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ON ENGEL GROUPS, NILPOTENT GROUPS, RINGS,

BRACES AND THE YANG-BAXTER EQUATION

AGATA SMOKTUNOWICZ

Abstract. It is shown that over an arbitrary field there exists a nil algebra
R whose adjoint group Ro is not an Engel group. This answers a question by
Amberg and Sysak from 1997. The case of an uncountable field also answers
a recent question by Zelmanov.

In 2007, Rump introduced braces and radical chains An+1 = A · An and
A(n+1) = A(n) · A of a brace A. We show that the adjoint group Ao of a
finite right brace is a nilpotent group if and only if A(n) = 0 for some n. We
also show that the adjoint group Ao of a finite left brace A is a nilpotent
group if and only if An = 0 for some n. Moreover, if A is a finite brace

whose adjoint group Ao is nilpotent, then A is the direct sum of braces whose
cardinalities are powers of prime numbers. Notice that Ao is sometimes called
the multiplicative group of a brace A. We also introduce a chain of ideals A[n]

of a left brace A and then use it to investigate braces which satisfy An = 0
and A(m) = 0 for some m,n.

We also describe connections between our results and braided groups and
the non-degenerate involutive set-theoretic solutions of the Yang-Baxter equa-
tion. It is worth noticing that by a result of Gateva-Ivanova braces are in
one-to-one correspondence with braided groups with involutive braiding oper-
ators.

1. Introduction

In [44], Rump introduced braces as a generalisation of Jacobson radical rings
and as a tool for describing solutions of the Yang-Baxter equation. In the same
paper, he introduced the following two series of subsets An and A(n) of a right
brace A, defined inductively as An+1 = A · An and A(n+1) = A(n) · A, where
A = A1 = A(1). We will also use the notation An+1 = A ·An and A(n+1) = A(n) ·A
where A = A1 = A(1) for a left brace A.

Let A be a finitely generated Jacobson radical ring. It is known that the adjoint
group Ao of A is a nilpotent group if and only if A is a nilpotent ring, i.e., An = 0
for some n [3]. In this paper, we show that a similar result holds for finite braces.

Theorem 1.1. Let A be a finite left brace. Then the adjoint group of A is nilpotent
if and only if An = 0 for some n. Moreover, such a brace is the direct sum of braces
whose cardinalities are powers of prime numbers.
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Recall that the direct sum A =
⊕n

i=0 Ai of braces is defined in the same way
as for rings; namely, if a = (a1, . . . , an) ∈ A and b = (b1, . . . , bn) ∈ A, then
a+ b = (a1 + b1, . . . , an + bn) and a · b = (a1 · b1, . . . , an · bn). Recall that a result
of Rump shows that if A is a left brace whose adjoint group Ao is a finite p-group,
then An = 0 for some n (Corollary after Proposition 8 [44]). Notice that if A is a
left brace, then by using the opposite multiplication we get a right brace; therefore
if A is a right brace, then the group Ao is nilpotent if and only if A(n) = 0.

Observe that by writing Example 3 of Rump [44] in the language of left braces,
we see that there is a left brace A of cardinality 6 such that A(3) = 0 and An �= 0
for every n, the adjoint group Ao is not a nilpotent group, and hence A◦ is not
an Engel group. This shows that the adjoint group of a finite brace need not be a
nilpotent group and that the assumption of Theorem 1.1 that An = 0 for some n is
necessary. Notice that by writing Example 2 of Rump [44] in the language of left
braces we get that there is a finite left brace A such that A4 = 0 and A(n) �= 0 for
every n, whose adjoint group Ao is a nilpotent group ([44], Example 2).

Recall that in [44] Rump introduced the following two series of subsets An and
A(n) of a right brace A, defined inductively as An+1 = A ·An and A(n+1) = A(n) ·A,
where A = A1 = A(1). We introduce the following chain A[n] of ideals of any left
or right brace A:

A[n+1] =

n∑

i=1

A[i] ·A[n+1−i],

where A[1] = A. It is clear that A[n] ⊆ A[n−1] ⊆ . . . ⊆ A[1] = A and that for every
i, A[i] is a two-sided ideal of A. Recall that for subsets C,D ⊆ A we use notation
C ·D =

∑∞
i=1 cidi with ci ∈ C, di ∈ D where almost all ci, di are zero (so the sums∑∞

i=1 cidi are finite). Our next results follow.

Theorem 1.2. Let A be a left brace (finite or infinite) such that A[s] = 0 for some
s. If a ∈ A[i], b ∈ A[j], c ∈ A[k], then

(a+ b)c− ac− bc ∈ A[i+j+k].

Let P ⊆ A and let S be the set of all products of elements from P . If R is the
additive subgroup of A generated by elements from S, then R is a left brace (with
the addition and the multiplication inherited from A). Moreover, if P is a finite
set, then R is a finite left brace.

We obtain that the following result holds for both finite and infinite braces.

Theorem 1.3. Let A be a left brace and let n be a natural number. Then the
following assertions are equivalent:

(1) A(n) = 0 and Am = 0 for some natural numbers m,n.
(2) A[n] = 0 for some natural number n.
(3) A(n) = 0 for some n, and the group Ao is nilpotent.
(4) The adjoint group Ao is nilpotent, and the solution of the Yang-Baxter

equation associated to A is a multipermutation solution (Ao is also called
the multiplicative group of the brace A in [18]).

Recall that in [22], Etingof, Shedler, and Soloviev introduced a retraction of a
solution of the Yang-Baxter equation. A solution (X, r) is called a multipermutation
solution of level m if m is the smallest non-negative integer that, after applying the
operation of retraction m times, the obtained solution has cardinality 1. If such m
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exists the solution is also called retractable (see [22] or [19, page 2474] for a more
detailed definition). Such a solution is also called a multipermutation solution, that
is, a solution which has a finite multipermutation level (for a detailed definition see
[23], [18]). There are many interesting results in this area [10–13, 18–20, 22, 27, 29,
44,55]. Proposition 5.16 from [23], Proposition 7 from [44], and the above Theorem
1.3 motivated the following related result:

Remark 1.4 ([17]). Let A be a left brace, and let (A, r) be the solution to the Yang-
Baxter equation associated to A (as at the beginning of Section 2). Then (A, r) is a
solution of multipermutation level m < ∞ if and only if A(m+1) = 0 and A(m) �= 0.

The proof of Remark 1.4 is very similar to the proof of Proposition 5.16 of [23]
and can be found in [17]; it is also possible to prove it by applying Proposition 7
of [44] several times translated to left braces.

Our next result concerns adjoint groups of radical rings and nil rings. Recall
that nil rings have been used by many authors to construct examples of groups;
for example triply factorized groups, SN -groups, torsion groups, Engel groups, and
p-groups. Therefore, it might be useful to describe new methods for constructing
and investigating such rings. This is one of the aims which motivated our next
result.

Recall that if R is any ring, then the adjoint semigroup of R is constructed
according to the following rule: a ◦ b = ab+a+ b. It is also denoted 1+R, and it is
a group if and only if R is a Jacobson radical ring. Amberg, Catino, Dickenschied,
Kazarin, Plotkin, Shalev, Sysak, and others proved many interesting results on the
adjoint group of a radical ring [4, 6–8, 14, 18, 30, 38, 46, 51]. Amongst many other
interesting results, Amberg, Dickenschied, and Sysak showed that the adjoint group
Ro of any Jacobson radical ring is an SN-group in which every finite subgroup is
nilpotent [3] (recall that a group G is an SN-group if it has a series with abelian
factors; see [40], Vol. 1, pp. 9ff. and 25). As mentioned in their paper, by using
Zelmanov’s theorem on the restricted Burnside problem (see [57–59]), properties of
SN-groups and their new ingenious ideas, they were able to deduce the following:
If R is a finitely generated Jacobson radical ring, then the following are equivalent:
(a) R is an n-Engel ring for some n ≥ 1, (b) R is a nilpotent ring, (c) Ro is an
n-Engel group for some n ≥ 1. Recall that the aforementioned result of Zelmanov
asserts that an n-Engel Lie algebra over an arbitrary field is locally nilpotent and
that any torsion free n-Engel Lie ring is nilpotent [57–59]. A surprisingly short
proof by Shalev assures that if a radical ring R is an n-Engel algebra over a field of
prime characteristic, then the adjoint group Ro of R is m-Engel for some m [46].
A natural question arises then whether an analogy of any of these results would
hold for Engel groups and Engel Lie rings. Notice that every nil ring is an Engel
Lie ring (for some interesting related results see [2, 37, 47, 48, 53, 54]). Golod has
constructed a nil and not locally nilpotent ring whose adjoint group is an Engel
group. In 1997 in [3], Amberg and Sysak asked the following question: If R is a
nil ring, is the adjoint group Ro an Engel group? Similar questions were also asked
in [3, 51]. At the conference in Porto Cesareo in July 2015, after one of the talks
Zelmanov asked the following question: If R is a nil algebra over an uncountable
field, is the adjoint group Ro an Engel group? Our result answers these questions
in the negative.



6538 A. SMOKTUNOWICZ

Theorem 1.5. There is a nil ring R such that the adjoint group of Ro is not an
Engel group. Moreover, R can be taken to be an algebra over an arbitrary field.

The paper is organized as follows: in Section 2 we mention connections with the
Yang-Baxter equation and braided groups. In Sections 6–12 we prove Theorem 1.5.
In Sections 3–5 we prove Theorems 1.1, 1.2, and 1.3. Sections 6–12 and Sections
3–5 can be read independently.

2. Notation and applications for the Yang-Baxter equations

and for braided groups

Around 2005, Rump introduced braces as a generalisation of Jacobson radical
rings. He also showed that braces correspond to solutions of the Yang-Baxter
equation [44]. In [35] Lu, Yan, and Zhu proposed a general way of constructing
set-theoretical solutions of the Yang-Baxter equation using braiding operators on
groups. In this paper, by a solution of the Yang-Baxter equation we will mean a
non-degenerate involutive set-theoretic solution of the Yang-Baxter equation, as in
[18].

Let R be a Jacobson radical ring; then R yields a solution r : R × R → R × R
to the Yang-Baxter equation with the Yang-Baxter operator r(x, y) = (u, v), where
u = x · y+ y, v = z · x+ x, and z is the inverse of u = x · y+ y in the adjoint group
Ro of R (so z · (x · y + y) + z + (x · y + y) = 0). The same holds when (R,+, ·) is
a left brace, and this solution is called the solution associated to left brace R and
will be denoted as (R, r) (for a reference see [18, 21, 44]).

In [42, p. 128], Rump gave the following definition of a right brace: “Let A be
an abelian group together with a right distributive multiplication, that is,

(a+ b)c = ac+ bc

for all a, b, c ∈ A. We call A a brace if the circle operation

a ◦ b = ab+ a+ b

makes A into a group. This group Ao will be called the adjoint group of a brace
A.” In [18] Cedó, Jespers, and Okninski wrote the definition of a brace in terms of
operation o; in their paper the adjoint group Ao is called the multiplicative group
of brace A.

Similarly, a left brace is an abelian group (A,+) together with a left distributive
multiplication, that is, a(b+c) = ab+ac such that the circle operation a◦b = ab+a+b
makes A into group. For a left brace A, the associativity of Ao is easily seen to be
equivalent to the equation (ab + a + b)c = a(bc) + ac + bc. A right brace which is
also a left brace is called a two-sided brace; Rump has shown that two-sided braces
are exactly Jacobson radical rings.

In [22] Etingof, Shedler, and Soloviev introduced a retraction of a solution of the
Yang-Baxter equation and described some classes of the solutions. They also intro-
duced retractable solutions, which are now also called multipermutation solutions
(see [18, 22, 23]). Theorem 2 of [18] by Cedó, Jespers, and Okninski assures that:
If G is a left brace, then there exists a solution (X, r′) of the Yang-Baxter equation
such that the solution Ret(X, r′) is isomorphic to the solution associated to the left
brace G, and, moreover, G(X, r) is isomorphic to the multiplicative group of the left
brace G. Furthermore, if G is finite, then X can be taken as a finite set.
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By writing Example 3 of Rump [44] in the language of left braces, we get that
there is a finite left brace A whose adjoint group Ao is the symmetric group S3

which is not a nilpotent group ([44], Example 3); moreover A(3) = 0 and An �= 0
for every n. By Remark 1.4 the solution to the Yang-Baxter equation associated
to A is a multipermutation solution. Observe that by applying the aforementioned
Theorem 2 from [18] to this example we obtain the following remark.

