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OPTIMAL DISCRETE MEASURES FOR RIESZ POTENTIALS

S. V. BORODACHOV, D. P. HARDIN, A. REZNIKOV, AND E. B. SAFF

Abstract. For weighted Riesz potentials of the form K(x, y) = w(x, y)/
|x−y|s, we investigate N-point configurations x1, x2, . . . , xN on a d-dimension-

al compact subset A of Rp for which the minimum of
∑N

j=1 K(x, xj) on A is

maximal. Such quantities are called N-point Riesz s-polarization (or Cheby-
shev) constants. For s � d, we obtain the dominant term as N → ∞ of such
constants for a class of d-rectifiable subsets of Rp. This class includes compact
subsets of d-dimensional C1 manifolds whose boundary relative to the mani-
fold has d-dimensional Hausdorff measure zero, as well as finite unions of such
sets when their pairwise intersections have measure zero. We also explicitly
determine the weak-star limit distribution of asymptotically optimal N-point
configurations for weighted s-polarization as N → ∞.

1. Introduction

For a compact set A ⊂ R
p, two classical geometric problems are that of best-

packing and best-covering by an N -point multi-set (or N -point configuration) ωN =
{x1, . . . , xN} ⊂ A; i.e., a set of points with possible repetitions and cardinality
#ωN = N. The former problem is to determine the largest possible separation
distance that can be attained by N points of A:

δN (A) := max
ωN⊂A

min
i �=j

|xi − xj |,

while the latter is to find the smallest radius so that the union of N closed balls of
this radius centered at points of A covers A:

ρN (A) := min
ωN⊂A

max
y∈A

min
x∈ωN

|x− y|.

These two problems are referred to by some authors as being ‘somewhat dual’ (cf.
[7]). They are, in fact, limiting cases of certain minimal energy and maximal Cheby-
shev (polarization) problems for strongly repulsive kernels as we now describe.

Given a lower semi-continuous kernelK(x, y) : A×A → (−∞,∞] and anN -point
configuration ωN as above, its K-energy is

EK(ωN ) :=
∑

1�i �=j�N

K(xi, xj),

and we denote by EK(A;N) the minimal K-energy over all such N -point configu-
rations:

EK(A;N) := min
ωN⊂A

{EK(ωN )}.
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Determining N -point configurations ω∗
N such that EK(ω∗

N ) = EK(A;N), i.e., find-
ing N -point equilibrium configurations, is in general a difficult problem having clas-
sical roots (e.g. the Thomson problem [23] for electrons on the sphere). For strongly
repulsive kernels K, minimal discrete energy problems resemble best-packing ones.

The less studied notion of maximal polarization (or maximal Chebyshev con-
stant) is the following. Let

UK(y;ωN ) :=
N∑
i=1

K(y, xi)

and consider its minimum:

PK(A;ωN ) := min
y∈A

UK(y;ωN ).

Then the N-th K-polarization (or Chebyshev) constant of A is defined by

(1.1) PK(A;N) := max
ωN⊂A

PK(A;ωN ),

and we say that ω∗
N is an optimal (or maximal) K-polarization configuration when-

ever PK(A;ω∗
N ) = PK(A;N). For example, if A is the interval [−1, 1] and K

is the logarithmic kernel, Klog(x, y) := − log |x − y|, then the optimal N -point
log-polarization configuration consists of the zeros of the Chebyshev polynomial
cos(N arccosx). Furthermore, for an arbitrary compact subset A of the plane, the
limiting behavior (as N → ∞) of Plog(A;N) determines the logarithmic capacity
of A (see e.g. [20]).

We remark that from an applications prospective, the maximal polarization prob-
lem, say on a compact surface (or volume), can be viewed as the problem of deter-
mining the smallest number of sources (injectors) of a substance together with their
optimal locations that can provide a required dosage of the substance to every point
of the surface (volume). Such problems arise, for example, in the implantation of
radioactive seeds for the treatment of a tumor.

The precise connections of the minimal energy and maximal polarization prob-
lems to best-packing and best-covering are as follows. Let

Ks(x, y) :=
1

|x− y|s , s > 0,

denote the Riesz s-kernel. Then for N fixed,

lim
s→∞

[EKs
(A;N)]1/s =

1

δN (A)
, N ≥ 2,

and

lim
s→∞

[PKs
(A;N)]1/s =

1

ρN (A)
, N ≥ 1.

Moreover, every limit configuration (as s → ∞) of optimal N -point configurations
for the discrete s-energy and s-polarization problems is an N -point best-packing,
respectively, best-covering configuration for A (see [4], [6]).

While Riesz equilibrium configurations have been much studied (see e.g. [8], [20],
[16], [15], [14], [6]), polarization problems are somewhat more difficult to tackle. For
example, if A is the unit circle S1 and s > 0, then it is fairly straightforward (using
a convexity argument) to show that minimal N -point Riesz s-equilibrium configu-
rations are given by N equally spaced points. However, the analogous problem for
N -point maximal polarization configurations (which everyone would guess has the
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same solution) was a conjecture of Ambrus, Ball, and Erdélyi [2] for which only
partial results [1], [2], [9] existed until a rather subtle general proof was presented
in [13]. Similarly, when A = S

2 (the unit sphere in R
3), s > 0, and N = 4, the

vertices of the inscribed tetrahedron are optimal both for minimal energy and max-
imal polarization, but the proof of the latter is far more difficult than that of the
former (see [22]).

The goal of the present paper is to study the asymptotic behavior (as N → ∞) of
maximal N -point Riesz s-polarization configurations on manifolds embedded in Rp

for the so-called ‘hypersingular (or nonintegrable) case’ when s > dim(A), where
dim(A) denotes the Hausdorff dimension of A. Our results can be considered as
dual to those on minimal energy that appeared in this journal [5]. While some argu-
ments developed for those minimal energy problems can be adapted to our purpose,
the investigation of polarization configurations requires some novel techniques, as
foreshadowed by the examples mentioned above. For instance, while minimal en-
ergy has a simple monotonicity property: A ⊂ B ⇒ EK(B;N) ≤ EK(A;N), no
such analogous property holds for polarization.

The notion of polarization for potentials was likely first introduced by Ohtsuka
(see e.g. [18]), who explored (for very general kernels) their relationship to various
definitions of capacity that arise in electrostatics. In particular, he showed that for
any compact set A ⊂ Rp the following limit, called the Chebyshev constant of A,
always exists as an extended real number:

(1.2) TK(A) := lim
N→∞

PK(A;N)

N

and, moreover, is given by the continuous analogue of polarization:

(1.3) TK(A) = sup
μ∈M(A)

inf
y∈A

Uμ
K(y),

where M(A) is the set of all Borel probability measures supported on A, and

Uμ
K(y) :=

∫
A

K(x, y)dμ(x).

Ohtsuka further showed that TK(A) is not smaller than the Wiener constant

WK(A) := inf
μ∈M(A)

∫
A

Uμ
K(y)dμ(y).

In the case when K is a positive, symmetric kernel satisfying a maximum principle,
Farkas and Nagy [10] proved that WK(A) = TK(A).

