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GENERATING SETS OF FINITE GROUPS

PETER J. CAMERON, ANDREA LUCCHINI, AND COLVA M. RONEY-DOUGAL

Abstract. We investigate the extent to which the exchange relation holds in
finite groups G. We define a new equivalence relation ≡m, where two elements
are equivalent if each can be substituted for the other in any generating set

for G. We then refine this to a new sequence ≡(r)
m of equivalence relations by

saying that x ≡(r)
m y if each can be substituted for the other in any r-element

generating set. The relations ≡(r)
m become finer as r increases, and we define

a new group invariant ψ(G) to be the value of r at which they stabilise to ≡m.

Remarkably, we are able to prove that if G is soluble, then ψ(G) ∈ {d(G),
d(G) + 1}, where d(G) is the minimum number of generators of G, and to
classify the finite soluble groups G for which ψ(G) = d(G). For insoluble G,
we show that d(G) ≤ ψ(G) ≤ d(G) + 5. However, we know of no examples of
groups G for which ψ(G) > d(G) + 1.

As an application, we look at the generating graph Γ(G) of G, whose ver-

tices are the elements of G, the edges being the 2-element generating sets.

Our relation ≡(2)
m enables us to calculate Aut(Γ(G)) for all soluble groups G of

nonzero spread and to give detailed structural information about Aut(Γ(G))
in the insoluble case.

1. Introduction

It is well known that generating sets for groups are far more complicated than
generating sets for, say, vector spaces. The latter satisfy the exchange axiom,
and hence any two irredundant sets have the same cardinality. According to the
Burnside Basis Theorem, a similar property holds for groups of prime power order.

Our starting point is the observation that, in order to understand better the
generating sets for arbitrary finite groups, we should investigate the extent to which
the exchange property holds. We define an equivalence relation ≡m on a finite group
G, in which two elements are equivalent if each can be substituted for the other in
any generating set for G. Then two elements are equivalent if and only if they lie
in the same maximal subgroups of G.

We refine this relation to a sequence of relations ≡(r)
m whose terms depend on

a positive integer r, where two elements are equivalent if each can be substituted

for the other in any r-element generating set. The relations ≡(r)
m become finer as r

increases; we observe in Lemma 2.4 that the smallest value of r for which ≡(r)
m is

not the universal relation is the minimum number d(G) of generators of G.
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We define a new group invariant ψ(G) to be the value of r at which the relations

≡(r)
m stabilise to ≡m. Remarkably, it turns out (see Corollary 2.12) that if G is

soluble, then ψ(G) ∈ {d(G), d(G) + 1}. In Theorem 2.21 we even succeed in giving
a precise structural description of the finite soluble groupsG for which ψ(G) = d(G).

In the general case, we show in Corollary 2.13 and Proposition 2.14 that ψ(G) ≤
d(G) + 5, with tighter bounds when G is (almost) simple. However, we know of no
examples of groups G for which ψ(G) > d(G) + 1.

The relation ≡m can be a little tricky to work with, so in Section 3 we introduce
a far simpler relation by defining x ≡c y if 〈x〉 = 〈y〉. This is clearly a refinement
of ≡m and provides an easy-to-calculate upper bound on the number of ≡m-classes
and lower bound on their sizes. In Theorem 3.4 we characterise the soluble groups
G on which these two relations coincide; it would be very interesting to determine
for which insoluble groups they are equal.

As an application, we notice that the relation ≡(2)
m is particularly interesting

for two-generator groups. Such groups G have long been studied by means of the
generating graph, whose vertices are the elements of G, the edges being the 2-
element generating sets. The generating graph was defined by Liebeck and Shalev
in [16] and has been further investigated by many authors; see for example [3,
5, 6, 12, 18–20, 23] for some of the range of questions that have been considered.
Many deep structural results about finite groups can be expressed in terms of the
generating graph.

We notice that two group elements are ≡(2)
m -equivalent if and only if they have

the same neighbours in the generating graph. By identifying the vertices in each
equivalence class, we obtain a reduced graph Γ(G), which has many fewer vertices
but the same spread, clique number, and chromatic number, amongst other proper-
ties. We conjecture that in a group G of nonzero spread, the equivalence relations

≡m and ≡(2)
m coincide.

The automorphism groups of generating graphs are extremely large, and their
study has up to now seemed intractable. However, we show in Theorem 5.2 that
the automorphism group of Γ(G) has a very compact description in terms of the

sizes of the ≡(2)
m -classes of G and the group Aut(Γ(G)). Using this, we are able

to give a precise description of the automorphism groups of the generating graphs
of all soluble groups of nonzero spread and a detailed description in the insoluble
case.

We have carried out many computational experiments on small insoluble groups
G of nonzero spread. In each case we found that ψ(G) = 2 and that Aut(Γ(G))

is completely and straightforwardly determined by the sizes of the ≡(2)
m -classes and

Aut(G).
The paper is structured as follows. In Section 2 we study the relations ≡m and

≡(r)
m and the related invariant ψ(G). In Section 3 we look at the relation ≡c. In

Section 4 we introduce the generating graph Γ(G) and the reduced generating graph
Γ(G), and then in Section 5 we study the group Aut(Γ(G)) for groups G of nonzero
spread.

2. A hierarchy of equivalences

2.1. Definitions and elementary results. We shall now introduce our main
families of relations and establish a few basic results concerning them.
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Definition 2.1. Let G be a finite group. We define an equivalence relation ≡m

(m for “maximal subgroups”) on G by letting x ≡m y if and only if x and y lie in
exactly the same maximal subgroups of G.

Note that the ≡m-class containing the identity is precisely the Frattini subgroup
of G, and any ≡m-class is a union of cosets of the Frattini subgroup.

The equivalence relation ≡m can also be characterised by a substitution property:

Proposition 2.2. Let G be a finite group, and let x and y be elements of G. Then
x ≡m y if and only if

(∀r)(∀z1, . . . , zr ∈ G)((〈x, z1, . . . , zr〉 = G) ⇔ (〈y, z1, . . . , zr〉 = G)).

Proof. Suppose first that 〈x, z1, . . . , zr〉 = G but 〈y, z1, . . . , zr〉 	= G. Then there is
a maximal subgroup M of G containing y, z1, . . . , zr. Clearly x /∈ M , so x 	≡m y.

Conversely, suppose that x 	≡m y, so that (without loss of generality) there is a
maximal subgroup M containing y but not x. Choose generators z1, . . . , zr for M .
Then 〈y, z1, . . . , zr〉 = M , but 〈x, z1, . . . , zr〉 properly contains M and so is equal
to G. �

This means that, when considering generating sets (of any cardinality) for a
group G, we may restrict our attention to subsets of a set of ≡m-class representa-
tives.

Definition 2.3. For any positive integer r, define equivalence relations ≡(r)
m by the

rule that x ≡(r)
m y if and only if

(∀z1, . . . , zr−1 ∈ G)((〈x, z1, . . . , zr−1〉 = G) ⇔ (〈y, z1, . . . , zr−1〉 = G)).

Lemma 2.4.

(1) The relations ≡(r)
m get finer as r increases.

(2) The smallest value of r for which ≡(r)
m is not the universal relation is d(G).

For r = d(G), there are at least r + 1 equivalence classes.
(3) The limit value of this sequence of relations is ≡m.

Proof. (1) Choosing zr−1 to be the identity we see that x ≡(r)
m y implies x ≡(r−1)

m y.
(2) The first claim is clear. For the second, notice that the identity and the

elements of any d(G)-element generating set are pairwise inequivalent.
(3) This is clear. �

Definition 2.5. Let ψ(G) be the value of r for which the equivalences≡(r)
m stabilise,

that is, the least r such that ≡(r)
m coincides with the limiting relation ≡m.