Remark 2.1 (Related to Example 3 [44]). There is a finite multipermutation solution
(X, r) of the Yang-Baxter solution whose permutation group G(X, r) of left actions
associated with (X, r) is not a nilpotent group.

Recall that permutation group G(X, r) of left actions associated with (X, r) was
introduced by Gateva-Ivanova in [24] (see also [23]). By writing Example 2 from
[44] in the language of a left brace we get that there is a finite left brace A such
that A4 = 0, A(n) �= 0 for every n, whose multiplicative group is a nilpotent
group ([44, Example 2]). By Remark 1.4 the solution associated to A is not a
multipermutation solution. This implies, together with Theorem 2 from [18], the
following remark.

Remark 2.2 (Related to Example 2 [44]). There is a finite solution (X, r) to the
Yang-Baxter equation which is not a multipermutation solution and whose permu-
tation group G(X, r) of left actions associated with (X, r) is a nilpotent group.

We get the following related result for (possibly infinite) braces.

Proposition 2.3. Let A be a left brace such that the solution of the Yang-Baxter
equation associated to A is a multipermutation solution. Then the adjoint group Ao

of A is nilpotent if and only if An = 0 for some natural number n.

Gateva-Ivanova and Van den Bergh [28] and independently Etingof, Schedler,
and Soloviev [22] gave a group theoretical interpretation of the set-theoretic invo-
lutive non-degenerate solutions of the Yang-Baxter equation. Cedó, Jespers, and
Okninski [16,18] asked which groups are multiplicative groups of braces. A similar
question in the language of ring theory was asked in [4,5]. In this paper we obtain
the following corollary of Theorem 1.5, which is related to this question.

Corollary 2.4. There is a finitely generated, two-sided brace whose multiplicative
group is a torsion group but not an Engel group.

By a result of Gateva-Ivanova (see Theorem 3.7 of [23]), every brace G can be
considered as a braided group with the involutive braided operator. Moreover, by
Proposition 6.2 of [23], G is a two-sided brace if and only if the corresponding
braided group satisfies the following identity:

c((abc)
−1

c) = (b
−1

c)(((a
b)(b

−1
c))−1

c),

for every a, b, c ∈ G. By combining the Gateva-Ivanova result with Corollary 2.4,
we obtain that:

Corollary 2.5. There is a countable, braided group (G, σ) with an involutive
braided operator σ which is a torsion-group and not an Engel group. Moreover,
G satisfies a non-trivial identity

c((abc)
−1

c) = (b
−1

c)(((a
b)(b

−1
c))−1

c),

for all a, b, c ∈ G. We use notation σ(a, b) = (ab, ab).
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This shows that infinite braided groups satisfying non-trivial identities can be
quite complicated.

We also get the following result for finite braided groups.

Proposition 2.6. Let G be a finite nilpotent group and let (G, σ) be a symmetric
group (in the sense of Takeuchi). Let (G,+, o) be a left brace associated to (G, σ)
as in Theorem 3.8 in [23]. Then (G,+, o) is a direct sum of left braces whose cardi-
nalities are powers of prime numbers. These braces correspond to Sylow subgroups
of G.

3. Braces with An = 0 and A(m) = 0

In [44] Rump introduced the following two series of subsets of any right brace A.
One of the series introduced by Rump is . . . ⊆ A(2) ⊆ A(1) = A, where A(n+1) =
A(n) ·A and A(1) = A. The other series introduced by Rump is . . . ⊆ A2 ⊆ A1 = A,
where An+1 = A · An and A1 = A. Following Rump, we will also use the notation
An+1 = A ·An and A(n+1) = A(n) ·A where A = A1 = A(1) for a left brace A.

Rump has proved that the series An of every right brace consists of two-sided
ideals [44]. Similarly, for a left brace A, the series A(n) consists of two-sided ideals.
Recall that I is an ideal in a brace A if for i, j ∈ I and a ∈ A we have i+ j ∈ I and
a · i ∈ I, i · a ∈ I; see [44].

We propose another series, defined for any left or right brace. This series consists
of two-sided ideals in any left or right brace A. We define the series . . . ⊆ A[2] ⊆
A[1] = A, where

A[n+1] =

n∑

i=1

A[i] ·A[n+1−i].

Then it is clear that A[n] is an ideal in A for every n, and A[n+1] ⊆ A[n].
Recall that for subsets C,D ⊆ A we use notation

C ·D =

∞∑

i=1

cidi

with ci ∈ C, di ∈ D, and almost all ci, di equal zero (so the sums
∑∞

i=1 cidi are
finite).

Theorem 3.1. Let (A, ·,+) be a left or right brace. If m,n are natural numbers
and An = A(m) = 0, then A[s] = 0 for some number s.

Proof. We will prove the result in the case when A is a right brace; the case when
A is a left brace is done by considering the brace with the opposite multiplication.
We will proceed by induction on n. If n = 2, then 0 = A2 = A ·A = A(2) = A[2], so
the result holds. Suppose that there is a natural number sn,m such that any right

brace satisfying An = 0 and A(m) = 0 satisfies A[sn,m] = 0.
Assume now that our brace satisfies An+1 = 0 and A(m) = 0. Let p > sn,m ·m,

and suppose that a ∈ A[p]. Then a =
∑

i aibi for some ai, bi ∈ A with ai ∈ A[p−qi],

bi ∈ A[qi], for some numbers qi. Observe that if qi > sn,m, then bi ∈ An (by the
inductive assumption applied to the brace A/An; this brace is well defined as An is
an ideal in A). In this case we get aibi ∈ A ·An = An+1 = 0. Therefore qi ≤ sn,m,
as otherwise aibi = 0. Consequently we can assume that all qi ≤ sn,m. For each
i, we can now write ai =

∑
i ai,jbi,j , and by the same argument as before, we get
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that each bi,j ∈ A[ri] for some ri ≤ sn,m (as otherwise bi,j ∈ An by the inductive
assumption applied to A/An, and so ai,jbi,j ∈ An+1 = 0). Observe now that since
A is a right brace then

∑

i

aibi =
∑

i

(
∑

j

ai,jbi,j)bi =
∑

i,j

(ai,jbi,j)bi.

Continuing in this way we get that a ∈
∑

c1,...,cm∈A((((A · c1) · c2) . . . · cm−1) · cm),

and since A(m) = 0 we get that each a = 0, so A[p] = 0. �

Theorem 3.2. Let (A, ·,+) be either a left brace or a right brace. If An = A(m) = 0
for some natural numbers m,n, then the multiplicative group of A is a nilpotent
group.

Proof. Let a, b ∈ A; then [a, b] = a ◦ b ◦ a−1 ◦ b−1 where a−1 and b−1 are inverses
of a and b respectively in the adjoint group Ao. We will construct a finite lower
central series of Ao. By Theorem 3.1 there is s such that A[s] = 0. We proceed by
induction on s. If A[2] = 0, then A is commutative so the result holds. Suppose
that the result holds for all numbers smaller than s; by the inductive assumption
applied to A′ = A/A[s−1] we get [[[[A,A]A] . . .]A] ∈ A[s−1] (m brackets for some
m). Since A[s−1] is in the center of A we get that [[[[A,A]A] . . .]A] = 0 (m + 1
brackets); hence A has a finite lower central series. �

Theorem 3.3. Let A be a left brace such that A(n) = 0 for some n. If the multi-
plicative group of A is nilpotent, then Am = 0 for some m, and hence A[s] = 0 for
some s.

Proof. By assumption A(n) = 0 for some n. We can assume that n is minimal
possible. Let b ∈ A(n−1), a ∈ A, and let a−1 and b−1 be the inverses of respectively
a and b in the adjoint group Ao. Recall that Ao is the group under the circle
operation a ◦ b = ab+ a+ b. We will show that

a ◦ b ◦ a−1 ◦ b−1 = ab.

Note that A(n−1) ⊆ Soc(A) = {x ∈ A | x ◦ a = x + a}. By [38, Corollary
after Proposition 6], A(n−1) is an ideal. Hence A(n−1) is a normal subgroup of
the multiplicative group of the left brace A. Let b ∈ A(n−1) and a ∈ A. Since
0 = b ◦ b−1 = b+ b−1, we have that b−1 = −b:

[a, b] = a ◦ b ◦ a−1 ◦ b−1

= a ◦ b ◦ a−1 + b−1 (since a ◦ b ◦ a−1 ∈ A(n−1))

= a ◦ (b+ a−1)− b

= a ◦ b+ a ◦ a−1 − a− b

= a ◦ b− a− b

= ab.

Therefore [a, b] = a ◦ b ◦ a−1 ◦ b−1 = ab.
Since the multiplicative group Ao of A is nilpotent we get

[am[. . . [a2[a1, b1]]]] = 0

for some m. Therefore [am[. . . [a2[a1, b1]]]] = am(am−1(. . . (a2(a1b)))). Conse-
quently A(A(. . .A(A(n−1)))) = 0 (m brackets).



6542 A. SMOKTUNOWICZ

We will now apply this result to prove our theorem; we will use induction on
n (recall that n is such that A(n) = 0). For n = 2 the result holds since A(2) =
A2 = A[2]. Suppose now that the result holds for all numbers smaller than n, so
if B is a left brace and B(n−1) = 0 and the adjoint group of Bo is nilpotent, then
B(n′) = 0 = B[n′] for some n′.

Recall that A(n−1) is an ideal in A, and hence a normal subgroup of Ao [18,44];
hence the adjoint group of brace A/A(n−1) is nilpotent. We can apply the inductive

assumption for the brace B′ = A/A(n−1) and we get that Bn′
= 0; hence An′

=

A(A(. . .A)) ⊆ A(n−1). Therefore Am+n′ ⊆ A(A(. . . A(A(n−1)))) = 0. By Theorem
3.1 we get that A[s] = 0 for some s. �

Let us remark that the first part of the above proof was provided by Ferran Cedó
after reading the original proof in the first version in this manuscript.

4. Structure of left braces with An = 0

In this section we observe some connections between nilpotent braces and nilpo-
tent rings. We start with the following lemma.

Lemma 4.1. Let s be a natural number and let A be a left brace such that As = 0
for some s. Let a, b ∈ A. Define inductively elements di = di(a, b), d

′
i = d′i(a, b) as

follows: d0 = a, d′0 = b, and for i ≤ 1 define di+1 = di + d′i and d′i+1 = did
′
i. Then

for every c ∈ A we have

(a+ b)c = ac+ bc+
2s∑

i=0

(−1)i+1((did
′
i)c− di(d

′
ic)).

Proof. Observe first that by an inductive argument d′i ∈ Ai for each i. Observe
that for i ≥ 1 we have

di+1 · c = (di + d′i) · c = ((di−1 + d′i−1) + di−1d
′
i−1) · c.

Recall that since A is a left brace then

di+1c = (di−1 + d′i−1 + di−1d
′
i−1) · c = di−1c+ d′i−1c+ di−1(d

′
i−1c).

The same holds when we increase i by 1; hence di+2c = dic + d′ic + di(d
′
ic). Sub-

tracting the above equation from the previous one we get

di+1c− di+2c = (di−1c− dic) + ei,

where ei = d′i−1c− d′ic+ di−1(d
′
i−1c)− di(d

′
ic). Observe that

ei = (di−2d
′
i−2)c− (di−1d

′
i−1)c+ di−1(d

′
i−1c)− di(d

′
ic).

Therefore,

s∑

i=1

e2i =
s∑

i=1

(d2i−2d
′
2i−2)c− (d2i−1d

′
2i−1)c+ d2i−1(d

′
2i−1c)− d2i(d

′
2ic).

