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PATHS TO UNIQUENESS OF CRITICAL POINTS AND

APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

DENIS BONHEURE, JURAJ FÖLDES, EDERSON MOREIRA DOS SANTOS,
ALBERTO SALDAÑA, AND HUGO TAVARES

Abstract. We prove a general criterion for the uniqueness of critical points
of a functional in the presence of constraints such as positivity, boundedness,
or fixed mass. Our method relies on convexity properties along suitable paths
and significantly generalizes well-known uniqueness theorems. Due to the flex-
ibility in the construction of the paths, our approach does not depend on the
convexity of the domain and can be used to prove the uniqueness in subsets,
even if it does not hold globally. The results apply to all critical points and not
only to minimizers, providing the uniqueness of solutions to the corresponding
Euler-Lagrange equations. For functionals emerging from elliptic problems, the
assumptions of our abstract theorems follow from maximum principles, decay
properties, and novel general inequalities. To illustrate our method we present
a unified proof of known results, as well as new theorems for mean-curvature
type operators, fractional Laplacians, Hamiltonian systems, Schrödinger equa-
tions, and Gross-Pitaevskii systems.
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1. Introduction

The existence of critical points of a functional I traditionally follows from general
arguments based on direct or minimax methods.

However, the uniqueness of critical points is in general a subtle issue, depending
both on local and global properties of a functional and essentially on its domain
of definition. In particular, this domain might reflect conserved quantities (such as
mass or energy) or one-sided constraints (e.g. positivity or boundedness).

Probably the best known uniqueness result in the calculus of variations is the
following: If I is a strictly convex functional, defined on an open convex subset of a
normed space, then it has at most one critical point, which is the global minimum
whenever it exists. However, problems with constraints have frequently nonconvex
domains, and even for convex ones, such as the cone of positive functions, the
convexity of I is a very restrictive requirement. For example, in many problems zero
is a critical point of I (or solution of the corresponding Euler-Lagrange equation),
and if there exists a positive critical point, then I cannot be strictly convex in the
cone of positive functions.

In this paper we provide a simple yet general condition guaranteeing the unique-
ness of critical points, which relies on an elementary observation: If I is a smooth
functional and γ is a smooth curve connecting two critical points of I, then t �→
I(γ(t)) =: F (t) ∈ R cannot be a strictly convex function. Indeed, since γ connects
critical points, the derivative of F at the endpoints must vanish, which is impossible
for a strictly convex function. This observation yields a uniqueness result whenever
an appropriate curve γ can be found, and below we construct such γ for many
problems involving nonlinear partial differential equations (pdes). These examples
contain new uniqueness proofs and a shorter and unified approach to some known
results.

We emphasize that requiring convexity along a particular curve is much weaker
than assuming convexity of I. Moreover, such pathwise convexity can be defined on
sets that are not necessarily convex. As such, it can be used as a fine tool to prove
uniqueness of critical points with certain additional criteria. Our method can also
be used to prove the simplicity of the eigenvalues of nonlinear eigenvalue problems,
where the uniqueness holds up to multiplication by scalars.

Recall that the uniqueness immediately implies that the critical point inherits
all symmetries of the problem. For example, if the functional and its domain are
radially symmetric, then the critical point possesses the same symmetry. Further-
more, the uniqueness simplifies the dynamics of the gradient flow induced by the
functional and in many cases provides global stability properties of equilibria.

Our main uniqueness result is formulated in a general abstract framework to
allow applications to various problems.

Theorem 1.1. Let (X, ‖ · ‖) be a normed space, let I : X → R be a Fréchet
differentiable functional, and let A ⊂ X be a subset of critical points of I. If for all
u, v ∈ A there exists a map γ : [0, 1] → X such that

(a) γ(0) = u, γ(1) = v,
(b) γ is locally Lipschitz at t = 0, that is, ‖γ(t) − u‖ ≤ Ct for each t ∈ [0, δ]

and some δ > 0,
(c) t �→ I(γ(t)) is convex in [0, 1],
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then

(i) I is constant on A,
(ii) t �→ I(γ(t)) is a constant function,
(iii) if condition (c) holds with strict convexity for all u �= v, then A has at most

one element.

We readily see that every (strictly) convex functional satisfies conditions (a)-(c)
of Theorem 1.1 (resp. with strict inequality at (c)) for γ(t) = (1−t)u+tv. The linear
structure on X is not essential and can be replaced by a differential structure, which
is needed for the notion of critical point. Rather than introducing a new notation
and restating the problem on Banach or Fréchet manifolds (cf. Remark 2.1), we
formulate a consequence of Theorem 1.1 for constraint minimization problems with
applications to elliptic problems in mind.

Corollary 1.2. Let X,Y be Banach spaces, and let I : X → R and R : X → Y
be Fréchet differentiable. Suppose that 0 is a regular value of R, set S := R−1(0),
and let A ⊂ S be a subset of critical points of I|S. If for all u, v ∈ A there exists
γ : [0, 1] → S satisfying (a)–(c) of Theorem 1.1, then (i)–(iii) from Theorem 1.1
hold with I replaced by I|S.

We apply Theorem 1.1 and Corollary 1.2 to several pde problems with variational
structure. In these applications, assumption (a) is easily fulfilled; the main challenge
is the construction of paths γ satisfying (b) and (c). The condition (b) is in fact
an assumption on the parametrization γ. Actually, if (b) is not satisfied we cannot
conclude that the derivative of t �→ I(γ(t)) vanishes at t = 0 even if ∇I(γ(0)) = 0.
This is not a technical obstacle, since the uniqueness of critical points does not
hold if we require Hölder continuity in (b) instead of Lipschitz continuity. Indeed,
consider the following one-dimensional example:

(1.1) I(x) =
1

3
x3 − x− 2

3
=

1

3
(x+ 1)3 − (x+ 1)2, γ(t) =

√
2
√
1 + t− 1.

It is easy to verify that I has two critical points, ±1, γ(±1) = ±1, and t �→ I(γ(t)) =
2
√
2

3 (1 + t)
3
2 − 2(1 + t) is a strictly convex function; however, γ is not Lipschitz at

t = −1. The verification of (b) is a subtle issue, and in our examples, where X
is a function space and critical points are solutions of certain elliptic problems,
it strongly relies on comparison properties of endpoints of γ, which follow either
from the Hopf lemma or from sharp decay estimates at infinity for solutions of the
Euler-Lagrange equation. In this step we strongly use the fact that the endpoints
of γ are critical points of I and not arbitrary elements of X.

The assumption (c) has a different flavor and it heavily depends on indirect
convexity properties of I, which are manifested by sharp and delicate inequalities
for arbitrary endpoints u, v (not necessarily critical points). As noted in Theorem
2.2 below, the convexity in (c) can be weakened to conclude (i) of Theorem 1.1;
however, in that case we need additional assumptions to conclude the uniqueness
of critical points.

Our main results also provide novel insights into problems where uniqueness
cannot be established. For instance, if the set A contains a global minimizer of I,
it follows from (i) and (ii) that all critical points are global minimizers. Moreover,
if A contains at least two points, then they are not isolated since every point on γ
is a global minimizer (the continuity of γ at t = 0 follows from (b)). Another fine
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application, illustrated below for the mean curvature operator, is the uniqueness of
small solutions, even if the existence of additional large solutions is known.

The idea of proving uniqueness by using a generalized convexity assumption is
not entirely new in the literature. The closest to our results is [12], where the key
idea there can be rephrased in our setting as: There is no curve γ connecting two
global minimizers of I such that t �→ I(γ(t)) is strictly convex. This is indeed
true, since strictly convex functions on an interval attain a strict maximum at an
endpoint, a contradiction to global minimality of endpoints. Although this method
is presumably applicable to curves connecting strict local minima, it fails for general
critical points; see for instance our one-dimensional example (1.1). There are many
papers applying the ideas of [12] in various settings (see for instance [5, 21, 22, 34,
35, 40, 49, 57, 61, 81]); however, none contain results as general as Theorem 1.1 or
Corollary 1.2.

The cornerstone of [12] (which deals with elliptic equations involving the p–
Laplace operator), and an important ingredient in many of our examples, is the
inequality

|∇γ(t)(x)| ≤
(
(1− t)|∇u(x)|p + t|∇v(x)|p

) 1
p

for u, v > 0 ,

where γ(t)(x) := ((1− t)up(x) + tvp(x))
1
p . This inequality can be traced back to

[13, 37], and in our manuscript we prove a more general version. Such path γ
was used in many papers to show the uniqueness of positive solutions for ellip-
tic equations in mathematical physics; for instance, [55, Lemma A.4] studies a
Gross-Pitaevskii energy functional, and [13, Lemma 4] treats a Thomas-Fermi-von
Weizsäcker functional. Frequently, only minimizers are considered due to physical
considerations, and therefore the strict convexity of t �→ I(γ(t)) suffices to prove
uniqueness.

Another approach to uniqueness relies on the existence of a strict variational
sub-symmetry; see [70]. Specifically, if u0 is a critical point of I and there is a
family of maps (gε) with a group structure such that I(gε(u)) < I(u) for u �= u0,
then u0 is the only critical point. In some particular settings the abstract method
of [70] can be interpreted as an infinitesimal version of our approach.

To show an application of Theorem 1.1, let us consider the following basic model
problem, which already contains most of the important ingredients. Let Ω ⊂ R

N

be a regular bounded domain, 1 < q < 2, and define the functional on the Sobolev
space H1

0 (Ω) by

I(u) :=
1

2

∫
Ω

|∇u|2 dx− 1

q

∫
Ω

|u|q dx .

It is well known that I has infinitely many critical points; see for example [11,
Theorem 1 (b)]. However, there is only one positive critical point of I; see [6, 23,
32,47,51,52]. Although I is not strictly convex on the cone of positive functions of
H1

0 (Ω), we can verify the uniqueness of positive critical points using Theorem 1.1
with

γ(t) =
√
(1− t)u2 + tv2 .

Indeed, as q < 2, one obtains that t �→ |γ(t)|q is strictly concave, and therefore
the second term of t �→ I(γ(t)) is strictly convex. The first term is convex by
the general Lemma 3.5 proved below. Intuitively, in our examples we employ a
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strong convexity property of the principal term to improve convexity properties of
the nonlinear part. Observe that the critical points of I are weak solutions of the
Euler-Lagrange equation

−Δu = |u|q−2u in Ω, u = 0 on ∂Ω ,

and therefore the required local Lipschitz property follows from the comparison
of positive solutions u and v (see Lemma 3.1 below), and Theorem 1.1 yields the
uniqueness.

Our abstract results apply in far more general settings, and here we focus on
models arising for example in physics, engineering, and geometry. We present sim-
plified and unified proofs of known results and we also present new uniqueness
results. Our goal is to present the main ideas and complications in a comprehen-
sible manner and to show the methods in a broad range of problems rather than
treating the most general setting or finding optimal assumptions. Our examples
include equations and systems with quasilinear or nonlocal differential operators on
bounded and unbounded domains with various boundary conditions.