While the assertions (1.2) and (1.3) clearly indicate a connection between the
discrete and continuous polarization problems, what is yet to be fully understood is
the limiting behavior (as N → ∞) of the optimal N -point K-polarization configu-
rations. For continuous kernels, it is easy to establish (see [10], [11], [12]) that every
weak-star limit of the normalized counting measures associated with these N -point
configurations must be an optimal (maximal) measure for the continuous polariza-
tion problem. However, for other integrable kernels such as Riesz s-kernels when
s < dim(A), only partial results are known (see [21] and [19]). For nonintegrable
kernels, although the continuous problem is vacuous (TK(A) = ∞), the asymptotic
behavior of optimal N -point discrete polarization configurations is a valid concern,
especially in light of its connection to the best-covering problem for large values of
s as mentioned above.
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Hereafter, our focus is on Riesz potentials, so, for the sake of brevity, we write
Ps(A;N) in place of PKs

(A;N), and similarly for Ps(A;ωN ) and Es(A;N). The
order of growth of the quantity Ps(A;N) in the case s � dim(A) was established
by Erdélyi and Saff [9, Theorems 2.3 and 2.4]. If the d-dimensional Hausdorff
measure of A is positive, then

(1.4) Ps(A;N) = O(Ns/d), s > d, and Pd(A;N) = O(N logN), N → ∞.

When s = d and A is a compact subset of a d-dimensional C1-manifold, the follow-
ing precise limit was established by Borodachov and Bosuwan [3]:

(1.5) lim
N→∞

Pd(A;N)

N logN
=

Vol(Bd)

Hd(A)
,

where Bd := {x ∈ Rd : |x| � 1} and by Hd we denote the d-dimensional Hausdorff
measure on Rp, scaled so that Hd(Q) = 1, where Q is a d-dimensional unit cube
embedded in R

p. The cases A = B
d and A = S

d of (1.5) were earlier established in
[9].

Here we establish precise asymptotics for the case s > d := dim(A). Specifically,
as a consequence of our main theorem, Theorem 3.4, we show that for s > d, there
exists a positive finite constant σs,d such that for a general class of d-dimensional
sets A with Hd(A) > 0 we have the following limit:

lim
N→∞

Ps(A;N)

Ns/d
=

σs,d

Hd(A)s/d
.

Furthermore, N -point s-polarization optimal configurations are asymptotically uni-
formly distributed on A with respect to d-dimensional Hausdorff measure. We also
consider in Theorem 3.4 the more general class of weighted Riesz potentials.

The paper is structured as follows. In Section 2 we present and discuss two
important special cases, Theorem 2.2 and Theorem 2.6, of our main result, The-
orem 3.4. We illustrate these special cases with the examples of a smooth curve,
a sphere, and a ball. Section 3 contains relevant definitions and the statement of
our main result. Section 4 compares our results with their known analogues for
the minimal discrete Riesz energy, while the remaining sections are devoted to the
proofs of our results.

2. Some special cases of main result

We begin with the following definition and some needed notation.

Definition 2.1. Assume A ⊂ Rp and s > 0. For every positive integer N , let ωN

denote an N -point configuration on A. We call a sequence {ωN}N�1 asymptotically
s-optimal if

lim
N→∞

Ps(A;ωN )

Ps(A;N)
= 1.

Furthermore, by Lp we denote the Lebesgue measure on Rp. If x ∈ Rp and
r > 0, by B(x, r) we denote the open ball {y ∈ Rp : |y − x| < r} and by B[x, r] the
closed ball {y ∈ R

p : |y − x| � r}.
Our first result concerns the asymptotic behavior of Ps(A;N) as well as the

associated optimal configurations. In the statement we shall use the notion of
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weak-star convergence of discrete measures. For an N -point configuration ωN on A
we associate the normalized counting measure

(2.1) ν(ωN ) :=
1

N

∑
x∈ωN

δx,

where δx denotes the unit point mass at x. Recall that ν(ωN ) converges weak-star

to a Borel probability measure μ on A (and we write ν(ωN )
∗−→ μ) if

(2.2) lim
N→∞

∫
f dν(ωN ) = lim

N→∞

1

N

∑
x∈ωN

f(x) =

∫
f dμ,

for any f ∈ C(A) or, equivalently (cf. [6, Theorem 1.9.3]), if

(2.3) ν(ωN )(B) = #(ωN ∩B)/N → μ(B) as N → ∞,

for any Borel measurable set B ⊂ A with the μ(∂B) = 0.

Theorem 2.2. Let Qp denote the unit cube [0, 1]p in Rp. Then, for every s > p,
the limit

(2.4) σs,p := lim
N→∞

Ps(Qp;N)

Ns/p

exists and is positive and finite. More generally, if s > d and A is a compact subset
of a d-dimensional C1-manifold in Rp with the relative boundary of A having Hd

measure zero, then

lim
N→∞

Ps(A;N)

Ns/d
=

σs,d

Hd(A)s/d
.

Furthermore, if Hd(A)>0, then for any asymptotically s-optimal sequence {ωN}N�1,

(2.5) ν(ωN )
∗−→ 1

Hd(A)
Hd
∣∣
A

as N → ∞.

We remark that in the special case of d = p, the theorem holds for any compact
set A ⊂ Rp with Lp(∂A) = 0. Establishing this special case plays a central role in
the proof of our main theorem in Section 3.

Regarding the precise value of the constant σs,p, for the case p = 1 and s > 1,
Hardin, Kendall, and Saff [13] proved that

σs,1 = 2(2s − 1)ζ(s),

where ζ(s) is the classical Riemann zeta-function. For p = 2 we conjecture, based
on the optimality properties of the equi-triangular lattice for the best-covering in
R2, that the value of σs,2 for s > 2 is

(2.6) σs,2 =
3s/2 − 1

2
ζΛ(s),

where

ζΛ(s) :=
∑

v∈Λ\{0}

1

|v|s

is the Epstein zeta-function for the equi-triangular lattice Λ ⊂ R
2 with unit co-

volume.
We illustrate Theorem 2.2 with the following examples.
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Example 2.3. For a unit ball Bp ⊂ Rp and s > p, Theorem 2.2 asserts that

(2.7) lim
N→∞

Ps(B
p;N)

Ns/p
= σs,p ·

(
Γ(p/2 + 1)

πp/2

)s/p

and, moreover, for any asymptotically s-optimal sequence {ωN}N�1,

(2.8) ν(ωN )
∗−→
(
Γ(p/2 + 1)

πp/2

)
Hp
∣∣
Bp

as N → ∞.

It is interesting to contrast the behavior in the hypersingular case with that for
integrable Riesz kernels for the ball. For 0 < s � p−2, Erdélyi and Saff [9] show that
for each N , the maximal N -point s-polarization configurations consist of N points
at the center of the ball (so Ps(B

p;N) = N for N � 1). For p−2 < s < p, Simanek
[21] has shown that the limiting distribution of optimal polarization configurations
is the s-equilibrium measure for the corresponding minimal Riesz s-energy problem.

Example 2.4. For a unit sphere Sp−1 ⊂ Rp and s > p− 1, Theorem 2.2 yields

(2.9) lim
N→∞

Ps(S
p−1;N)

Ns/(p−1)
=

σs,p−1

Hp−1(Sp−1)s/(p−1)
= σs,p−1 ·

(
Γ(p/2)

2πp/2

)s/(p−1)

and that, for any asymptotically s-optimal sequence {ωN}N�1,

(2.10) ν(ωN )
∗−→
(
Γ(p/2)

2πp/2

)
Hp−1

∣∣
Sp−1

as N → ∞.