Notice that if i ≥ s, then d′i ∈ As = 0. Therefore
∑s

i=1 e2i = (d0d
′
0)c+ q where

q =

s∑

i=1

d2i−1(d
′
2i−1c)− (d2i−1d

′
2i−1)c−

s∑

i=1

d2i(d
′
2ic)− (d2id

′
2i)c.
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Observe now that di+1c− di+2c = (di−1c− dic) + ei implies that
s∑

i=1

(d2i+1c− d2i+2c) =

s∑

i=1

(d2i−1c− d2ic) +

s∑

i=1

e2i;

therefore

d2s+1c− d2s+2c = d1c− d2c+
s∑

i=1

e2i.

Observe that d2s+2 = d2s+1 + d′2s+1 = d2s+1 since d′2s+1 ∈ As = 0. Consequently
d2c − d1c =

∑s
i=1 e2i = (d0d

′
0)c + q. Recall that d0 = a, d′0 = b, d1 = a + b,

d′1 = ab, and d2 = a + b + ab. Therefore d1c = (a + b)c and d2c = (a + b +
ab)c = ac + bc + a(bc). Consequently d1c = d2c − (d0d

′
0)c − q. It follows that

(a+ b)c = ac+ bc + a(bc)− (d0d
′
0)c − q = ac+ bc + d0(d

′
0c) − (d0d

′
0)c − q. Notice

that d0(d
′
0c) − (d0d

′
0)c − q =

∑2s
i=0(−1)i+1((did

′
i)c − di(d

′
ic)), which finishes the

proof. �

For an element a ∈ A and a natural number i, by

i · a
we will denote the sum of i copies of element a (hence 0 · a = 0).

Lemma 4.2. Let the assumptions and notation be as in Lemma 4.1. Suppose that
there is a natural number m such that m · a = m · b = 0. Let di, d

′
i be as in Lemma

4.1; then m · di = m · d′i = 0 for every i ≥ 1.

Proof. We will first show that m · d′t = 0 for every t ≥ 0. For t = 0 we have
m′ · d′o = m · b = 0. Suppose the result holds for some t ≥ 0. Then m · d′t+1 =
m · (dtd′t) = dt(m · d′t) = 0.

We will now show thatm·dt = 0 for all t ≥ 0. For t = 0 we havem·d0 = m·a = 0.
Suppose the result holds for some t ≥ 0. Then m · dt+1 = m · dt +m · d′t = 0 by the
inductive assumption. �

Let A be a left brace and let S,Q ⊆ A be additive subgroups of A. Then we
denote S +Q = {s+ q : s ∈ S, q ∈ Q}.

Lemma 4.3. Let (A,+, ·) be a finite left brace of cardinality pα1
1 . . . pαk

k for some
prime pairwise distinct numbers p1, . . . , pk and natural numbers α1, . . . , αk. Then

A = A1 +A2 + . . .+Ak,

where Ai is the additive subgroup of the additive group (A,+) of cardinality pαi
i for

every i ≤ k. Moreover, (Ai,+, ·) is a brace for each i ≤ k.

Proof. Since the additive group of A is a finite abelian group, then by using the
primary decomposition theorem we can decompose the additive group (A,+) into
a sum of additive subgroups of A; we can call them A1, . . . , Ak, where Ai is an
additive subgroup of A of cardinality pαi

i and Ai∩Aj = 0. Observe that if x, y ∈ A
and p · y = 0 for some natural number p, then p · (xy) = x · (py) = 0. Therefore if
a, a′ ∈ Ai, then a · a′ ∈ Ai; hence Ai is closed under the multiplication. We know
that Ai is closed under the addition; hence it is also closed under the operation ◦,
where a ◦ b = a · b+ a+ b for a, b ∈ A. Observe that since A is a finite group, then
the inverse of a ∈ A in the adjoint group Ao is of the form a ◦ a ◦ . . . ◦ a; hence it
belongs to Ai. It follows that Ai is a left brace. �
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Theorem 4.4. Let A be a finite left brace such that An = 0 for some n. Then
A is the direct sum of braces whose cardinalities are powers of prime numbers. In
particular, the adjoint group Ao of A is a nilpotent group.

Proof. Let notation be as in Lemma 4.3. We will first show that if a, b ∈ A and
m · a = m′ · c = 0 for some coprime natural numbers m,m′, then a · c = 0. Let
a ∈ A. By deg(a) we will denote the largest number i ≤ n such that a ∈ Ai. We
will proceed by induction on i = 2n− deg(a)− deg(c). If 2n− deg(a)− deg(c) = 0,
then a, c ∈ An = 0, so the result holds. Suppose now that i > 0 and that result
holds when 2n − deg(a) − deg(c) < i. We will show that the result also holds for
2n− deg(a)− deg(c) = i.

Let j be a natural number. Let c, d1, d
′
1, . . . , dn, dn′ be as in Lemma 4.1, applied

for a and for b = ja and for s = n. Denote qj =
∑2s

i=0(did
′
i)c − di(d

′
ic); then by

Lemma 4.1 we have

(a+ ja)c = ac+ (ja)c+ qj .

By Lemma 4.2, m · di = m · d′i = 0 for all i ≥ 0. Observe now that for any i, the
order of element d′ic is a divisor of m′ and hence is coprime with m. This follows
because, by the assumption at the beginning of the proof, the order of c is m′ and
m′ is coprime with m. Observe that m′ · (d′ic) = d′ic+ . . .+ d′ic = d′i · (m′ · c) = 0.

Observe that di(d
′
ic) = 0 by the inductive assumption, as 2n−deg(di)−deg(d′ic) ≤

2n − deg(di) − (deg(c) + 1) < 2n − deg(a) − deg(c). Similarly (did
′
i)c = 0 by the

inductive assumption since 2n− deg(did
′
i)− deg(c) ≤ 2n− (deg(d′i)+ 1)− deg(c) <

2n− deg(a)− deg(c). Therefore qj = 0. Consequently for every natural number j,

(a+ ja)c = ac+ (ja)c.

Recall that m,m′ are coprime numbers; therefore there are natural numbers ξ, β
such that βm′ − ξ ·m = 1. Denote e = ξ ·m+1 = β ·m′. Observe now that by the
above ac = (ea)c = ((e−1)a)c+ac = ((e−2)a)c+ac+ac = . . . = e(ac) = a(ec) = 0.
We have proved that ac = 0. Therefore if a ∈ Ai and c ∈ Aj , then ac = 0, provided
that i �= j (where Ai is as in Lemma 4.3).

Let ai ∈ Ai for i = 1, . . . , k and let b ∈ A. By the property of a left brace

b · (
k∑

i=1

ai) =
k∑

i=1

bai.

Let ci ∈ Ai. To show that A is the direct sum of braces Ai it remains to show
that (

∑k
j=1 aj)ci = aici. We will show that for every l ≤ k, (

∑l
j=1 aj)ci = aici if

i ≤ l and (
∑l

j=1 aj)ci = 0 if i > l. We will proceed by induction on l. The result
is true for l = 1. Let l > 1 and suppose that the result holds for l − 1.

Observe first that al · (
∑l−1

j=1 aj) =
∑l−1

j=1 alaj = 0 by the first part of the proof.

Hence (
∑l

j=1 aj)ci = (al + (
∑l−1

j=1 aj) + al(
∑l−1

j=1 aj))ci = alci + (
∑l−1

j=1 aj)ci +

al((
∑l−1

j=1 aj)ci). By the inductive assumption (
∑l−1

j=1 aj)ci = aici if i ≤ l − 1

and (
∑l−1

j=1 aj)ci = 0 otherwise. Suppose that i > l. Then (
∑l−1

j=1 aj)ci = 0 and

alci = 0; hence (
∑l

j=1 aj)ci = 0, as required. If i = l, then (
∑l−1

j=1 aj)ci = 0 so

(
∑l

j=1 aj)ci = alci = aici, as required. If i < l, then (
∑l−1

j=1 aj)ci = aici, alci = 0,

and (al(
∑l−1

j=1 aj)ci) = al(aici) = 0 as al ∈ Al and aici ∈ Ai and l �= i. Hence

(
∑l

j=1 aj)ci = alci = aici, as required. Therefore, A is the direct sum of braces Ai.
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We will now show the nilpotency of A. Observe first that for every i, Ai is a
p-group and hence is nilpotent. Observe then that if a ∈ Ai and b ∈ Aj for i �= j,
then a ◦ b = b ◦ a since a ◦ b = a+ b+ ab = a+ b and b ◦ a = b+ a+ ba = b+ a by
the above. Therefore, Ao is the direct product of groups Ai for i = 1, . . . , k, and
hence it is a nilpotent group. �

5. Braces whose adjoint group is nilpotent

In this section we will investigate the structure of braces whose adjoint groups
are nilpotent. For the following result we use a short proof which was provided by
Ferran Cedó after reading the original proof in the first version in this manuscript.

Theorem 5.1. Let A be a finite left brace such that the adjoint group Ao is a
nilpotent group. Then A is a direct sum of braces whose cardinalities are powers of
prime numbers. Assume that A has cardinality pα1

1 . . . pαk

k , for some prime pairwise
distinct numbers p1, . . . , pk and some natural numbers α1, . . . , αk. Then An = 0
where n is the largest number from among α1 + 1, α2 + 1, . . . , αk + 1.

Proof (Provided by Ferran Cedó). The first part is easier to prove using the equiv-
alent definition of left brace [18, Definition 1]: A left brace is a set B with two binary
operations: a sum + and a multiplication ◦, such that (B,+) is an abelian group,
(B, ◦) is a group, and a ◦ (b+ c) + a = a ◦ b+ a ◦ c for all a, b, c ∈ B.

Suppose that B is a finite left brace such that its multiplicative group is nilpotent.
Let P be a Sylow p-subgroup of the additive group of the left brace B. By [18,
Lemma 1], λa(P ) = P for all a ∈ B, where λa(b) = a ◦ b − a. In particular P is
closed by the multiplication, and hence it is a subgroup of the multiplicative group
of the left brace B. Thus P is a Sylow p-subgroup of the multiplicative group of
B. Since the multiplicative group of B is nilpotent, P is a normal subgroup in
(B, ◦). Hence P is an ideal of the left brace B (see [18, Definition 3]). Therefore, if
P1, . . . , Pr are the Sylow subgroups of the additive group of B, then they are also
the Sylow subgroups of the multiplicative group of B; in fact they are ideals of B
and B = P1 ◦ . . . ◦ Pr = P1 + . . .+ Pr is the inner direct product of the subbraces
P1, . . . , Pr.

The second part of Theorem 5.1 is a consequence of [44, Corollary after Propo-
sition 8]. �

Proof of Theorem 1.1. If An = 0 for some n, then by Theorem 4.4 the group Ao is
nilpotent, and A is the direct sum of braces whose cardinalities are prime numbers.
On the other hand, if A is a left brace and Ao is nilpotent, then An = 0 for some
n, by Theorem 5.1. �

Proof of Theorem 1.2. This follows from Lemma 4.1 applied several times, taking
into account that A[s] = 0. �

Proof of Theorem 1.3. Notice that (1) and (2) are equivalent by Theorem 3.1. No-
tice that by Remark 1.4, (3) and (4) are equivalent. By Theorems 3.2 and 3.3
properties (3) and (1) are equivalent. �

Proof of Proposition 2.3. This follows from Remark 1.4 and Theorems 3.2 and 3.3.
�
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6. Jacobson radical

In this section we give some preliminary results on Jacobson radical rings.

Lemma 6.1. Let F be a field. Let n be a natural number. Let R be an F -algebra
generated by elements a, b (without an identity element), and suppose that a2 = 0
and bn = 0 for some n. Let S be the F -linear space spanned by elements a · bi
for 0 < i < n. If all finite matrices with entries from S are nilpotent, then R is a
Jacobson radical ring.

Proof. We will use the well-known fact that a one-sided ideal in which every element
is quasi-regular generates a two-sided ideal which is Jacobson radical [34]. Let R′

be a subring of R generated by elements from S. Since all matrices with entries
from S are nilpotent, then by Theorem 1.2 from [50] R′ is a Jacobson radical ring.
Consider ring S′ generated by elements from S and from Sa and by element a.
Recall that a2 = 0, and so SaS = 0. Therefore Sa is a two-sided ideal in S′ which
is nilpotent; also S′/Sa is Jacobson radical, since R′ is Jacobson radical. It follows
that S′ is Jacobson radical.