In the first example we study a family of quasilinear problems

−div(h(|∇u|p)|∇u|p−2∇u) = g(x, u), p > 1 ,

and under general assumptions on h and g we show new uniqueness results for
positive solutions. If h ≡ 1 the uniqueness was already established in [37]. In this
case, the left hand side reduces to the well-known p-Laplacian operator (−Δp),
which is a nonlinear counterpart of the Laplacian (p = 2). It is used to model
phenomena strongly characterized by nonlinear diffusion, and it finds application,
for example, in elasticity theory to model dilatant (p > 2) or pseudo-plastic (1 <
p < 2) materials. We show uniqueness results which in particular include sublinear
[37] and Allen-Cahn-type p-Laplacian problems, either with Dirichlet or nonlinear
boundary conditions. For the latter see [15, 16] for the particular case of p = 2.

For p = 2 and h(z) = (1±z)−
1
2 we obtain a problem involving the mean curvature

operator in Euclidean or Minkowski space

M±u := − div

(
∇u√

1± |∇u|2

)
= g(x, u) .(1.2)

The operator M+ is important in geometry. We refer to [43] for classical results
on minimal surfaces and to [67,68] for more references on boundary value problems
involving this operator. It also classically appears in the study of capillarity surfaces
(see [41]) and was proposed as a prototype in models of reaction processes with
saturating diffusion; see [53] and the references therein. The natural functional
space to look for solutions of (1.2) with M+ is the space of functions of bounded
variations. We anticipate that our results lead to uniqueness of regular solutions.

The operator M− appears in the Born-Infeld electrostatic theory to include the
principle of finiteness in Maxwell’s equations; see [9, 14, 18]. Solutions to (1.2)
must satisfy |∇u| < 1 and can be obtained by minimization of a functional in a
suitable convex subset of the Sobolev space W 1,∞(Ω). Because of this, we need to
formulate an auxiliary problem using truncations which rely on fine quantitative
regularity estimates. Since the set of critical points of the transformed problem
might be larger than the original one, we need to exploit the fact that Theorem 1.1
also applies to proper subsets of critical points.
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Our abstract results can also be applied to obtain new uniqueness results for
non-local equations such as

(−Δ)su(x) := lim
ε→0

∫
|x−y|≥ε

u(x)− u(y)

|x− y|N+2s
dy = g(x, u(x)) ,

where s ∈ (0, 1). The operator (−Δ)s is often called the (integral) fractional Lapla-
cian and it appears as an infinitesimal generator of a Lévy process. It finds ap-
plications, for instance, in water wave models, crystal dislocations, nonlocal phase
transitions, finance, and flame propagation; see [24,36]. The fractional Laplacian is
a nonlocal operator, since it encodes diffusion with large-distance interactions, and
this nonlocality plays an essential role in the definition of the variational setting
and in the application of Theorem 1.1. For instance, the nonlocal character of the
problem requires the path γ to satisfy a convexity inequality for arbitrary pairs of
points in R

N .

With respect to systems of equations we present a new proof of a known unique-
ness result [31,63] for positive solutions of Hamiltonian elliptic systems in the sub-
linear case

−Δu = |v|q−1v , −Δv = |u|p−1u , p, q > 0 , p · q < 1 .

These systems can be seen as a generalization of the biharmonic equation, since
with q = 1, u solves the fourth-order elliptic equation

Δ2u = |u|p−1u , 0 < p < 1.

Due to their structure, they pose many mathematical challenges, and they can be
treated by using several variational frameworks, each one with its advantages and
disadvantages (we refer to the survey [19] for more details). To treat Hamiltonian
systems by our methods, we define an appropriate functional by using the dual
method approach, which goes back to [27]. Then the principal part of the functional
contains the inverse of the Laplacian rather than differentials, and therefore new
convexity inequalities are needed. Another obstacle is a proper choice of a path γ
and the verification of the local Lipschitz property in a multi-component setting.

We include an example involving the quasilinear defocusing Schrödinger equation

(1.3) −Δu− uΔu2 + V (x)u+ u3 = ωu

on both bounded domains and on R
N , where V is an appropriate potential and

ω is either fixed or a Lagrange multiplier when the mass (i.e., the L2–norm) is
fixed. This equation appears when looking for standing waves of a Schrödinger-
type equation and is a particular case of a more general problem appearing in
many physical phenomena such as plasma physics and fluid dynamics or condensed
matter theory; see [29, 69] for a detailed list of physical references. The main
difficulty in the application of our main results when working in R

N is to obtain a
comparison for positive weak solutions of (1.3), which is needed for the proof of the
local Lipschitz continuity of γ. Such comparison can be derived from new sharp
decay estimates,

u(x) ∼ |x|
ω−N

2 e−
1
2 |x|

2

as |x| → ∞,

which are proved for a transformed problem with a simplified principal part.
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Finally, we show an application to the Gross-Pitaevskii system

(1.4) −Δui + V (x)ui + ui

k∑
j=1

βiju
2
j = ωiui, i = 1, . . . , k,

which arises as a model for standing waves of Bose-Einstein condensates [80] or in
nonlinear optics [3]. We treat the case when ω1, . . . , ωk are fixed, as well as the
case when the mass of each ui is fixed, and the parameters appear as Lagrange
multipliers. As in the previous example, when Ω = R

N we need the following sharp
decay estimates for positive solutions (u1, . . . , uk) of (1.4):

(1.5) ui(x) ∼ |x|
ωi−N

2 e−
1
2 |x|

2

as |x| → ∞.

However, additional difficulties stem from the fact that critical points of the associ-
ated functional might have some trivial components and therefore are not compara-
ble. Moreover, when the mass of the ui is fixed, the parameters ωi may depend on
the solution. In that case, the sharp decay estimates yield that positive solutions
are not comparable and our method does not apply, but we include an alternative
proof for completeness which also relies on (1.5).

The paper is organized as follows. In Section 2 we prove Theorem 1.1 and Corol-
lary 1.2. We collect general auxiliary statements and inequalities needed throughout
the paper in Section 3. Section 4 contains applications to second-order problems,
and Section 5 to mean curvature operators. Problems involving the fractional Lapla-
cian are discussed in Section 6, and the problems regarding Hamiltonian systems
are in Section 7. Our study of Schrödinger equations and Gross-Pitaevskii systems
can be found in Section 8.

2. Proof of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. (i) For a contradiction, suppose that there exist u, v ∈ A
such that I(v) < I(u) and set N := I(v) − I(u) < 0. Then, with γ as in the
hypotheses of this theorem, from the convexity assumption,

I(γ(t))−I(γ(0)) ≤ (1−t)I(u)+t I(v)−I(u) = t (I(v)−I(u)) for all t ∈ (0, 1) ,

that is,

(2.1)
I(γ(t))− I(u)

t
≤ N < 0 for all t ∈ (0, 1),

and in particular γ(t) �= u for all t ∈ (0, 1). On the other hand, since γ is locally
Lipschitz at 0, there exist δ > 0 and C > 0 such that

(2.2) ‖γ(t)− u‖ ≤ Ct for all t ∈ [0, δ].

Since I is Fréchet differentiable and u is a critical point, (2.1) and (2.2) yield

0 = lim
t→0

|I(γ(t))− I(u)− I ′(u)(γ(t)− u)|
‖γ(t)− u‖ = lim

t→0

|I(γ(t))− I(u)|
‖γ(t)− u‖ ≥ |N |

C
> 0,

which is a contradiction. Therefore, I is constant on A and (i) follows.

(ii) Let j : [0, 1] → R be defined as j(t) = I(γ(t)). For every t ∈ (0, 1) such that
γ(t) �= γ(0) we can write

|j(t)− j(0)|
t

=
|I(γ(t))− I(u)− I ′(u)(γ(t)− γ(0))|

‖γ(t)− γ(0)‖
‖γ(t)− γ(0)‖

t
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and we infer that j′(0) = 0. Then j : [0, 1] → R is convex, j(0) = j(1), j′(0) = 0,
and is therefore constant on [0, 1]. Indeed, since j is convex,

j(h)− j(0)

h
≤ j(t+ h)− j(h)

t
for all t ∈ (0, 1), h ∈ (0, 1− t).

Then, taking the limit as h → 0+, using j′(0) = 0 and that j is continuous on [0, 1),
we infer that j(0) ≤ j(t) ≤ (1− t)j(0)+ tj(1) = j(0). Part (iii) immediately follows
from (ii). �

Remark 2.1. Let B be a smooth Banach manifold modelled on a Banach space X.
Recall that u is a critical point of a functional I : B → R if and only if 0 is a critical
point of the functional I ◦ ϕ : X → R, where ϕ is a local chart with ϕ(0) = u.
Thus, in the case of Banach manifolds, the assumption ‖γ(t)− u‖ ≤ Ct should be
replaced by ‖ϕ−1 ◦ γ(t)− 0‖ ≤ Ct. The proof of Theorem 1.1 can then be adapted
to this framework by replacing I with I ◦ ϕ (for an appropriate fixed chart ϕ) in
all arguments that take place in a neighborhood of the critical point u.

Proof of Corollary 1.2. Recall that u is a critical point of I|S if and only if there
exists λ (depending on u) in the dual space of Y such that u is a critical point of
the functional J : X → R defined by

J = I − λ ◦R.

Then the proof follows by applying the arguments in the proof of Theorem 1.1 to
the functional J and taking into account that J ◦ γ = I ◦ γ since γ(t) ∈ S for all
t ∈ [0, 1]. Observe that in the proof of Theorem 1.1 the fact that v is a critical
point is not actually needed. �

In case A contains a local minimum of I, we present a similar, but nonequivalent,
version of Theorem 1.1. Observe that in this version t �→ I(γ(t)) is not assumed to
be convex and that one could also state the corresponding version of Corollary 1.2
within this weaker setting. The proof follows the same arguments as in the proof
of Theorem 1.1 and it is omitted.

Theorem 2.2. Let X be a normed space, let I : X → R be a Fréchet differentiable
functional, and let A ⊂ X be a nonempty subset of critical points of I. Suppose
that given u, v ∈ A, with u �= v, there exists γ ∈ C([0, 1], X) such that

(a) γ(0) = u, γ(1) = v.
(b) γ is locally Lipschitz at t = 0; that is, ‖γ(t) − u‖ ≤ Ct for each t ∈ [0, δ]

and some δ > 0.
(c) I(γ(t)) ≤ (1− t)I(u) + t I(v) for all t ∈ (0, 1).

Then,

(i) I is constant on A.
(ii) If A contains a local minimum u0 of I and the strict inequality holds at

condition (c), then A = {u0}.