For the integrable Riesz kernel, that is, 0 < s < p − 1, it is shown in [21] that
the limiting distribution of optimal polarization configurations is the normalized
surface area measure on the sphere. Also, see [19] for related results.

Example 2.5. For any C1-smooth curve Γ with 0 < H1(Γ) < ∞ and any s > 1,
Theorem 2.2 gives

(2.11) lim
N→∞

Ps(Γ;N)

Ns
=

2(2s − 1)ζ(s)

H1(Γ)s
.

In [3], it is established that for the case s = 1, the limiting distribution of op-
timal s-polarization configurations on smooth curves is normalized arclength mea-
sure, while for the case of integrable Riesz kernels on smooth curves, every limit
distribution of optimal polarization configurations is a solution to the continuous
s-polarization problem [19].

We next turn to an extension of Theorem 2.2 where we introduce a weight func-
tion. For a function w : A×A → [0,∞], an N -point multiset ωN = {x1, . . . , xN} ⊂
A and B ⊂ A, we set

(2.12) Uw
s (y;ωN ) :=

N∑
j=1

w(y, xj)

|y − xj |s
, (y ∈ A),

(2.13) Pw
s (B;ωN ) := inf

y∈B
Uw
s (y;ωN ),

and define the weighted N-th (s, w)-polarization (or Chebyshev) constant of A by

(2.14) Pw
s (A;N) := sup

ωN⊂A
Pw
s (A;ωN ).

In terms of the injector/dosage model discussed in Section 1, a weight function
can be used to introduce spatial inhomogeneity into the strength of the sources as
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well as the dosage constraint. For example, consider w(x, y) of the form u(x)/v(y)
for some positive, continuous functions u and v on A. Since

(2.15) Uw
s (y;ωN ) =

1

v(y)
U1⊗u
s (y;ωN )

(where 1 ⊗ u(x, y) = u(x) for x, y ∈ A) the N -point (s, w)-polarization problem
can be recast as locating N sources at points xk ∈ A of ‘strength’ u(xk) so as
to maximize the constant C such that the ‘dosage’ U1⊗u

s (y;ωN ) is at least Cv(y)
for each y ∈ A. Theorem 2.6 below states that the limiting density of sources as
N → ∞ for this weighted problem as the number sources goes is proportional to
(v(x)/u(x))d/sdHd(x).

We note that if A is a compact set and the weight w is lower semi-continuous
and strictly positive on A × A, then for any N there exists a configuration ω∗

N =
{x∗

1, . . . , x
∗
N} and a point y∗ such that

Pw
s (A;N) = Pw

s (A;ω∗
N ) = Uw

s (y∗;ω∗
N ).

For such a configuration, the potential Uw
s (y) := Uw

s (y;ω∗
N ) is called an optimal

N-point Riesz (s, w)-potential for A. Similarly to the unweighted case, we say that
a sequence {ωN}N�1 of N -point configurations in A is asymptotically (s, w)-optimal
if

lim
N→∞

Pw
s (A;ωN )

Pw
s (A;N)

= 1.

Our second consequence of Theorem 3.4 concerns the asymptotic behavior of
Pw
s (A;N) for a class of weights w. Denote

(2.16) τs,d(N) :=

{
Ns/d, s > d,

N logN, s = d.

We prove the following.

Theorem 2.6. Let d and p be positive integers with d � p. Suppose A ⊂ Rp is a
compact subset of a d-dimensional C1-manifold with Hd(∂A) = 0 and w ∈ C(A×A)
with w(x, x) positive for all x ∈ A. Then for any s � d,

(2.17) lim
N→∞

Pw
s (A;N)

τs,d(N)
=

σs,d

[Hs,w
d (A)]s/d

,

where, for any measurable B ⊂ R
p,

(2.18) Hs,w
d (B) :=

∫
B∩A

w−d/s(x, x)dHd(x)

and σs,d for s > d is as in Theorem 2.2 and σd,d := Vol(Bd). Moreover, if Hd(A) >
0, then for any asymptotically (s, w)-optimal sequence {ωN}N�1,

(2.19) ν(ωN )
∗−→ 1

Hs,w
d (A)

Hs,w
d as N → ∞.

3. Statement of main result

In this section we state our main theorem. For this purpose we first introduce
some needed definitions and notation concerning geometric properties of the set A
as well as continuity and positivity properties of the considered weight w.
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Definition 3.1. A function φ : A ⊂ Rp → Rd is said to be bi-Lipschitz with
constant C if

C−1|x− y| � |φ(x)− φ(y)| � C|x− y|, (x, y) ∈ A,

while φ is said to be Lipschitz with constant C if the second inequality above holds.
A set A ⊂ R

p is called (Hd, d)-rectifiable, d � p, if Hd(A) < ∞ and A is the
union of at most countably many images of bounded sets in Rd under Lipschitz
maps and a set of Hd-measure zero (see [17]).

Further, we say that A is d-bi-Lipschitz at x ∈ A if, for any ε > 0, there exists
a number δ > 0 and a bi-Lipschitz function ϕx,ε : B(x, δ) ∩ A → R

d with constant
(1 + ε) such that the set ϕx,ε(B(x, δ) ∩A) ⊂ Rd is open.

By Abi we denote the set of all points x ∈ A at which A is d-bi-Lipschitz. Further,
denote Ac

bi := A \Abi.

Notice that any set A ⊂ Rp is (Hp, p)-rectifiable with Ac
bi = ∂A. We remark that

any compact set A with Hd(A) < ∞ and Hd(A
c
bi) = 0 is (Hd, d)-rectifiable. Thus,

any embedded compact C1-smooth d-dimensional manifold with Hd(∂A) = 0 is
(Hd, d)-rectifiable. In particular, if this manifold is closed, then Ac

bi = ∅. Further,
a finite union of C1-smooth arcs is an (H1, 1)-rectifiable set.

The following notion of Minkowski content often arises in geometric measure
theory.

Definition 3.2. Let A ⊂ Rp be a bounded set, A(ε) := {x ∈ Rp : dist(x,A) < ε}
and, for m � 1, let βm denote the volume of the m-dimensional unit ball (we also
set β0 := 1). If the limit

Md(A) := lim
ε→0+

Lp(A(ε))

βp−dεp−d

exists, then it is called the d-Minkowski content of A.

We remark that the notion of Minkowski content has been particularly useful
in the study of discrete s-energy where the equality Hd(A) = Md(A) plays an
important role in the proof of asymptotic results; see Theorem 4.1.

We equip the set A×A with the metric

dist((x1, y1), (x2, y2)) =

√
|x1 − x2|2 + |y1 − y2|2,

where x1, x2, y1, y2 ∈ A. Concerning the weight w(x, y) we utilize the following
definition from [5].

Definition 3.3. Suppose A ⊂ Rp is a compact set. We call a function w : A×A →
[0,∞] a CPD-weight 1 on A×A with parameter d if the following properties hold:

(i) w is continuous (as a function on A×A) at Hd-almost every point of the
diagonal D(A) := {(x, x) : x ∈ A};

(ii) there is a neighborhoodG ofD(A) (relative to A×A) such that infG w(x, y)
> 0;

(iii) w is bounded on any closed subset B ⊂ A×A with B ∩D(A) = ∅.
In what follows, we define

(3.1) hw
s,d(A) := lim inf

N→∞

Pw
s (A;N)

τs,d(N)
, h

w

s,d(A) := lim sup
N→∞

Pw
s (A;N)

τs,d(N)
.

