorems 1.1 and 4.3 do not directly apply in this setting. However, one
may determine the limits of a symmetric subgroup H of GLnR by applying the
theorems to either the image PH under the projection P : GLn → PGLn, or to
H ∩ SLn R. This strategy will be employed in the following sections.

We now list the symmetric subgroups of GLnR. Any involution of GLnR com-
mutes with a Cartan involution θ. So, we take θ to be the standard Cartan in-
volution, given by θ(X) = X−T and give a list of all involutions that commute
with θ.

(1a) First, there are inner involutions of the form σ(X) = JXJ−1, where J =
−Ip⊕ Iq for some p+ q = n. Note that J2 = Id and J ∈ K, so σ commutes
with θ. In this case the symmetric subgroup of fixed points of σ is:

Hσ = ZGLnR(J) = GLpR⊕GLqR.



LIMITS OF GEOMETRIES 6609

(1b) For n = 2m even, let J be the complex structure on R2m given by m copies
of the standard complex structure on R2:

J =
⊕
m

[
0 −1
1 0

]
.

Again, J is orthogonal, so the involution σ defined by σ(X) = JXJ−1

commutes with θ. Then,

Hσ = ZGLnR(J) =: GLmC.

(2) Of course there is the Cartan involution θ itself. In this case Hθ = O(n).
(3) Let φ be the involution defined by φ(X) = | detX|−2/nX. Then Hφ =

SL±
n R := {A ∈ GLnR : detA = ±1}.

(4) Assume n = 2m is even. Let ϕ be the involution that is the identity on
matrices of positive determinant and multiplication by −1 on matrices of
negative determinant. Then Hϕ = GL+

nR =: {A ∈ GLnR : detA > 0} is
the identity component of GLnR.

(5) In fact, θ, φ, and ϕ commute with each other and with any inner involution
σ of type (1a) or (1b). So if ε1, ε2, ε3 ∈ {0, 1} and σ is any inner involution
of type (1a) or (1b), then τ = σθε1φε2ϕε3 defines an involution.

Since the involutions of types (3) and (4) are not so interesting, we will be most
interested in the inner involutions σ of type (1a) and (1b) and their products τ = σθ
with the Cartan involution. If σ is an inner involution of type (1a), then Hτ is the
orthogonal group:

Hτ = O(p, q).

If σ is an inner involution of type (1b), then Hτ is the symplectic group:

Hτ = Sp(2m,R).

Proposition 4.9. Every continuous involution of GLnR is conjugate to one listed
above.

Proof. The outer (continuous) automorphism group of SLn R is cyclic of order 2
generated by the Cartan involution θ for n ≥ 3 and trivial otherwise (see Theo-
rem 4.5 of [9]). Since GLnR ∼= SL±

n ×R, it follows that the outer automorphisms
of the identity component GL+

nR are Out(GL+
nR)

∼= Z2 × Aut(R), generated by θ
and φ. If n is even, then there is exactly one non-trivial outer involution of GLnR

which fixes the identity component, namely ϕ. If n is odd, there are no such outer
involutions.

Every inner involution is given by conjugation by some J with J2 central. We
may assume det J = ±1. Then J is conjugate to one of the matrices listed. �

We next apply Theorem 4.3 to determine the limits in the most interesting cases.

4.4. Limits of GLmC in GL2mR. Consider the involution σ of GL2mR defined by
σ(X) = JXJ−1, where

J =

(
0 Im

−Im 0

)
.

Then the fixed point set of σ naturally identifies with the group GLmC. The
standard basis e1, . . . , em, em+1, . . . , e2m is compatible with the complex structure J
in the sense that ej+m = Jej and ej = −Jej+m. Note that the center Z(GL2mR) is
contained in GLmC. Therefore, to determine the limits of GLmC inside of GL2mR,
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we pass to the projective general linear group via the quotient map P : GL2mR →
PGL2m R. The image of GLmC is the subgroup H = P(GLmC) ∼= GLmC/R∗. Note
that σ is well defined on PGL2m R and that H is precisely the fixed point set of σ.
So we may apply Theorem 4.3 to determine the limits of H inside of G = PGL2m R.
All limits of GLmC in GL2mR are of the form P−1 L where L ⊂ PGL2m R is a limit
of H.

Note that σ commutes with the standard Cartan involution θ. The −1 eigenspace
q of the involution σ on the Lie algebra is given by matrices of the form(

A B
B −A

)
.

A maximal abelian subgroup b of p ∩ q is given by elements X of the form

X =

(
D 0
0 −D

)
,

where D = diag(d1, . . . , dm) is a diagonal m × m matrix. The system of positive
simple roots of gl2mR with respect to b can be chosen to be

Δ = {di+1 − di}m−1
i=1 ∪ {2dm}.

In this case the inclusion WH∩K ↪→ W is an isomorphism; both Weyl groups
simply permute the diagonal entries of D and also the signs. Therefore, W = {1}
and we may take b+ to be the collection of diagonal matrices X as above, where
0 ≤ d1 ≤ . . . ≤ dm. Then, by Theorem 4.3, the conjugacy classes of limits of H in
G are enumerated by subsets I ⊂ Δ. For a given subset I ⊂ Δ, the corresponding
limit group

LI = ZH(bI)�NI = ZH(X)�N+(X)

is the limit under conjugacy by exp(tX) as t → ∞, where X ∈ b
+
I . Let

−λk < −λk−1 < · · · < λ0 = 0 < λ1 < · · · < λk

denote the eigenvalues of X (symmetric under negation). Note that either λj or
−λj is a diagonal entry of D. Note also that the eigenspaces Eλj

satisfy Eλj
=

JE−λj
, and in particular the zero eigenspace E0 is a complex subspace, invariant

under J . Hence any element g ∈ ZH(X) preserves the eigenspace decomposition

R2m = E0

⊕k
j=1 Eλj

⊕E−λj
. The action of g on E0 is J-linear. The action of g on

Eλj
⊕E−λj

is also J-linear and further preserves the real and imaginary parts Eλj

and E−λj
= JEλj

. Therefore, the matrix for the action of g on Eλj
⊕E−λj

has the
form (

Aj 0
0 Aj

)
in a basis which is the union of a basis for Eλj

and J times that basis (which is a
basis for E−λj

). This characterizes ZH(X). Next, the flag F defining the unipotent
part U(F) = NI = N+(X) of L (see Section 4.2) is given by the subspaces

V−k ⊃ V−(k−1) ⊃ · · ·V0 ⊃ V1 ⊃ · · · ⊃ Vk

where Vj = Eλj
⊕ · · · ⊕ Eλk

, where λ−j := −λj .