2.2. Bounds on ψ(G). In this subsection, we prove various upper and lower
bounds on ψ(G) in terms of other numerical invariants of G. We start with some
straightforward lower bounds on ψ(G).

Lemma 2.6. Let G be a finite group, and let d = d(G). Then ψ(G) ≥ d, and
if G has a normal subgroup N such that N 	≤ Frat(G) and d(G/N) = d, then
ψ(G) ≥ d+ 1.

Proof. The first claim is immediate from Lemma 2.4(2). For the second, notice that

elements of N lie in no d-element generating set of G and so are ≡(d)
m -equivalent to

the identity. However, the ≡m-equivalence class of the identity is Frat(G). �
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These lower bounds are best possible in a very strong sense: we know of no
groups that do not attain them.

Problem 2.7. Is it true that if G is a finite group, then ψ(G) ∈ {d(G), d(G)+ 1}?
Whilst we are not able to answer this question in general, in the rest of this

subsection we prove some upper bounds on ψ(G). In particular, in Corollary 2.12
we show that if G is soluble, then ψ(G) ≤ d(G) + 1.

Definition 2.8. Let G be a finite group and letM be a core-free maximal subgroup
of G. For every g ∈ G \M , let δG,M (g) be the smallest cardinality of a subset X
of M with the property that G = 〈g,X〉 and let

νM (G) = sup
g/∈M

δG,M (g).

Notice that νM (G) ≤ d(M).

Definition 2.9. Let m̃(G) be the maximum of νM/N (G/N) over all maximal sub-
groups M of G, where N = CoreG(M).

Theorem 2.10. Let ψ(G) ≤ max{m̃(G), d(G)}+ 1.

Before proving this result, we briefly recall a necessary definition and result.
Given a subset X of a finite group G, we will denote by dX(G) the smallest cardi-
nality of a set of elements of G generating G together with the elements of X. The
following generalises a result originally obtained by W. Gaschütz [10] for X = ∅.
Lemma 2.11 ([6], Lemma 6). Let X be a subset of G and let N be a normal
subgroup of G and suppose that 〈g1, . . . , gk, X〉N = G. If k ≥ dX(G), then there
exist n1, . . . , nk ∈ N so that 〈g1n1, . . . , gknk, X〉 = G.

Proof of Theorem 2.10. Let t = max{m̃(G), d(G)}. Since the relations ≡(r)
m become

finer with r, it suffices to prove that if x and y are two elements of G and x 	≡m y,

then x 	≡(t+1)
m y. So assume that x 	≡m y. It is not restrictive to assume that there

exists a maximal subgroupM of G such that x /∈ M and y ∈ M. LetN = CoreG(M)
and let X = {x}. Since t ≥ m̃(G), we have t ≥ νM/N (G/N); hence there exist
g1, . . . , gt ∈ M such that 〈x, g1, . . . , gt〉N = G. Moreover t ≥ d(G) ≥ dX(G).
So we deduce from Lemma 2.11 that there exist n1, . . . , nt ∈ N such that G =

〈x, g1n1, . . . , gtnt〉. On the other hand 〈y, g1n1, . . . , gtnt〉 ≤ M. Hence x 	≡(t+1)
m

y. �
We are now able to prove a tight upper bound on ψ(G) for all finite soluble

groups G.

Corollary 2.12. If G is a finite soluble group, then ψ(G) ≤ d(G) + 1.

Proof. Let M be a maximal subgroup of G, and let K = CoreG(M). Then G̃ =
G/K is a soluble group with a faithful primitive action on the cosets of M/K, and

d(G̃) ≤ d(G). Moreover M/K is a complement in G̃ of Soc(G̃), so νM/K(G/K) ≤
d(M/K) = d(G̃/ Soc(G̃)) ≤ d(G̃) ≤ d(G). This holds for every maximal subgroup
of G, so m̃(G) ≤ d(G), and the conclusion follows from Theorem 2.10. �

Now we prove an upper bound on ψ(G) for an arbitrary finite group G.

Corollary 2.13. If G is a finite group, then ψ(G) ≤ d(G) + 5. Furthermore, if G
is simple, then ψ(G) ≤ 5, and if G is almost simple, then ψ(G) ≤ 7.
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Proof. Burness, Liebeck, and Shalev prove (see [4, Theorem 7]) that the point
stabiliser of a d-generated finite primitive permutation group can be generated by
d+ 4 elements. Hence if G is a finite group, then m̃(G) ≤ d(G) + 4, and our first
claim follows from Theorem 2.10.

In the same paper (see [4, Theorems 1 and 2]) they show that any maximal
subgroup of a finite simple group can be generated by 4 elements and that any
maximal subgroup of an almost simple group can be generated by 6 elements.
Hence our final two claims follow in the same way. �

We conclude this subsection by mentioning a relationship with another well-
known parameter, μ(G), the maximum size of a minimal generating set for G
(a generating set for which no proper subset generates), studied by Diaconis and
Saloff-Coste, Whiston, Saxl, and others [9, 14, 27].

Proposition 2.14. Let G be a finite group. Then ψ(G) ≤ μ(G). Hence if G =
PSL2(p) with p 	∈ {7, 11, 19, 31}, then ψ(G) ≤ 3, and ψ(PSL2(p)) ≤ 4 in the
remaining cases.

Proof. To prove that ψ(G) ≤ μ(G), we show that if μ = μ(G) and x ≡(μ)
m y, then

x ≡m y. So suppose that x ≡(μ)
m y, and let G = 〈x, z1, . . . , zr−1〉.

Case r ≤ μ. Since the relations ≡(r)
m get finer as r increases, in this case G =

〈y, z1, . . . , zr−1〉.
Case r > μ. In this case, our generating set is larger than μ, and so some element
is redundant. If x is redundant, then G = 〈z1, . . . , zr−1〉 = 〈y, z1, . . . , zr−1〉, as
required. Suppose that x is not redundant. Then G is generated by a subset of the
given generators of size μ including x, without loss of generality {x, z1, . . . , zμ−1}.
Since, by assumption, x ≡(μ)

m y, we have G = 〈y, z1, . . . , zμ−1〉 = 〈y, z1, . . . , zr−1〉.
The final claim follows from [14], where the stated bounds on μ(PSL2(p)) are

determined. �
In general μ(G) can be much larger than d(G). For example, if G is soluble,

then μ(G)− d(G) ≥ π(G)− 2 (see [17, Corollary 3]), where π(G) is the number of
distinct primes dividing the order of G. For all G, the value of μ(G) is at least the
number of complemented factors in a chief series of G (see [17, Theorem 1]). Hence
the difference μ(G) − d(G) (and consequently, by Corollary 2.12, the difference
μ(G)− ψ(G)) can be arbitrarily large.

2.3. Groups with ψ(G) = d(G). In this subsection, we study groups G for which
ψ(G) = d(G); in particular in Theorem 2.21 we describe the structure of such
soluble groups G.

Definition 2.15. A finite groupG is efficiently generated if for all x ∈ G, d{x}(G) =
d(G) implies that x ∈ Frat(G).

Lemma 2.16. If ψ(G) = d(G), then G is efficiently generated.

Proof. Let d = d(G). If G is not efficiently generated, then there exists x /∈ Frat(G)

such that d{x}(G) = d. This implies in particular x ≡(d)
m 1. However since x /∈

Frat(G), we have x 	≡m 1; hence ψ(G) > d. �
Lemma 2.17. If G is efficiently generated and m̃(G) < d(G), then ψ(G) = d(G).
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Proof. Let d = d(G). By Theorem 2.10, our assumption that m̃(G) < d(G) implies

that ψ(G) ≤ d + 1 and hence that ≡(d+1)
m coincides with ≡m. It therefore suffices

to prove that if x 	≡(d+1)
m y, then x 	≡(d)

m y.