We point out that in Theorem 2.2 the existence of a local minimum is sharp in
order to prove that A is a singleton. Indeed, let B ⊂ R

N , with N ≥ 1, be the unit
ball in R

N centered at the origin and consider the Hénon equation [46]

(2.3) −Δu = |x|α|u|q−2u in B, u = 0 on ∂B,
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with α > 0, 2 < q if N ∈ {1, 2}, and 2 < q < 2N
N−2 if N ≥ 3. Then the classical

solutions of (2.3) are critical points of

Iα(u) =
1

2

∫
B

|∇u|2 dx− 1

q

∫
B

|x|α|u|q dx, u ∈ H1
0 (B).

Let α > 0 be large enough such that least energy solutions —L.E.S. for short—of
(2.3) are not radially symmetric; see [25, 76]. Set A as either

{u; u is an L.E.S. of (2.3)} or {u; u is an L.E.S. of (2.3) and u > 0 in Ω}.

Given u, v ∈ A, with u �= v, consider the path

γ(t) =

{
(1− 2t)u, t ∈ [0, 1/2],

(2t− 1)v, t ∈ [1/2, 1].

Taking into account the characterization of the Nehari manifold

Nα = {u ∈ H1
0 (B)\{0}; I ′α(u)u = 0},

we infer that all hypotheses (a)-(c) of Theorem 2.2 are satisfied with the strict
inequality at condition (c). However, for N ≥ 2 and nonradial u∗ ∈ A, the set
A contains infinitely many critical points {u∗ ◦ O; O ∈ SO(N)} ⊂ A of Iα which
are all of mountain pass type. Observe also that t �→ I(γ(t)) is not convex, and
therefore Theorem 1.1 is not violated. Also, for v1, v2 ∈ {u∗ ◦O; O ∈ SO(N)} there
is clearly a path between v1 and v2 along which I is constant, so mere convexity is
in general not enough to guarantee the uniqueness in Theorem 1.1.

3. Preliminary results

In this section we collect general results used throughout the paper that help to
verify the assumptions of Theorem 1.1 and Corollary 1.2. Let Ω ⊆ R

N be a domain
(bounded or unbounded) and fix u, v : Ω → R belonging to an appropriate space
W specified below. We consider paths γ : [0, 1] → W of the form

γ(t)(x) := Q−1((1− t)Q(u(x)) + tQ(v(x))), t ∈ [0, 1], x ∈ Ω ,

where Q : [0,∞) → R is an increasing, and therefore invertible, function. For
simplicity and without loss of generality we also assume that Q(0) = 0. Then we
have

(3.1) Q(γ(t)) := (1− t)Q(u) + tQ(v) ,

where we suppressed the dependence on x for simplicity. The model function that
satisfies all assumptions below is Q(z) = zp for p > 1.

First, we provide a general criterion for the Lipschitz continuity of γ at t = 0.
Note that even in the model case Q(z) = zp for p > 1 we have to assume that u
and v are comparable; that is, for some δ ≥ 1 we have on Ω,

(3.2) u, v > 0 ,
1

δ
≤ u

v
≤ δ .

Otherwise, if, say, u ≡ 0, then γ(t) = t
1
p v, which is not a locally Lipschitz function

at t = 0. This comparability is assumed to be preserved by Q as specified in the
following lemma.
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Lemma 3.1. Let W stand for either Lp(Ω), W 1,p
0 (Ω), or W 1,p(Ω) with p ≥ 1. Fix

Q ∈ C([0,∞)) ∩ C1((0,∞)) such that

(a) Q′ > 0 on (0,∞).
(b) For each c0 > 0 there is c2 > 0 such that

1

c2
≤ Q′(z1)

Q′(z2)
≤ c2 whenever

1

c0
≤ z1

z2
≤ c0 , z1, z2 > 0 .

If u, v ∈ W satisfy (3.2) for some δ ≥ 1, then γ : [0, 1] → W defined by (3.1) is
locally Lipschitz at t = 0, provided W = Lp(Ω). If in addition

(c) Q ∈ C2((0,∞)) and there is δ1 > 1 and c3 > 0 such that

1

c3
≤ Q′′(z1)

Q′′(z2)
whenever 1 ≤ z1

z2
≤ δ1 ,

then γ : [0, 1] → W is locally Lipschitz at t = 0, for any choice of W .

Remark 3.2. From the proof of Lemma 3.1 immediately follows that the statement
holds true for weighted Lebesgue and Sobolev spaces.

Proof. To simplify the notation we drop the dependence of functions on x. Clearly
γ(0) = u, γ(1) = v, and, since Q is increasing, so is Q−1 and we have

min{u, v} ≤ γ(t) ≤ max{u, v} for all t ∈ [0, 1].

Let us prove that ‖γ(t) − u‖W ≤ Ct for t ∈ [0, 1]. By the definition of γ we have
(whenever u(x) �= v(x) and t �= 0)

Q(v)−Q(u) =
Q(γ(t))−Q(u)

t
=

Q(γ(t))−Q(u)

γ(t)− u

γ(t)− u

t
,

and by the Mean-Value Theorem

Q(v)−Q(u) = Q′(ξ)(v − u),
Q(γ(t))−Q(u)

γ(t)− u
= Q′(η) ,

where ξ is pointwise between u and v, and η between u and γ(t). In particular,

1

δ
≤ min{u, v}

max{u, v} ≤ ξ

η
≤ max{u, v}

min{u, v} ≤ δ.

Thus from

(3.3)
γ(t)− u

t
=

Q′(ξ)

Q′(η)
(v − u)

and (b), we have ‖γ(t)− u‖Lp(Ω) ≤ Ct whenever u, v ∈ Lp(Ω).
To treat the Sobolev spaces, first observe from (b), (c), Q′ > 0, and the Mean-

Value Theorem that one has, for z1 > 0,

c2 − 1 ≥ |Q′(δ1z1)−Q′(z1)|
Q′(z1)

= (δ1 − 1)
|Q′′(w)|
Q′(z1)

z1 = (δ1 − 1)
Q′′(w)

Q′′(z1)

|Q′′(z1)|
Q′(z1)

z1

≥ δ1 − 1

c3

|Q′′(z1)|
Q′(z1)

z1 ,

where the last inequality holds since z1 < w < δ1z1. Consequently for each z1 > 0,

(3.4)
|Q′′(z1)|
Q′(z1)

z1 ≤ C .
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After differentiating (3.1) we have that

Q′(γ(t))(∇γ(t)−∇u) = (Q′(u)−Q′(γ(t)))∇u+ t(Q′(v)∇v−Q′(u)∇u) =: T1+T2 .

Since γ(t) and u, v are comparable, by the Mean-Value Theorem, (b), (3.3), and
(3.4) we obtain

|T1|
tQ′(γ(t))

≤ |Q′′(ζ)|
Q′(γ(t))

|u− γ(t)|
t

|∇u| ≤ C
Q′(ζ)

Q′(γ(t))

Q′(ξ)

Q′(η)

|u− v|
ζ

|∇u| ≤ C|∇u| ,

where in the last inequality we used that ζ lies between u and γ(t), and therefore
γ(t), ζ, ξ, and η are all mutually comparable in the sense of (3.2). Finally,

|T2|
tQ′(γ(t))

≤ C(|∇u|+ |∇v|)

follows immediately from (b). In conclusion, we have

|∇γ(t)−∇u|
t

≤ κ(|∇u|+ |∇v|),

and the local Lipschitz continuity of γ at t = 0 follows when W is either W 1,p(Ω)

or W 1,p
0 (Ω). �

An immediate application of the previous lemma is the following.

Corollary 3.3. Let W stand for either Lp(Ω), W 1,p
0 (Ω) or W 1,p(Ω) with p ≥ 1

and take r > 1. If u and v satisfy (3.2) for some δ ≥ 1, then the path γ : [0, 1] → W
defined by

γ(t) = ((1− t)ur + tvr)
1
r

is locally Lipschitz at t = 0.

Proof. Just apply the previous lemma to Q(z) = zr, with r > 1. �

Note that if u and v satisfy 0 < c ≤ u, v < C in Ω, then (3.2) is clearly satisfied
for δ = C/c. If u and v attain zero Dirichlet boundary conditions, we have the
following well-known lemma, whose assumptions are usually checked with the help
of Hopf’s Lemma.

Lemma 3.4. Let Ω ⊂ R
N , N ≥ 1, be a bounded smooth domain. Suppose that

u, v ∈ C1(Ω) satisfy

(a) u, v > 0 in Ω, and u = v = 0 on ∂Ω;

(b)
∂u

∂ν
< 0 and

∂v

∂ν
< 0 on ∂Ω.

Then there exists δ ≥ 1 such that δ−1v < u < δv in Ω.

Proof. The proof is standard and hence omitted. �

Next, we turn our attention to the assumption (c) of Theorem 1.1 for paths of
type (3.1). In our examples, the principal part of the functional I usually has the
form

∫
Ω
M(|∇u|), and the following result proves its convexity.

Lemma 3.5. Let u, v ∈ W 1,∞(Ω)∩W with u, v > 0 in Ω and let Q,M ∈ C([0,∞))
∩ C1((0,∞)) such that Q(0) = 0 and Q′,M ′ > 0 on (0,∞). Let γ(t) =
Q−1((1− t)Q(u) + tQ(v)) and denote

F1 := Q′ ◦Q−1, F2 := M−1 .
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If for some Γ ∈ (M(0),∞] the function F : (z1, z2) �→ F1(z1)F2(z2) is concave on
(0,∞)× (M(0),Γ), then for each |∇u|, |∇v| ∈ M−1([M(0),Γ]) we have a pointwise
inequality

(3.5) M(|∇γ(t)|) ≤ (1− t)M(|∇u|) + tM(|∇v|) for all t ∈ [0, 1],

and t �→ M(|∇γ(t, ·)|) is convex. If F is strictly concave on (0,∞) × (M(0),Γ),
then for each t ∈ (0, 1), |∇u| ∈ M−1([M(0),Γ]), and |∇v| ∈ M−1((M(0),Γ)), the
strict inequality holds in (3.5), and t �→ M(|∇γ(t, ·)|) is strictly convex.

Proof. By differentiating (3.1) we have

Q′(γ(t))∇γ(t) = (1− t)Q′(u)∇u+ tQ′(v)∇v ,

and consequently, by using triangle inequality and the invertibility of Q and M , we
obtain

Q′(γ(t))|∇γ(t)| ≤ (1− t)Q′(u)|∇u|+ tQ′(v)|∇v|
(3.6)

= (1− t)Q′ ◦Q−1 ◦Q(u)M−1 ◦M(|∇u|) + tQ′ ◦Q−1 ◦Q(v)M−1

◦M(|∇v|)
= (1− t)F1(Q(u))F2(M(|∇u|)) + tF1(Q(v))F2(M(|∇v|)) .