We may explicitly describe the corresponding limit P−1 L of GLmC in GL2mR.
In a basis respecting the ordered eigenspace decomposition

R2m := Eλk
⊕ · · · ⊕ E0 ⊕ · · ·E−λk

and such that the basis elements for E−λj
are J times the basis elements for Eλj



LIMITS OF GEOMETRIES 6611

(where λj > 0), the elements of the limit group P−1 L are exactly the matrices of
the form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ak

∗ Ak−1

...
...

. . .

∗ ∗ · · · A1

∗ ∗ · · · ∗ A0 B0

−B0 A0

∗ ∗ · · · ∗ ∗ A1

...
... · · ·

...
...

...
. . .

∗ ∗ · · · ∗ ∗ ∗ · · · Ak−1

∗ ∗ · · · ∗ ∗ ∗ · · · ∗ Ak

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where each Aj is a square matrix with dimension dim(Ej), which is equal to the
multiplicity of the eigenvalue λj of X. Each ∗ is an arbitrary block matrix of
the appropriate dimensions, and the (blank) upper diagonal entries are all zero.

The central block

(
A0 B0

−B0 A0

)
describes the J-linear transformations of the 0-

eigenspace E0 of X; this block only appears if the root 2dm ∈ I. The group
P−1(ZH(bI)) is the subgroup for which all ∗ blocks are zero. The group P−1 NI

∼=
NI is the subgroup for which all diagonal blocks Aj are the identity (and B0 = 0).

Remark 4.10. In the case that D = diag(1, 1, . . . , 1), we have only two eigenspaces

E1 and JE1. The limit group is then the centralizer of the matrix

(
0 0
Im 0

)
which

we should think of as a degeneration of the complex structure. The limit group is
isomorphic to the general linear group in dimension m over the ring R[ε]/(ε2).

4.5. Limits of Sp(2m) in GL2mR. Consider H = Sp(2m,R) inside of GL2mR.
Note thatH ⊂ SL2m R. To determine the conjugacy classes of limits ofH in GL2mR

it suffices to determine the limits of H in G = SL2m R. We apply Theorem 4.3. The
defining involution for H, at the Lie algebra level, is τ (X) = σ(θ(X)) = −JXTJ−1

where θ is the standard Cartan involution, and σ is conjugation by a complex
structure J fixed by θ. In this case, it will be more convenient to take

J =

⎛⎜⎜⎜⎝
J0 0 · · · 0
0 J0 0

0 0
. . .

0 0 · · · J0

⎞⎟⎟⎟⎠ ,

where J0 =

(
0 1
−1 0

)
. The −1 eigenspace q of τ is given by matrices of the form

(Ajk)
m
j,k=1 where each Ajk is a 2 × 2 block with Ajk = −J0A

T
kjJ0. The diagonal
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blocks of elements of q have the form Ajj =

(
dj 0
0 dj

)
. A maximal abelian sub-

algebra b of p ∩ q is given by matrices of the form

D =

⎛⎜⎜⎜⎝
D1 0 · · · 0
0 D2 0

0 0
. . .

0 0 · · · Dm

⎞⎟⎟⎟⎠ ,

where Dj =

(
dj 0
0 dj

)
and d1 + · · ·+ dm = 0. The system of positive simple roots

can be chosen to be

Δ = {di+1 − di}m−1
i=1 .

In this case the inclusion WH∩K ↪→ W is an isomorphism; both Weyl groups
simply permute the block diagonal entries of D. Therefore, W = {1} and b+ is
the collection of diagonal matrices X as above, where d1 ≤ . . . ≤ dm. Then, by
Theorem 4.3, the conjugacy classes of limits of H in G are enumerated by subsets
I ⊂ Δ. For a given subset I ⊂ Δ, the corresponding limit group

LI = ZH(bI)�NI = ZH(X)�N+(X)

is the limit under conjugacy by exp(tX) as t → ∞, where X ∈ b
+
I . Here, ZH(bI) =

ZH(X) has block form:

ZH(bI) =

⎛⎜⎜⎜⎝
Sp(2m1) 0 · · · 0

0 Sp(2m2) · · · 0
...

...
. . .

...
0 0 · · · Sp(2mk)

⎞⎟⎟⎟⎠ ,

where each block Sp(2mj) is the symplectic group of dimension 2mj consisting of
those elements of Sp(2m) which preserve the jth eigenspace of X and act as the
identity on the other eigenspaces of X. The flag F preserved by L is given by
V0 ⊃ . . . ⊃ Vk, where Vj = Ej ⊕ · · · ⊕ Ek is the direct sum of the last k − j + 1
eigenspaces Ei of X, where the Ei are indexed in order of increasing eigenvalue.
The flag unipotent subgroup NI = U(F) (see Section 4.2) has block structure:

NI =

⎛⎜⎜⎜⎝
Im1

0 · · · 0
∗ Im2

· · · 0
...

...
. . .

...
∗ ∗ · · · Imk

⎞⎟⎟⎟⎠ ,

where all lower diagonal blocks are labeled ∗ to denote that the entries are arbitrary.

4.6. Limits of GLp ⊕ GLq in GLp+qR. Consider the involution σ defined by

σ(X) = JXJ−1 where J =

(
−Ip 0
0 Iq

)
. We assume without loss of generality that

q ≥ p and set r = q− p. The fixed set of σ naturally identifies with GLpR⊕GLqR.
Note that the center Z(GLp+q) is contained in GLp ⊕GLq. Therefore, the involu-
tion σ is well defined on the quotient PGLp+q R. The image H = P(GLp ⊕ GLq)
under the projection P : GLp+q → PGLp+q is, therefore, a symmetric subgroup of
PGLp+q R and we may apply Theorem 4.3 to determine the limit groups L of H.
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Then any limit of GLpR⊕GLqR in GLp+qR is conjugate to P−1 L where L is some
limit of H.