Assume that x 	≡(d+1)
m y and let dx = d{x}(G) and dy = d{y}(G). It is clear

that dx, dy ≥ d − 1. If dx = dy = d, then our assumption that G is efficiently
generated implies that x, y ∈ Frat(G) and hence that x ≡m y, a contradiction.
Therefore we may assume that dx = d − 1; in particular G = 〈x, g1, . . . , gd−1〉 for

some g1, . . . , gd−1 ∈ G. If dy = d, then G 	= 〈y, g1, . . . , gd−1〉 and therefore x 	≡(d)
m y,

and we are done.
So assume that dx = dy = d− 1. Since x 	≡m y, without loss of generality there

exists a maximal subgroup M of G such that x /∈ M, y ∈ M. Let N = CoreG(M).
Since d−1 ≥ m̃(G), there exist g1, . . . , gd−1 ∈ M such that 〈x, g1, . . . , gd−1〉N = G.
As dx = d− 1, we deduce from Lemma 2.11 that there exist n1, . . . , nd−1 ∈ N such
that G = 〈x, g1n1, . . . , gd−1nd−1〉. On the other hand 〈y, g1n1, . . . , gd−1nd−1〉≤M.

Hence x 	≡(d)
m y. �

Notice that if d(M) < d(G) for every maximal subgroup M of G, then G is
efficiently generated. Indeed if x /∈ Frat(G), then there exists a maximal subgroup
M of G with x /∈ M and consequently d{x}(G) ≤ d(M) < d(G). But then from
Lemma 2.17 we deduce the following result.

Corollary 2.18. If d(M) < d(G) for every maximal subgroup M of G, then
ψ(G) = d(G).

Lemma 2.19. Let G be a finite soluble group. If G is efficiently generated, then
m̃(G) < d(G).

Proof. It suffices to prove that for every maximal subgroup M of G, we have
d(M/CoreG(M)) < d(G) = d. Assume otherwise. Then there exists a maximal
subgroup M of G such that d(M/N) = d (where N = CoreG(M)). Furthermore,
there exists a normal subgroup A of G such that G/N is a split extension of the
form A/N : M/N and Frat(G) ≤ N. Let a ∈ A \ Frat(G). Then d{a}(G) = d,
contradicting the assumption that G is efficiently generated. �

The following result is now immediate from Lemmas 2.16, 2.17, and 2.19.

Corollary 2.20. Let G be a finite soluble group. Then ψ(G) = d(G) if and only if
G is efficiently generated.

Theorem 2.21. A finite soluble group G satisfies ψ(G) = d(G) if and only if either
G is a finite p-group or there exist a finite vector space V , a nontrivial irreducible
soluble subgroup H of Aut(V ), and an integer d > d(H) such that

G/Frat(G) ∼= V r(d−2)+1 : H,

where r is the dimension of V over EndH(V ) and H acts in the same way on each
of the r(d− 2) + 1 factors.

Proof. Assume that G is a soluble group with ψ(G) = d(G) = d and let F =
Frat(G). By Corollary 2.20, G is efficiently generated. If N is a normal subgroup of
G properly containing F, then d(G/N) < d (otherwise we would have d{n}(G) = d
for every n ∈ N). So G/F has the property that every proper quotient can be
generated by d− 1 elements, but G/F cannot. The groups with this property have
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been studied in [8]. By [8, Theorems 1.4 and 2.7] either G/F is an elementary
abelian p-group of rank d (and consequently G is a finite p-group) or there exist
a finite vector space V and a nontrivial irreducible soluble subgroup H of Aut(V )
such that d(H) < d and G/Frat(G) ∼= V r(d−2)+1 : H, where r is the dimension of
V over EndH(V ).

Conversely, if G is a finite p-group it follows immediately from Burnside’s basis
theorem that G is efficiently generated, and so ψ(G) = d(G) by Corollary 2.20.
Clearly a group G is efficiently generated if and only if G/Frat(G) is efficiently
generated. So to conclude the proof it suffices to prove that if H is a (d − 1)-
generated soluble irreducible subgroup of Aut(V ) and r is the dimension of V over
F = EndH(V ), thenX = V r(d−2)+1 : H is efficiently generated. Notice that d(X) =
d, so we have to prove that d{x}(X) ≤ d− 1 for every x 	= 1. Let n = r(d− 2) + 1.
Fix a nontrivial element x = (v1, . . . , vn)h ∈ X and let a = dimF CV (h) and b =
n−dimF 〈[V, h], v1, . . . , vn〉+dimF [V, h]. By [7, Lemma 5] we have d{x}(X) ≤ d− 1
if and only if a+ b− 1 < r(d− 1). If h 	= 1, then a ≤ r− 1 and b ≤ n; if h = 1, then
a ≤ r and b ≤ n−1. In any case a+b−1 ≤ r+n−2 = r+r(d−2)−1 < r(d−1). �

Apart from p-groups, there are many examples of soluble groups that are effi-
ciently generated. The smallest example of a soluble group which is not efficiently
generated is S4 (we have d{x}(S4) = 2 for every x in the Klein subgroup): by the
previous results we can conclude that ψ(S4) = 3.

Problem 2.22. Characterise the insoluble groups that are efficiently generated.

2.4. Calculating ≡m. Whilst we have not been able to determine ψ(G) for an
arbitrary groupG, we have calculated it for many small almost simple groupsG with
d(G) = 2. It is computationally expensive to repeatedly calculate whether various
sets of elements generates a group. In this subsection we describe an efficient way

to calculate ≡m- and ≡(2)
m -classes in a group and present a theorem summarising

the results of these calculations.
The equivalence relation ≡m can be thought of another way. Construct the

permutation action of G which is the disjoint union of the actions on the cosets
of maximal subgroups, one for each conjugacy class. Let Ω be the domain of this
action. For brevity, we call this the m-universal action of G.

Lemma 2.23. Let G be a finite group, and let x, y ∈ G and S ⊆ G.

(1) x ≡m y if and only if x and y have the same fixed point sets in the m-
universal action of G.

(2) G = 〈S〉 if and only if the intersection of the fixed point sets of elements of
S in the m-universal action of G is empty.

Proof. Notice that in the orbit corresponding to a nonnormal maximal subgroup
M , the point stabilisers are the conjugates of M ; whereas, if M is normal, then
its elements fix every point in the corresponding orbit, while the elements outside
M fix none. Hence the fixed point set of an element x describes precisely which
maximal subgroups of G contain x, and (1) follows. For (2), notice that G = 〈S〉 if
and only if S is contained in no maximal subgroup of G. �

Definition 2.24. A permutation group action has property G if it satisfies: each
set S of group elements generates the group if and only if the fixed-point sets of
elements of S have empty intersection.
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Lemma 2.25. The m-universal action is the smallest degree permutation action
of G with property G.

Proof. First notice that by Lemma 2.23(2), the m-universal action has property G.
Now suppose that we have an action of G with property G. We must show that it
contains the m-universal action. So let M be a maximal subgroup of G. Choose
generators g1, . . . , gr of M . Since these elements do not generate G, property G
implies that they have a common fixed point, say ω. Thus M ≤ Gω < G, and
maximality of M implies that M = Gω. So the coset space of M is contained in
the given action. Since this holds for all maximal subgroups M , we are done. �

Our algorithm to test whether ψ(G) = 2 proceeds as follows, on input of a finite
group G.

(1) Construct the maximal subgroups of G, and hence the m-universal action
of G.