1Here CPD stands for (almost) continuous and positive on the diagonal.
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If hw
s,d(A) = h

w

s,d(A), we denote

(3.2) hw
s,d(A) := lim

N→∞

Pw
s (A;N)

τs,d(N)
.

If the function w is identically equal to 1, we drop the superscript and write hs,d,

hs,d, and hs,d.
We are ready to state our most general theorem.

Theorem 3.4. Let d and p be positive integers with d � p. Suppose A ⊂ Rp is
a compact set with Hd(A) = Md(A) < ∞ and Hd(clos(A

c
bi)) = 0. Assume w is a

CPD-weight on A×A with parameter d. Then for any s � d,

(3.3) hw
s,d(A) = lim

N→∞

Pw
s (A;N)

τs,d(N)
=

σs,d

[Hs,w
d (A)]s/d

.

Moreover, if Hd(A) > 0, then for any asymptotically (s, w)-optimal sequence
{ωN}N�1,

(3.4) ν(ωN )
∗−→ 1

Hs,w
d (A)

Hs,w
d as N → ∞.

In the case w = 1 and s = d (recall that σd,d = Vol(Bd) = βd), Borodachov and
Bosuwan [3] proved the above theorem for sets A =

⋃m
j=1 Aj , where each Aj is a

compact subset of a C1-smooth d-dimensional manifold in R
p, withHd(Aj∩Ak) = 0

if j �= k.
We remark that the equalityHd(A) = Md(A) holds if A is a d-rectifiable compact

set, that is, if A is the image of a compact subset of Rd under a Lipschitz map (in
particular, this equality holds if d = p). Moreover, if A is (Hd, d)-rectifiable with
Hd(A) = Md(A), then the same is true for every compact subset of A. For details,
see [6, Chapter 7].

We further remark that any embedded d-dimensional compact C1-smooth man-
ifold A with Hd(∂A) = 0 satisfies conditions of the theorem. Moreover, any finite
union of C1-smooth arcs also satisfies these conditions. On the other hand, a “fat”
Cantor set C ⊂ [0, 1] with H1(C) > 0 (thus, of dimension 1) does not satisfy the
condition H1(Cc

bi) = 0.

4. Comparison with energy asymptotics

In this section we provide a sufficient condition for hw
s,d(A) to be infinite when

s > d and sets A that are sufficiently small (see Corollary 4.2). First we recall a
result concerning the asymptotics of weighted discrete energy in the hyper-singular
case s � d. For a compact set A ⊂ Rp, weight w : A × A → [0,∞] and an integer
N � 2, define

Ew
s (A;N) := inf

⎧⎪⎨
⎪⎩
∑

x,y∈ωN

x�=y

w(x, y)

|x− y|s : ωN ⊂ A, #ωN = N

⎫⎪⎬
⎪⎭ .

If the weight w is identically equal to 1, we drop the superscript w. For an infinite
set A, any s > 0, and a nonnegative weight w on A×A, we, similar to [9, Theorem
2.3]), obtain

(4.1) Pw
s (A;N) � Ew

s (A;N)

N − 1
, N � 2.
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The following theorem, proved by Borodachov, Hardin, and Saff [5, 6] describes
the asymptotic behavior of Ew

s (A;N).

Theorem 4.1. Let d and p be positive integers with d � p. Suppose A ⊂ R
p is

a compact (Hd, d)-rectifiable set with Md(A) = Hd(A) and w is a CPD-weight on
A×A with parameter d. If s > d, then for any compact set B ⊂ A,

lim
N→∞

Ew
s (B;N)

N1+s/d
=

Cs,d

[Hs,w
d (B)]s/d

,

where Cs,d is a finite positive constant that depends only on s and d. If A is a
compact subset of a d-dimensional C1-smooth manifold, then for any compact set
B ⊂ A,

lim
N→∞

Ew
d (B;N)

N2 logN
=

βd

Hd,w
d (B)

,

where βd = Vol(Bd).
In particular, if d = p and A ⊂ Rp is a compact set with Lp(A) = 0, then both

limits above are equal to ∞.

The following corollary of Theorem 4.1 proves a particular case of Theorem 3.4
and will be used in the proof of Theorem 8.1.

Corollary 4.2. If A ⊂ R
p is a compact set with Hd(A) = Md(A) = 0 and w is a

CPD-weight on A with parameter d, then

hw
s,d(A) = lim

N→∞

Pw
s (A;N)

τs,d(N)
= ∞.

Proof. Dividing both sides of (4.1) by τs,d(N) and using Theorem 4.1, we obtain

hw
s,d(A) � lim

N→∞

Ew
s (A;N)

(N − 1)τs,d(N)
= ∞.

�

5. Proofs

The remaining sections are devoted to the proof of our main result, Theorem 3.4.
In Section 6 we determine the dominant asymptotic term of Ps(A;N) as N → ∞ for
the unit cube A = Qp; that is, we establish that equation (2.4) holds. In Section 7
we prove a subadditive property of hw

s,d(·). In Section 8 we use the subadditive
property together with (2.4) to first find a lower bound for hw

s,d(A) for the case
that A is a compact set in R

p of positive Lebesgue measure (see Lemma 8.1) and
then to generalize this lower bound to the case that A is a sufficiently regular
d-rectifiable set (see Lemma 8.2) embedded in Rp. In Section 9, we determine
the limiting distribution of an asymptotically (s, w)-optimal sequence of N -point
configurations, and in the final section we establish an upper bound that proves
that the limit hw

s,d(A) exists, thereby completing the proof of Theorem 3.4.
In the rest of this section we collect some preliminary results that will be useful

in the following proofs. First, we consider some basic properties of Pw
s (B;ωN ) in

terms of its arguments B and ωN . These properties are immediate consequences of
the definition of Pw

s given in (2.13).
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Lemma 5.1. Let A be a compact set in Rp, let w be a function on A × A tak-
ing values in [0,∞], let B and B̃ be subsets of A, and let ωN and ω̃M be finite
configurations in A.

(i) If ω̃M ⊂ ωN and B̃ ⊃ B, then

Pw
s (B;ωN ) � Pw

s (B̃, ω̃M ).

(ii) If B1, . . . , Bk are subsets of B such that B =
⋃

i Bi, then

Pw
s (B;ωN ) = min

i
Pw
s (Bi, ωN ).

In several of our later proofs we shall need the existence of a sufficiently regular
‘Vitali-type’ covering for subsets of Abi.

Lemma 5.2. Let A ⊂ Rp be a compact set with Hd(A) < ∞, and let B ⊂ A \
clos(Ac

bi) be a nonempty set open relative to A. For ε > 0, there exists a pairwise
disjoint collection Xε = {Qα} of closed sets Qα := B[xα, ρα] ∩ A such that

(5.1) Hd

(
B \

⋃
Qα∈Xε

Qα

)
= 0

and such that for each α, we have ρα < ε and there is some bi-Lipschitz ϕα with
constant (1 + ε) mapping Qα onto Q̃α := ϕα(Qα) such that Ld(∂Q̃α) = 0 and

(5.2) Q̃α ⊃ B[ϕα(xα), ρα/(1 + ε)].