Since F is concave on (0,∞)× (M(0),Γ), it is concave on (0,∞)× [M(0),Γ], and
for any |∇u|, |∇v| ∈ M−1([M(0),Γ]) we have

Q′(γ(t))|∇γ(t)| ≤ F1((1− t)Q(u) + tQ(v))F2((1− t)M(|∇u|) + tM(|∇v|))(3.7)

= F1(Q(γ(t)))F2((1− t)M(|∇u|) + tM(|∇v|))
= Q′(γ(t))M−1((1− t)M(|∇u|) + tM(|∇v|)),

and (3.5) follows. Note that (3.5) also implies that |∇γ(t)| ∈ M−1([M(0),Γ]) for
each t ∈ [0, 1].

To prove the convexity of t �→ M(|∇γ(t)|), fix t1, t2, θ ∈ [0, 1] and set γ =: γuv
to emphasize its dependence on the endpoints u and v. Then it is easy to verify
that

γuv((1− θ)t1 + θt2) = γU1U2
(θ), where Ui is defined by Q(Ui)(3.8)

= (1− ti)Q(u) + tiQ(v), i = 1, 2.

Then, by (3.5) applied to γU1U2
,

M(|∇γuv((1− θ)t1 + θt2)|) = M(|∇γU1U2
(θ)|) ≤ (1− θ)M(|∇γU1U2

(0)|)
+ θM(|∇γU1U2

(1)|)
= (1− θ)M(|∇γuv(t1)|) + θM(|∇γuv(t2)|) ,

and the convexity follows.
To prove the strict convexity, first observe that for each t ∈ (0, 1),

(3.9) (1− t)F (z) + tF (z̄) < F ((1− t)z + tz̄) ,

where z ∈ (0,∞)× [M(0),Γ] and z̄ ∈ (0,∞)× (M(0),Γ). Indeed, if not, then there
exist t0 ∈ (0, 1) such that equality holds in (3.9) with t replaced by t0. Then, by
the concavity of F , we obtain that the equality holds in (3.9) for each t ∈ [0, 1],
and therefore F is linear along the segment connecting z and z̄. Since such segment
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(except one of the endpoints) lies in (0,∞)× (M(0),Γ), we obtain a contradiction
to the strict concavity of F .

Finally, the strict inequality in (3.5) is a consequence of the strict concavity in
(3.7), and strict convexity of t �→ M(|∇γ(t, ·)|) follows as above. �

Remark 3.6. To our best knowledge, a special case of the following lemma with
Q(z) = M(z) = z2 first appeared in [13]. The case Q(z) = M(z) = zp was treated
in [37, Lemma 1]; see also [12] and [70, Chapter 2]. Note that our general results
require a completely different proof based on concavity, which is in a sense optimal;
see Remark 3.7 below. In Section 8.1 we will consider the case M(z) = z2 and
Q(z) = f2 where f is the odd function such that

f ′(t) =
1√

1 + 2f2(t)
in (0,∞), f(0) = 0.

We work with classical derivatives to avoid methods of Orlicz spaces. However, the
arguments hold true whenever the expressions are defined; cf. the proof of Lemma
3.9 below for the discussion on weak derivatives.

Remark 3.7. Our assumptions are in some sense optimal, since if F is not concave,
we obtain an opposite inequality in (3.7) at some points. Besides the triangle
inequality, this is the only estimate used in the proof, and therefore (3.5) is not
expected to hold true in general.

Remark 3.8. To verify the concavity of the function (z1, z2) �→ F1(z1)F2(z2), since
F1, F2 ≥ 0, one needs both F1 and F2 to be concave and the determinant of the
Hessian matrix to be nonnegative; that is,

F1F
′′
1 F2F

′′
2 ≥ (F ′

1F
′
2)

2 ,

where Fi depends on zi. If F
′
i does not vanish we require

(3.10) 1 ≤ F1F
′′
1

(F ′
1)

2

F2F
′′
2

(F ′
2)

2
=

((
F1

F ′
1

)′
− 1

)((
F2

F ′
2

)′
− 1

)
,

where the first set of parentheses depends only on z1, whereas the second set de-
pends only on z2. Recall that F2 := M−1 is given by the problem, being associated
to the principal part of the functional.

As such (3.10) provides partially optimal sufficient conditions on Q. Indeed, if
for given M the second set of parentheses changes sign, there is no nontrivial Q
yielding the desired convexity. However, if for example the second set of parentheses
is bounded from below by 1

c0
> 0, then we can explicitly solve the differential

inequality to obtain

F1 ≤ c2((c0 + 1)z1 + c1)
1

c0+1

for some constants c1, c2 ≥ 0. Recall that F1 = Q′◦Q−1 and we obtain a differential
inequality for Q:

Q′ ≤ c2((c0 + 1)Q+ c1)
1

c0+1 , Q(0) = 0 .

If c1 = 0, or equivalently Q′(0) = 0, this inequality can be solved explicitly.

If the function (x, y) �→ F1(x)F2(y) from Lemma 3.5 is concave but not strictly
concave the equality in (3.5) is a much more subtle issue, and, in general, it is
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achieved at (u, v) with a nontrivial relation. However, we show an important ex-
ample that we can treat explicitly. Many of the ideas in the proof can be used also
in a more general setting.

Lemma 3.9. Take u, v ∈ W , where W stands for either W 1,p
0 (Ω) or W 1,p(Ω) with

p > 1, with u, v > 0 in Ω. If Q(z) = M(z) = zp and γ is as in (3.1), that is,

γ(t) = ((1− t)up + tvp)
1/p

, then the weak derivatives satisfy

(3.11) |∇γ(t)|p ≤ (1− t)|∇u|p + t|∇v|p,

and t �→ |∇γ(t, x)|p is convex. Moreover, if u, v ∈ C(Ω)∩W with u, v being linearly
independent functions, then t �→ ‖∇γ(t)‖pLp(Ω) is strictly convex.

Proof. It is easy to show that under our assumptions up, vp ∈ W 1,1(Ω) and the
proof of Lemma 3.5 can be repeated line by line with pointwise derivatives replaced
by weak ones.

Let q be the conjugate exponent of p; that is, q satisfies 1/p + 1/q = 1. If F1

and F2 are as in Lemma 3.5, then F1(z1) = pz
1/q
1 and F2(z2) = z

1/p
2 .

Clearly F ′′
1 < 0, F ′′

2 < 0, and it is easy to verify that the Hessian is equal to

H(z1, z2) =
z

1
q−2

1 z
1
p−2

2

pq

1

q

(
−z22 z1z2
z1z2 −z21

)

with eigenvalues 0 and −(z21 + z22) corresponding to the eigenvectors (z1, z2)
T and

(−z2, z1)
T respectively. In particular, (z1, z2) �→ F1(z1)F2(z2) is concave, and (3.11)

and the convexity of t �→ |∇γ(t, x)|p follow from Lemma 3.5. However, it is not
strictly concave, and we need a careful inspection of the proof of Lemma 3.5 to
prove that t �→ ‖∇γ(t)‖pLp(Ω) is strictly convex.

Since Q and Q−1 are monotone and homogeneous (Q(λt) = λpQ(t)), then the
linear independence of u and v implies that Q(u) and Q(v) are linearly independent,
and consequently U1 = γ(t1) and U2 = γ(t2) are linearly independent for all t1, t2 ∈
[0, 1] with t1 �= t2. Hence, arguing as in (3.8) of the proof of Lemma 3.5, it is enough
to prove that

(3.12) ‖∇γ(t)‖pLp(Ω) < (1− t)‖∇u‖pLp(Ω) + t‖∇v‖pLp(Ω) for all t ∈ (0, 1).

Suppose that, for some t ∈ (0, 1), (3.12) does not hold. Hence ‖∇γ(t)‖pLp(Ω) =

(1− t)‖∇u‖pLp(Ω) + t‖∇v‖pLp(Ω). First, the equality holds in the triangle inequality

(3.6) if and only if there is α : Ω → [0,∞) such that

(3.13) ∇v = α∇u .

Second, the equality holds in the concavity inequality (3.7) if and only if the vector
connecting the points (Q(u),M(|∇u|)) and (Q(v),M(|∇v|)) is parallel to the eigen-
vector corresponding to the zero eigenvalue at the point (Q(u),M(|∇u|)). Equiva-
lently, there is β : Ω → [0,∞) such that

βpQ(u) = Q(v) , βpM(|∇u|) = M(|∇v|) .

With our choice of M and Q we have

βu = v , β|∇u| = |∇v| ,



PATHS TO UNIQUENESS 7095

and a comparison with (3.13) yields α = β. Therefore, since u, v > 0 and u, v ∈
C(Ω), and consequently uniformly positive on compact subsets of Ω, then α = v

u is
locally a C(Ω) ∩W function. Furthermore, the weak derivatives of α satisfy

∇α = ∇
( v
u

)
=

u∇v − v∇u

u2
=

(αu− v)∇u

u2
≡ 0,

which shows by the Du Bois-Reymond Lemma that α is constant, and this concludes
the proof. �

4. Generalized p-Laplacian equations

For a bounded smooth domain Ω ⊂ R
N and p > 1, consider the equation

(4.1) − div(h(|∇u|p)|∇u|p−2∇u) = g(x, u) in Ω, u = 0 on ∂Ω .

First, under general assumptions on h and g, we prove a general theorem (see
Theorem 4.1 below), and then in Section 4.1 we present a unified proof to many
classical uniqueness theorems involving quasilinear elliptic problems. We remark
that our results holds true for Neumann boundary conditions with straightforward
modifications in the proofs. In the particular case h ≡ 1, the uniqueness was
already established in [37]. Our assumptions in particular include Allen-Cahn-type
p-Laplacian problems (see Example 4.9), and so extend some previous results of
[15, 16] for the case of p = 2, h ≡ 1, g ≡ ku− uq−1 with q > 2.

Set

(4.2) H(t) :=

∫ t

0

h(s)ds and G(x, t) :=

∫ t

0

g(x, s)ds,

and assume:

(H1) h : [0,∞) → [0,∞) is continuous, bounded, and nondecreasing.

(H2) The map u �→
∫
Ω
G(x, u) dx is Fréchet differentiable in W 1,p

0 (Ω), and its

derivative evaluated at v ∈ W 1,p
0 (Ω) is

∫
Ω
g(x, u)v dx.

(H3) For every x ∈ Ω, the function t �→ G(x, t1/p) is concave on [0,∞).

We say that u ∈ W 1,p
0 (Ω) is a weak solution of (4.1) if∫

Ω

h(|∇u|p)|∇u|p−2∇u∇v dx−
∫
Ω

g(x, u)v dx = 0 for all v ∈ W 1,p
0 (Ω),

or equivalently, u is a critical point of the Fréchet differentiable functional

(4.3) I(u) =
1

p

∫
Ω

H(|∇u|p) dx−
∫
Ω

G(x, u) dx, u ∈ W 1,p
0 (Ω).

Observe that by (H1) the function H is convex, but since we do not assume that
G is concave, I is not necessarily convex. We also suppose the following condition,
which is related to (3.2).