(2) For each g ∈ G, compute the fixed point set Fix(g) of g in the m-universal
action, and hence construct a set of equivalence class representatives for
the ≡m-classes of G.

(3) For each pair x, y of distinct ≡m-class representatives, check that there
exists a z ∈ G such that either Fix(x) ∩ Fix(z) = ∅ and Fix(y) ∩ Fix(z) is
nonempty or vice versa.

If the test in Step 3 succeeds for all distinct x and y, then the set of distinct

≡m-class representatives is also a set of distinct ≡(2)
m -class representatives. That is,

ψ(G) = 2.
We have implemented the algorithm in MAGMA [2] and used it to prove the

following.

Theorem 2.26. Let G be an almost simple group with socle of order less than
10000 such that all proper quotients of G are cyclic. Then ψ(G) = 2.

The socle of such a group G is one of: An for 5 ≤ n ≤ 7, PSL2(q) for q ≤ 27 a
prime power, PSL3(3), PSU3(3), or the sporadic group M11.

The only almost simple groups with socle of order less than 10000 with a proper
noncyclic quotient are A6.2

2 and PSL2(25).2
2. Using similar ideas to the above we

were able to show that ψ(A6.2
2) = 3.

Notice that in all of these instances, the lower bounds from Lemma 2.6 are
attained.

3. c-equivalence

In this section we define another equivalence relation, which can be used to give
an easy-to-calculate upper bound on the number of ≡m-classes, and investigate
when this new relation coincides with ≡m.

Definition 3.1. Let G be a finite group, and let x, y ∈ G. We define x ≡c y if
〈x〉 = 〈y〉. We use c for cyclic.

The following is clear.

Lemma 3.2. Let G be a finite group. For all x, y ∈ G, if x ≡c y, then x ≡m y.
Hence if n is the order of an element of G, then at least one ≡m-class of G contains
at least φ(n) elements.
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The converse implication of the first statement holds for many groups (including
Sn and An for n ∈ {5, 6}, and PSL2(q) for q ∈ {7, 11, 13}), but not for all groups.

Proposition 3.3. Let G be a finite group. If the relations ≡m and ≡c coincide,
then

(1) Frat(G) = 1;
(2) if G is soluble, then every minimal normal subgroup of G is cyclic;
(3) if G is soluble, then G is metabelian.

Proof. (1) All of the elements of Frat(G) are ≡m-equivalent.
(2) Let G be soluble and let N be a minimal normal subgroup of G. Every

maximal subgroup of G either contains or complements N . This implies that all
the elements of N \ {1} are ≡m-equivalent, and consequently N is cyclic (of prime
order).

(3) Let G be soluble and let F = Fit(G). Since Frat(G) = 1, it follows from
[24, 5.2.15] that Fit(G) = Soc(G), and hence F = CG(F ) =

⋂
N∈N CG(N), where

N is the set of the minimal normal subgroups of G. But then

G

F
=

G⋂
N CG(N)

≤
∏

N

Aut(N)

is abelian. �

The conditions listed in the previous proposition are not sufficient to ensure that
the relations ≡m and ≡c coincide on soluble groups G. In order to obtain a more
precise result, let us fix some notation. Assume that G is soluble and satisfies the
conclusions of Proposition 3.3. We set F = Fit(G) and Z = Z(G). Then

F = V r1
1 × · · · × V rt

t × Z,

where V r1
1 , . . . , V rt

t are the noncentral homogeneous components of F as a G-
module. In particular, Vi is cyclic of prime order for every i. Moreover G = F : H,
where H is a subdirect product of

∏
i Hi, with Hi ≤ Aut(Vi). Finally, for h =

(h1, . . . , ht) ∈ H, define Ω(h) = {i ∈ {1, . . . , t} | hi = 1}.

Theorem 3.4. Let G = F : H as above be a soluble group satisfying the conclusions
of Proposition 3.3. The relations ≡m and ≡c coincide on G if and only if the
following property is satisfied, for all (z1, h1), (z2, h2) ∈ Z ×H:

(∗) if 〈(z1, h1)〉FratH = 〈(z2, h2)〉FratH and Ω(h1) = Ω(h2), then
〈(z1, h1)〉 = 〈(z2, h2)〉.

Proof. Let x1 = (z1, h1), x2 = (z2, h2) ∈ Z × H, with h1 = (α1, . . . , αt) and
h2 = (β1, . . . , βt). Assume that 〈x1〉FratH = 〈x2〉FratH and Ω(h1) = Ω(h2). We
claim that a maximal subgroup M of G contains x1 if and only if it contains x2

and hence that x1 ≡m x2.
Let W = V r1

1 × · · · × V rt
t and let L = Frat(Z ×H) = Frat(H). If W ≤ M, then

W : L ≤ M, so 〈xi〉 ⊆ M if and only if 〈xi〉L ⊆ M . Since 〈x1〉L = 〈x2〉L, we deduce
that x1 ∈ M if and only if x2 ∈ M. If W 	≤ M , then there exists i ∈ {1, . . . , t}, a
maximal H-invariant subgroup Ui of V

ri
i , and wi ∈ V ri

i such that

M = (V r1
1 × · · · × V

ri−1

i−1 × Ui × V
ri+1

i+1 × · · · × V rt
t × Z) : Hwi .

Notice in particular that if (γ1, . . . , γr) ∈ H, then (γ1, . . . , γr) ∈ M if and only if
γi ∈ UiH

wi
i . In this case we can write γi = ui[wi, h

−1
i ]hi = hi, so that [wi, γ

−1
i ] ∈ Ui.
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Since V ri
i /Ui

∼=Hi
Vi, we have that if [wi, γ

−1
i ] ∈ Ui, then either γi = 1 or wi ∈ Ui.

If wi ∈ Ui, then x1, x2 ∈ M. So assume wi 	∈ Ui. Since Ω(h1) = Ω(h2), we have that
αi = 1 if and only if βi = 1; hence x1 ∈ M if and only if x2 ∈ M. We have proved
that if ≡m and ≡c coincide, then (∗) holds.

For the converse, let x1 = w1z1h1, x2 = w2z2h2 be two elements of G with
h1, h2 ∈ H, z1, z2 ∈ Z, and w1, w2 ∈ W. Assume that x1 ≡m x2. Since w1h1 and h1

are conjugate in G, it is not restrictive to assume that x1 = z1h1. We claim that
this implies that w2 = 1. Indeed, assume that w2 = (v1, . . . , vt) 	= 1. Then there
exists an i such that vi 	= 1, and consequently there exists a maximal H-invariant
subgroup Ui of V

ri
i with vi /∈ Ui. This leads to a contradiction, since the maximal

subgroup

M = (V r1
1 × · · · × V

ri−1

i−1 × Ui × V
ri+1

i+1 × · · · × V rt
t × Z) : H

contains x1 but not x2.
Having w1 = w2 = 1, the argument used in the first part of this proof shows

that the condition Ω(h1) = Ω(h2) is equivalent to saying that a maximal subgroup
of G not containing W contains x1 if and only if it contains x2. On the other hand,
the maximal subgroups of G containing W are in bijective correspondence with
those of G/FratH; hence the condition 〈x1〉FratH = 〈x2〉FratH is equivalent to
saying that a maximal subgroup of G containing W contains x1 if and only if it
contains x2. We have therefore proved that x1 ≡m x2 implies that Ω(h1) = Ω(h2)
and 〈x1〉FratH = 〈x2〉FratH, and therefore if (∗) holds, then x1 ≡c x2. �

Here are two examples of groups which satisfy the conclusions of Proposition 3.3
but do not satisfy condition (∗). Hence ≡c-equivalence is finer than ≡m-equivalence.