Note that σ commutes with the standard Cartan involution θ. The −1 eigenspace
q of the involution σ on the Lie algebra is given by matrices of the form

(
0p×p B
C 0q×q

)
.

where B is p× q and C is q × p. A maximal abelian subalgebra b of p ∩ q is given
by matrices of the form

X =

⎛⎝0p×p D
D 0p×p

0r×r

⎞⎠ ,

where D = diag(d1, . . . , dp) is a p × p diagonal matrix. The system of positive
simple roots can be chosen to be

Δ = {di+1 − di}p−1
i=1 ∪ {2dp}.

In this case the inclusion WH∩K ↪→ W is an isomorphism; both Weyl groups simply
permute the diagonal entries of D and also the signs. Therefore, W = {1} and b+

is the collection of matrices X as above, where 0 ≤ d1 ≤ . . . ≤ dp. Then, by
Theorem 4.3, the conjugacy classes of limits of H in G are enumerated by subsets
I ⊂ Δ. For a given subset I ⊂ Δ, the corresponding limit group

LI = ZH(bI)�NI = ZH(X)�N+(X)

is the limit under conjugacy by exp(tX) as t → ∞, where X ∈ b
+
I .

Let’s see more explicitly what this group LI looks like. The eigenvalues of X are

−λk < −λk−1 < · · · < λ0 = 0 < λ1 < · · · < λk,

where if j �= 0, λj = 2dij is twice one of the diagonal elements ofD. The multiplicity
mj of λj is determined by the subset I. The eigenvalue λ0 = 0 has multiplicity
equal to r + 2m0 where m0 is the number of the di which are zero. Note also that
Eλj

= JE−λj
. Hence an element h ∈ ZH(bI) preserves both Eλj

and E−λj
and has

identical matrix on both subspaces, when the basis for E−λj
is taken to be J times

the basis for Eλj
; we work in such a basis. Also, the zero eigenspace E0 is invariant

under J ; the elements of H which preserve E0 form a copy of GL(r+m0)⊕GL(m0).
Next, the flag F defining the unipotent part U(F) = NI = N+(X) of L (see

Section 4.2) is given by the subspaces V−k ⊃ V−(k−1) ⊃ · · ·V0 ⊃ V1 ⊃ · · · ⊃ Vk

where Vj = Eλj
⊕ · · · ⊕ Eλk

, and where λ−j := −λj . Therefore, NI = U(F) is
the unipotent group which is block lower diagonal in a basis respecting the ordered
decomposition Rn = E−λk

⊕ · · · ⊕ E0 ⊕ · · · ⊕ Eλk
into eigenspaces. Therefore, in
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such a basis, the elements of the corresponding limit P−1 LI of GLp⊕GLq in GLp+q

have matrix form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ak

∗ Ak−1

...
...

. . .

∗ ∗ · · · A1

∗ ∗ · · · ∗ A0 0
0 B0

∗ ∗ · · · ∗ ∗ A1

...
... · · ·

...
...

...
. . .

∗ ∗ · · · ∗ ∗ ∗ · · · Ak−1

∗ ∗ · · · ∗ ∗ ∗ · · · ∗ Ak

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where for j �= 0, the matrix Aj is the square mj ×mj matrix representing both the

action on Eλj
and on E−λj

= JEλj
, and the block matrix

(
A0 0
0 B0

)
represents

an element of GL(r+m0)⊕GL(m0) corresponding to the action on E0. As always,
the ∗ blocks are arbitrary.

4.7. Limits of O(p, q) in GLp+qR. Set p+q = n. Let τ be the involution of GLp+q

defined by τ (g) = Jg−TJ−1 where J is the matrix

J =

(
−Ip

Iq

)
.

The group O(p, q) is the fixed point set of τ . Consider the image PO(p, q) of O(p, q)
under the projection P : GLnR → PGLn R. To determine the limits of O(p, q) in
GLnR, it suffices to determine the limits of H = PO(p, q) in G = PGLn R. For,
O(p, q) is the intersection of P−1(PO(p, q)) with the subgroup SL± of matrices of
determinant ±1. Therefore, all limits of O(p, q) are of the form P−1(L)∩SL± where
L is a limit of H in G. Note also that τ preserves the center Z(GLn), therefore, τ
descends to a well-defined involution of the projective general linear group; its fixed
point set is exactly H = PO(p, q). So we may apply Theorem 4.3 to determine the
limits of H.

At the Lie algebra level, our involution has the form τ (X) = −JXTJ−1. A
maximal abelian subalgebra b of p ∩ q is in this case given by the full Cartan
subalgebra a of trace-less diagonal matrices

D =

⎛⎜⎜⎜⎝
d1

d2
. . .

dn

⎞⎟⎟⎟⎠ .

The system of positive simple roots can be chosen to be

Δ = {di+1 − di}n−1
i=1 .

In this case, the Weyl group W is the full symmetric group Sp+q permuting the

standard basis of Rp+q. The closed Weyl chamber b+ corresponding to Δ consists
of the diagonal matrices X, as above, such that d1 ≤ d2 ≤ · · · ≤ dn. The Weyl
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group WH∩K for Σ(gτθ, b) is given by the permutations Sp × Sq of the standard
basis which preserve the signature; in other words WH∩K permutes the first p basis
vectors and the last q coordinate directions independently. A closed Weyl chamber
W · b+ for Σ(gτθ, b) is given by the diagonal matrices diag(d1, . . . , dn) such that
di ≤ di+1 if i = 1, . . . , p − 1 or if i = p + 1, . . . , p + q = n. Then W consists of
permutations � of the following form. For some 1 ≤ k ≤ p (assuming p ≤ q), and
two sets of k indices 1 ≤ i1 < · · · < ik ≤ p and p+ 1 ≤ j1 < · · · < jk ≤ p+ q = n,
we have that �(ir) = p+ r and �(jr) = p− k + r and the remaining p− k indices
between 1 and p are mapped in order to the first (smallest) p − k indices, while
the remaining q − k indices between p + 1 and n are mapped in order to the last
(largest) q − k indices. In fact, this specific form of W is not important; we may
work with any collection W of coset representatives of W/WH∩K .