If ε > 0 and γ > 0, then there is some finite collection Xε,γ ⊂ Xε such that

(5.3) Hd

(
B \

⋃
Qα∈Xε,γ

Qα

)
< γ.

Proof. Let ε > 0. Since B ⊂ Abi and B is relatively open, for each x ∈ B Defini-
tion 3.1 implies that there is a number δ = δ(x, ε) > 0 and a bi-Lipschitz function
ϕx,ε : B(x, δ)∩B → Rd with constant 1+ ε, such that Ux := ϕx,ε(B(x, δ)∩B) is an
open set in Rd. Thus, there exists some r = r(x) > 0 so that B(ϕx,ε(x), r) ⊂ Ux,
and, hence, using the fact that ϕx,ε has bi-Lipschitz constant (1 + ε), we have
for 0 < ρ < r(x)/(1 + ε) that Qx,ρ := B[x, ρ] ∩ B ⊂ ϕ−1

x,ε(B(ϕx,ε(x), r)), and so
ϕx,ε(Qx,ρ) ⊃ B[ϕx,ε(x), ρ/(1 + ε)]. Let

Vε(B) := {Qx,ρ : 0 < ρ � min {r(x)/(1 + ε), ε} , x ∈ B} .

Then by Vitali’s covering theorem for Radon measures (see, for example, [17,
Theorem 2.8]), there is a pairwise disjoint collection {Qα} ⊂ Vε(B) such that (5.1)
holds. By construction each Qα is of the form B[xα, ρα] ∩ B, and ϕα := ϕxα,ε

∣∣
Qα

is bi-Lipschitz with constant (1 + ε) such that (5.2) holds.
For γ > 0, the existence of such a finite collection Xε,γ satisfying (5.3) follows

from the fact that the elements ofXε are pairwise disjoint and thatHd(B) < ∞. �

6. Proof of equality (2.4)

In this section we prove that the limit hs,p(Qp) exists for any s > p and that
σs,p = hs,p(Qp) is a positive finite number. For the case s = p, this fact was proved
by Borodachov and Bosuwan [3] using a different method. Our proof for s > p
utilizes an argument similar to the one in [14].
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For N ∈ N, let ωN be an s-polarization optimal N -point configuration for
Qp; that is, Ps(Qp;ωN ) = Ps(Qp;N). For m � 2, m ∈ N, and a vector j =
(j1, j2, . . . , jp) ∈ Z

p with 0 � jk � m− 1, define

Qj :=

[
j1
m
,
j1 + 1

m

]
× · · · ×

[
jp
m
,
jp + 1

m

]
=

1

m
(Qp + j),

ωj
N :=

1

m
(ωN + j) ⊂ Qj,

and ωmpN :=
⋃

j ω
j
N ⊂ Qp. Then, using Lemma 5.1, we obtain

Ps(Qp;m
pN) � Ps(Qp;ωmpN )

= min
j

Ps(Q
j;ωmpN ) � min

j
Ps(Q

j;ωj
N )

= Ps(Q
0;ω0

N ),

(6.1)

where the last equality follows from the observation that Ps(Q
j;ωj

N ) = Ps(Q
0;ω0

N )

since Qj and ωj
N are translations by j/m of Q0 and ω0

N , respectively. Furthermore,
the scaling relations Q0 = (1/m)Qp and ω0

N = (1/m)ωN together with (6.1) imply
that

(6.2) Ps(Qp;m
pN) � Ps(Q

0;ω0
N ) = msPs(Qp;ωN ) � msPs(Qp;N).

From inequality (1.4) we have hs,p(Qp) < ∞. Let ε > 0 and let N0 be a positive
integer such that

Ps(Qp;N0)

N
s/p
0

> hs,p(Qp)− ε.

For N > N0 choose the nonnegative integer mN such that mp
NN0 � N <

(mN + 1)pN0. Then, from (6.2) we get

hs,p(Qp) <
Ps(Qp;N0)

N
s/p
0

+ ε =
ms

NPs(Qp;N0)

ms
NN

s/p
0

+ ε � Ps(Qp;m
p
NN0)

ms
NN

s/p
0

+ ε.

Notice that the inequality mp
NN0 � N implies that Ps(Qp;m

p
NN0) � Ps(Qp;N).

Therefore,

(6.3) hs,p(Qp) <
Ps(Qp;N)

Ns/p
·
(
mN + 1

mN

)s

+ ε.

Taking the limit inferior as N → ∞ in (6.3) and noting that mN → ∞ as N → ∞,
we obtain

(6.4) hs,p(Qp) � hs,p(Qp) + ε.

In view of the arbitrariness of ε, the limit σs,p := hs,p(Qp) exists as a finite real
number. Inequality (4.1) together with Theorem 4.1 implies that σs,p is positive.
�

One may alternatively prove the positivity of σs,p directly without using Theo-
rem 4.1. One method consists of dividing the cube Qp into N = np equal subcubes
and letting ωN be the configuration consisting of the centers of these cubes. Then
it is not difficult to prove that Ps(Qp;ωN ) will have order Ns/d as N → ∞.
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7. Subadditivity of [hw
s,d(·)]−d/s

The following lemma establishes the subadditivity of [hw
s,d(·)]−d/s and will play

an important role in the proof of (3.3); see Lemmas 8.1 and 8.2.

Lemma 7.1. Suppose B and C are subsets of Rp and w : (B∪C)×(B∪C) → [0,∞].
Then for any positive d � p and any s � d,

(7.1) hw
s,d(B ∪ C)−d/s � hw

s,d(B)−d/s + hw
s,d(C)−d/s.

Proof. First note that for any N -point configuration ωN ⊂ B∪C, Lemma 5.1 gives

Pw
s (B ∪ C;ωN ) = min {Pw

s (B,ωN ), Pw
s (C, ωN )}

� min {Pw
s (B;ωN ∩B), Pw

s (C;ωN ∩ C)} .(7.2)

If N1, N2, and N are positive integers such that N1 + N2 = N , then, with ωN

denoting an arbitrary N point configuration in B ∪ C, we have

Pw
s (B ∪ C;N) = sup

ωN

(Pw
s (B ∪ C;ωN ))

� sup
#ωN∩B�N1
#ωN∩C�N2

min (Pw
s (B;ωN ∩B), Pw

s (C;ωN ∩ C))

� min {Pw
s (B;N1),Pw

s (C;N2)} .

(7.3)

We now assign particular values to N1 and N2. For a fixed α ∈ (0, 1) and N ∈ N,
let N1 := �αN� and N2 := N−N1 and note that N1 → ∞ and N2 → ∞ as N → ∞.
Then the inequality (7.3) implies that

Pw
s (B ∪ C;N)

τs,d(N)
� min

{
Pw
s (B;N1)

τs,d(N1)
· τs,d(N1)

τs,d(N)
,
Pw
s (C;N2)

τs,d(N2)
· τs,d(N2)

τs,d(N)

}
,

which, together with

lim
N→∞

τs,d(N1)

τs,d(N)
= αs/d, lim

N→∞

τs,d(N2)

τs,d(N)
= (1− α)s/d, s � d,

yields

(7.4) hw
s,d(B ∪ C) � min

{
αs/dhw

s,d(B), (1− α)s/dhw
s,d(C)

}
for any α ∈ (0, 1).