(1) Let G be the sharply 2-transitive group of degree 17, the semidirect product
of C17 with a Singer cycle C16. The maximal subgroups are C17 : C8 and
the conjugates of C16. In particular, we see that elements of orders 2, 4, and
8 in a fixed complement C16 are all ≡m-equivalent. However, ≡c-equivalent
elements have the same order.

(2) A second example is (〈x〉 : 〈y〉)× 〈z〉 with |x| = 19, |y| = 9, |z| = 3 (indeed
(y3, z) ≡m (y6, z)).

Proposition 3.5. Assume that a finite group G contains a minimal normal sub-
group N = S1 × · · · × St, with Si

∼= S a finite nonabelian simple group. If either
t ≥ 3 or t = 2 and S is not isomorphic to PΩ+

8 (q) with q = 2 or 3, then the relations
≡m and ≡c do not coincide on G.

Proof. It is standard (see, for example, [1, Remark 1.1.040]) that if a maximal
subgroup M of G does not contain N , then one of the following occurs:

(1) M ∩N = 1.
(2) M is of product type: in this case there exist α2, . . . , αt ∈ Aut(S), indepen-

dent of the choice of M , s2, . . . , st ∈ S, and a proper subgroup K of S such
that M ∩N ≤ K ×Ks2α2 × · · · ×Kstαt .

(3) M is of diagonal type: in this case there exists a partition Φ := {B1, . . . , Bu}
of {1, . . . , t} into blocks of the same size such thatM∩N ≤

∏
B∈Φ DB where

DB is a full diagonal subgroup of
∏

j∈B Sj .

By [15, Theorem 5.1] or [11, Theorem 7.1], there exist a, b ∈ S with the property
that 〈aγ , bδ〉 = S for each choice of γ, δ ∈ S. Moreover if S 	= PΩ+

8 (q), q = 2 or 3,
then a and b are not conjugate in Aut(S).
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Let x, y ∈ S and consider

gx,y =
(ax, byα2 , a, . . . , a, 1) if t > 2,
(ax, byα2) otherwise.

There is no maximal subgroup of product type containing gx,y. Otherwise we would

have ax ∈ K, byα2 ∈ Ks2α2 , hence S = 〈ax, bys−1
2 〉 ≤ K, contradicting the fact

that K is a proper subgroup of S. Moreover, since either t ≥ 3 or a and b are
not conjugate in Aut(S), no maximal subgroup of diagonal type contains gx,y.
Therefore gx,y ∈ M if and only if N ≤ M , for all maximal subgroups M . Hence,
all the elements of the subset {gx,y | x, y ∈ S} are ≡m-equivalent, and therefore
the relations ≡m and ≡c do not coincide on G. �

Corollary 3.6. Let G be a finite group. If the relations ≡m and ≡c coincide on
G, then G/ Soc(G) is soluble.

Proof. Since the relations ≡m and ≡c coincide, Frat(G) = 1 by Proposition 3.3(1),
and consequently Soc(G) = F ∗(G), where F ∗(G) is the generalised Fitting subgroup
of G.

Let F ∗(G) = Z(G) × N1 × · · · × Nt, where N1, . . . , Nt are noncentral minimal
normal subgroups. Since Z(G) = CG(F

∗(G)) =
⋂

i CG(Ni), we have G/Z(G) ≤∏
i G/CG(Ni). To conclude, notice that if Ni is abelian, then Ni is cyclic and

G/CG(Ni) is abelian, while if Ni is nonabelian, then by Proposition 3.5 the group
Ni

∼= Sti
i with ti ≤ 2 and G/(NiCG(Ni)) ≤ OutS � Sym(ti), which is soluble. �

Problem 3.7. Find an equivalence relation that is easier to calculate than ≡m but
coarser than ≡c. Determine for which insoluble groups G the relations ≡m and ≡c

coincide.

3.1. Asymptotics and enumeration. We now briefly suggest some directions
for further study of the asymptotics of our new relations.

Proposition 3.8. Let G be Sn or An. Then for almost all elements x, y ∈ G (all
but a proportion tending to 0 as n → ∞), the following are equivalent:

(1) x ≡m y;

(2) x ≡(2)
m y;

(3) the cycles of x and y induce the same partition of {1, . . . , n}.

Proof. This depends on a theorem of �Luczak and Pyber [21], which states that for
almost all x ∈ Sn, the only transitive subgroups of Sn containing x are Sn and
(possibly) An. We restrict our attention to these elements x.

Consider first the case where G = Sn. Then, apart from An, the maximal
subgroups containing x are of the form Sk × Sn−k, where the two orbits are unions
of cycles of x. Moreover, the cycle lengths determine whether or not x ∈ An. So
(1) and (3) are equivalent.

In addition, for all z ∈ G, we see that 〈x, z〉 = G whenever 〈x, z〉 is transitive,
and z /∈ An if it happens that x ∈ An. Membership of this set is also determined
by the cycles of x: the transitivity condition requires that the hypergraph whose
edges are the cycles of x and z is connected. So (2) is also equivalent to (3).

If G = An, then only simple modifications are required. The argument is simpler
because no parity conditions are necessary. �
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Shalev in [26] proved a similar result for GLn(q) to �Luczak and Pyber’s result
for Sn: a random element of GLn(q) lies in no proper irreducible subgroup not
containing SLn(q). This could be used to prove a similar statement for groups
lying between PSLn(q) and PGLn(q).

Question 3.9. Are there only finitely many finite almost simple groups on which
the relations ≡m and ≡c coincide?

Another very natural question is: how many ≡c- and ≡m-classes are there in
the symmetric group Sn? The numbers of ≡c-classes in the symmetric groups Sn
form sequence A051625 in the On-line Encyclopedia of Integer Sequences [22]. The
sequence of numbers of ≡m-classes, which begins

1, 2, 5, 15, 67, 362, 1479, 12210, . . . ,

has recently been added to the OEIS, where it appears as sequence A270534.
If we cannot find a formula for these sequences, can we say anything about their

asymptotics? We saw above that, for almost all elements of Sn, the ≡m-equivalence
class is determined by the cycle partition, which might suggest that the sequence
grows like the Bell numbers (sequence A000110 in the OEIS). However, the elements
not covered by this theorem can destroy this estimate.

For example, let p be a prime such that the only insoluble transitive groups of
degree p are the symmetric and alternating groups. Then the above analysis applies
to all elements whose cycle type is not a single p-cycle or a fixed point and l k-cycles
(where 1 + kl = p). It is easy to show that two elements x and y with one of these
excluded cycle types satisfy x ≡m y if and only if they satisfy x ≡c y. So there are
(p − 2)! equivalence classes of p-cycles: for example, this number is much greater
than the pth Bell number. (In this special case, we can write a formula for the
number of ≡m-equivalence classes.)

4. The generating graph of a group

In the remainder of the paper, we use the relations that we have defined to study
an object of general interest, the generating graph of a finite group.

Definition 4.1. The generating graph Γ(G) of a finite group G is the graph with
vertex set G, in which two vertices x and y are joined if and only if 〈x, y〉 = G.

Of course this graph is null unless G is 2-generated. We adopt the convention
that, if the group is cyclic, then any generator of the group carries a loop in the
generating graph.

A useful concept when studying the generating graph is the spread of a group.

Definition 4.2. A group G has spread k if k is the largest number such that for
any set S of k nonidentity elements, there exists x such that 〈x, s〉 = G for all s ∈ S.

Thus the spread is nonzero if and only if no vertex of the generating graph except
the identity is isolated, and spread at least 2 implies diameter at most 2.

Among the graph-theoretic invariants which have been studied for this graph are
the following:

(1) The spread.
(2) The clique number : the largest size of a set of group elements, any two of

which generate the group.