By Theorem 4.3, the conjugacy classes of limits of H in G are enumerated (with
redundancy) by subsets I ⊂ Δ and elements w ∈ W . For a given subset I ⊂ Δ and
w ∈ W , the corresponding limit group

LI,w = ZHw
(bI)�NI = ZHw

(X)×N+(X)

is the limit of Hw = wHw−1 under conjugacy by exp(tX) as t → ∞, where X ∈ b
+
I .

Let E0, E1, . . . , Ek be the eigenspaces of X listed in order of increasing eigenvalue.
In our chosen coordinates, each Ei is a span of consecutive coordinate directions.
Now, Hw is the fixed point set of the involution τw defined by τw(g) = Jwg

−TJ−1
w ,

where Jw = wJw−1 is a diagonal form of signature (p, q) but with the p (−1)’s and
q (+1)’s arranged in a (possibly) different order. Let (pi, qi) denote the signature
of Jw when restricted to Ei. Then p1 + · · · + pk = p and q1 + · · · + qk = q, and
ZHw

(bI) is seen to have the block diagonal form

ZHw
(bI) = P

⎛⎜⎜⎜⎝
O(p1, q1)

O(p2, q2)
. . .

O(pk, qk)

⎞⎟⎟⎟⎠ .

The full limit group LI,w ⊂ PGL(F) preserves the flag F consisting of subspaces
V0 ⊃ · · · ⊃ Vk, where Vj = Ej ⊕ · · · ⊕ Ek. The unipotent part NI = U(F) has the
form

NI = P

⎛⎜⎜⎜⎝
Ip1+q1

∗ Ip2+q2
...

...
. . .

∗ ∗ · · · Ipk+qk

⎞⎟⎟⎟⎠
where the lower diagonal blocks, denoted by ∗, are arbitrary.

Remark 4.11. In this example, we may see explicitly that the finer enumeration
of limit groups described by Remark 4.6 may still have redundancy. Consider the
case p = 2, q = 2, and consider I = {d2 − d1, d4 − d3}. Then WI consists of four
permutations, namely the group generated by transposing the first and second basis
vector and transposing the third and fourth basis vector; so that WI = WH∩K .
One easily computes that |WI\W/WH∩K | = 3; representatives are given by the
permutation w1 that transposes the second and third basis vector, a permutation
w2 that exchanges the first and second basis vectors with the third and fourth, and
the identity permutation e. However, there are only two conjugacy classes of limit
group, because LI,w2

= LI,e.
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4.7.1. Partial flag of quadratic forms. Finally, we note that if LI,w is as above,

then the corresponding limit groups P−1(LI,w)∩SL± of O(p, q) in GLnR are easily
described. We will investigate these limit groups and their corresponding geometries
in depth in the next section. Here we introduce some notation to give an invariant
description of the limit groups. Let F be the partial flag formed by the chain of
subspaces V0 ⊃ V1 ⊃ . . . ⊃ Vk. A partial flag of quadratic forms β = (β0, · · · , βk)
on the partial flag F is an assignment of quadratic form βi to each quotient Vi/Vi+1

of consecutive subspaces of the flag; via pullback by Vi → Vi/Vi+1, we may also
think of βi as a quadratic form defined on Vi whose restriction to Vi+1 is trivial.
We denote the linear transformations which preserve F and induce an isometry
of each βi by Isom(F ,β). The signature of a non-degenerate quadratic form β is
ε(β) = (n−, n+), where n− (resp., n+) is the dimension of the largest subspace on
which β is negative (resp., positive) definite. Two quadratic forms have the same
isometry group iff they are scalar multiples of each other thus O(p, q) ∼= O(p′, q′) iff
{p, q} = {p′, q′}. The signature of a partial flag of quadratic forms β = (β0, · · · , βk)
is

ε(β) = (ε(β0), · · · , ε(βk)) = ((p0, q0) · · · (pk, qk)).

The signature ε(β) determines Isom(F ,β) up to conjugation. When F is adapted
to the standard basis and all βi are diagonal, we will use the notation

Isom(F ,β) =: O((p0, q0), · · · , (pk, qk))

=

⎛⎜⎝O(p0, q0)
. . .

O(pk, qk)

⎞⎟⎠�

⎛⎜⎜⎜⎝
Ip0+q0

∗ Ip1+q1
...

...
. . .

∗ ∗ · · · Ipk+qk

⎞⎟⎟⎟⎠ .

The conjugacy class of this group is unchanged by scaling some βi. In fact
O((p0, q0), · · · , (pk, qk)) is conjugate to O((p′0, q

′
0), · · · , (p′k, q′k)) if and only if for

all i = 0, . . . , k, (pi, qi) = (p′i, q
′
i) or (pi, qi) = (q′i, p

′
i). As a special case observe that

when F is a full flag, then Isom(F ,β) is conjugate to O((1, 0), · · · , (1, 0)), which
is the group of lower triangular matrices with diagonal entries ±1. We will adopt
the convention that the signature (p, 0) can be denoted by (p) so this group is also
written as O((1), (1), · · · , (1)). This is in agreement with denoting O(n, 0) by O(n).
The application of Theorem 4.3 above shows:

Theorem 4.12. The limits of O(p, q) (resp., PO(p, q)) inside of GLp+qR are
all of the form Isom(F ,β) (resp., P Isom(F ,β)). Further Isom(F ,β) (resp.,
P Isom(F ,β)) is a limit of O(p, q) (resp., PO(p, q)) if and only if the signature
((p0, q0), . . . , (pk, qk)) of β satisfies

p0 + · · ·+ pk = p and q0 + · · ·+ qk = q,

after exchanging (pi, qi) with (qi, pi) for some collection of indices i in {0, . . . , k}.