(H4) (Regularity and global comparison) Every critical point u ≥ 0 of (4.3) is
C
(
Ω
)
. Given any positive critical points u, v of (4.3), there exists δ ≥ 1

such that δ−1v ≤ u ≤ δv in Ω.

Theorem 4.1. Assume (H1)– (H4), let I be as in (4.3), and let A be the set of
positive critical points of (4.3). If A �= ∅, then the following hold:

(i) I is constant on A.
(ii) If h is increasing or the function in (H3) is strictly concave, then A is a

singleton.



7096 D. BONHEURE ET AL.

(iii) If h > 0 on (0,∞), then A ⊂ {αu0; α ∈ (0,∞)} for some u0 ∈ A.
(iv) If we assume (H4) only for u ∈ A′ ⊂ A, then (i)–(iii) holds with A replaced

by A′.

Remark 4.2.

(i) Note that h > 0 implies that H is strictly increasing. Also, if h is strictly
increasing, then H is strictly convex.

(ii) Hypothesis (H2) is satisfied for example if g : Ω×R → R is continuous and
there exist C > 0 and r > 0 with r(N − p) ≤ (p− 1)N + p, such that

|g(x, t)| ≤ C(1 + |t|r) for all t ∈ R, x ∈ Ω.

(iii) Theorem 4.1 can be trivially extended to differentiable functionals

u ∈ W �→ Ĩ(u) = H̃(|∇u|p)− G̃(u) ,

where W is W 1,p
0 (Ω) or W 1,p(Ω) and the critical points of Ĩ satisfy (H4).

Moreover, H̃ : L1(Ω) → R is nondecreasing (with respect to the cone of

positive function in L1) and convex and G̃ : W → R satisfies (H3) with G

replaced by G̃.
(iv) In the proof of uniqueness of positive solutions for (4.1), it is sometimes

assumed (see e.g. [37, (H2)]) that

g(x, t)

tp−1
is strictly decreasing in (0,∞),

which implies (H3).
(v) On bounded domains the global comparison of positive solutions (GC for

short) introduced in (H4) is a consequence of the Hopf Lemma. Indeed, if
∂u
∂ν < 0 and ∂v

∂ν < 0 on ∂Ω, then the GC follows from Lemma 3.4. However,
the Hopf Lemma is not suitable to obtain the GC if the problem is posed
on R

N . In this case the argument needs to be replaced by sharp decay
estimates, as presented in Section 8.

(vi) The result of Theorem 4.1 holds true under slightly weaker conditions,
where we require (H1)–(H3) only on the range of u and ∇u (when we have
a priori estimates). This version will be used in Section 5.2.

To prove Theorem 4.1 from Theorem 1.1 we need the following lemma, which
generalizes Lemma 3.9.

Lemma 4.3. Let W be either W 1,p
0 (Ω) or W 1,p(Ω) and let Φ : W → R be given

by Φ(u) =
∫
Ω
H(|∇u|p)dx with h as in (H1). Let u, v ∈ W such that u, v > 0 in Ω

and γ(t) = ((1− t)up + tvp)1/p for t ∈ [0, 1]. Then:

(i) t �→ Φ(γ(t)) is convex on [0, 1].
(ii) t �→ Φ(γ(t)) is strictly convex on [0, 1] if u, v ∈ C(Ω) ∩W , u �= v, and h is

increasing.
(iii) t �→ Φ(γ(t)) is strictly convex on [0, 1] if u and v are linearly independent,

u, v ∈ C(Ω) ∩W , and h > 0 on (0,∞).
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Proof. From (H1) we know that H : [0,∞) → R is nondecreasing and convex.
Then, from (3.11), given t1, t2 ∈ [0, 1] and θ ∈ (0, 1),

(4.4) Φ(γ((1− θ)t1 + θt2)) =

∫
Ω

H(|∇γ((1− θ)t1 + θt2)|p)dx

≤
∫
Ω

H((1− θ)|∇γ(t1)|p + θ|∇γ(t2)|p) dx

≤
∫
Ω

[(1− θ)H(|∇γ(t1)|p) + θH(|∇γ(t1)|p)] dx = (1− θ)Φ(γ(t1)) + θΦ(γ(t2)),

and (i) follows.
In addition to (H1), if h is increasing or h > 0, then H : [0,∞) → R is increasing

and the first inequality in (4.4) is strict if u and v are linearly independent, and (iii)
follows. Otherwise, u = αv, and if in addition h is increasing, then H is strictly
convex and the second inequality in (4.4) is strict unless |∇γ(t1)| = |∇γ(t2)|. Thus
α = 1 and u ≡ v, and (ii) holds true. �

Proof of Theorem 4.1. Let I : W 1,p
0 (Ω) → R be a Fréchet differentiable functional

given by (4.3) and let A be the set of positive solutions of (4.1). It is enough to
show that conditions (a)-(c) of Theorem 1.1 are satisfied.

Suppose that u and v, with u �= v, are positive solutions of (4.1) and set γ(t) =
((1 − t)up + tvp)1/p. Then, from (H4) and Corollary 3.3, we infer that γ satisfies
the hypotheses (a) and (b) of Theorem 1.1. From Lemma 4.3 (i) (where we use
(H1)) and (H3) we obtain that t �→ I(γ(t)) is convex on [0, 1], as it is the sum of
two convex functions. Therefore (c) of Theorem 1.1 holds and (i) follows.

To prove (ii), observe that by Lemma 4.3, t �→ I(γ(t)) is strictly convex on [0, 1] if
either H is strictly convex (equivalent to h being increasing) or the strict concavity
holds at (H3).

Finally, (iii) follows from by Lemma 4.3 (iii) if u and v are linearly independent,
and hence A ⊂ {αu0; α ∈ (0,∞)}.

The proof of (iv) immediately follows after replacing A by A′. �

4.1. New proofs for classical equations. Throughout this section Ω ⊂ R
N ,

with N ≥ 1, is a bounded smooth domain and p > 1. Some of the results, namely
Examples 4.4 and 4.6, already appeared in [70, Sections 2.5.4 and 2.5.5], where the
author uses a different approach and the uniqueness is proved via strict variational
subsymmetry transformation groups; see [70, Section 2] for more details.

Example 4.4 (p-sublinear problems with Dirichlet boundary conditions). Consider
(4.1) with h ≡ 1 and g(x, t) = |t|q−2t with 1 < q < p, that is,

(4.5) −Δpu = |u|q−2u in Ω, u = 0 ∂Ω.

Then, by [38, 56], any weak solution is C1(Ω). Since G(t) = 1
q |t|q, then G(t1/p) =

1
q |t|q/p is strictly concave on [0,∞) as q < p. Condition (H4) is satisfied by com-

bining Hopf’s Lemma [82, Theorem 5] with Lemma 3.4. Hence, by Theorem 4.1,
problem (4.5) has at most one positive solution. On the other hand, it is standard
to show that in this case (4.1) has a positive solution (a global minimizer of I).
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Remark 4.5. An alternative proof of the result above is presented in [37], where
the path γ(t) = ((1− t)up + tvp)1/p is used to prove the integral monotonicity

(4.6)

∫
Ω

(
−Δpu

1/p

u(p−1)/p
+

Δpv
1/p

v(p−1)/p

)
(u− v)dx ≥ 0.

Alternatively, it is simple to show that D = {v > 0; v1/p ∈ W 1,p
0 (Ω)} is a convex

cone and as proved in [12, p. 230] (see also [50]), the functional

v �→ I(v1/p) =: J(v)

is strictly convex on D. Therefore, since I has a global minimizer u ∈ W 1,p
0 (Ω) with

u > 0, J has a global minimizer on D, and the uniqueness of positive minimizers
of I follows from the uniqueness of a minimizer for J ; see also [55, Lemma A.4]
for an application to a Gross-Pitaevskii energy functional. However, the proof of
uniqueness of positive critical points requires more attention, as showen by our
example (1.1), since I might have more critical points than J , and the cone of

positive functions in W 1,p
0 (Ω) has empty interior if 1 < p < N .

Example 4.6 (Simplicity of the first p-Laplacian eigenvalue). The first eigenvalue
of the p-Laplacian operator is given by

(4.7) Λp = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|pdx∫
Ω

|u|pdx
.

Moreover, the first eigenfunctions can be characterized as the nontrivial critical
points of

I(u) =
1

p

∫
Ω

|∇u|pdx− Λp

p

∫
Ω

|u|pdx, u ∈ W 1,p
0 (Ω)

or as nontrivial solutions of

(4.8) −Δpu = Λp|u|p−2u in Ω, u = 0 ∂Ω.

It is standard to show that (4.8) has a positive solution (a global minimizer of I).
Then the simplicity of Λp is a consequence of Theorem 4.1 (iii), with h(t) = 1,
g(x, t) = Λp|t|p−2t, and A defined as the set of positive solutions of (4.8). Note

that h is not strictly increasing and that G(t1/p) =
Λp

p t is not strictly concave. See

[7, 8, 33, 58, 72] for alternative proofs and [12, 22] for similar proofs.

Example 4.7 (Nonlinear boundary value problems). Consider the equation

(4.9) −Δpu+ |u|p−2u = 0 in Ω, |∇u|p−2 ∂u

∂ν
= |u|q−2u on ∂Ω, 1 < q < p.

Here we prove that (4.9) has at most one positive weak solution; see [17, Theorem
1.2] for the existence of infinitely many sign-changing weak solutions.

The weak solutions of (4.9) are defined as the critical points of

(4.10) I(u) =
1

p

∫
Ω

(|∇u|p + |u|p) dx− 1

q

∫
∂Ω

|u|qdS, u ∈ W 1,p(Ω).

Note that since q < p the boundary integral is well defined. By [38, 56], any weak
solution of (4.9) is C1(Ω). By [82, Theorem 5], any nonnegative nontrivial critical
point v of (4.10) satisfies v > 0 in Ω. Set

A = {u ∈ W 1,p(Ω);u is a positive weak solution of (4.9)}.
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The positivity on Ω for any u, v yields (H4), and from Remark 4.2 with

H̃(v) =
1

p

∫
Ω

v dx, G̃(v) =
1

p

∫
Ω

|v|p dx−
∫
∂Ω

|v|q dS,

and the strict concavity of G̃, we infer that A has at most one element. Again it is
standard to show that A is not empty (contains a global minimizer of I).

Example 4.8 (Nonlinear Steklov problem). The arguments from Examples 4.6
and 4.7 can be applied to prove that the first eigenvalue of

−Δpu+ |u|p−2u = 0 in Ω, |∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω

is simple; see [62] for an alternative proof based on arguments from [58, Appendix]
on the strict convexity of the function

z ∈ R
N , z �→ |z|p.