If hw
s,d(B) = 0 or hw

s,d(C) = 0, then (7.1) holds trivially, and so we assume both
hw
s,d(B) and hw

s,d(C) are positive. If hw
s,d(B) = hw

s,d(C) = ∞, then the right-hand
side of (7.4) is equal to ∞, and the lemma holds trivially. If hw

s,d(B) < ∞ and

hw
s,d(C) = ∞, then the right-hand side of (7.4) is equal to αs/dhw

s,d(B). Letting α
go to 1 we obtain the lemma. The case hw

s,d(B) = ∞ and hw
s,d(C) < ∞ is treated

similarly.
If both hw

s,d(B) and hw
s,d(C) are positive and finite, then we set

α :=
hw
s,d(C)d/s

hw
s,d(B)d/s + hw

s,d(C)d/s
∈ (0, 1).

This choice of α together with inequality (7.4) implies the estimate (7.1). �
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8. An estimate of hw
s,d(A) from below

In this section we prove important corollaries of Lemma 7.1. We start with the
unweighted case (i.e., w = 1) for d = p.

Lemma 8.1. Suppose A ⊂ Rp is a compact set with Lp(∂A) = 0. Then for any
s � p,

(8.1) hs,p(A) � σs,p

Lp(A)s/p
.

Proof. If Lp(A) = 0, then the lemma follows from Corollary 4.2. Thus, we assume
Lp(A) > 0.

Let ε > 0. Our assumptions on the set A imply that there exists a finite family
D = {Qi} of closed cubes with disjoint interiors such that Qi ⊂ A and

Lp

(
A \
⋃

i
Qi

)
< ε.

Denote D := A \
⋃

i Qi. Since Lp(∂A) = 0, we also get Lp(∂D) = 0. Thus,
Lp(clos(D)) = Lp(D) < ε. From inequality (4.1) and Theorem 4.1 we obtain

hs,p(clos(D)) � lim
N→∞

Es(clos(D);N)

(N − 1)τs,p(N)
� Cs,pε

−s/p.

Further, inequality (7.1) yields

hs,p(A)−p/s �
∑
i

hs,p(Qi)
−p/s + hs,p(clos(D))−p/s �

∑
i

hs,p(Qi)
−p/s + C−p/s

s,p ε.

Equality (2.4) implies that hs,p(Qi) = σs,pLp(Qi)
−s/p. Thus,

hs,p(A)−p/s �
∑
i

σ−p/s
s,p Lp(Qi) + C−p/s

s,p ε

= σ−p/s
s,p Lp

(⋃
i
Qi

)
+ C−p/s

s,p ε � σ−p/s
s,p Lp(A) + C−p/s

s,p ε.

(8.2)

Taking ε → 0 in (8.2) then gives (8.1). �
Next, we deduce a general estimate for hw

s,d. Namely, we prove the following
lemma.

Lemma 8.2. Suppose d, p ∈ N, d � p, A ⊂ R
p is a compact set with Hd(A) =

Md(A) < ∞ and Hd(clos(A
c
bi)) = 0. Suppose w is a CPD weight on A × A with

parameter d. Then for any s � d,

(8.3) hw
s,d(A) � σs,d

Hs,w
d (A)s/d

.

Proof. Let B := A \ clos(Ac
bi) and note that B is a subset of Abi open relative to

A. By assumption, clos(Ac
bi) is a compact subset of A of zero Hd-measure. Then

taking into account inequality (4.1) and Theorem 4.1 we obtain

(8.4) hw
s,d(clos(A

c
bi)) � lim

N→∞

Ew
s (clos(Ac

bi);N)

(N − 1)τs,d(N)
= Cs,d[Hs,w

d (clos(Ac
bi))]

−s/d = ∞.

Let ε > 0 and let Xε,ε be a finite family of disjoint sets {Qα} as in Lemma 5.2 with
γ = ε. Define D := B \

⋃
α Qα. Since clos(D) is a compact subset of A, inequality

(4.1) and Theorem 4.1 imply that

(8.5) hw
s,d(clos(D)) � lim

N→∞

Ew
s (clos(D);N)

(N − 1)τs,d(N)
= Cs,d[Hs,w

d (clos(D))]−s/d.
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Next, we will estimate hw
s,d(Qα) for each α. Recall that Q̃α := ϕα(Qα) and that

Ld(∂Q̃α) = 0. Let ω̃N denote an arbitrary N -point configuration in Q̃α and let
ωN := ϕ−1

α (ω̃N ) ⊂ Qα denote the preimage of ω̃N . Set

wQα
:= inf

(x,y)∈Qα×Qα

w(x, y).

Since w � wQα
on Qα×Qα and the function ϕα is bi-Lipschitz on Qα with constant

1 + ε,

Pw
s (Qα;N) � Pw

s (Qα;ωN ) � wQα
Ps(Qα;ωN ) � (1 + ε)−swQα

Ps(Q̃α; ω̃N ),

and thus

(8.6) Pw
s (Qα;N) � (1 + ε)−swQα

Ps(Q̃α;N).

Dividing both sides of (8.6) by τs,d(N) and then taking the limit inferior as N → ∞
gives

(8.7) hw
s,d(Qα) � (1 + ε)−swQα

hs,d(Q̃α) � (1 + ε)−swQα
σs,dLd(Q̃α)

−s/d

� (1 + ε)−2sσs,dwQα
Hd(Qα)

−s/d,

where the second inequality follows from Lemma 8.1.
Finally, we apply Lemma 7.1 to A = clos(Ac

bi) ∪ clos(D) ∪ (
⋃

αQα). Combining
(8.4), (8.5), and (8.7), we obtain

(8.8)

[hw
s,d(A)]−d/s � [hw

s,d(clos(A
c
bi))]

−d/s + [hw
s,d(clos(D))]−d/s +

∑
α

[hw
s,d(Qα)]

−d/s

� C
−d/s
s,d Hs,w

d (clos(D)) + (1 + ε)2dσ
−d/s
s,d

∑
α

w
−d/s
Qα

Hd(Qα).

Define

wε(x) :=

{
w

−d/s
Qα

, x ∈ Qα for some α,

0, x �∈
⋃

α Qα.

Then (8.8) implies that

(8.9) [hw
s,d(A)]−d/s � C

−d/s
s,d Hs,w

d (clos(D)) + (1 + ε)2dσ
−d/s
s,d

∫
A

wε(x)dHd(x).

Observe that Hd(∂AQα) = 0 for every α and that the set A\ (
⋃

α intAQα) is closed,
where intAQα is the interior of Qα relative to A. Recall also that Qα ⊂ B for all α
and that the sets Qα are pairwise disjoint. Then

D ⊂ clos(D) ⊂ D ∪ clos(Ac
bi) ∪

(⋃
α

∂AQα

)
.

Consequently, Hd(clos(D)) = Hd(D) < γ = ε. Then Hs,w
d (clos(D)) → 0 as ε → 0.

Since diam(Qα) � 2ε(1 + ε) for all α, for every ε > 0 sufficiently small, we have
Qα × Qα ⊂ G for every α, where the set G is a neighborhood of D(A) relative to
A × A such that a := infG w > 0; see Definition 3.3. This implies for sufficiently
small ε > 0,

(8.10) 0 � wε(x) � a−d/s.