The groups P Isom(F ,β) are the structure groups for many interesting geome-
tries, to be described in Section 5. As a corollary to Theorem 4.12, we characterize
all limits of these groups.
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Corollary 4.13. Every conjugacy limit of Isom(F ,β) (resp., P Isom(F ,β)) is of
the form Isom(F ′,β′) (resp., P Isom(F ′,β′)). Further, up to conjugation, the flag
F ′ = {V ′

j } is a refinement of F = {Vi} and the signature ε(β′) is a refinement of
the signature ε(β) in the sense that

pi =
∑

j:Vi⊃V ′
j �Vi+1

p′j , qi =
∑

j:Vi⊃V ′
j �Vi+1

q′j ,(7)

after exchanging (p′j , q
′
j) with (q′j , p

′
j) for some collection of indices j. Any

Isom(F ′,β′) as above is realized as a limit of Isom(F ,β) under some sequence
of conjugacies.

Proof. Let H = Isom(F ,β). Consider a conjugacy limit L = limn→∞ cnHc−1
n .

The space of flags having the same type as F is compact. Thus, we may assume
that cn ∈ PGL(F) for all n, and, therefore, that L ⊂ GL(F). Note that U(F) is
preserved by conjugation by cn. Therefore, U(F) ⊂ L. It remains to determine the
projections πi(L) where πi : GL(F) → GL(Vi/Vi+1) is the natural projection map.
Now, πi(H) = Isom(βi) ∼= O(pi, qi). The projection πi(L) is the limit of πi(H)
under conjugation by the projections πi(cn). Hence, Theorem 4.12 implies that

πi(L) = Isom(F (i),β(i)), where (F (i),β(i)) is a partial flag of quadratic forms for

Vi/Vi+1. Then, let F ′ be the flag of all lifts π−1
i (V

(i)
j ) of subspaces V

(i)
j of each flag

F (i). Let β′ be the flag of quadratic forms π∗
i β

(i)
j on those subspaces determined

by pullback. Then, L = Isom(F ′,β′) is as in the statement of the corollary.
Next, to see that any Isom(β′) as in the corollary is achieved as a limit, note that

if the condition (7) is satisfied, then both Isom(β) and Isom(β′) are limits of some
O(p, q). In fact, the elements X,X ′ ∈ b determining the respective limits Isom(β)
and Isom(β′) of O(p, q) have the property that any eigenspace of X ′ is contained
in an eigenspace of X. Further, if E′

λ1
, E′

λ2
are eigenspaces of X ′ corresponding

to eigenvalues λ1 < λ2, then E′
λ1

⊂ Eμ1
and E′

λ2
⊂ Eμ2

, where Eμ1
, Eμ2

are
eigenspaces of X corresponding to eigenvalues μ1 ≤ μ2. It is then easy to see that

lim
t→∞

exp(tX ′) Isom(β) exp(−tX ′) = Isom(β′).

�

5. The geometry of a partial flag of quadratic forms

In Section 4.7, we showed that the geometric limits of O(p, q) inside of GLp+qR

are the groups Isom(F ,β) preserving a partial flag of quadratic forms. In this
section we will investigate the corresponding limit geometries.

5.1. X(p, q) geometry and its limits. Let β denote a quadratic form on Rn

of signature (p, q). We assume that p > 0. Then P Isom(β) ∼= PO(p, q) acts
transitively on the space

X(p, q) := {[x] ∈ RPn−1 : β(x) < 0}
with stabilizer isomorphic to O(p − 1, q). Therefore, X(p, q) is a semi-Riemannian
space of dimension n− 1 = p+ q− 1 and signature (p− 1, q). We list some familiar
cases:

• (X(n, 0),PO(n)) is doubly covered by spherical geometry Sn−1.
• (X(1, n− 1),PO(1, n− 1)) is the projective model for hyperbolic geometry
Hn−1.
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• (X(2, n− 2),PO(2, n− 2)) is the projective model for anti de Sitter (AdS)
geometry AdSn−1.

• (X(n−1, 1),PO(n−1, 1)) is the projective model for de Sitter (dS) geometry
dSn−1.

We now describe the possible limits of (X(p, q),PO(p, q)) as a sub-geometry of
(RPn−1,PGLn R). Consider a partial flag F equipped with a flag of quadratic forms
β = (β0, . . . , βk) as in Section 4.7. Let (pi, qi) be the signature of βi. Define the
domain X(β) ⊂ RPn−1 by

X(β) := {[x] ∈ RPn−1 : β0(x) < 0},
where the quadratic form β0 on V0/V1 is extended to V0 = Rn by pullback via
V0 → V0/V1. Then P Isom(F ,β) acts transitively on X(β). When the flag and
quadratic forms are adapted in the standard basis, we denote X(β) by

(8) X(β) = X((p0, q0), . . . , (pk, qk)).

Note that X(β) is non-empty if and only if p0 > 0 and that as a set, the space
X((p0, q0) . . . (pk, qk)) depends only on the first signature (p0, q0) and the dimension
n =

∑
i(pi+qi). However, we include all k signatures in the notation as a reminder

of the structure determined by PO((p0, q0), . . . , (pk, qk)).

Theorem 5.1. The conjugacy limits of (X(p, q),PO(p, q)) inside (RPn−1,PGLn)
are all of the form (X(β),P Isom(F ,β)). Further, X(β) is a limit of X(p, q) if and
only if p0 �= 0, and the signatures ((p0, q0), . . . , (pk, qk)) of β partition the signature
(p, q) in the sense that

p0 + · · ·+ pk = p and q0 + · · ·+ qk = q,

after exchanging (pi, qi) with (qi, pi) for some collection of indices i in {1, . . . , k}
(the first signature (p0, q0) must not be reversed).

More generally:

Theorem 5.2. Every conjugacy limit of (X(β),P Isom(F ,β)) is of the form
(X(β′),P Isom(F ′,β′)). Further, up to conjugation, the flag F ′ = {V ′

j } is a re-

finement of F = {Vi} and the signature ε(β′) is a refinement of the signature ε(β)
in the sense that

pi =
∑

j:Vi⊃V ′
j �Vi+1

p′j , qi =
∑

j:Vi⊃V ′
j �Vi+1

q′j ,

after exchanging (p′j , q
′
j) with (q′j , p

′
j) for some collection of indices j excluding

j = 0 (the first signature (p′0, q
′
0) must not be reversed). Any such geometry

(X(β′),P Isom(F ′,β′)) is realized as a limit of (X(β),P Isom(F ,β)) under some
sequence of conjugacies (provided p′0 > 0).