Example 4.9 (p-Laplacian Allen-Cahn problems). Let q > p > 1 and consider the
equation

(4.11)

{
−Δpu = k|u|p−2u− |u|q−2u in Ω,
u > 0 in Ω, u = 0 on ∂Ω,

and let Λp be as in (4.7). Set X = W 1,p
0 (Ω) ∩ Lq(Ω) with the norm ‖u‖X =

‖∇u‖Lp(Ω) + ‖u‖Lq(Ω), and define I : X → R by

I(u) =
1

p

∫
Ω

|∇u|p dx+

∫
Ω

(
|u|q
q

− k
|u|p
p

)
dx.

The weak solutions of (4.11) are defined as the nontrival nonnegative critical points
of I. By testing (4.11) with u we infer that (4.11) has no weak solution if k ≤ Λp.

So we consider k > Λp. By testing (4.11) with (u− k1/q−p)+ we can show that any

nonnegative solution satisfies ‖u‖L∞(Ω) ≤ k1/(q−p) and by [38,56], u ∈ C1(Ω). Then
the Hopf Lemma, as in [82, Theorem 5], combined with Lemma 3.4, guarantees
(H4). Then, from Theorem 4.1, by setting

A = {u ∈ X;u > 0 is a weak solution of (4.11)}
and noting that h ≡ 1 and G(t) = k

p |t|p −
1
q |t|q with G(t1/p) being strictly concave

on [0,∞), we infer that (4.11) has at most one (positive) weak solution (Corollary
3.3 guarantees that γ(t) = ((1− t)up− tvp)1/p is locally Lipschitz at t = 0). Finally,
with k > Λp, it is simple to show that A contains a global minimizer of I. See
[15, Theorem 4] and [16, Theorem 6] for alternative proofs in the case of p = 2
and q = 3. For the general case q > p > 1 an alternative proof follows using the
arguments in [37] based on the relation (4.6).

5. Mean curvature type operators

5.1. Mean curvature operator in Euclidean space. In this section we inves-
tigate solutions of

(5.1) − div

(
∇u√

1 + |∇u|2

)
= g(x, u) in Ω, u = 0 on ∂Ω,

where Ω ⊂ R
N , with N ≥ 1, is a bounded smooth domain. Note that problem

(5.1) has the structure of (4.1) with h(t) = (1 + t)−
1
2 , but h does not satisfy
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(H1) since it is a decreasing function. A model nonlinearity in this section is
g(x, u) = λup−1 with p ∈ (1, 2), λ > 0; however, in this case it is known [44, 54]
that there are multiple nonnegative solutions of (5.1). Even in this case, our method
yields the uniqueness of solutions in certain subsets of the state space, specifically for
functions with an additional bound on the gradient. We remark that the existence
of small C1-solutions was proved in the one-dimensional case in [20, 44] and the
existence of small solutions in higher dimensions in [67]. Our uniqueness results
provide new insights into the bifurcation diagrams obtained in [20, Figure 2] and
[44, Figure 1]. Observe that our results also apply to Allen-Cahn-type nonlinearities
like g(x, u) = k|u|p−2u− |u|q−2u with k > 0, q > p, and p ∈ (1, 2).

Theorem 5.1. If there exists p ∈ (1, 2) such that the function t �→ G(x, t
1
p ) is

concave and (H2) (from Section 4) is satisfied, then there exists at most one positive
solution of (5.1) in the set

Z :=

{
u ∈ W 1,∞

0 (Ω); ‖∇u‖L∞(Ω) <

(
2− p

p− 1

)1/2
}
.

Proof. We verify assumptions of Theorem 1.1 with the curve γ defined for any
u, v ∈ Z, u, v > 0 by

γ(t) = ((1− t)up + tvp)
1
p , t ∈ [0, 1] .

Note that solutions to (5.1) that belong to Z are critical points of the Fréchet
differentiable functional

I : W 1,p
0 (Ω) → R, I(u) :=

∫
Ω

√
1 + |∇u|2 −G(x, u) dx .

To prove the convexity of t �→ I(γ(t)) we use Lemma 3.5 with

Q(z) = zp, z ∈ (0,∞), and M(z) =
√
1 + z2, z ∈

[
0,

(
2− p

p− 1

)1/2
)

.

Then F1(z1) = pz
(p−1)/p
1 for any z1 ∈ (0,∞) and F2(z2) =

√
z22 − 1 for any z2 =

M(z) ∈ [1, 1/
√
p− 1). It is easy to check that F ′′

2 (z2) < 0, F ′′
1 (z1) < 0 for any

(z1, z2) ∈ (0,∞)×(1, 1/
√
p− 1). The strict concavity of F on (0,∞)×(1, 1/

√
p− 1)

now follows by (3.10) from((
F1

F ′
1

)′
− 1

)((
F2

F ′
2

)′
− 1

)
=

1

p− 1

(
1

z22

)
> 1 .

Note that this is the only step where we need a restriction on the gradient. Thus
from Lemma 3.5 we have that t �→ M(|∇γ(t)|) is strictly convex whenever at
least one of |∇u|, |∇v| is positive. Here and below, the gradient of a function
is understood in a weak sense. Clearly, M(|∇γ(·)|) ≡ 1 if |∇u| = |∇v| = 0. If
|∇u| = 0 almost everywhere, then u is constant and therefore zero by the boundary
conditions, a contradiction to u > 0. Thus |∇u| > 0 on a set of positive measure,
and on that set t �→ M(|∇γ(t)|) is strictly convex, and consequently for each
u, v > 0,

t �→
∫
Ω

M(|∇γ(t)|) dx is strictly convex in [0, 1] .

Since t �→ G(x, γ(t)) is concave, the strict convexity of t �→ I(γ(t)) follows.
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Moreover, any solution in Z of (5.1) satisfies a uniformly elliptic equation, and
consequently it is smooth by elliptic regularity and moreover satisfies the maximum
principle and Hopf Lemma. Thus by Lemma 3.4 and Corollary 3.3 we obtain
condition Theorem 1.1 (b), and the uniqueness follows. �

5.2. Mean curvature operator in Minkowski space. We now consider a quasi-
linear Dirichlet problem involving the mean curvature operator in Minkowski space,
namely,

(5.2) − div

(
∇u√

1− |∇u|2

)
= g(x, u) in Ω, u = 0 on ∂Ω,

where Ω ⊂ R
N , with N ≥ 1, is a bounded domain. Existence of positive solutions

can be found by minimization of

I(u) :=

∫
Ω

(
1−

√
1− |∇u|2

)
−G(x, u)dx ,

where G(x, t) :=
∫ t

0
g(x, s) ds on the convex set

K0 := {u ∈ W 1,∞(Ω); |∇u| ≤ 1, u = 0 on ∂Ω},

under suitable assumptions on g; see for example [14].
Set

diam(Ω) := sup{|x− y|;x, y ∈ Ω}, M :=
diam(Ω)

2
,

and we have that

‖u‖L∞(Ω) ≤ M for all u ∈ K0 .(5.3)

Our main contribution is the following new uniqueness result.

Theorem 5.2. Let Ω ⊂ R
N be a bounded smooth domain and assume that

(G) for every x ∈ Ω, the function t �→ G(x,
√
t) is concave in [0,M2].

(g) The function g : Ω× [0,M ] → R is continuous and of the form g = g1 + g2,
with gi(x, 0) = 0 for i = 1, 2, where t �→ g1(x, t) is Lipschitz continuous in
[0,M ] uniformly in x and g2 is continuous and nonnegative in Ω× [0,M ].

Then (5.2) has at most one positive classical solution; that is, the set

A := {u ∈ C2,α(Ω);u > 0 in Ω and u satisfies (5.2)}

contains at most one element.

Remark 5.3.

(i) (g) is used to show (H4) from Section 4.
(ii) If one assumes (g) and that g(x, ·) is nonincreasing in [0,M ] for every x ∈ Ω,

then (5.2) has only one solution by the convexity of the energy functional
(see [9, Proposition 1.1]).

(iii) If the concavity assumption (G) is dropped, then there are results on mul-
tiplicity of nontrivial nonnegative solutions. In particular, [14, Theorem
3] shows that (5.2) has at least two nontrivial nonnegative solutions if
g(x, u) = k|u|p−2u− u, p > 2, and k > 0 is large enough.
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Let λ1 denote the first Dirichlet eigenvalue of the Laplacian in Ω. Theorem
5.2 and standard existence arguments imply the following result, which applies in
particular to g(x, u) = ku − |u|p−2u with k > 2λ1, p > 2, or to g(x, u) = |u|q−2u
for q ∈ (1, 2).

Corollary 5.4. Let Ω ⊂ R
N , N ≥ 1, be a bounded smooth domain. In addition

to (G), (g) from Theorem 5.2, assume that g is Hölder continuous in Ω × [0,M ],
g(·, 0) = 0 in Ω, and

(5.4)
G(x, t)

t2
> λ1 as t → 0+, uniformly in x ∈ Ω.

Then (5.2) has a unique positive classical solution.

We prove first the main theorem of this section.

Proof of Theorem 5.2. By (5.3) and [9, Corollary 3.4 and Theorem 3.5] there is
θ ∈ (0, 1) such that

A ⊂ {u ∈ K0; |∇u| ≤ 1− θ}.(5.5)

Let
ĝ(x, t) := sign(t)g(x,min{|t|,M}) for (x, t) ∈ Ω× R,

and Ĝ(x, t) :=
∫ t

0
ĝ(x, s) ds. Note that ĝ is just a truncation of g extended as an

odd function. Moreover, let h̃ ∈ C([0,∞)) be given by

h̃(t) =

{ 1√
1−t

, t ∈ [0, 1− θ],

1√
θ
, t ≥ 1− θ,

with θ as in (5.5), and let H̃(t) :=
∫ t

0
h̃(s)ds for t ≥ 0. By (5.3) and (5.5), the

elements of A are critical points of

Ĩ : H1
0 (Ω) → R, Ĩ(u) :=

∫
Ω

H̃(|∇u|2)
2

− Ĝ(x, u)dx.