For every k ∈ N denote εk := 2−k and {Qk
α} := Xk := Xεk,εk . Let

M :=
{
x ∈ B : ∃ε0 such that ∀εk � ε0 we have x ∈ Qk

α for some Qk
α ∈ Xk

}
.
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We see that
B \M =

⋂
ε0

⋃
k�log2(1/ε0)

(B \
⋃
α

Qk
α);

thus for any ε0 > 0 we have

Hd(B \M) �
∑

k�log2(1/ε0)

2−k � 2ε0,

which implies Hd(B \ M) = 0. On the other hand, it is obvious that for every
x ∈ M we have limk→∞ wεk

(x) = w−d/s(x, x). Using the estimate (8.9) for εk and
in view of (8.10) and the Lebesgue Dominated Convergence Theorem, we obtain
(8.3). �

9. Limit distribution of asymptotically optimal configurations

In this section we prove that asymptotically (s, w)-optimal sequences of N -point
configurations are distributed on the set A according to Hs,w

d .
Throughout this section, A will denote a set in R

p that satisfies the hypotheses
of Theorem 3.4 (including Hd(A) > 0), and {ωN}N�1 will denote an asymptotically
(s, w)-optimal sequence of configurations (see Definition 2.1) in A.

We start with the following lemma.

Lemma 9.1. Let ε and γ be positive numbers and let Xε,γ be as in Lemma 5.2.

Let Q̃α = ϕα(Qα) for some fixed Qα ∈ Xε,γ . Suppose Γ̃ is a d-dimensional open

cube contained in Q̃α and let Γ := ϕ−1
α (Γ̃) and NΓ := #(ωN ∩ Γ) for N ∈ N. Then

NΓ → ∞ as N → ∞.

Proof. Suppose there is an unbounded set N of positive integer numbers such that
NΓ are uniformly bounded from above when N ∈ N . Since ϕα is a bi-Lipschitz
function, there is a positive number a0 (that does not depend on N) and, for each
N ∈ N , a point zN ∈ A such that B(zN , a0) ∩ A ⊂ Γ and B(zN , a0) ∩ ωN = ∅.
Therefore, |zN−x| � a0 for any x ∈ ωN . Recall that we denoteD(A) = {(x, x) : x ∈
A}. Since the set F := clos(

⋃
N∈N {(zN , x) : x ∈ ωN}) is a closed subset of A × A

with F ∩D(A) = ∅, we conclude from Definition 3.3 that the weight w is bounded
from above on F . Then for some constant C and any large enough N ∈ N ,

Pw
s (A;ωN ) � Uw(zN ;ωN ) � C ·N.

Since {ωN}N�1 is asymptotically (s, w)-optimal, we have hw
s,d(A) = 0, which con-

tradicts the fact that hw
s,d(A) > 0 established in Lemma 8.2. Then NΓ → ∞ as

N → ∞. �
The next lemma makes the asymptotic behavior of NΓ more precise.

Lemma 9.2. Let ε, Γ, and NΓ be as above. Then

(9.1) lim inf
N→∞

τs,d(NΓ)

τs,d(N)
�

Hd(Γ)
s/dhw

s,d(A)

σs,d(1 + ε)2swΓ

and

(9.2) lim sup
N→∞

τs,d(NΓ)

τs,d(N)
�

Hd(Γ)
s/dh

w

s,d(A)

σs,d(1 + ε)2swΓ
,

where
wΓ := sup

(y,x)∈Γ×Γ

w(y, x).



OPTIMAL DISCRETE MEASURES 6989

Proof. Let the sidelength of Γ̃ be denoted by r > 0. For 0 < υ < r, let Γ̃υ denote
the closed d-dimensional cube with the same center as Γ̃ and sidelength r − υ.
Denote Γυ := ϕ−1

α (Γ̃υ).
For any N � 1,

Pw
s (A;ωN ) � Pw

s (Γυ;ωN ) = inf
y∈Γυ

⎛
⎝ ∑

x∈ωN∩Γ

w(y, x)

|y − x|s +
∑

x∈ωN\Γ

w(y, x)

|y − x|s

⎞
⎠ .

If y ∈ Γυ and x ∈ Qα \Γ, then |ϕα(y)−ϕα(x)| � υ/2; thus |y−x| � (1 + ε)−1υ/2.
Furthermore, h := dist(Γυ, A \Qα) > 0 since Γυ is a compact subset of the interior
of Qα. Then for any y ∈ Γυ and x ∈ A \Γ = (A \Qα)∪ (Qα \Γ), we have |y − x| �
min{h, (1+ε)−1υ/2} > 0. This means that the set F1 := clos(Γυ×(A\Γ)) ⊂ A×A
does not intersect the diagonal D(A). Thus, the weight w is bounded above on F1

by a constant (which can depend on υ). Consequently,

(9.3) Pw
s (A;ωN ) � Pw

s (Γυ;ωN ∩ Γ) + Cυ,ε ·N � wΓ · Ps(Γυ;ωN ∩ Γ) + Cυ,ε ·N,

where Cυ,ε is a constant independent on N and ωN . Let ω̃Γ
N := ϕα(ωN ∩ Γ) ⊂ Γ̃.

Since ϕα is bi-Lipschitz with constant (1 + ε), we have using (9.3) that

Pw
s (A;ωN ) � (1 + ε)swΓPs(Γ̃υ; ω̃

Γ
N ) + Cγ,ε ·N.

For any x̃ ∈ ω̃Γ
N , define x̃′ to be the point in Γ̃υ closest to x̃ (in particular, x̃′ = x̃

if x̃ ∈ Γ̃υ). Denote ω̃′
N := {x̃′ : x̃ ∈ ω̃Γ

N}. Notice that #ω̃′
N = NΓ. Since Γ̃υ is a

convex set, for any ỹ ∈ Γ̃υ we have |ỹ − x̃| � |ỹ − x̃′|. Thus,
Pw
s (A;ωN ) � (1 + ε)swΓPs(Γ̃υ; ω̃

′
N ) + Cυ,ε ·N

� (1 + ε)swΓPs(Γ̃υ;NΓ) + Cυ,ε ·N
= (1 + ε)swΓHd(Γ̃υ)

−s/dPs(Qd, NΓ) + Cυ,ε ·N.

(9.4)

We now divide by τs,d(N) and take the limit inferior as N → ∞. Using Lemma 9.1
and (2.4), we obtain

hw
s,d(A) � (1 + ε)swΓ(r − υ)−sσs,d · lim inf

N→∞

τs,d(NΓ)

τs,d(N)
.

Since the number υ can be arbitrarily small, the function ϕα is bi-Lipschitz, and
Hd(Γ̃) = rd, we further obtain

hw
s,d(A) � (1 + ε)2swΓHd(Γ)

−s/dσs,d · lim inf
N→∞

τs,d(NΓ)

τs,d(N)
,

which proves (9.1). Similarly, passing to lim supN→∞ in (9.4), we obtain

h
w

s,d(A) � (1 + ε)2swΓHd(Γ)
−s/dσs,d · lim sup

N→∞

τs,d(NΓ)

τs,d(N)
,

which proves (9.2). �
Finally, we state the main lemma of this section, which proves the limiting

behavior (3.4).

Lemma 9.3. Suppose B ⊂ A is a set with Hd(∂AB) = 0. Suppose {ωN}N�1 is an
asymptotically (s, w)-optimal sequence of configurations in A. Then

lim
N→∞

#(ωN ∩B)

N
=

Hs,w
d (B)

Hs,w
d (A)

.
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Hence,

ν(ωN )
∗−→ 1

Hs,w
d (A)

Hs,w
d as N → ∞.