Proof. Let L = P Isom(F ′,β′, ) be a limit of P Isom(F ,β) under some conjugating
sequence (cn) as in Corollary 4.13. Suppose that (X(β),P Isom(F ,β)) limits, under
conjugation by (cn) to (Y, L) (in the sense of Definition 2.6). Then Y ⊂ RPn is an
open orbit of L. There are at most two such orbits. X(β′) is an open orbit of L,
non-empty if and only if p′0 > 0. The set of positive lines, X+, with respect to β′

0 is
the other open orbit of L, non-empty if and only if q′0 > 0. Let us now show that
Y = X(β′).
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By definition, there is some y∞ ∈ Y such that for all n sufficiently large,
y∞ ∈ cnX(β); in other words, β0(c

−1
n y∞) < 0. It is easy to see, from the proof

of Theorem 1.1, that β′
0 is the limit of λnc

∗
nβ0 where λn > 0 is a sequence of

positive scalars. Therefore,

β′
0(y∞) = lim

n→∞
λnβ0(c

−1
n y∞) ≤ 0.

It follows that Y �= X+, so we must have Y = X(β′) as desired.
Next we show that any X(β′) as in the theorem is achieved. As in the proof of

Corollary 4.13, we note that X(β′) and X(β) are both limits of some X(β) = X(p, q)
under conjugation by the one parameter groups exp(tX), resp., exp(tX ′) and that
the groups satisfy P Isom(β′) = limt→∞ exp(tX ′) P Isom(β) exp(−tX ′). Further,
every eigenspace of X ′ is contained in an eigenspace of X and the eigenspace E′

0

corresponding to the smallest eigenvalue of X ′ is contained in the eigenspace E0 cor-
responding to the smallest eigenvalue ofX. Then β′

0 agrees with β0 on E′
0 and is zero

on all other eigenspaces of X ′. Let y∞ ∈ X(β′) ∩ PE′
0. Then, since β′

0(y∞) < 0 we
have that β0(y∞) < 0 and so y∞ ∈ X(β). Since exp(tX ′)y∞ = y∞, we have shown
that the conjugate sub-geometries (exp(tX ′)X(β), exp(tX ′) P Isom(β) exp(−tX ′))
limit to the sub-geometry (X(β′),P Isom(β′)). �

5.2. The geometry of X(β). We now describe the geometry of (X(β),
P Isom(F ,β)). We assume that the flag F and quadratic forms β are adapted
to the standard basis so that we may use the notation (8). Let j ∈ {1, . . . , k}. The
action of Isom(F ,β) preserves the flag of quotient spaces

V0/Vj ⊃ V1/Vj ⊃ · · · ⊃ Vj−1/Vj ,

which we denote F/Vj , as well as the induced flag of quadratic forms β0, . . . , βj−1,
which we denote by β/Vj . Then X(β/Vj) identifies with X((p0, q0) . . . (pj−1, qj−1))
and Isom(F ,β) acts on X(β/Vj) by transformations of

Isom(F/Vj ,β/Vj) ∼= O((p0, q0), . . . , (pj−1, qj−1)).

There is a projection map πj :

Vj/Vj+1
�� X(β/Vj+1)

πj

��
X(β/Vj)

which is the restriction of the natural projection map P(V0/Vj+1) \ P(Vj/Vj+1) →
P(V0/Vj). The fiber π−1

j ([x + Vj ]) = {[x + v + Vj+1] : v ∈ Vj/Vj+1} identifies

with Vj/Vj+1; the identification depends on the choice of representative x. Via the
identification, βj induces an affine pseudo-metric �j of signature (pj , qj) on each
fiber, defined by:

�2j (x+ v, x+ w) := βj(v − w).

The metric is well defined, provided that the representative x+Vj is always chosen
to satisfy β0(x+Vj) = −1 (there are two such choices). The action of Isom(F ,β) on
X(β/Vj+1) preserves this fibration by affine spaces and preserves the affine (pj , qj)
metric �2j on the fibers.
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Alternatively, we will use the notation

Apj ,qj �� X((p0, q0), . . . , (pj, qj))

πj

��
X((p0, q0), . . . , (pj−1, qj−1))

where the notation Apj ,qj indicates that the fibers are affine spaces equipped with
an affine pseudo-metric of signature (pj , qj). Combining this information for all
possible values of j, we see that X(β) is equipped with an iterated affine bundle
structure (see Figure 2), and the fibers at each iteration are equipped with an
invariant affine pseudo-metric:

(9) Apk,qk �� X((p0, q0), . . . , (pk, qk))

πk

��
Apk−1,qk−1 �� X((p0, q0), . . . , (pk−1, qk−1))

πk−1��
...

π2

��
Ap1,q1 �� X((p0, q0), (p1, q1))

π1

��
X(p0, q0)

We note that in the case (p0, q0) = (1, 0) the base of the tower of fibrations is a
point and the next space up X((1, 0)(p1, q1)) is an affine space Ap1,q1 equipped with
an invariant affine pseudo-metric of signature (p1, q1). In the case that (p1, q1) is
(n, 0) or (0, n), then Ap1,q1 identifies with the Euclidean space En.

Remark 5.3. In the context of Theorem 5.1, the different levels of the tower of fibra-
tions (9) correspond to different rates of collapse of X(p, q). The initial projection
πk should be thought of as a collapse map which collapses the directions in X(p, q)
most distorted by the conjugation action.

Remark 5.4. It is sometimes easier to work in the double cover X̃(β) of X(β), which
is naturally described by the hyperboloid β0 = −1. In this case, each projection map
πj is just the restriction of the quotient map V0/Vj+1 → V0/Vj to the hyperboloid

β0 = −1 in V0/Vj+1. It is natural to call X̃(β) the hyperboloid model.

Remark 5.5. The action of the unipotent part U(F) preserves each affine fiber of
each fibration in (9). The action on each fiber is simply a translation. However,
the amount and direction of translation may vary from fiber to fiber (with respect
to some chosen trivialization), so that the fibers appear to shear with respect to
one another.