Observe that S′R ⊆ S′ + S′a = S′; hence S′ is a right ideal in R. Therefore the
two-sided ideal generated by S′ in R is Jacobson radical; we will call this ideal I.
Observe now that the ring R/I is nilpotent, as it is generated by powers of b. It
follows that R is Jacobson radical. �
Lemma 6.2. Let F be a field. Let n be a natural number. Let R be an F -algebra
generated by elements a, b (without an identity element), and suppose that a2 = 0
and bn = 0 for some n. Let R[x] be the polynomial ring in one variable x over R.
Let Q be the F -linear space spanned by elements a · bixj for 0 < i < n, 0 ≤ j. If all
finite matrices with entries from Q are nilpotent, then R[x] is a Jacobson radical
ring, and hence R is a nil ring.

Proof. Amitsur’s theorem assures that if R is a ring such that R[x] is Jacobson
radical, then R is a nil ring (Theorem 15A.5 of [41]). Therefore it suffices to show
that R[x] is Jacobson radical. Observe that by Theorem 1.2 from [50], if R′ is a
subring of R[x] generated by elements from Q, then R′ is Jacobson radical. Let
S′ = R′ + R′a+ F [a][x] (where F [a] denotes the subalgebra of R generated by a);
then similarly as in Lemma 6.1 we get that S′ is Jacobson radical. It then follows
that the two-sided ideal I generated by S′ in R is Jacobson radical, and moreover
that R[x]/I is nil. Therefore R[x] is Jacobson radical. �

By R1 we denote the usual extension of a ring R by the identity element.

Lemma 6.3. Let F be a field, and let R = F [a, b] be the free algebra (without an
identity element) generated by elements a, b. Given c ∈ R, by F [c] we will denote
the subalgebra of R generated by c. Let S be the linear F -subspace of F [a, b] spanned
by elements ab and a · b2. Let I be the ideal of F [a, b] generated by a2, b3, and by
elements from sets F1, F2, . . . such that Fi ⊆ Si for every i.

(1) If p + q + t + t′ + t′′ ∈ I and p ∈ abR1, q ∈ bR1aR1, t ∈ F [a], t′ ∈ F [b],
t′′ ∈ a2R1bR1, then p, q, t, t′, t′′ ∈ I.

(2) If p+ q ∈ I and p ∈ R1ba, q ∈ Rb, then p, q ∈ I.
(3) If p = e1+e2+ . . .+en with ei ∈ F ·Si and p ∈ I, then ei ∈ I for all i ≤ n.

Proof. (1) By specialising at b = 0 we get that t ∈ F [a2] ⊆ I, and by specialising
at a = 0 we get t′ ⊆ F [b3] ∈ I; notice that t′′ ∈ I, hence p + q ∈ I. Denote
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Z =
⋃∞

i=1 Fi. Notice that I ⊆ ZR1 + b3R1 + a2R1 + bI + aI. It follows that
p + q ∈ (ZR1 + aI + a2R1) + (bI + b3R1). Observe that Z ⊆ aR. Therefore,
p ∈ (ZR1 + aI + a2R1) ⊆ I and q ∈ (bI + b3R1) ⊆ I, as required.

(2) Observe now that I ⊆ Ia + Ib + R1 · Z + R1a2 + R1b3; hence p + q ∈
(Ia ∩ R1ba) + Rb + R1a2. Notice that p ∈ R1ba and q ∈ Rb. It follows that
p ∈ Ia ∩R1ba, and hence p ∈ I and so q = (p+ q)− p ∈ I.

(3) Let J be the ideal of R generated by elements from sets Fi, and let 〈a2〉,
〈b3〉 denote ideals generated by a2 and b3 respectively; then p − j ∈ 〈a2〉 + 〈b3〉
for some j ∈ J . Notice that p has no terms from 〈a2〉 + 〈b3〉. Consequently
p ∈ I ′ + bI ′ + b2I ′ + I ′a + bI ′a + b2I ′a, where I ′ is the ideal of E generated by
elements from sets Fi and F ′

i , where E is the F -algebra generated by elements from
S, and where F ′

i = (Fib+Fib
2+Rb3)∩E. Hence p−i ∈ bI ′+b2I ′+I ′a+bI ′a+b2I ′a

for some i ∈ I ′. Since the left hand side belongs to aR1b and the right hand side
to Ra + bR it follows that p − i = 0, so p ∈ I ′ ⊆ E. Therefore in the factor ring
E/I ′ we have that p+ I ′ is the zero element.

Observe that I ′ is a homogeneous ideal in E when we assign gradation of elements
from S to have gradation 1, from S2 gradation 2, etc. Now p+ I ′ = 0 in E/I ′, so∑n

j=1(ej + I ′) = 0 in E/I ′, and since E/I ′ is a graded ring and each ej + I ′ has

gradation j it follows that ei + I ′ = 0; hence ei ∈ I, for every I. �

7. Ideals generated by powers of matrices are “small”

Let R be a ring and let R[x] be the polynomial ring over R. Given a matrix M
with entries from R[x], let P (M) denote the linear space spanned by coefficients of
polynomials which are entries of matrix M .

We will say that a ring R and a linear space S satisfy assumption (1) when

1. R is the free algebra (without identity) generated by two elements a, b over
a field F .

2. S is the linear F -subspace of F [a, b] spanned by elements ab and a · b2.

Lemma 7.1. Let R, S satisfy assumption (1), and let R[x] be the polynomial ring
over R in one variable x. Let m be a natural number and let M be a matrix with
entries from Sm · F [x]. Let C = {c1, c2, . . . , cj}, where c1, . . . , cj are non-zero
elements from F ·Sm. Let r = r1r2r3 where ri is a product of ni elements from set
C, for i = 1, 2, 3, with ni ≥ 0.

If r ∈ P (Mn1+n2+n3), then ri ∈ P (Mni) for i = 1, 2, 3.

Proof. We can write Mn = Mn1 · Mn2 · Mn3 . Therefore P (Mn) ⊆ P (Mn1) ·
P (Mn2) · P (Mn3). Hence

r = r1 · r2 · r3 ∈ P (Mn1)P (Mn2)P (Mn3)

and ri ∈ F · Sm·ni , P (Mni) ⊆ F · Sm·ni . It follows that ri ∈ P (Mni) for i = 1, 2, 3.
Indeed, if rj /∈ P (Mnj ) for some j, then we would find a linear mapping f :

F ·Sm·nj → F ·Sm·nj such that f(P (Mnj )) = 0 and f(rj) �= 0, and we can apply this
mapping to the above inclusion at appropriate places, obtaining a contradiction. �

Definition 7.2. Let F be an infinite field. Let R,S satisfy assumption (1). Let
f : F · Sm → F be an F -linear mapping. For every i we can extend the mapping
f to the mapping f : F · Sm·i → F by defining f(w1 . . . wi) = f(w1) . . . f(wi) for
w1, . . . , wi ∈ Sm and then extending it by linearity to all elements from F · Sm·i.
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Let t(x) =
∑n

i=0 tix
i for some ti ∈ R; then we denote f(t(x)) =

∑n
i=0 f(ti)x

i.
Let M be a matrix with entries mi,j ; by f(M) we will denote the matrix with
corresponding entries equal to f(mi,j).

Similarly, if g : F · Sm → F · Sm is a linear mapping, then for every i we
can extend the mapping g to the mapping g : F · Sm·i → F · Sm·i by defining
g(w1 . . . wi) = g(w1) . . . g(wi) for w1, . . . , wi ∈ Sm and then extending it by linearity
to all elements from F · Sm·i.

Lemma 7.3. Let notation be as in Lemma 7.1. Assume that f(ci) �= 0 for all i ≤ j,
where ci ∈ Sm are as in Lemma 7.1. Let f : F · Sm → F be a linear mapping, and
let f : F · Sm·n2 → F be as in Definition 7.2. Let F be an infinite field, and let
n = n1 + n2 + n3 be natural numbers. If r = r1r2r3 ∈ P (Mn), then

r1f(r2)r3 ∈ P (Mn1f(Mn2)Mn3).

Proof. Let M be a d-by-d matrix and let ai,j(x) be the polynomial which is at the
i, j entry of Mn. Notice that ai,j(x) =

∑
k,l≤d bi,k(x)ck,l(x)dl,j(x), where bi,k is the

i, k entry of matrix Mn1 , ck,l(x) is the k, l entry of Mn2 , and dl,j is the l, j entry of
matrix Mn3 . Similarly ni,j(x) =

∑
k,l≤d bi,k(x)f(ck,l(x))dl,j(x) is the i, j-th entry

of matrix Mn1f(Mn2)Mn3 .
Notice that since F is infinite, by a Vandermonde matrix argument we get that

P (Mn) =
∑

i,j≤d,p∈F F · ai,j(p) and

P (Mn1f(Mn2)Mn3) =
∑

i,j≤d,p∈F

F · ni,j(p).

If r = r1r2r3 ∈ P (Mn), then r ∈
∑

i,j≤D,p∈F F · ai,j(p); hence

r1r2r3 ∈ spanp∈F,i,j≤d

∑

k,l≤d

bi,k(p)ck,l(p)dl,j(p).

If we apply the mapping f as in Definition 7.2 at appropriate places we get that

r1f(r2)r3 ∈ spanp∈F,i,j≤d

∑

k,l≤d

bi,k(p)f(ck,l(p))dl,j(p).

Recall that ni,j(x) =
∑

k,l≤d bi,k(x)f(ck,l(x))dl,j(x) is the i, j-th entry of matrix

Mn1f(Mn2)Mn3 . Therefore the linear space spanned by elements
∑

k,l≤d

bi,k(p)f(ck,l(p))dl,j(p)

for p ∈ F equals the space spanned by ni,j(p) for p ∈ P . We have shown at the
beginning of this proof that the latter space equals P (Mn1f(Mn2)Mn3). Therefore
r1f(r2)r3 ∈ spani,j≤d,p∈Fni,j(p) ⊆ P (Mn1f(Mn2)Mn3). �

Lemma 7.4. Let R be an F -algebra. Let P be a linear space spanned by the
coefficients of polynomials hi(x) ∈ R[x] for i = 1, 2, . . . . Then for arbitrary non-
zero polynomial g(x) from F [x] the linear space Q spanned by the coefficients of
polynomials g(x)hi(x) equals P.

Proof. Clearly P ⊆ Q. Let Pi denote the space spanned by the coefficients of xi of
polynomials h1(x), h2(x), . . . .

By calculating the coefficient by the smallest power of x in polynomials g(x)hi(x)
we get that P0 ⊆ Q. By then calculating the coefficient by the second-smallest
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power of x in g(x)hi(x) we get that P1 ∈ Q + P0 ⊆ Q. Continuing in this way we
get Pi ⊆ Q+ P0 + . . .+ Pi−1, so Pi ⊆ Q for every i. It follows that P ⊆ Q. �

Lemma 7.5. Let notation be as in Definition 7.2 and Lemma 7.3. Let t be a
natural number and let M be a d-by-d matrix. Let n1, n2, n3 ≥ 0. Then for all
d ≥ 1 we have

P (Mn1f(Mn2)Mn3) ⊆
d+1∑

i=1

P (Mn1f(M)iMn3).

Proof. Let bi,k denote the i, k entry of matrix Mn1 , let ck,l(x) denote the k, l entry
of Mn2 , and let dl,j denote the l, j entry of matrix Mn3 .

Let ni,j(x) be the i, j-th entry of matrix Mn1f(Mn2)Mn3 ; then

ni,j(x) =
∑

k,l≤d

bi,k(x)f(ck,l(x))dl,j(x).