GENERATING SETS OF FINITE GROUPS 6763

(3) The chromatic number : the smallest number of parts in a partition of the
group into subsets containing no 2-element generating set.

(4) The total domination number : the smallest size of a set S with the property
that, for any element x, there exists s ∈ S such that x and s generate the
group.

(5) The isomorphism type: if Γ(G) ∼= Γ(H) for two groups G and H, then
when is G ∼= H?

Definition 4.3. In any graph X, we can define an equivalence relation ≡Γ by the
rule x ≡Γ y if x and y have the same set of neighbours in the graph. (Think of Γ
as meaning “graph”, or “generating” if we are thinking of the generating graph.)
Then we define a reduced graph X whose vertices are the ≡Γ-classes in X as two
classes joined in X if their vertices are joined in X.

Alternatively, we can take the vertex set to be any set of equivalence class rep-
resentatives and the graph to be the induced subgraph on this set. (The term
“reduced graph” was used by Hall [13] in his work on copolar spaces, and conse-
quentially we term the process of producing it “reduction”. But we warn readers
that the term “graph reduction” has a very different meaning in computer science.)

The reduction process preserves the graph parameters noted above.

Proposition 4.4. The clique number, chromatic number, total domination number,
and spread of the generating Γ(G) are equal to the corresponding parameters of the
reduced generating graph Γ(G). Furthermore, if Γ(G) ∼= Γ(H), then Γ(G) ∼= Γ(H).

Proof. Clear. �

The following is immediate from the definition of ≡(r)
m .

Proposition 4.5. Let G be a finite group. Then the relations ≡Γ on Γ(G) and

≡(2)
m on G coincide; hence ≡m is a refinement of ≡Γ and is equal to ≡Γ if and only

if ψ(G) ≤ 2.

Hence, in what follows, we shall write ≡Γ to denote ≡(2)
m .

Recall Definition 2.15 of efficient generation.

Theorem 4.6. Let G be a finite group with d(G) = 2.

(1) G has nonzero spread if and only if G is efficiently generated and has trivial
Frattini subgroup.

(2) If G is soluble and has nonzero spread, then ψ(G) = 2.

Proof. (1) Since the spread of G is nonzero, every nonidentity element of G lies in
a 2-element generating set of G, so dx(G) = 1 unless x = 1. Hence G is efficiently
generated and Frat(G) = 1. The converse is clear.

(2) By part (1), the assumption that G has nonzero spread implies that G is
efficiently generated. Hence from Corollary 2.20, we see that ψ(G) = d(G) = 2. �

Notice that it is immediate from Theorem 4.6 that if G is a 2-generator group
of spread 0 and trivial Frattini subgroup, then ψ(G) ≥ 3. For example, double
transpositions are isolated vertices in Γ(S4), and so are equivalent to the identity
under ≡Γ, though clearly not under ≡m. In fact this group has fourteen ≡Γ-classes
but fifteen ≡m-classes, and as previously noted ψ(S4) = 3.
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We shall therefore proceed for much of the following section by restricting to
groups with nonzero spread, despite that fact that we don’t know whether Theo-
rem 4.6(2) is also true without the solubility assumption.

Conjecture 4.7. Let G be a finite group of nonzero spread. Then ψ(G) ≤ 2.

By Lemma 2.17, if G is a group with nonzero spread, then ψ(G) = 2 whenever
for all maximal subgroups M and for all x /∈ M , there exists z ∈ M such that
〈x, z〉 = G. This approach can be applied to S5, PSL2(7), and PSL2(11). However,
it fails in the case of A5 with respect to the smallest maximal subgroups (isomorphic
to S3). It also fails for PSL2(q) for q = 8, 9, 13, even though ψ(G) = 2 for all of
these groups.

5. Automorphism groups

A striking thing about generating graphs is that they have huge automorphism
groups, and these groups are poorly understood. For example, the automorphism
group of the generating graph of the alternating group A5 has order 231375.

The reason is simple. Any nontrivial element of A5 has order 2, 3, or 5. An
element of order 3 or 5 can be replaced by a nonidentity power of itself in any
generating set. Thus the sets of nonidentity powers can be permuted arbitrarily,
and we find a group of order 210(4!)6 = 22836 of automorphisms fixing these sets.
The quotient has order 120 and is isomorphic to Aut(A5) = S5.

Hence, for G = A5, the automorphism group of the generating graph Γ(G) has
a normal subgroup which is the direct product of symmetric groups on the ≡Γ-
classes, and the quotient is the automorphism group of the reduced graph Γ(G). In
general, a similar statement holds, but to state it we require one further definition.

Definition 5.1. We define a weighting of the reduced generating graph by assigning
to each vertex a weight which is the cardinality of the corresponding ≡Γ-class. Now
let Γw(G) denote the weighted graph, and let Aut(Γw(G)) be the group of weight-
preserving automorphisms of Γw(G).

Note that the restriction to Aut(Γw(G)) is necessary, as in general an automor-
phism of Γ(G) can fail to lift to an automorphism of Γ(G). For an example of
this, take G = PSL2(16). Then Aut(Γ(G)) ∼= 2 × Aut(PSL2(16)). However, the
central involution interchanges elements of order 3 with elements of order 5. The
≡m-class of the elements of order 3 has size 2 and contains only the elements and
their inverses. However, the ≡m-class of elements of order 5 has size 4 (it clearly
contains all nontrivial elements of the cyclic subgroup, but in fact contains no more
than this).

The following theorem shows that to describe the automorphism group of Γ(G),
it suffices to know the multiset of sizes of the ≡Γ-classes of G and the automorphism
group of Γw(G).

Theorem 5.2. Let the ≡Γ-classes of a finite group G be of sizes k1, . . . , kn. Then

A := Aut(Γ(G)) = (Sk1
× · · · × Skn

) : Aut(Γw(G)).

Proof. Let N :=
∏n

i=1 Ski
. First we show that N ≤ A, then that A is an extension

of N by a subgroup of Aut(Γw(G)), and finally that the whole of Aut(Γw(G)) is
induced by A, and the extension splits.
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For the first claim, let x, y ∈ G such that x ≡Γ y. Then for all z ∈ G, there is
an edge from x to z if and only if there is an edge from y to z. Hence the map
interchanging x and y and fixing all other vertices in Γ(G) is an automorphism of
Γ(G), so N ≤ A.

For the second, we show that A acts on the ≡Γ-classes of Γ(G). For z ∈ G, write
N(z) for the set of neighbours of z in Γ(G). Suppose that x ≡Γ y, as before. Then
for all a ∈ A we see that

N(xa) = N(x)a = N(y)a = N(ya),

and so xa ≡Γ ya, as required. Hence A is an extension of N by a subgroup of
Aut(Γw(G)).

For the final claim, fix an ordering of the elements in each ≡Γ-class of G, and
identify the vertices of Γ(G) with the ordered pairs {(i, j) : 1 ≤ j ≤ n, 1 ≤ i ≤ kj}.
Let σ ∈ Aut(Γw(G)), and let j1, j2 be adjacent vertices in Γw(G) so that jσ1 and
jσ2 are also adjacent. Then kj1 = kjσ1 , and for 1 ≤ i ≤ kj1 vertex (i, j1) is adjacent
to vertex (i, j2). Hence we can define τ to be the map sending (i, j) to (i, jσ), and
then τ ∈ Aut(Γ(G)) induces σ. The result follows. �

Note that Aut(G) preserves the generating graph Γ(G), and hence automor-
phisms of G permute the ≡Γ-classes. We define Aut∗(G) to be the group induced
by Aut(G) on Γ(G). The following is clear.