Clearly h̃ satisfies assumption (H1), ĝ satisfies (H2), and, by (G), for every x ∈ Ω,

t �→ Ĝ(x,
√
t) = G(x,

√
t) is concave on [0,M2], and so (H3) is satisfied. We now

show that (H4) holds for all elements in A. Note that these might not be all the

critical points of Ĩ. We argue as in [30, Lemma 2.2]. Let u ∈ A and note that u

solves the uniformly elliptic linear equation −
∑N

i,j=1 aij∂xixj
u− c u = ρ, where

(5.6) aij := a(|∇u|2)δij + 2a′(|∇u|2)∂xi
u∂xj

u with a(s) := (1− s)−
1
2 ,

δij is the Kronecker delta, c(x) :=
∫ 1

0
g′1(x, su(x)) ds, and ρ(x) := g2(x, u(x)) for

a.e. x ∈ Ω. By (g) we have that ρ ≥ 0 and c ∈ L∞(Ω). By Hopf’s Lemma we
obtain that ∂u

∂η < 0 on ∂Ω. Therefore, for every u, v ∈ A there is δ > 1 such that
1
δ v ≤ u ≤ δv. The result now follows from Theorem 4.1 (iv) and (ii). �
Proof of Corollary 5.4. The uniqueness follows from Theorem 5.2. We now show
that

A := {u ∈ C2,α(Ω);u > 0 in Ω and u satisfies (5.2)}
is nonempty. Here and below α ∈ (0, 1) denotes possibly different Hölder exponents.
Let

Î : K0 → R; Î(u) =

∫
Ω

(
1−

√
1− |∇u|2

)
− Ĝ(x, u) dx,
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with Ĝ and ĝ as in the proof of Theorem 5.2. Since ĝ is continuous and bounded
in Ω× R, [14, Theorem 1] implies that Î attains its infimum at ū ∈ K0 ∩W 2,p(Ω)
for some p > N with ‖∇ū‖L∞(Ω) < 1 and ū solves (5.2) with g replaced by ĝ. By

(5.4) and the inequality 1 −
√
1− t ≤ t for t ∈ [0, 1], one has Î(εϕ1) < 0 for ε > 0

small enough, where ϕ1 is the positive eigenfunction associated to λ1 normalized
in L2(Ω). Therefore, Î(ū) < 0 and hence ū �≡ 0. Moreover, since t �→ Ĝ(x, t) is

even by construction, we have that Î(|ū|) = Î(ū), and consequently v̄ := |ū| ∈ K0

is also a critical point of Î (in the sense of [14]). Therefore [14, Theorem 1] implies
that v̄ ∈ K0 ∩W 2,p(Ω) for some p > N with ‖∇v̄‖L∞(Ω) < 1 and solves (5.2), since
ĝ(x, v̄) = g(x, v̄) by (5.3).

Arguing as in the proof of Theorem 5.2, −
∑N

i,j=1 aij∂xixj
v̄ = η with aij as

in (5.6) and η(x) := g(x, v̄(x)). Since η ∈ C0,α(Ω) and v̄ ∈ C1,α(Ω) by Sobolev
embeddings, we have that aij ∈ C0,α(Ω). Then [42, Theorem 6.14] yields that

v̄ ∈ C2,α(Ω). Finally, v̄ > 0 in Ω by the maximum principle. �

6. Problems involving fractional Laplacians

In this section we use Theorem 1.1 to obtain new uniqueness results for nonlocal
operators.

Let s ∈ (0, 1) and Ω ⊂ R
N , N ≥ 1, be a bounded smooth domain, and let

Hs
0(Ω) :=

{
u ∈ L2(RN ); ‖u‖Hs :=

(∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s

dxdy

) 1
2

< ∞

and u ≡ 0 in R
N\Ω

}

denote the fractional Sobolev space of order s and

(−Δ)su(x) = P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy = lim

ε→0

∫
|x−y|≥ε

u(x)− u(y)

|x− y|N+2s
dy

denote the fractional Laplacian of order s, where we have omitted any normalization
constant for simplicity. We say that u ∈ C0,s(Ω) ∩Hs

0(Ω) is a weak solution of

(6.1) (−Δ)su = g(x, u) in Ω, u ≡ 0 in R
N\Ω ,

if

(6.2)
1

2

∫
RN

∫
RN

(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+2s
dxdy =

∫
Ω

g(x, u(x))φ(x) dx

for all φ ∈ Hs
0(Ω). Let X be a subspace of Hs

0(Ω) such that the energy associated
to (6.1)

I(u) :=
1

4

∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s

dxdy −
∫
Ω

G(x, u(x)) dx for all u ∈ X(6.3)

is well defined and Fréchet differentiable, where G is given by (4.2) and

the derivative of u �→
∫
Ω

G(x, u) dx evaluated at v ∈ X is

∫
Ω

g(x, u)v dx.(6.4)

The choice of X depends on the nonlinearity, and for most applications one can
consider X = Hs

0(Ω) or X = Hs
0(Ω) ∩ Lp(Ω) for some p > 2. In the latter case we
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endow X with the norm ‖u‖X = ‖u‖Hs+‖u‖Lp(Ω). We mention that this functional
setting was presented in [74].

Theorem 6.1. Let Ω ⊂ R
N be a bounded smooth domain, let s ∈ (0, 1), and

assume that

(G) for every x ∈ Ω, the function t �→ G(x,
√
t) is strictly concave in [0,∞);

(g) the function g : Ω × R → R is continuous of the form g = g1 + g2, with
g1(x, 0) = 0 and t �→ g1(x, t) is locally Lipschitz continuous in R uniformly
in x, and g2 is continuous and nonnegative in Ω× [0,∞).

Let X = Hs
0(Ω) or X = Hs

0(Ω) ∩ Lp(Ω) for some p > 2 such that I as in (6.3)
is Fréchet differentiable in X and (6.4) is satisfied. Then (6.1) has at most one
positive weak solution u ∈ C0,s(Ω) ∩Hs

0(Ω).

Proof. LetX = Hs
0(Ω)∩Lp(Ω) be endowed with the norm ‖u‖X = ‖u‖Hs+‖u‖Lp(Ω)

(the case X = Hs
0(Ω) follows similarly). We use Theorem 1.1 with A ⊂ C0,s(Ω)∩X

being the set of nontrivial nonnegative weak solutions of (6.1). Observe that, by
the maximum principle (see, for example, [39, 48]), any element of A is positive in

Ω. Fix u, v ∈ A. For t ∈ [0, 1], let γ(t) := ((1 − t)u2 + tv2)
1
2 . We show first that

γ : [0, 1] → X is well defined and Lipschitz at t = 0. We start with the Hs-norm;
that is, we show that∥∥∥∥γ(t)− γ(0)

t

∥∥∥∥
Hs

≤ C(‖u‖Hs + ‖v‖Hs) for t ∈ (0, 1](6.5)

and for some C > 0. Indeed, note that

γ(t)− γ(0)

t
=

v2 − u2

γ(t) + u
= u

w2 − 1

(1− t+ tw2)
1
2 + 1

= u z(w, t) ,

where w := v
uχΩ, z(ξ, t) :=

ξ2−1

(1−t+tξ2)
1
2 +1

, and χΩ is the characteristic function of

Ω. Since u, v ∈ C0,s(Ω), there exists M > 0 such that 0 < v < Mδs in Ω, where
δ(x) := dist(x,RN\Ω). Moreover, u is a weak solution of (−Δ)su− c(x)u = ρ, with

c(x) :=
∫ 1

0
g′1(x, su(x)) ds, and ρ(x) := g2(x, u(x)) for a.e. x ∈ Ω. By (g) we have

that ρ ≥ 0 and c ∈ L∞(Ω). Then, by Hopf’s Lemma (see [39]) there is m > 0 such
that u > mδs in Ω. Therefore w < M

m in Ω. Moreover, for x, y ∈ Ω,

u(x)z(w(x), t)− u(y)z(w(y), t) = (u(x)− u(y))z(w(x), t)

− u(y)(z(w(y), t)− z(w(x), t)),

and by the Mean-Value Theorem

u(y)|z(w(x), t)− z(w(y), t)| ≤ C1u(y)|w(x)− w(y)| = C1|v(x)− v(y)

+
v(x)

u(x)
(u(y)− u(x))|

≤ C2(|v(x)− v(y)|+ |u(y)− u(x)|) ,

where C1 := sup
k∈[0,Mm ],t∈[0,1]

|∂wz(k, t)| < ∞ and C2 := C1 +
M
m .

On the other hand, if x ∈ Ω and y ∈ R
N\Ω, then u(y) = 0 and

|u(x)z(w(x), t)− u(y)z(w(y), t)| ≤ C1‖w‖L∞(Ω)|u(x)− u(y)| .
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These estimates readily imply (6.5), and therefore γ is Lipschitz at 0 with respect
to the Hs-norm. Moreover, by Corollary 3.3 we have that γ is Lipschitz at t = 0
with respect to the Lp-norm, and therefore γ is Lipschitz at 0 with respect to the
norm in X.

Finally, to prove the strict convexity of t �→ I(γ(t)) it suffices (see (3.8) in the
proof of Lemma 3.5) to show that

(γ(t)(x)− γ(t)(y))2 ≤ (1− t)(u(x)− u(y))2 + t(v(x)− v(y))2 for x, y ∈ R
N

(recall that t �→ −
∫
Ω
G(x, γ(t)(x)) dx is strictly convex by assumption (G)). Indeed,

after the substitution a =
√
1− t u(x), b =

√
1− t u(y), c =

√
t v(x), and d =√

t v(y) this is equivalent to

∣∣∣(a2 + c2)
1
2 − (b2 + d2)

1
2

∣∣∣ ≤ (
(a− b)2 + (c− d)2

) 1
2

,

which follows from the Minkowski inequality. Thus all the assumptions from The-
orem 1.1 are satisfied and the uniqueness follows. �

Remark 6.2. Note that whenever (H4) from Section 4 holds, we can use the path

γ(t) := ((1−t)up+tvp)
1
p , p ≥ 1, to show the uniqueness of a nontrivial nonnegative

critical point of the functional

I(u) =
1

2p

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+sp

dx dy−
∫
Ω

G(x, u(x)) dx for all u ∈ W s,p
0 (Ω) ,

where t �→ G(x, t1/p) is strictly concave; cf. (H3). This functional is related to the
fractional p-Laplacian (−Δ)sp, s ∈ (0, 1). Assumption (H4) can be deduced from
a Hopf-type lemma, but, to our best knowledge, such result is established only if
p = 2.

Let Λ1 > 0 and Φ1 ∈ C0,s(Ω) ∩Hs
0(Ω) be such that

(6.6) (−Δ)sΦ1 = Λ1Φ1 in Ω, Φ1 > 0 in Ω, Φ1 ≡ 0 in R
N\Ω;

see, for example, [48, Theorem 5.23]. Then Theorem 6.1 and standard minimization
arguments imply the following.

Corollary 6.3. Let Ω ⊂ R
N , N ≥ 1, be a bounded domain of class C2, let s ∈

(0, 1), p > 2, and k > Λ1. Then (6.1) with g(x, u) = ku − |u|p−2u has a unique
positive weak solution u ∈ C0,s(Ω) ∩Hs

0(Ω).

Proof. The uniqueness follows from Theorem 6.1. The existence follows from a
standard global minimization argument. We recall that X := Hs

0(Ω) ∩ Lp(Ω) is
(compactly) embedded into L2(Ω); see, for example, [36, Theorem 7.1]. It is stan-
dard to see that I is bounded from below and weakly lower semi-continuous, and
therefore a global minimizer u ∈ X is attained. Moreover, u is nontrivial because

the condition k > Λ1 guarantees that I(εΦ1) =
∫
Ω
(Λ1

2 − k
2 +

εp−2

p Φp−2
1 )ε2Φ2

1 dx < 0

for ε ∼ 0, by (6.6). Finally, since |u| ∈ X and I(|u|) ≤ I(u), we may assume that
u ≥ 0 in R

N .
It only remains to show that u > 0 in Ω and u ∈ Cs(Ω). Let φ = (k1/(p−2)−u)− ∈

X. Then (6.2), the fact that the positive and the negative parts of a function have
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disjoint supports, and u(k − |u|p−2)φ ≤ 0 yield

0 =
1

2

∫
RN

∫
RN

(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+2s
dxdy −

∫
Ω

u(x)(k − |u(x)|p−2)φ(x) dx

≥ 1

2

∫
RN

∫
RN

(φ(x)− φ(y))2

|x− y|N+2s
dxdy −

∫
Ω

u(x)(k − |u(x)|p−2)φ(x) dx ≥ 0 .