Notice that f(M) is a matrix with coefficients from F [x]. Every matrix with en-
tries from the field of rational functions F{x} in variable x satisfies its characteristic
polynomial. It follows that there are polynomials fi(x) such that

d+1∑

i=1

fi(x)f(M)i = 0

with fd+1(x) non-zero.
Therefore for every n there is a polynomial gn(x) ∈ F [x] such that gn(x)f(M)n ∈∑d+1
i=1 F [x] · f(M)i. By Lemma 7.4,

P (Mn1f(Mn2)Mn3) = P (g(x)Mn1f(Mn2)Mn3) = P (Mn1g(x)f(Mn2)Mn3).

We know that gn(x)f(M
n2) ⊆

∑d+1
i=1 F [x]f(M)i; hence

P (Mn1g(x)f(Mn2)Mn3) ⊆
d+1∑

i=1

P (F [x] ·Mn1f(M)iMn3).

By Lemma 7.4 we get P (Mn1f(Mn2)Mn3) ⊆
∑d+1

i=1 P (Mn1f(M)iMn3). �

We will say that M,R, S,m, d, α satisfy assumption (2) if

1. R,S satisfy assumption (1) and m, d, α are natural numbers.
2. M is a d-by-d matrix with entries from Sm · F [x]. Moreover,

M ⊆ R+ Rx+Rx2 + . . .+Rxα.

Let c1, . . . , cj be linearly independent elements from F · Sm and denote C =
{c1, . . . , cj}. Let v = ci1 . . . cij and v′ = ck1

. . . ckj
for some i1, . . . , ij , and some

k1, . . . , kj . We will say that words v and v′ are distinct if il �= jl for some l ≤ j.
Let r be a product of elements from the set C. We say that w is a subword of

degree n in r if w is a product of n elements from C and r = vwv′ for some v, v′

which are also products of elements from C.

Lemma 7.6. Let F be an infinite field. M,R, S,m, d, α satisfy assumption (2).
Let q be a natural number. Let c1, . . . , cj be linearly independent elements from
F · Sm, and let r, r′ be products of q elements from the set C = {c1, . . . , cj}. If
n ≥ 8d3 · (α+1) and r has at least n pairwise distinct subwords of length n, and r′

has at least n pairwise distinct subwords of length n, then r · r′ /∈ P (M t), for any t.
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Proof. Suppose on the contrary that rr′ ∈ P (M t). Let p1, . . . , pn be subwords of r
of degree n, and let q1, q2, . . . , qn be subwords of r′ of length n. Then there are si,k
such that pisi,kqk is a subword of r ·r′ for all i, k ≤ n. By Lemma 7.1, r ·r′ ∈ P (M t)
implies that pisi,kqk ∈ P (Mmi,k) for some mi,k. Let f : F · Sm → F be a linear
mapping, and let f : F · Sm·n2 → F be as in Definition 7.2. We can choose f such
that f(ci) �= 0 for i = 1, 2, . . . , j, and hence f(si,k) �= 0 for every i, k ≤ n. By
Lemma 7.3,

pif(si,k)qk ∈ P (Mnf(Mmi,k−2n)Mn).

By Lemma 7.5, piqk ∈
∑d+1

l=1 P (Mnf(M l)Mn). Notice that the linear space∑d+1
l=1 P (Mnf(M l)Mn) has dimension smaller than d2(d+ 1) · (2nα+ 2).
Observe now that since pi and qi are products of n elements ci and c′is and are

linearly independent over F , then elements piqk are linearly independent over F .
Therefore elements piqk span a linear space over field F of dimension at least n2.
Hence n2 ≤ d2(d+ 1) · (2nα+ 2) < 8d3 · (α+ 1) · n, a contradiction. �

8. Subspaces Ei and E′
i

Let F be a countable field and let R,S satisfy assumption (1). Since F is
countable, we can enumerate finite matrices with entries in S · F [x] as X1, X2, . . . .
We can assume that the matrix Xi is a di-by-di matrix where di ≤ i and Xi has
entries in F · (S + Sx+ S · x2 + . . .+ S · xi) for every i, if necessary taking Xi = 0
for some i.

The following is similar to Theorem 5 from [49].

Theorem 8.1. Let F be a countable field, let R,S satisfy assumption (1) and let
matrices X1, X2, . . . be as above. Let 0 < m1 < m2 < . . . be a sequence of natural
numbers such that mi is a power of two and 22

mi
divides mi+1 for all i ≥ 1. Denote

R(m) = F · Sm for every m. Let E′
i be the linear space spanned by all coefficients

of polynomials which are entries of the matrix X22
mi

i and let

Ei =
∞∑

j=0

R(j ·mi+1)E
′
iSR.

Then there is an ideal I in R contained in
∑∞

i=1 Ei + bEi + b2Ei + 〈a2〉 + 〈b3〉
and such that R/I is a nil ring, where 〈a2〉, 〈b3〉 denote ideals in R generated by
elements a2 and b3.

Proof. Observe first that the ideal Ik of R generated by coefficients of polynomials

which are entries of the matrices X
2mk+1+2
k is contained in the subspace Ek+bEk+

b2Ek + 〈a2〉 + 〈b3〉. It follows because entries of every matrix Xk have degree one
in the subring generated by S with elements of S of degree one. In general if
n > mk+1 + 22

mk + 1, then coefficients of polynomials which are entries of matrix
Xn

k belong to R(i)E′
kR(1)R for every 0 ≤ i < n−mk+1 − 1.

Define I =
∑∞

i=1 Ik + 〈a2〉+ 〈b3〉; then I ⊆
∑∞

i=1 Ei + bEi + b2Ei + 〈a2〉+ 〈b3〉.
Observe also that, by Lemma 6.2, R/I is a nil ring. �

Lemma 8.2. Let F be an infinite field and let T ⊆ L be finitely dimensional F -
linear spaces. Let c1, c2, . . . , cj ∈ L, and let c1, c2, . . . , cj , /∈ T . Then there is a linear
mapping f : L → F such that T is contained in the kernel of f and c1, c2, . . . , cj
are not contained in the kernel of f .
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Moreover there is a linear mapping g : L → L such that T is contained in the
kernel of g and c1, c2, . . . , cj are not contained in the kernel of g and the image of
g has co-dimension 1 in L.

Proof. Let Q be a maximal linear space such that c1, c2, . . . , cm, /∈ Q and T ⊆ Q.
We will show that L/Q is a one dimensional linear space. Suppose on the contrary,
that there are two elements x + Q, y + Q in L/Q which are linearly independent
over F . By maximality of Q, we get that there are α �= β such that linear spaces
Q + F · (x + α · y) and Q + F · (x + β · y) both contain some element ci. Then
ci− t1 · (x+α ·y) ∈ Q and ci− t2 · (x+β ·y) ∈ Q for some t1, t2 ∈ F . It follows that
t1 · (x+α ·y)− t2 · (x+β ·y) ∈ Q, a contradiction since x+Q and y+Q are linearly
independent in L/Q. We can now take g : L → L to be such that f(q) = 0 for
every q ∈ Q, and the image of g has co-dimension 1 in L. Observe that the natural
linear mapping f : L → L/Q; then L/Q has dimension 1, so L/Q is isomorphic as
a linear space to F . In this way we can define the mapping f . �

9. Words wi

In this section we give some supporting results on some monomials related to
Engel elements.

Definition 9.1. Let M be the free monoid generated by elements A,B,A′, B′.
Define inductively a sequence of infinite monomials Wi as follows:

W1 = A, W2 = ABA′, W3 = W2BW̄2,

and
Wn+1 = WnBW̄n,

where W̄ = (σ(W ))op where σ : M → M is a homomorphism of monoids such
that σ(A) = A′, σ(A′) = A, σ(B) = B′, and σ(B′) = B. Recall that if xi ∈
{A,A′, B,B′}, then (x1x2 . . . xn)

op = xnxn−1 . . . x1. We will sometimes refer to
monomials from M as words. Observe also that for every n > 0,

W̄n+1 = WnB
′W̄n.

Lemma 9.2. For every i, Wi has length 2i − 1.

Proof. By induction on i. �

Lemma 9.3. Let notation be as in Lemma 9.2. Let α(c, v) denote the number
of occurrences of c in a word v ∈ M . Then for every n ≥ 1 α(A,Wn+1) =
α(A′,Wn+1) = α(B,Wn+1) = 2n−1 and α(B′,Wn+1) = 2n−1 − 1. Moreover in
the word Wn+1 after elements A,A′ appears either B or B′, and after elements
B,B′ appears either A or A′.

Proof. Observe that for v = WnB
′ we have α(A, v)+α(A′, v) = α(B, v)+α(B′, v),

as in v after A and A′ always appears after either B or B′ and vice-versa. We will
now proceed with the proof of our theorem by induction on n. For n = 1 we have
W2 = ABA′, so the result holds in this case. Suppose that the result holds for
some n ≥ 1; we will show that it holds for n+ 1.

Observe that for every word v, we have α(A, v) = α(A′, v̄) and α(B, v) =
α(B′, v̄). Recall that Wn+1 = WnBW̄n; consequently α(A,Wn+1) = α(A′,Wn+1),
α(B,Wn+1) = α(B′,Wn+1) + 1. Let v = Wn+1B

′; then by the above α(A, v) =
α(A′, v) and α(B, v) = α(B′, v).
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By Lemma 9.2, α(A, v)+α(A′, v) +α(B, v)+α(B′, v) = 2n+1. Hence α(A, v) =
α(A′, v) = α(B, v) = α(B′, v) = 2n−1. The result follows. �

Definition 9.4. Let M be a free monoid generated by elements A,A′, B,B′. Let
v ∈ M . Let R be a ring, and let x, y, z, t ∈ R. By v(x, y, z, t) we will denote the
element of R obtained by substituting A = x, B = y, A′ = z, and B′ = t in the
word v.

Definition 9.5. Let F be a field, and let R be a ring generated by elements a, b,
such that a2 = 0, b3 = 0. Then 1+a and 1+b are invertible elements in R1. Denote

v1 = [1 + a, 1 + b] = (1 + a)(1 + b)(1 + a)−1(1 + b)−1,

v2 = [v1, 1 + b] = v1(1 + b)v−1
1 (1 + b)−1,

vn+1 = [vn, 1 + b] = vn(1 + b)v−1
n (1 + b)−1.

Lemma 9.6. Let notation be as in Definition 9.5. Denote zn+1 = vn · (1 + b).
Then z2 = (1 + a)(1 + b)(1 + a)−1 = (1 + a)(1 + b)(1− a) and

zn+1 = zn · (1 + b) · z−1
n

for n = 2, 3, . . . . Moreover,

(zn+1)
−1 = zn · (1− b+ b2) · z−1

n .

Proof. It is clear that z2 = v1(1+a) = (1+a)(1+b)(1+a)−1 = (1+a)(1+b)(1−a).
By the definition of vn+1 we get

zn+1 = vn(1 + b) = vn−1 · (1 + b) · v−1
n−1 = [vn−1(1 + b)] · (1 + b) · [(1 + b)−1v−1

n−1]

= zn · (1 + b) · z−1
n .

This implies z−1
n+1 = zn(1− b+ b2)z−1

n . �

Notation. Let notation be as in Definition 9.1. Let R be a ring generated by
elements a, b such that a2 = 0 and b3 = 0. In what follows we will use the following
notation:

wn = Wn(a, b,−a, b2 − b), w̄n = W̄n(a, b,−a, b2 − b).

Lemma 9.7. Let notation be as above and as in Definition 9.1. Then w1 = a,
w2 = −aba, w̄1 = −a, and w̄2 = −a(b2 − b)a. Moreover, for every n, wn+1 =
wn · b · w̄n and w̄n+1 = wn · (b2 − b) · w̄n.

Proof. It follows from Definition 9.1 by induction on n. �

Lemma 9.8. Let F be a field and let R,S satisfy assumption (1). Let notation be
as in Lemmas 9.7 and 9.6. Let T (j) be the linear space spanned by all monomials
x1x2 . . . xn such that xi ∈ {a, b} and the cardinality of the set {1 ≤ i ≤ n − 1 :
xixi+1 ∈ {ab, ba}} is at most j (n is arbitrary).

Then for every n ≥ 2,

zn − wn − 1, z−1
n − w̄n − 1 ∈ T (2n − 3)

and

wn, w̄n ∈ F · S2n−1−1a ⊆ T (2n − 2).