Proposition 5.3. Let G be a group with d(G) ≤ 2. Then

Aut∗(G) ≤ Aut(Γw(G)) ≤ Aut(Γ(G)).

In the remainder of the paper we shall analyse these three automorphism groups,
concentrating on the groups G with nonzero spread. Such a group G has no non-
cyclic proper quotients. Moreover (see for example [20]), it satisfies one of the
following:

(1) G is cyclic;
(2) G ∼= Cp × Cp for some prime p;
(3) G is the semidirect product of its unique minimal normal subgroup N

(which is elementary abelian) by an irreducible subgroup C of a Singer
cycle acting on N ;

(4) G has a normal subgroup N ∼= T1×· · ·×Tr, where T1, . . . , Tr are isomorphic
nonabelian simple groups; G/N has order rm for some m dividing |Out(T1)|
and induces a cyclic permutation of the factors.

We shall show that Aut∗(G) is trivial for groups of type (1) and is equal to
Aut(G) for groups of type (3) and (4). Furthermore, we shall show that in type
(1) there is a spectacularly large gap between Aut(Γ(G)) and Aut(Γw(G)), whilst
in types (2) and (3) we find that Aut∗(G) 	= Aut(Γw(G)).

First we consider the groups of type (1).

Proposition 5.4. Let G be the cyclic group of order n = pa1
1 pa2

2 · · · par
r . Then Γ(G)

has 2r vertices. The group Aut∗(G) = Aut(Γw(G)) is trivial, while Aut(Γ(G)) ∼= Sr.
Hence Aut(Γ(G)) =

∏
I⊆{1,...,r} SnI

, where

nI =
n

p1p2 · · · pr
∏

i∈I

(pi − 1).
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Proof. First, vertices in the same coset of the Frattini subgroup Φ(G) get iden-
tified when we reduce the generating graph, and the weights are multiplied by
|Φ(G)| = n

p1···pr
. So we can assume that the Frattini subgroup is trivial, that is,

n = p1p2 · · · pr.
We know that in this case the ≡Γ- and ≡m-relations coincide, and it is more

convenient to use the latter. The group has r maximal subgroups (one of index pi
for each i), and the lattice of their intersections is the lattice of subsets of {1, . . . , r}.
So, for any subset I of {1, . . . , r}, there is a unique vertex vI of the reduced graph
corresponding to the intersection of the subgroups of index pi for i ∈ I, and vI is
joined to vJ if and only if I ∩ J = ∅.

We claim that the automorphism group of Γ(G) is the symmetric group Sr. It
is clear that Sr acts as automorphisms of the graph; it suffices to prove that there
are no more.

There is a unique vertex v∅ joined to all others. Apart from this vertex, there are
r vertices whose neighbour sets are maximal with respect to inclusion, namely v{i}
for i = 1, . . . , r, which must be permuted by the automorphism group. It suffices
to show that only the identity fixes all these vertices. But any further vertex is
uniquely specified by its neighbours within this set: vI is joined precisely to v{j}
for j /∈ I.

What is the subgroup of Sr fixing the weights? Recall that the weight of a
vertex vI is the number of elements of G which are equivalent to this vertex of the
reduced graph, that is, which lie in the maximal subgroups of index pi for i ∈ I and
no others. This is the number of generators of the intersection of these maximal
subgroups, which is ∏

j /∈I

(pj − 1).

Now it can happen that two of these weights are equal, even for elements in the
same Sr-orbit. (For example, let n = 2.3.7.13 = 546. The subgroups of orders 2.13
and 3.7 each have 12 generators.)

However, only the identity element of Sr preserves all the weights. For the
minimal nonidentity elements Cpi

have distinct weights pi − 1, and so all are fixed
by the weight-preserving subgroup. �

Proposition 5.5. Let G ∼= C2
p . Then Γ(G) has p + 2 vertices, with Aut(G) ∼=

GL2(p) and Aut∗(G) ∼= PGL2(p). On the other hand, Aut(Γ(G)) and Aut(Γw(G))
are both isomorphic to Sp+1, fixing the isolated vertex corresponding to the identity.
Furthermore, the group Aut(Γ(G)) = Sp−1 � Sp+1.

Proof. Thinking of G as a vector space, two nonidentity elements x, y ∈ G fail to
generate G if and only if they lie in the same 1-dimensional subspace. Furthermore,
they lie in the same 1-dimensional subspace if and only if x ≡Γ y. Thus Γ(G) is the
disjoint union of the complete graph Kp+1 and a vertex representing the identity,
and all weights in Kp+1 are equal to p− 1. �

Before considering the groups of type (3), we require a standard graph-theoretic
definition.

Definition 5.6. The categorical product X×Y of two graphs X and Y is the graph
whose vertex set is the cartesian product of the vertex sets, with (x1, y1) joined to
(x2, y2) if and only if x1 is joined to x2 in X and y1 is joined to y2 in Y .
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Proposition 5.7. Let G ∼= Ck
p : Cn be nonabelian with all proper quotients cyclic,

and let n = pa1
1 pa2

2 · · · par
r . The graph Γ(G) has (2r − 1)pk + 2 vertices if n is

squarefree, and 2rpk + 2 otherwise. The groups Aut(G) and Aut∗(G) are both
isomorphic to Ck

p : ΓL1(p
k). Furthermore, Aut(Γw(G)) ∼= Spk , whilst Aut(Γ(G)) ∼=

Spk × Sr.

Proof. The elementary abelian subgroup Ck
p is characteristic in the group G, so

Aut(G) ≤ AGLk(p). The cyclic subgroup must embed as an irreducible subgroup
of a Singer cycle, and so its centraliser in GLk(p) is the full Singer cycle Cpk−1, and

its normaliser is the normaliser of the Singer cycle, which is ΓL1(p
k).

We claim that Γ(G) is obtained from the categorical product of Γ(Cn) and the
complete graph Kpk by the following procedure:

(1) (a) If n is squarefree, identify all the vertices whose first component cor-
responds to the identity in Cn.

(b) Otherwise, add a vertex adjacent to all vertices whose first component
corresponds to a generator in Cn.
The vertex in either case corresponds to the nonidentity elements of
the minimal normal subgroup of G.

(2) Then add an isolated vertex corresponding to the identity.

Note that generators of Cn carry loops in Γ(Cn); these give rise to edges in the
categorical product between any two elements whose first components are equal
and correspond to generators of Cn.

The weights of the vertices are the weights of their first components in Γ(Cn),
except for the identified or added vertex in step (1), whose weight is pk in case
(1)(a) and pk(|Φ(Cn)| − 1) in case (1)(b), and the identity which has weight 1.

Now we demonstrate that this structure is correct.
First note that in Γ(G) all the nonidentity elements of the normal subgroup Ck

p

are adjacent to all (and only) the generators of the complements Cn, so they all
have the same neighbour sets and are ≡Γ-equivalent. Elements outside the normal
subgroup are joined if and only if they lie in different complements and their images
in the Cn quotient generate Cn. So two such elements are ≡Γ-equivalent if they
lie in the same complement and are Γ-equivalent in Cn. Thus the graph has the
structure claimed.

We now use the results of Proposition 5.4, from which the number of vertices of
Γ(G) follows immediately. The automorphism group of Γ(Cn) is Sr, so Aut(Γ(G))
is Spk × Sr.

Conversely, the group Aut(Γw(Cn)) is trivial, so the weight-preserving automor-
phisms of Γ(G) are just the permutations of the pk vertices of the complete graph.

Finally, we prove the claims about Aut∗(G). If Aut∗(G) 	= Aut(G), then the
unique minimal normal subgroup Ck

p of Aut(G) must act trivially on Γw(G). How-
ever, this is not possible for the following reason: let g be any element of G that
generates a complement to Ck

p in g, and let x be any nontrivial element of Ck
p .