In the following sections we apply Theorem 5.1 to several cases of interest, in-
cluding the classical two-dimensional geometries, and three-dimensional hyperbolic
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X((1, 1)(1))

X((1, 1)(1)(1))

X(1, 1) ∼= H1

A1,0

A1,0

Figure 2. A picture of the iterated affine bundle structure of X((1, 1)(1)(1)).

and AdS geometry. Along the way we will discuss further the geometry of those
(X(β), Isom(β)) which arise as limits in these cases.

5.3. The classical two-dimensional geometries. The two-dimensional
Riemannian model geometries of constant curvature may each be realized as sub-
geometries of (RP2,PGL3 R). In fact, each is defined by a partial flag of quadratic
forms (Section 5). We use the notation of Section 5.1, and for brevity we will only
refer to the space X of the geometry (X,G) when the group G is clear from context:

• Spherical geometry is (the double cover of) X(3, 0).
• Hyperbolic geometry is X(1, 2).
• Euclidean geometry is X((1, 0)(2)).

The following chart depicts all possible limits of geometries given by a partial
flag of quadratic forms in dimension two. The completeness/accuracy of the chart
is easy to verify using the calculus of Theorem 5.2.

X(3, 0)

�� ������
�����

�����
�����

�����
�� X(1, 2)

�����
���

���
���

��

X(2, 1)

�����
���

���
���

�� ����
���

���
���

�

X((1, 0)(2))

����
���

���
���

�
X((1, 1)(1))

��

X((2, 0)(1))

�����
���

���
���

X((1, 0)(1, 1))

�������
�����

�����
�����

��

X((1, 0)(1)(1))
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The limits of spherical, hyperbolic, and Euclidean geometry may be read off from
the chart:

Theorem 5.6. The limits of spherical, hyperbolic, and Euclidean geometry, con-
sidered as sub-geometries of projective geometry are (up to conjugacy) the following
geometries:

• limits of spherical: X(3, 0) (no degeneration), X((1, 0)(2)) = Euclidean, and
X((1, 0)(1)(1):

• limits of hyperbolic: X(1, 2) (no degeneration), X((1, 0)(2)) = Euclidean,
and X((1, 0)(1)(1));

• limits of Euclidean: X((1, 0)(2)) (no degeneration), and X((1, 0)(1)(1)).

We give a brief description of the most degenerate two-dimensional partial flag
of quadratic forms geometry X((1, 0)(1)(1)) which is a limit of all three classical
two-dimensional geometries. First, the group

O((1, 0)(1)(1)) =

⎛⎝±1 0 0
∗ ±1 0
∗ ∗ ±1

⎞⎠
preserves a full flag R3 = V0 ⊃ V1 ⊃ V2 ⊃ V3 = {0} in R3. In this case, the space
X((1, 0)(1)(1)) ∼= A2 is an affine plane, though note that O((1, 0)(1)(2)) is not the
full group of affine transformations. The iterated affine bundle structure is:

A1,0 �� X((1, 0)(1)(1)) ∼= A2

π2

��
A1,0 �� X((1, 0)(1)) = A1

π1

��
X(1, 0) = {pt}

Hence X((1, 0)(1)(1)) is an affine two-space, equipped with a translation invariant
fibration in Euclidean lines A1,0 over a base which is also a Euclidean line A1,0.
The group O((1, 0)(1)(1)) is the group of affine transformations which preserve the
fibration as well as the metric on the fibers and the base. In the standard basis,
X((1, 0)(1)(1)) = {x1 �= 0}/R∗, which we identify with the affine plane x1 = 1 in
V0 = R3. The lines of the foliation are the lines of constant x2 and the (square of
the) affine metric on these lines is given by:

�22

⎛⎝⎛⎝ 1
x2

x3

⎞⎠ ,

⎛⎝ 1
x2

x′
3

⎞⎠⎞⎠ = (x3 − x′
3)

2.

5.4. Limits of three-dimensional hyperbolic geometry. Theorem 5.1 gives
the limits of three-dimensional hyperbolic geometry H3 = X(1, 3) as a sub-geometry
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of projective geometry. The results are summarized in the following diagram:

(10) X(1, 3)

		����
���

���
���

�

�� 

���
���

���
���

��

X((1, 0)(3))

�� 

��
���

���
���

��
X((1, 2)(1))

�� 

��
���

���
���

��
X((1, 1)(2))

��������
������

������
������

����

��
X((1, 0)(1)(2))



��
���

���
���

��
X((1, 0)(2)(1))

��

X((1, 1)(1)(1))

		���
���

���
���

�

X((1, 0)(1)(1)(1))

We now describe some of the geometries appearing in this list, and their rela-
tionships to the Thurston geometries.

The geometry X((1, 0)(3)) is Euclidean geometry.
The geometry X((1, 2)(1)) is half-pipe geometry, defined by Danciger in [11] and

used to construct examples of geometric structures (cone-manifolds) transitioning
from hyperbolic geometry to anti de Sitter (AdS) geometry. That X((1, 2)(1)) is a
limit of three-dimensional AdS geometry also follows from Theorem 5.1, since the
projective model for AdS3 is, in our terminology, X(2, 2).

Next, consider the geometry X((1, 0)(2)(1)), which is also a limit of spherical
geometry. The iterated affine bundle structure is:

E1 �� X((1, 0)(2)(1)) ∼= A3

π2

��
E2 �� X((1, 0)(2)) ∼= E2

π1

��
X(1, 0) = {∗}

Hence, X(1, 0)(2)(1) fibers in Euclidean lines over the Euclidean plane. Let
(1 x y z)T be coordinates for X((1, 0)(2)(1)) = A3, let (1 x′ y′)T be coordinates
for X((1, 0)(2)) = E2, and let the projection π2 be given by x′ = x, y′ = y. Then,
consider the contact form α on A3 defined by

α = dz + xdy − ydx.

Note that dα = 2 π∗
2dA, where dA is the area form on the Euclidean plane E2.