Recall that S is the linear space over F spanned by elements ab and a · b2.
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Proof. We will proceed by induction. We will use Lemmas 9.7 and 9.6.
For n = 2 we have w2 = −aba ⊆ F · Sa ⊆ T (2) = T (22 − 2), and z2 =

(1 + a)(1 + b)(1 − a) = −aba + (ab + b − a2 − ba) + 1. Therefore, z2 − w2 − 1 =
ab+ b− a2 − ba ∈ T (1) = T (22 − 3), as required.

Recall that w̄2 = −a(b2 − b)a ∈ F · Sa ⊆ T (2). Observe also that z−1
2 =

(1 + a)(1− b+ b2)(1− a) = −a(b2 − b)a+ a(b2 − b) + (b2 − b)− a2 − (b2 − b)a+ 1;
hence z−1

2 − w̄2 − 1 ∈ T (1), as required.
Suppose now that the result holds for some number n ≥ 2; we will prove it for

n + 1. Observe that for all i, j, we have T (i)T (j) ⊆ T (i + j + 1), as we have only
one more place when the words from T (i) and T (j) meet where a change from a to
b or from b to a can appear.

Observe that wn+1 = wnbw̄n; hence by the inductive assumption

wn+1 ∈ T (2n − 2)T (0)T (2n − 2) ⊆ T (2n − 2 + 0 + 2n − 2 + 2) = T (2n+1 − 2).

We have zn+1 = zn(1 + b)z−1
n ; hence for some q, q′ ∈ T (2n − 3) + F ,

zn+1 = (wn + q)(1 + b)(w̄n + q′).

By the inductive assumption

q(1 + b)q′ ⊆ T (2n − 3)T (0)T (2n − 3) ⊆ T (2n − 3 + 0 + 2n − 3 + 2) = T (2n+1 − 4).

Similarly q(1 + b)w̄n ⊆ T (2n − 3)T (0)T (2n − 2) ⊆ T (2n+1 − 3) and wn(1 + b)q′ ⊆
T (2n+1 − 3). Consequently, zn+1 − wn+1 − 1 ∈ T (2n+1 − 3). The proof that
w̄n+1 ∈ T (2n+1 − 2) and z−1

n+1 − w̄n+1 ∈ T (2n+1 − 3) is analogous.
Notice also that by Lemma 9.3 and by Notation before Lemma 9.7

wn, w̄n ∈ S2n−1−1a ⊆ T (2n − 2).

�

Lemma 9.9. Let F be an infinite field. Let R,S satisfy assumption (1). Let I be
the ideal of R generated by elements from sets F1, F2, . . . , where Fi ⊆ F · Si for
every i and by elements a2 and b3. Denote w′

n+1 = Wn+1(a, b,−a, b2 − b) ∈ R,
w′

n+2 = Wn+2(a, b,−a, b2−b) ∈ R. Let vn, zn+1 be as in Definition 9.5 and Lemma

9.6 applied for ring R̄ = R/〈a2, b3〉. Let I ′ be the ideal of R̄ which is generated by
images in R/〈a2, b3〉 of elements from sets F1, F2, . . . .

If vn − 1 ∈ I ′ for some n > 1, then w′
n+1b ∈ I, and hence w′

n+2 ∈ I.

Proof. Let z′n+1 ∈ R be such that the image of z′n+1 in R/〈a2, b3〉 is zn+1. Recall
that zn+1 = vn · (1 + b) (as in Lemma 9.6). Observe that vn − 1 ∈ I ′ is equivalent
to zn+1 · (1 + b)−1 − 1 ∈ I ′. This implies that zn+1 − (1 + b) ∈ I ′ and hence
z′n+1 − (b + 1) ∈ I (since a2, b3 ∈ I). Observe that R/I = R̄/I ′. We can write
z′n+1−(b+1) = p+q+ t+ t′+ t′′ ∈ I for some p ∈ ab ·R1, q ∈ bR1aR1, t ∈ F [a], t′ ∈
F [b], t′′ ∈ a2R1bR1, as in Lemma 6.3. By Lemma 6.3 of [1] we get p, q, t, t′, t′′ ∈ I.
By Lemma 9.8 we get p = w′

n+1 + v + i for some v ∈ T (2n+1 − 3) ∩ abR1 and
i ∈ 〈a2, b3〉. We can write v = v′+v′′+v′′′ where v′ ∈ Rba, v′′ ∈ Rb, and v′′′ ∈ Ra2

(we can assume that v, v′, v′′ ∈ abR1 since v ∈ abR1). Notice that v′′′ ∈ I and
i ∈ I; hence w′

n+1 + v′ + v′′ ∈ I. By Lemma 6.3 of [2] we get that w′
n+1 + v′ ∈ I.

Therefore, w′
n+1b+v′b ∈ I and v′b ∈ T (2n+1−2). Notice that v′b ∈ ab ·R1∩R1 ·ab.

It follows that v′b ∈ F + F · S + F · S2 + . . .+ F · S2n−1 + i′ for some i′ ∈ 〈a2, b3〉.
By Lemma 9.3, w′

n+1b ⊆ F · S2n . By Lemma 6.3 of [3] w′
n+1b ∈ I. Observe also

that w′
n+1b ∈ I implies that w′

n+2 = w′
n+1bw̄

′
n+1 ∈ I. �
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10. Combinatorics of words

The following lemma immediately follows from the proof of Theorem 1.3.13, p.
22, of [36]. We repeat a slightly modified proof.

Lemma 10.1. Let n be a natural number. Let w be an infinite word which has less
than n subwords of degree n; then u = cddd . . . for some words c, d such that c has
length smaller than n! and d has length n!.

Moreover if u is a finite word which has less than n subwords of degree n, then
u = cddd . . . d for some words c, d such that c has length smaller than n! + n! and
d has length n!.

Proof. Notice that for some m ≤ n, w has the same number of words of length
m and m + 1. Hence for every subword v1 in w of length m we have exactly one
possibility of a subword u1 of w which has length m + 1 and which contains v as
the beginning. Let v2 be the ending of length m in u1. We can apply the same
reasoning to v2 instead of v1 and find word u2 containing v2 as at the beginning.
After at most n steps we get vi = vj for some i �= j, and then from the step j,
vk+j = vk for each k. Therefore w = v1 . . . vi−1vvvvvvv... where v is some word of
length t < n+ 1. Because t divides n! we get the result for w.

If u is a finite word, then we can apply similar reasoning. �

We can then get the following.

Lemma 10.2. Let R,S satisfy assumption (1). Let v′ = c1 . . . cm with each ci ∈
F · Sm for some m. We say that w is a subword of v′ of length n if v′ = uwu′

where for some k, u = c1 . . . ck, w = ck+1ck+2 . . . ck+n, u
′ = ck+n+1 . . . cm (u and

u′ may be trivial words). Let n be a natural number. Assume that v′ has less than
n subwords of degree n; then u = cddd . . . d for some subwords c, d such that c has
length smaller than n! + n! and d has length n!.

Proof. It follows from Lemma 10.1. �

Theorem 10.3. Let 0 < m1 < m2 < . . . be such that each mi is a power of
two, 22

mi
< mi+1 and 22

mi
divides mi+1 for every i. Let R(i), S, E1 be as in

Theorem 8.1. Assume that 2m1 > 17! · 10. Then wnb /∈ E1 for any n, where
wn = Wn(a, b,−a, b2 − b).

Proof. Suppose, on the contrary, that wn = Wn(a, b,−a, b2 − b)b ∈ E1. We can
assume that n > m2, since wib ∈ E1 implies that wi+1b ∈ E1, by the definition of

Wi and E1. Recall that R(2n−1) = F ·S2n−1

. Since wnb ∈ R(2n−1), by Lemma 9.2
and the fact that m2 is a power of two, we can assume that 2n−1 is divisible by m2

(because we can take larger n if needed by the argument from the first lines of this
proof).

Denote w = wnb. We can write w = w′
1 . . . w

′
t with each w′

i ∈ R(m2). Since
w ∈ E1 it follows that some w′

j ∈ E1 ∩ R(m2) (it can be proved using linear
mappings similarly as in the proof of Lemma 7.1). Then w′

j = v1 . . . vm2/m1
for

vi ∈ R(m1). Denote α = 22
m1

/m1; then v1 . . . vα ∈ E′
1, where E

′
1 is the linear space

spanned by all coefficients which are entries of the matrix X22
m1

1 , by Theorem 8.1.
Write v1 . . . vα = vv′, where v, v′ ∈ R(α/2). Recall that vv′ ∈ P (X1

j) for
j = 22

m1
. By Lemma 7.6 we get that for every n > 8d3 · (α+ 1) either v or v′ has
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less than n subwords of length n. Without restraining generality we can assume
that it happens for v′ (by a subword we mean a product vivi+1 . . . vj for some i ≤ j).

In our case α = 1, d = 1 because of assumptions on matrix M = X1 (before
Theorem 8.1), so we can take n = 17. By Lemma 10.2 v′ = cddd . . . d for some
words c, d such that c has length smaller than 17! + 17! and d has length 17!.

By assumption 22
m1

= 2k for some k. By the definition of words Wi we get that
vv′ = wk+1b and vv′ = wkbw̄kb. It follows that v = wkb and v′ = w̄kb.

Observe now that v′ = w̄kb implies that v′ = wk−1(b
2 − b)w̄k−1b.

By Lemma 9.3 we can write wk−1 = ab2k−2−1 · b2k−2−1a . . . ab2 · ab1a where
bi ∈ {b, b2 − b}. Then v′ = wk−1(b

2 − b)w̄k−1b yields

v′ = (ab2k−2−1 · ab2k−2−2 . . . ab2 · ab1 · a(b2 − b))(ab̄1 · ab̄2 . . . ab̄2k−2−1 · ab),
where b = ¯b2 − b and ¯b2 − b = b. By Lemma 10.2 applied to v′ and to m = 1 we
get that v′ = cddd . . . d for some words c ∈ R(α ·m1), d ∈ R(17! ·m1), where c has
length smaller than 17! + 17!, so α < 17! + 17!.

By the assumptions of our theorem k > 17! · 10. We can write

v′ = wk−1(b
2 − b)w̄k−1b = s · p · q · r · t

for some s, t ∈ R and some p, r, q ∈ R(17! · m1) with spq = wk−1(b
2 − b). Notice

then that s ∈ R(q ·m1) for some q > 17! · 2. Then because v′ = cddd . . . and d has
length 17! we get p = q = r. Recall that spq = wk−1(b

2 − b), and by the above

s · p · q = (ab2k−2−1 · ab2k−2−2 . . . ab2 · ab1 · a(b2 − b)).

Consequently, q = ab17!·m1−1a . . . b2ab1a(b
2 − b), r = ab̄1ab̄2a . . . ab̄17!·m1

, and p =
p′ab17!·m1

, for some p′. Recall that p = r; it follows that ¯b17!·m1
= b17!·m1

, which is
impossible, as b17!·m1

∈ {b, b2− b} and b = ¯b2 − b and ¯b2 − b = b. We have obtained
a contradiction. �

11. Mapping T

In this section we will use the following notation:

wt = Wt(a, b,−a, b2 − b), w̄t = W̄t(a, b,−a, b2 − b).

Recall that by Lemma 9.2 we have

wkb, wk(b
2 − b) ∈ R(2k−1).

Recall that, given matrix M with entries in R[x], by P (M) we denote the linear
space spanned by coefficients of polynomials which are entries of matrix M . The
linear spaces Ei and E′

i are as in Theorem 8.1.
Let R,S satisfy assumption (1). By S-monomial we will mean a product of

elements from the set {ab, a(b2 − b)}.

Lemma 11.1. Let F be a field and let R,S satisfy assumption (1). Let n, j be nat-
ural numbers. Let d1, . . . , dj be S-monomials from R(mn+1) such that v1, . . . , vβ /∈∑n

k=1Ek. Then there is a linear mapping T ′ : R(mn+1) → R(mn+1) such that

T ′(
n∑

k=1

En ∩R(mn+1)) = 0.