Then 〈g〉 is a maximal subgroup of G, so gx 	∈ 〈g〉 and 〈g, gx〉 = G. Hence g and
gx are incident in Γ(G), and so g 	≡Γ gx. Hence x acts nontrivially on Γ(G). �

For groups G as in the previous result, the kernel of the homomorphism from
Aut(Γ(G)) to Aut(Γw(G)) is the direct product of symmetric groups whose degrees
are implicit in the proof: pk − 1 once, and the sizes of the nontrivial ≡Γ-classes in
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Cn (which can be read off from Conjecture 4.7) each pk times. The action of Spk is
to permute the factors apart from the Spk−1.

Example 5.8. Consider the case G = C5 : C4. The generating graph for C4 = 〈x〉
is the complete graph K4 with the edge {1, x2} deleted and loops at x and x3. So
the reduced graph identifies 1 and x2, and also x and x3, and is an edge with a
loop at one end. Thus, the reduced generating graph for C5 : C4 has 12 vertices,
say a1, . . . , a5, b1, . . . , b5, c, d, with all edges {ai, aj}, all edges {ai, bj}, and no edges
{bi, bj} for i 	= j, all edges {ai, c}, and d isolated. (Here ai corresponds to an
inverse pair of elements of order 4, bi to an element of order 2, c to the four
elements of order 5, and d to the identity.) Here the kernel of the homomorphism
from Aut(Γ(G)) to Aut(Γw(G)) is S4 × (S2)

5.

It remains to perform the analysis for the groups of type (4).

Theorem 5.9. Let T be a finite simple group and let N = T r ≤ G ≤ Aut(T ) �
〈σ〉, where σ acts as an r-cycle. Assume that there exists g = (y1, . . . , yr)σ, with
y1, . . . , yr ∈ Aut(T ), such that G = N〈g〉. By substituting g by a conjugate in
Aut(T ) � 〈σ〉, if necessary, we may assume that g = (y, 1, . . . , 1)σ. If there exist
s, t ∈ T such that T ≤ 〈ys, (ys)t〉, then Aut(G) = Aut∗(G).

Proof. Since N is the unique minimal normal subgroup of Aut(G), if the conclusion
is false, then N must act trivially on Γ(G). But this is impossible, for the following
reason.

Let ȳ = ys and ḡ = (ȳ, 1, . . . , 1)σ ∈ G. Notice that G contains ḡr = (ȳ, . . . , ȳ),
z = (t, 1, . . . , 1), and (ḡr)z = (ȳt, ȳ, . . . , ȳ). Consider the subgroup X of G generated
by ḡ and (gr)z. Since X contains (ȳ, . . . , ȳ) and (ȳt, ȳ, . . . , ȳ), we easily conclude
that X = G = 〈ḡ, (gr)z〉. Now if N acts trivially, then conjugacy classes under
N are contained in ≡Γ-equivalence classes. Hence, in particular, ḡr ≡Γ (ḡr)z, so
G = 〈ḡ, (ḡr)z〉 = 〈ḡ, ḡr〉 = 〈ḡ〉, a contradiction. �
Theorem 5.10. Let G be a group of nonzero spread. Then Aut∗(G) = Aut(G) if
and only if either G is nonabelian, or G is elementary abelian of order dividing 4.

Proof. The abelian groups of nonzero spread were considered in Propositions 5.4
and 5.5, where we showed that, with the given exceptions, Aut∗(G) 	= Aut(G).

The soluble nonabelian groups of nonzero spread were considered in Proposi-
tion 5.7, where we showed that Aut∗(G) = Aut(G).

The only remaining case is the insoluble groups of nonzero spread (that is type
(4)), so let G be such a group, and let N ∼= T r = Soc(G). We can identify G
with a subgroup of Aut(T ) � 〈σ〉, where σ is the r-cycle (1, 2, . . . , r). Let t be an
involution in T and let n = (t, 1, . . . , 1). Since G is of nonzero spread, there exists
g ∈ G with G = 〈n, g〉. Up to conjugation by an element of (AutT )r, we may
assume that g = (y, 1, . . . , 1)σ for some y ∈ Aut(T ). But now G = 〈n, g〉 implies
that H = 〈y, t〉 is almost simple with socle T . Since |t| = 2, the subgroup 〈y, yt〉
is normal in H. From this we see that T ≤ 〈y, yt〉, and so by Theorem 5.9, we
conclude that Aut(G) = Aut∗(G). �

We finish this discussion with an open problem.

Question 5.11. Let G be an insoluble group of nonzero spread. Is Aut(G) =
Aut(Γw(G))?

We know of no examples where this is not the case.
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5.1. Calculations with Γw(G). In this subsection we describe some experiments
that we have carried out on insoluble groups with nonzero spread.

Recall the definition of the m-universal action from Subsection 2.4 and that
we showed in Theorem 2.26 that if G is almost simple, with socle of order less
than 10000 and all proper quotients cyclic, then ψ(G) = 2. It is immediate from
Lemma 2.23(2) that two group elements x, y are incident in Γ(G) if and only if the
fixed-point sets of x and y in the m-universal action are disjoint.

For each such almost simple group G, we constructed Γ(G) and hence Aut(Γ(G)).
For all such groups except for PSL2(16) and PSL2(25) we found that Aut(Γ(G)) ∼=
Aut(G). In these remaining two cases, Aut(Γ(G)) ∼= C2×Aut(G), but the elements
in the centre of Aut(Γ(G)) do not preserve the graph weightings. From this we can
conclude:

Theorem 5.12. Let G be an almost simple group with socle of order less than
10000 such that all proper quotients of G are cyclic. Then Aut(Γw(G)) = Aut(G).

In addition, we carried out the same calculation with the subgroups of S5 � S2 of
nonzero spread (there are two of them), and for both such groups G we found that
ψ(G) = 2 and there are no additional automorphisms of Γw(G). That is, both such
groups satisfied Aut(Γw(G)) = Aut(G).
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Dipartimento di Matematica, Università degli studi di Padova, Via Trieste 63, 35121

Padova, Italy

Email address: lucchini@math.unipd.it

Mathematical Institute, University of St Andrews, St Andrews, Fife KY16 9SS,

Scotland

Email address: colva.roney-dougal@st-andrews.ac.uk

http://www.ams.org/mathscinet-getitem?mr=2852243
http://www.ams.org/mathscinet-getitem?mr=1402569
http://www.ams.org/mathscinet-getitem?mr=3073659
http://www.ams.org/mathscinet-getitem?mr=2515391
http://www.ams.org/mathscinet-getitem?mr=2816431
http://www.ams.org/mathscinet-getitem?mr=3679018
http://www.ams.org/mathscinet-getitem?mr=1264722
https://oeis.org/
http://www.ams.org/mathscinet-getitem?mr=2128968
http://www.ams.org/mathscinet-getitem?mr=648604
http://www.ams.org/mathscinet-getitem?mr=1642676
http://www.ams.org/mathscinet-getitem?mr=1489358
http://www.ams.org/mathscinet-getitem?mr=1783924

	1. Introduction
	2. A hierarchy of equivalences
	2.1. Definitions and elementary results
	2.2. Bounds on 𝜓(𝐺)
	2.3. Groups with 𝜓(𝐺)=𝑑(𝐺)
	2.4. Calculating ≡_{\rem}

	3. 𝑐-equivalence
	3.1. Asymptotics and enumeration

	4. The generating graph of a group
	5. Automorphism groups
	5.1. Calculations with \overline{Γ}_{\rw}(𝐺)

	References