Proof. If Hd(B) = 0, then clearly

lim inf
N→∞

#(ωN ∩B)

N
� Hs,w

d (B)

Hs,w
d (A)

.

Therefore, it remains to prove this inequality for B with Hd(B) > 0. Denote
Bbi := intA(B \ clos(Ac

bi)), where intA X denotes the interior of a set X ⊂ A
relative to A. For an ε > 0 consider the family Xε,ε = {Qα} from Lemma 5.2
constructed for the set Bbi. Then Bbi = (

⋃
α Qα) ∪D with Hd(D) < ε. For each

Q̃α := ϕα(Qα), consider a finite family G̃α of disjoint open cubes Γ̃ ⊂ Q̃α (the

families Gα will be specified later). Denote Gα := {ϕ−1
α (Γ̃) : Γ̃ ∈ G̃α} and let

G :=
⋃

α Gα. Recall that for any Γ ∈ G we define NΓ := #(ωN ∩ Γ).

Notice that if s � d, then τs,d(NΓ)/τs,d(N) � (NΓ/N)s/d (in the case s > d we
have equality, while if s = d we use logNΓ � logN). Then Lemma 9.2 implies that

for every Γ = ϕ−1
α (Γ̃) ∈ G, we have

(9.5) lim inf
N→∞

NΓ

N
� (1 + ε)−2dw

−d/s
Γ

(
hw
s,d(A)

σs,d

)d/s

· Hd(Γ).

Since all sets Γ ∈ G are disjoint, from (9.5) we have

lim inf
N→∞

#(ωN ∩B)

N
� lim inf

N→∞

#(ωN ∩ (
⋃

α Qα))

N
� lim inf

N→∞

1

N

∑
Γ∈G

NΓ�
∑
Γ∈G

lim inf
N→∞

NΓ

N

� (1 + ε)−2d

(
hw
s,d(A)

σs,d

)d/s

·
∑
Γ∈G

w
−d/s
Γ Hd(Γ).

(9.6)

Fix a positive number υ. Since Ld(∂Q̃α) = 0 for every α, we can choose the

family G̃α such that

(9.7) Ld

⎛
⎝Q̃α \

⋃
Γ̃∈G̃α

Γ̃

⎞
⎠ < υ

and denote
G̃ :=

⋃
Γ̃∈G̃

Γ̃, G :=
⋃
Γ∈G

Γ.

Since the family {Qα} is finite, for some constant Cε, which does not depend on
υ,

(9.8) Hd(
⋃
α

Qα \G) � Cε · υ.

Notice that G̃ is a finite union of open cubes. If we subdivide these cubes
into smaller ones and call their union G̃1, then Ld(G̃1) = Ld(G̃) and, moreover,

the estimate (9.6) holds for the new collection G̃1. We repeat this procedure and

denote by G̃n the collection we get on the n-th step; we further denote by Gn the
collection of preimages of cubes from Gn. Then the maximum of the diameters
of cubes in G̃n, and thus of every set in Gn, approaches 0 as n → ∞; thus, as in
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the proof of Lemma 8.2, the Lebesgue Dominated Convergence Theorem applied

to un(x) =
∑

Γ∈Gn
w

−d/s
Γ χΓ(x) (where χΓ denotes the characteristic function of Γ)

implies that ∑
Γ∈Gn

w
−d/s
Γ Hd(Γ) →

∫
G

w−d/s(x, x)dHd(x), n → ∞.

Since w−d/s(x, x) is bounded away from zero and Hd(
⋃

α Qα \ G) � Cε · υ for υ
arbitrarily small, we obtain from (9.6)

(9.9) lim inf
N→∞

#(ωN ∩B)

N
� (1 + ε)−2d

(
hw
s,d(A)

σs,d

)d/s

·
∫

⋃
α Qα

w−d/s(x, x)dHd(x).

Finally, since Hd(B \
⋃

α Qα) = Hd(Bbi \
⋃

α Qα) < ε and ε can be made arbi-
trarily small, we obtain using Lemma 8.2 that

(9.10) lim inf
N→∞

#(ωN ∩B)

N
�
(
hw
s,d(A)

σs,d

)d/s

· Hs,w
d (B) =

Hs,w
d (B)

Hs,w
d (A)

.

Notice that a similar estimate is true for the set A \B. Thus,
(9.11)

lim sup
N→∞

#(ωN ∩B)

N
= 1− lim inf

N→∞

#(ωN ∩ (A \B))

N
� 1− Hs,w

d (A \B)

Hs,w
d (A)

=
Hs,w

d (B)

Hs,w
d (A)

.

Combining estimates (9.10) and (9.11), we obtain

lim
N→∞

#(ωN ∩B)

N
=

Hs,w
d (B)

Hs,w
d (A)

.

�

10. An estimate for h
w

s,d from above

In this section we prove that the lower bound for hw
s,d(A) from Lemma 8.2 is also

an upper bound for h
w

s,d(A). In view of Lemmas 8.2 and 9.3, this completes the
proof of Theorem 3.4.

Lemma 10.1. Suppose A ⊂ Rp is a compact set with Hd(A) = Md(A) < ∞ and
that Hd(clos(A

c
bi)) = 0. Suppose w is a CPD-weight on A × A with parameter d.

Then for any s � d, we have

(10.1) h
w

s,d(A) � σs,d

Hs,w
d (A)s/d

.

Proof. If Hd(A) = 0, then inequality (10.1) holds trivially. Assume that Hd(A) >
0. Set B := A \ clos(Ac

bi). Then B is a relatively open subset of Abi. For a
positive number ε > 0, fix the family Xε,ε from Lemma 5.2. Let {ωN}N�1 be an
asymptotically optimal sequence of configurations for Pw

s (A;N). Let Γ ⊂ B be a
set as in Lemma 9.1. Recall the estimate in (9.2):

lim sup
N→∞

(
NΓ

N

)s/d

� lim sup
N→∞

τs,d(NΓ)

τs,d(N)
� (1 + ε)−2sw−1

Γ

h
w

s,d(A)

σs,d
Hd(Γ)

s/d.
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Since Hd(∂AΓ) = 0, Lemma 9.3 implies that the limit lim
N→∞

NΓ

N exists. Then

(1 + ε)−2d

(
h
w

s,d(A)

σs,d

)d/s

w
−d/s
Γ Hd(Γ) � lim

N→∞

NΓ

N
.

We now argue exactly as in Lemma 9.3. That is, we take the sequence of families
{Gn}∞n=0 from the proof of Lemma 9.3 and obtain

(1+ε)−2d

(
h
w

s,d(A)

σs,d

)d/s ∑
Γ∈Gn

w
−d/s
Γ Hd(Γ) �

∑
Γ∈Gn

lim
N→∞

NΓ

N
= lim

N→∞

1

N

∑
Γ∈Gn

NΓ � 1.

Passing to the limit as n → ∞ we obtain

(1 + ε)−2d

(
h
w

s,d(A)

σs,d

)d/s

Hs,w
d (clos(B)) � 1,

which in view of Hd(clos(A
c
bi)) = 0 implies that(
h
w

s,d(A)

σs,d

)d/s

Hs,w
d (A) � 1,

which completes the proof of (10.1). �
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