Moreover there are non-zero S-monomials d′1 . . . d
′
j ∈ {ab, a(b2 − b)} and non-zero

α1, . . . , αj ∈ F and non-zero d ∈ R(mn+1 − 1) such that T ′(vk) = αk · dd′k for all



6556 A. SMOKTUNOWICZ

k ≤ β. Moreover, there is a linear mapping f : R(mn+1 − 1) → R(mn+1 − 1) such
that T ′(uv) = f(u)v for all S-monomials u, v with v ∈ R(1) and u ∈ R(mn+1 − 1).

Proof. By the definition of sets Ek, R(mi+1)∩
∑i

k=1 Ek = P ′ ·R(1) for some linear
space P ′. Each vk can be written as vk = ckek where ck, ek are S-monomials and
where ek ∈ R(1). It follows that ck /∈ P ′ for each k. We apply Lemma 8.2 for L =
R(mi+1−1) and T = P ′ to get linear mapping f : R(mi+1−1) → R(mi+1−1) such
that f(ck) �= 0 for every k, and the image of f has co-dimension 1 in R(mi+1 − 1).
There is d �= 0 such that d ∈ Im(f), and since f has co-dimension 1, the image of f
is F ·d. Hence f(ck) is a non-zero multiple of d for every k. Moreover by Lemma 8.2
we have f(P ′) = 0. Therefore mapping T ′(uv) = f(u)v defined for S-monomials
u, v with v ∈ R(1), u ∈ R(mi+1 − 1), and extended by linearity to all elements of
R(mi+1) satisfies the thesis of our theorem. �
Definition 11.2. Let T ′ : R(mn+1) → R(mn+1) be a mapping as in Lemma 11.1.
For every j, we can extend the mapping T ′ to the mapping T : R(j · mn+1) →
R(j ·mn+1) by defining T (w1 . . . wj) = T ′(w1) . . . T

′(wj) for w1, . . . , wj ∈ R(mn+1)
and then extending it by linearity to all elements from R(j ·mn+1).

Let M be a matrix with entries mi,j . By T (M) we will denote the matrix with
corresponding entries equal to T (mi,j).

Lemma 11.3. Let n ≥ 1 be a natural number. Let 0 < m1 < m2 < . . . be such
that each mi is a power of two, 22

mi
< mi+1, and 22

mi
divides mi+1 for every i.

Suppose that wjb /∈
∑n

i=1 Ei for every j and wtb ∈
∑n+1

i=1 Ei for some t. Denote

β = 22
mn+1

/mn+1 and k = 2mn+1 . Then the following hold:

• Then wk+1b = v1 . . . vβ for some S-monomials v1, . . . , vβ ∈ R(mn+1).
• Moreover, there is a mapping T ′ : R(mn+1) → R(mn+1) satisfying assump-
tions of Lemma 11.1 and such that T ′(vi) �= 0 for all i ≤ mn+2/mn+1 and
T ′(

∑n
i=1 Ei ∩R(mn+1)) = 0.

• Let T : R(mn+2) → R(mn+1) be defined as in Definition 11.2 using our
mapping T ′, and let

M = T (X
mn+1

n+1 ),

where Xn+1 is as in Theorem 8.1. Then T (wk+1b) ∈ P (Mβ).

Proof. Observe that we can assume that t is arbitrarily large, since wib ∈
∑∞

i=1 Ei

implies wi+1b ∈
∑∞

i=1 Ei by the definition of words wi. Therefore we can assume
that t > mn+2. By the definition of words wib = Wi(a, b,−a, b2−b)b and by Lemma
9.2 we see that wtb = u1 . . . ul with each ui ∈ R(mn+2) (since length of wtb is 2t

we can do it since 2t ≥ mn+2). Observe that since wtb ∈
∑n+1

i=1 Ei it follows that
for some ξ we have

uξ ∈
n+1∑

i=1

Ei ∩Rmn+2

(it can be proved using linear mappings similarly as in the proof of Lemma 7.1).
By the definition of words wi = Wi(a, b,−a, b2 − b) it follows that uξ ∈ Zγ where

Zγ = {wγb, wγ(b
2 − b), w̄γb, w̄γ(b

2 − b)},
where 2γ−1 = mn+2. Similarly,

uξ = v1 . . . vmn+2/mn+1

for vi ∈ R(mn+1).
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Observe that for each i, vi /∈
∑n

i=1 Ei, as otherwise wtb ∈
∑n

i=1 Ei, contradicting
the inductive assumption. Therefore, by Lemma 11.1 applied to S-monomials vi,
we can choose mapping T ′ : R(mn+1) → R(mn+1) such that T ′(vi) �= 0 for all
i ≤ mn+2/mn+1 and T ′(

∑n
i=1 Ei ∩ R(mn+1)) = 0. Let T be as in Definition 11.2.

Observe that T (
∑n

i=1 Ei ∩ R(mn+2)) = 0 since T ′(
∑n

i=1 Ei ∩ R(mn+1)) = 0 (by
Lemma 11.1). It follows that

T (uξ) = T (v1v2 . . . vmn+2/mn+1
) ∈ T (En+1).

Notice that by the definition of the mapping T we get

T (v1)T (v2) . . . T (vmn+2/mn+1
) = T (v1v2 . . . vmn+2/mn+1

) ∈ T (En+1).

By the definition of En+1 it follows that

T (v1 . . . vβ) ∈ T (E′
n+1),

where β = 22
mn+1

/mn+1. Notice that T (E′
n+1) is the linear space spanned by

coefficients of matrix T (Xn+1
mn+1·β). Observe that T (X

mn+1·β
n+1 ) = T (X

mn+1

n+1 )β.
Therefore

T (v1) . . . T (vβ) = T (v1 . . . vβ) ∈ P (Mβ),

where M = T (X
mn+1

n+1 ).

Recall that (v1 . . . vβ) · (vβ+1 . . . vmn+1/mn
) = uξ ∈ {wγb, wγ(b

2 − b), w̄γb,

w̄γ(b
2 − b)}; hence by the definition of words wi we get v1 . . . vβ = wkb (since

β < mn+1/mn). Therefore wk+1b = v1 . . . vβ , and hence T (wk+1b) = T (v1 . . . vβ) ∈
P (Mβ). �

Theorem 11.4. Let 0 < m1 < m2 < . . . be such that each mi is a power of two,
22

mi < mi+1, and 22
mi divides mi+1 for every i. Assume that 2m1 > 17! · 10. Let

R, I satisfy assumptions of Theorem 8.1 for these mi. Let R(i), S be as in Theorem
8.1. Let n be a natural number. Then wtb /∈

∑n
i=1 Ei for any t.

Proof. We proceed by induction on n. For n = 1 the result holds by Theorem 10.3.

Suppose now that wjb /∈
∑n

i=1 Ei for any j. We need to show that wjb /∈
∑n+1

i=1 Ei

for all j. Suppose on the contrary that wtb ∈
∑n+1

i=1 Ei for some t. Then by the

definition of words wi, wt+jb ∈
∑n+1

i=1 Ei for every j ≥ 0.
Let notation be as in Theorem 11.4. Then wkb = v1 . . . vβ for some v1, . . . , vβ ∈

R(mn+1); moreover each vi is an S-monomial. By Lemma 11.4 we know that
T (wk+1b) ∈ P (Mβ).

Let c′1, c
′
2, . . . , c

′
j ∈ {v1, . . . , vβ} be distinct S-monomials such that elements

T ′(c′1), T
′(c′2), . . . , T

′(c′j) form a basis of the linear space F ·T ′(v1)+ . . .+F ·T ′(vβ).
By Lemma 11.3, for every k we can write T (vk) = T (c′ik)αk for some ik and some

0 �= αk ∈ F ; moreover, as in Lemma 11.3, we denote β = 22
mn+1

/mn+1 and
k = 2mn+1 . Denote T (c′i) = ci, for every i. Notice that T (wk+1b) = w′ · α where
w′ = ci1 . . . ciβ and α = α1 . . . αβ . It follows that ci1 . . . ciβ ∈ P (Mβ).

Denote

v = T ′(v1) . . . T
′(vβ/2), v

′ = T ′(vβ/2+1) . . . T
′(vβ)

and

u = T ′(c′i1) . . . T
′(c′iβ/2

), u′ = T ′(c′iβ/2+1
) . . . T ′(c′iβ );

then w′ = ci1 . . . ciβ = uu′ and u, u′ ∈ R(22
mn+1

/2) = R(mn+1)
β/2. Moreover there

are 0 �= β′, β′′ ∈ F such that v = β′′ · u and v′ = β′ · u′.
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Notice that u = ci1 . . . ciβ/2
and u′ = ciβ/2+1

ciβ . By Lemma 7.6 we get that for

n′ ≥ 8d3 · (α + 1) either u or u′ has less than n′ subwords of length n′; without
restraining generality we can assume that it happens for u′. In our case α =
(n+1) ·mn+1, d = n+1 because of assumptions on matrix M = T (X

mn+1

n+1 ) (before

Lemma 7.6), so we can take n′ = 8(n + 2)4mn+1, so v′ has less than n′ subwords
of degree n′. By Lemma 10.2 we get that

u′ = cddd . . . d

for some words c, d such that c has length smaller than n′! + n′! and d has length
n′!, so d ∈ R(n′! ·mn+1) and c ∈ R(l ·mn+1) for some l < n′! + n′!.

It follows that

v′ = β′ · cddd . . . d.

We know that (v1 . . . vβ/2) · (vβ/2+1 . . . vβ) = wk+1b = (wkb) · (w̄kb); therefore
v′ = T (w̄kb). Observe now that v′ = T (w̄kb) implies that

v′ = T (wk−1(b
2 − b)w̄k−1b).

By Lemma 9.3 we can write wk−1 = ab2k−2−1 · b2k−2−2a . . . ab2 · ab1a where bi ∈
{b, b2 − b}. Then v′ = T (wk−1(b

2 − b)w̄k−1b) gives

v′ = T (ab2k−2−1 · ab2k−2−2 . . . ab2 · ab1 · a(b2 − b))(ab̄1 · ab̄2 . . . ab̄2k−2−1 · ab),

where b̄ = b2 − b and b̄2 − b = b.
Recall that v′ = β′ · cddd . . . d for some words c, d such that c has length smaller

than n′! + n′! and d has length n′! where n′ = 8(n+ 2)4mn+1. By the assumptions

v′ ∈ R(22
mn+1

/2) = R(mn+1)
β/2. Observe that β/2 > n′! · 10 ·mn+1. Therefore we

can write

w̄k−1(b
2 − b)wk−1b = s · p · q · r · t

for some s, t ∈ R and some p, q, r ∈ R(n′! ·mn+1) with s · p · q = wk−1(b
2 − b).

Notice then that s ∈ R(q ·mn+1) for some q > n′! · 2. Then

v′ = T (wk−1(b
2 − b)w̄k−1b) = T (s · p · q · r · t).

Notice that spq = wk−1(b
2 − b) implies that spq ∈ R(γ) for some γ divisible by

mn+1, as mn+1 is a power of two and wk−1(b
2−b) ∈ R(22

mn+1
/4). By the definition

of T , v′ = T (spq)T (qr). Because p, q, r ∈ R(n! ·mn+1) we get

v′ = T (s)T (p)T (q)T (r)T (t).

Then because v′ = cddd . . . · β′ and d has length n′! we get γ · T (p) = γ′ · T (q) =
γ′′ ·T (r) = m for some 0 �= γ, γ′, γ′′ ∈ F and some m (where m is a product of some
elements ci1 , . . . , ciβ ). Denote ξ = n′! · mj+1. Then q = abξ−1a . . . b2ab1a(b

2 − b),

r = ab̄1ab̄2a . . . ab̄ξ, and p = p′abξ, for some p′ (for some bi ∈ {b, b2 − b} where

b̄ = b2 − b and ¯b2 − b = b). Recall that γ · T (p) = γ′′ · T (r). Recall also that by
Lemma 11.1 we have T (p) = s · abξ and T (r) = s′ · ab̄ξ for some s, s′; it follows that
b̄ξ = bξ, which is impossible, as bξ ∈ {b, b2 − b} and b̄ = b2 − b and b̄2 − b = b. We
have obtained a contradiction. �
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Theorem 11.5. There is a nil ring R such that the adjoint group of Ro is not an
Engel group. Moreover R can be taken to be an algebra over an arbitrary countable
field.