Consider the following Riemannian metric gNil on X((1, 0)(2)(1)): The fibers of π2

are defined to be gNil orthogonal to kerα, and gNil is defined to be the pullback
by π2 of the Euclidean metric on kerα, while gNil(X,X) = α(X)2 for X tangent
to the π2 fiber direction. The Riemannian metric gNil makes X((1, 0)(2)(1)) into
the model space for Nil geometry. Of course, O((1, 0)(2)(1)) does not preserve α,
nor the metric gNil. However, one may check that the isometries Isom(gNil) are
a proper subgroup (up to finite index) of O((1, 0)(2)(1)), so Nil geometry locally
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embeds into X((1, 0)(2)(1)). In coordinates,

Isom0(gNil) =

⎛⎝±1
O(2)

±1

⎞⎠�

⎛⎜⎜⎝
1
a 1
b 0 1
c b −a 1

⎞⎟⎟⎠ ⊂ O((1, 0)(2)(1)),

where a, b, c ∈ R are arbitrary numbers. That Nil geometry appears, in this context,
as a (sub-geometry of a) limit of hyperbolic geometry is not surprising. Porti [28]
proved that a Nil orbifold with ramification locus transverse to the π2 fibration
is (metrically) the limit of collapsing hyperbolic cone-manifold structures (after
appropriate modification of the collapsing metric).

Next consider the geometry X((1, 1)(2)). The iterated affine bundle structure is
just one bundle:

E2 �� X((1, 1)(2))

π1

��
X((1, 1)) ∼= H1.

In a basis that respects the partial flag, the structure group has the form

O((1, 1)(2)) =

(
O(1, 1)

O(2)

)
�

⎛⎝ I2
∗ ∗
∗ ∗ I2

⎞⎠ ,

where I2 is the 2 × 2 identity matrix. In fact, there is a copy of the group Sol ∼=
SO(1, 1)�R2 inside of O((1, 1)(2)), which is described in coordinates as follows:

Sol =

⎛⎝cosh z sinh z
sinh z cosh z

I2

⎞⎠�

⎛⎝ I2
x x
y −y

I2

⎞⎠ .

In fact, Sol acts simply transitively on X((1, 1)(2)). Hence X((1, 1)(2)) is a model
for Sol geometry. Four of the eight components of IsomSol lie inside O((1, 1)(2)),
corresponding to multiplying the diagonal blocks of Sol by ±1. The missing four

components are achieved by adding the block diagonal matrix diag

((
0 1
1 0

)
, I2

)
.

We may also embed Sol geometry, in the exact same way, as a sub-geometry of
X((1, 1)(1)(1)) (see Figure 2 for an illustration of the iterated affine bundle structure
of X((1, 1)(1)(1))). Let M be a torus bundle over the circle with Anosov mondromy.
In [21], Huesener, Porti, and Suárez showed that the natural Sol geometry structure
on M is realized as a limit of hyperbolic cone-manifold structures, in the sense that
the hyperbolic metrics converge to the Sol metric after appropriate (non-isotropic)
modification. It is possible to recast their construction in the context of projective
geometry using the theory developed here. Recently, Kozai [23] used this projective
geometry approach to generalize the work of Huesener, Porti, and Suárez to the
setting of three-manifolds M which fiber as a surface bundle over the circle. Kozai
shows (under some assumptions) that the natural singular Sol structure on M may
be deformed to nearby singular hyperbolic structures by first deforming from Sol
to half-pipe geometry X((1, 2)(1)) and then from half-pipe to hyperbolic geometry.
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5.5. Thurston geometries as limits of hyperbolic geometry. All eight
Thurston geometries locally embed as sub-geometries of real projective geometry
(in fact, each embeds up to finite index and coverings). We have now demonstrated
that Euclidean geometry is a limit and both Nil geometry and Sol geometry locally
embed in limits of hyperbolic geometry. We now prove Theorem 1.3, which says
that these are the only Thurston geometries that appear in this way.

Proof of Theorem 1.3. We show that the projective geometry realizations of the

four remaining Thurston geometries, which are S3, H2 × R, S̃L2 R, and S2 × R, do
not locally embed in any of the geometries listed in (10).

Consider spherical geometry S3. Up to conjugacy, the local embedding of spher-
ical geometry of projective geometry is unique. It is clear that the structure group
O(4) does not locally embed as a subgroup in any of the partial flag isometry groups
for the geometries appearing in (10).

Next, consider S2 × R. The isometry group is (up to finite index) a product
SO(3) × R. The only geometry in the list (10) whose structure group contains a
subgroup locally isomorphic to SO(3) is Euclidean geometry X((1, 0)(3)). Of course
S2 × R does not locally embed in Euclidean geometry.

The geometry S̃L2 R is locally isomorphic to (in fact an infinite cyclic cover of)
the following sub-geometry of projective geometry. The space PSL2 R embeds in
RP3 by considering the entries of a 2 × 2 matrix as coordinates, and the identity
component of the isometry group is given by the linear action of PSL2 R×PSO(2)
where the PSL2 R factor acts on the left and the PSO(2) factor acts on the right. We
show that even the stiffening of this geometry obtained by restricting the structure
group to the subgroup PSL2 R (acting on the left) does not locally embed in any
limit of hyperbolic geometry. For, the only geometry appearing in (10) whose
isometry group contains a subgroup locally isomorphic to PSL2 R ∼= SO0(2, 1) is
half-pipe geometry X((1, 2)(1)). Any such subgroup is conjugate into the block
diagonal subgroup diag(O(2, 1), 1) and it is then easy to see that such a subgroup
does not act transitively on X((1, 2)(1)), but rather preserves a totally geodesic
subspace (a copy of the hyperbolic plane; see [11]). Therefore, since the left action

of PSL2 R is transitive, we have shown that S̃L2 R does not locally embed in half-
pipe geometry.

Finally, consider H2×R geometry. The isometry group is (up to finite index) the
product SO(2, 1)×R. Again, the only limit of hyperbolic geometry whose isometry
group contains a subgroup H locally isomorphic to SO(2, 1) is X((1, 2)(1)), half-pipe
geometry. However, the centralizer of the smallest such subgroup H = SO0(2, 1)×
{1} in O((1, 2)(1)) is diag(±I3,±1), so, in particular, there is no subgroup locally
isomorphic to SO(2, 1)× R inside of O((1, 2)(1)). �
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