Proof. Suppose first that F is an infinite field. Let 0 < m1 < m2 < . . . be such
that each mi is a power of two, 22

mi
< mi+1 and 22

mi
divides mi+1 for every i.

Assume moreover that 2m1 > 17! · 10. Let R, I satisfy assumptions of Theorem

8.1 for these mi. By Theorem 11.4 we have wnb /∈
∑j

i=1 Ei for any n, j, where
wn = Wn(a, b,−a, b2− b). By Theorem 8.1 we see that I ⊆

∑∞
i=1 Ei+ bEi+ b2Ei+

〈a2〉+ 〈b3〉. Suppose that wnb ∈ I for some n. Then there is w ∈
∑∞

i=1 Ei such that
wnb−w ∈ bR+〈a2〉+〈b3〉. We can assume that w ∈

∑∞
i=1 R(i)+R(i)a where R(i) =

Si and S = F ·ab+F ·ab2. Observe that (bR+〈a2〉+〈b3〉)∩(
∑∞

i=1 R(i)+R(i)a) = 0
and so wnb − w = 0, so wnb ∈

∑∞
i=1 Ei, a contradiction. It follows that wnb /∈ I

for every n.
By Lemma 9.9 we have vn−1 /∈ I ′ for every n, and hence (R/I)◦ is not an Engel

group (I ′ is as in Lemma 9.9). By Theorem 8.1, R/I is nil. Therefore R/I is a
nil algebra over field F such that the adjoint group R/Io of this algebra is not an
Engel group.

If F is a finite field, then we proceed in the following way: Let F̄ be the algebraic
closure of F ; then F̄ is infinite. Hence there is a nil algebra A over F̄ such that the
adjoint group Ao is not nil. Let x, y ∈ A be such that [x[. . . [x[x, y]]]] �= 1 (n copies
of x) for every n. Let A′ be the smallest subring of A containing x, y and such
that if r ∈ A′, then f · r ∈ A′ for every f ∈ F . Then A′ is an F -algebra which is
generated as an F -algebra by x, y and which is nil. Since x, y ∈ A′ then the adjoint
group A′o is not an Engel group. �

Proof of Corollary 2.4. Let (R,+, ·) be a ring such that R is nil and Ro is not an
Engel group. Assume moreover that R is an algebra over a finite field of cardinality
p for some prime number p. Let (R,+, o) be the associated brace, so a◦b = a·b+a+b
for all a, b ∈ R, and the addition is the same as in the ring R. It follows that (R,+, o)
satisfies the thesis of Corollary 2.4. �

12. Zelmanov’s question

Observe that in the case of algebras over uncountable fields we have the following
result analogous to Lemma 6.1.

Lemma 12.1. Let F be an uncountable field and let F ′ be a countable subfield
of F . Let R be an F -algebra generated by elements a, b, and suppose that a2 = 0
and b3 = 0. Let R[x1, x2, . . .] be the polynomial ring over R in infinitely many
commuting variables x1, x2, . . . . Let F

′[x1, x2, . . .] be the polynomial ring over F ′ in
infinitely many commuting variables x1, x2, . . . .

Let S′ be the F ′-linear space spanned by elements abxi and ab2xi for 0 ≤ i.
If all finite matrices with entries from S′ are nilpotent, then R is a Jacobson

radical ring.

Proof. Observe that if all finite matrices with entries from S are nilpotent, then after
substituting arbitrary elements α1, α2, . . . ∈ F for variables x1, x2, . . . we get that all
matrices with entries from F ′-linear space spanned by elements abiαj are nilpotent.
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Therefore every matrix with entries in the F -linear space spanned by elements ab
and ab2 is nilpotent. By Lemma 6.1, R is a Jacobson radical F -algebra. �

We recall Amitsur’s theorem.

Theorem 12.2. Let R be a finitely generated algebra over an uncountable field. If
R is a Jacobson radical algebra, then R is nil.

We will now use Lemma 12.1 to give an analogue of Theorem 8.1.
Let F be a field and let F ′ be a countable subfield of F . Let R be as in Lemma

12.1 and let S be the F ′-linear space spanned by elements ab and ab2. Let X =
{x1, x2, . . .} and let F ′[X] denote the polynomial ring over F ′ in infinitely many
variables x1, x2, . . . .

We can enumerate all finite matrices with entries from S · F ′[X] as X1, X2, . . . .
We can assume that the matrix Xi is a di-by-di matrix where di ≤ i and Xi has
entries in S · y1 + S · y2 + . . . + S · yi for some y1, y2, . . . , yi ∈ F ′[X] (if necessary
taking Xi = 0 for some i). The following theorem has the same proof as Theorem
8.1.

Theorem 12.3. Let F be an uncountable field, and let R,S and the matrices
X1, X2, . . . be as above. Let 0 < m1 < m2 < . . . be a sequence of natural numbers
such that 22

mi
divides mi+1 for every i ≥ 1. Denote R(m) = F · Sm for every

m. Let E′
i be the linear space spanned by all coefficients of polynomials which are

entries of the matrix X22
mi

i and let

Ei =

∞∑

j=0

R(j ·mi+1)E
′
iSR.

Then there is an ideal I in R contained in
∑∞

i=1 Ei + bEi + b2Ei + 〈a2〉 + 〈b3〉
and such that R/I is a nil ring, where 〈a2〉, 〈b3〉 denote ideals in R generated by
elements a2 and b3.

Proof. Observe first that the ideal Ik of R generated by coefficients of polynomials

which are entries of the matrices X
2mk+1

k is contained in the subspace Ek + bEk +
b2Ek. It follows because entries of every matrix Xk have degree one in the subring
generated by S with elements of S of degree one. In general, if n > mk+1+22

mk +1,
then every entry of matrixXn

k belongs to R(i)E′
kR(1)R for every 0 ≤ i < n−mk+1−

1.
Define I =

∑∞
i=1 Ik + 〈a2〉+ 〈b3〉. Then I ⊆

∑∞
i=1 Ei + bEi + b2Ei + 〈a2〉+ 〈b3〉.

Observe also that, by Lemma 12.1 and Theorem 12.2, R/I is a nil ring. �

We will say that M,R,F ′, S, r1, r2,m, d, α satisfy assumption (3) if

1. R,F ′ are as in Lemma 12.1 and S is the F ′-linear space spanned by elements
ab and ab2, and m, d, α are natural numbers.

2. M is a d-by-d matrix with entries from Sm · F [X]. Moreover,

M ⊆ R +R · y1 +R · y2 + . . .+ R · yα,
for some y1, y2, . . . , yα ∈ F [X], where X = {x1, x2, . . .} is an infinite set.

We now propose a generalisation of Lemma 7.6.

Lemma 12.4. Let F be an infinite field. Let M,R, S,m, d, α satisfy assumption
(3). Let q be a natural number. Let c1, . . . , ck be linearly independent elements
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from F · Sm, and let r1, r2, . . . , rα+1 be products of q elements from the set C =
{c1, . . . , ck}. If n > dα+2 · (α+ 1)α+1 and for each i, ri has more than n subwords
of length n, then r1 · r2 . . . rα+1 /∈ P (M j), for any j.

We say that w is a subword of degree n in r if w is a product of n elements from
C, and r = vwv′ for some v, v′ which are also products of elements from C.

Proof. Denote r = r1 . . . rα+1. Suppose on the contrary that r ∈ P (M j). Let
p1,i, . . . , pn,i be subwords of degree n in ri for all i ≤ α+ 1. Fix numbers β(1), . . . ,
β(α+ 1) ≤ α+ 1. Then there are q1, . . . , qα such that

s = (

α∏

i=1

pβ(i),iqi)pβ(α+1),α+1

is a subword of r.
By Lemma 7.1, r ∈ P (M j) implies that s ∈ P (M j′), for some j′.

Let f : F ·Sm → F be a linear map such that f(ci) �= 0, and let f : F ·Sm·n′ → F
be as in Definition 7.2. Then f(ci1ci2 . . . cin′ ) = f(c1) . . . f(cn′) �= 0 for every choice
of i1, i2, . . . , in′ ≤ k. By Lemma 7.3 applied several times we get that

(

α∏

i=1

pβ(i),if(qi))pβ(α+1),α+1 ∈ P (

α∏

i=1

Mnf(Mdeg qi)Mn).

By an analogous argument to Lemma 7.5,

pβ(1),1pβ(2),2 . . . pβ(α+1),α+1 ∈ P ((

α∏

i=1

MnQi)M
n),

where Qi =
∑d+1

i=1 F · f(M i).
Notice that the linear space P ((

∏α
i=1 M

nQi)M
n) has dimension at most dα ·d2 ·

((α+ 1) · n)α+1.
Observe that since each pi,j is a product of n elements from the set C, then

elements
pβ(1),1pβ(2),2 . . . pβ(α+1),α+1

span linear space over field F of dimension at least nα+1. Hence dα·d2·((α+1)·n)α <
nα+1, a contradiction with the assumptions on n. �
Proof of Theorem 1.5. We first obtain an analogue of Theorem 11.4 by using as-
sumption (3) instead of assumption (2), and by using Theorem 8.1 instead of The-
orem 12.3, and by using Lemma 12.4 instead of Lemma 7.6. Moreover, we need

to use a stronger assumption that 22
22

mi

divides mi+1 (instead of the assumption
that 22

m
i divides mi+1). Once we have obtained an analogue of Theorem 11.4, we

can prove Theorem 1.5 using the same proof as the proof of Theorem 11.5, where
instead of Lemma 7.6 we use Lemma 12.4. �
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I am very grateful to Ferran Cedó and to the anonymous referee for reading the
manuscript and for their very useful comments.



6562 A. SMOKTUNOWICZ

References

[1] Alireza Abdollahi, Engel elements in groups, Groups St Andrews 2009 in Bath. Volume 1,
London Math. Soc. Lecture Note Ser., vol. 387, Cambridge Univ. Press, Cambridge, 2011,
pp. 94–117. MR2858851

[2] Adel Alahmadi, Hamed Alsulami, S. K. Jain, and Efim Zelmanov, Finite generation
of Lie algebras associated with associative algebras, J. Algebra 426 (2015), 69–78, DOI
10.1016/j.jalgebra.2014.10.056. MR3301901

[3] B. Amberg, O. Dickenschied, and Ya. P. Sysak, Subgroups of the adjoint group of a radical
ring, Canad. J. Math. 50 (1998), no. 1, 3–15, DOI 10.4153/CJM-1998-001-9. MR1618706

[4] Bernhard Amberg and Lev Kazarin, Nilpotent p-algebras and factorized p-groups, Groups
St. Andrews 2005. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 339, Cambridge Univ.
Press, Cambridge, 2007, pp. 130–147, DOI 10.1017/CBO9780511721212.005. MR2327319

[5] Bernhard Amberg and Yaroslav Sysak, Radical rings and products of groups, Groups St.
Andrews 1997 in Bath, I, London Math. Soc. Lecture Note Ser., vol. 260, Cambridge Univ.
Press, Cambridge, 1999, pp. 1–19. MR1676607

[6] Bernhard Amberg and Yaroslav P. Sysak, Radical rings with soluble adjoint groups, J. Algebra
247 (2002), no. 2, 692–702, DOI 10.1006/jabr.2001.8996. MR1877869

[7] Bernhard Amberg and Yaroslav P. Sysak, Radical rings with Engel conditions, J. Algebra
231 (2000), no. 1, 364–373. MR1779604

[8] J. C. Ault and J. F. Watters, Circle groups of nilpotent rings, Amer. Math. Monthly 80
(1973), 48–52, DOI 10.2307/2319260. MR0316493

[9] David Bachiller, Counterexample to a conjecture about braces, J. Algebra 453 (2016), 160–
176, DOI 10.1016/j.jalgebra.2016.01.011. MR3465351

[10] David Bachiller, Extensions, matched products, and simple braces, arXiv:1511.08477v3
[math.GR], 13 June 2016.
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