Therefore ‖u‖L∞(RN ) ≤ k1/(p−2). This implies that the right hand side of (6.1) is

nonnegative and bounded. It follows by regularity (see [71]) that u ∈ C0,s(Ω). The
strict positivity u > 0 in Ω follows from the maximum principle; see, for example,
[39, 48]. This ends the proof. �

7. Hamiltonian elliptic systems

Let Ω ⊂ R
N , N ≥ 1, be a bounded smooth domain and consider the Hamiltonian

elliptic system

(7.1)

⎧⎨
⎩

−Δu = |v|q−1v in Ω,
−Δv = |u|p−1u in Ω,
u, v = 0 on ∂Ω

in the sublinear case, a notion which, for these systems, corresponds to

(7.2) p, q > 0 and p · q < 1 .

The uniqueness of a positive solution to (7.1) was proved in [31, Theorem 3] (see
also [63]) using a Krasnoselskii [52] type argument. Here we present an alternative
proof based on Theorem 1.1.

Theorem 7.1. If (7.2) is satisfied, then (7.1) has a unique positive classical solu-
tion.

To prove Theorem 7.1 we will treat (7.1) by using the dual variational method.
We mention that this approach has been used in [27] in the case p > 1 and q > 1;
see also [19, Section 3] for general p and q.

For any r > 0 define φr : R → R by

φr(t) = |t|r−1t, t ∈ R.

Then we rewrite (7.1) as

u = (−Δ)−1(|v|q−1v) = (−Δ)−1(φq(v)), v = (−Δ)−1(|u|p−1u) = (−Δ)−1(φp(u)),

and after introducing the new variables f = |u|p−1u = φp(u) = −Δv, g = |v|q−1v =
φq(v) = −Δu, we are led to the system

(7.3) (−Δ)−1f = |g| 1q−1g = φ−1
q (g), (−Δ)−1g = |f | 1p−1f = φ−1

p (f).

Define K := (−Δ)−1, X := L
p+1
p (Ω)× L

q+1
q (Ω). Since

∫
Ω
fKg dx =

∫
Ω
gKf dx,

it follows that the system (7.3) appears as the Euler-Lagrange equations associated
to the action functional

(7.4) Φ(f, g) =

∫
Ω

(
p

p+ 1
|f |

p+1
p +

q

q + 1
|g|

q+1
q

)
dx−

∫
Ω

fKg dx, (f, g) ∈ X.

It is well known that (f, g) ∈ X is a critical point of Φ if and only if (u, v) =
(Kg,Kf) = (φ−1

p (f), φ−1
q (g)) is a classical solution of (7.1).

Within this framework, with Φ as defined above, we prove Theorem 7.1 with the
help of Theorem 1.1. We need some preliminary results.



PATHS TO UNIQUENESS 7107

Theorem 7.2 (Generalized Minkowski inequality). Let F : X × Y → R be a
measurable function on a σ-finite measure space X×Y and let μ, ν be the respective
measures on Y and X. Then, for any 1 ≤ p < ∞,(∫

X

(∫
Y

|F |dμ(η)
)p

dν(ξ)

) 1
p

≤
∫
Y

(∫
X

|F |pdν(ξ)
) 1

p

dμ(η) .

For the proof of the above generalized Minkowski inequality we refer to [79] and
[45, Theorem 202].

Proposition 7.3. Let β > 1 and G1, G2 ∈ Lβ(Ω) be nonnegative functions and let
K = (−Δ)−1. Then the pointwise inequality holds:

(7.5) ((KG1)
β + (KG2)

β)
1
β ≤ K(Gβ

1 +Gβ
2 )

1
β in Ω.

Note that the variable x for KGi(x) and Gi(x) is not indicated to simplify notation.

Proof. This is a particular case of Theorem 7.2. Indeed, let G be Green’s function
of −Δ, that is, Kf = G ∗ f . Then (7.5) follows from Theorem 7.2 with p = β,
dμ(y) := G(x, y) dy, ν = δ1 + δ2, X = {1, 2}, Y = Ω, and F (i, y) = Gi(y). �
Lemma 7.4. Let m > 0, m �= 1, and t ∈ (0, 1). Then the function

(7.6) q �→ ((1− t)mq + t)1/q, q ∈ (0,∞)

is increasing.

Proof. Since the derivative of the function defined in (7.6) is

((1− t)mq + t)1/q

q

(
(1− t)mq lnm

(1− t)mq + t
− ln((1− t)mq + t)

q

)
,

it suffices to prove the positivity of the term in parentheses. This is equivalent to

((1− t)mq + t) ln((1− t)mq + t) < (1− t)mq lnmq + t ln 1,

and the monotonicity follows from the strict convexity of the function x ∈ (0,∞) �→
x lnx. �
Proposition 7.5. Let fi ∈ L

p+1
p (Ω), gi ∈ L

q+1
q (Ω), i = 1, 2, be positive functions

and assume (7.2). If (f1, g1) �= (f2, g2), then for each x ∈ Ω,

(7.7) t �→
(
(1− t)f

p+1
p

1 + tf
p+1
p

2

) p
p+1

K

((
(1− t)g

q+1
q

1 + tg
q+1
q

2

) q
q+1

)

is strictly concave on [0, 1].

Proof. Arguing as in (3.8) of the proof of Lemma 3.5, it is enough to prove the
pointwise inequality

(7.8)

(
(1− t)f

p+1
p

1 + tf
p+1
p

2

) p
p+1

K

((
(1− t)g

q+1
q

1 + tg
q+1
q

2

) q
q+1

)

> (1− t)f1Kg1 + tf2Kg2 , for all t ∈ (0, 1), for all x ∈ Ω.

First observe that the condition p · q < 1 is equivalent to p
p+1 + q

q+1 < 1. Set

α = p+1
p and let β > 0 be such that

1

α
+

1

β
= 1.
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Then observe that β < q+1
q . Applying (7.6) with m = a

b , for any a > 0, b > 0

with a �= b and t ∈ (0, 1), the function r ∈ (0,∞) �→ ((1 − t)ar + tbr)
1
r is strictly

increasing. Since K = (−Δ)−1 is a strictly monotone operator, it is enough to
prove (7.8) as a nonstrict inequality with q+1

q replaced by β.

After the substitution

F1 := (1− t)
1
α f1, G1 := (1− t)

1
β g1, F2 := t

1
α f2, G2 := t

1
β g2,

we obtain that (7.8) (with nonstrict inequality) is equivalent to

(Fα
1 + Fα

2 )
1
αK(Gβ

1 +Gβ
2 )

1
β ≥ F1KG1 + F2KG2, t ∈ (0, 1) .

By Hölder inequality and Proposition 7.3,

F1KG1+F2KG2 ≤ (Fα
1 +Fα

2 )
1
α ((KG1)

β+(KG2)
β)

1
β ≤ (Fα

1 +Fα
2 )

1
αK(Gβ

1+Gβ
2 )

1
β ,

as desired. �

Remark 7.6. If p > 0, q > 0, and p · q = 1, then (7.8) holds true as a nonstrict
inequality.

Remark 7.7. By setting f1 = εf2, g1 = εg2 in (7.8) we have (after division by
f1Kg1 > 0)

((1− t)εα + t)
1
α
(
(1− t)εβ + t

) 1
β >

(
(1− t)ε

1
α+ 1

β + t
)
.

Clearly the opposite (strict) inequality holds true if 1
α + 1

β > 1 and ε, t > 0 are

sufficiently small. Thus p · q ≤ 1 is an optimal assumption.

Proof of Theorem 7.1. Let A be the set of positive solutions of (7.1) and let Φ be
defined by (7.4).

Step 1. The set A contains at most one element.
It is enough to show that conditions (a)-(c) of Theorem 1.1 are satisfied. Given

(fi, gi) with fi, gi > 0, for i = 1, 2, and such that (f1, g1) �= (f2, g2), consider the
path

γ(t) =

((
(1− t)f

p+1
p

1 + tf
p+1
p

2

) p
p+1

,

(
(1− t)g

q+1
q

1 + tg
q+1
q

2

) q
q+1

)
, t ∈ [0, 1],

which connects (f1, g1) to (f2, g2), i.e., condition (a) from Theorem 1.1. In addition,
from (7.7) we infer that

t �→ Φ(γ(t)) is strictly convex on [0, 1],

and condition (c) of Theorem 1.1 follows. On the other hand, any positive solu-
tion (f, g) of (7.3) corresponds to a positive solution (u, v) := (φ−1

p (f), φ−1
q (g)) ∈

C2(Ω)×C2(Ω) of (7.1), and by the Hopf Lemma, we infer that ∂u
∂ν < 0 and ∂v

∂ν < 0

on ∂Ω. Then by Lemma 3.4 we have δ−1u1 ≤ u2 ≤ δu1 and δ−1v1 ≤ v2 ≤ δv1 for
any positive solutions (u1, v1) and (u2, v2) of (7.1). Consequently δ−1f1 ≤ f2 ≤ δf1
and δ−1g1 ≤ g2 ≤ δg1, and Corollary 3.3 yields condition (b) of Theorem 1.1.
Therefore, A is empty or a singleton.
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Step 2. Existence of a positive solution (global minimizer of Φ).

Let (f, g) ∈ L
p+1
p (Ω) × L

q+1
q (Ω) and let α, β be as in the proof of Proposition

7.5. Then, since ‖Kg‖Ls ≤ C‖g‖Ls for any s > 0 we infer from the Hölder and
Young inequalities (note that β < q+1

q ) that for any ε > 0,∫
Ω

fKg dx ≤ C‖f‖Lα‖g‖Lβ ≤ ε(‖f‖
p+1
p

L
p+1
p

+ ‖g‖
q+1
q

L
q+1
q

) + C(ε) ,

and consequently Φ is coercive and in particular bounded from below. Since

Kg ∈ W 2, q+1
q (Ω) ∩W

1, q+1
q

0 (Ω) and we have the compact embedding W 2, q+1
q (Ω) �

L
q+1
q (Ω) ⊂ Lp+1(Ω), we infer that Φ is lower semi-continuous and thus attains its

global minimum, which is negative (indeed, taking ϕ a C∞(Ω) positive function,

Φ(εϕ, (εϕ)
q(p+1)
p(q+1) ) < 0 for small ε > 0) at a point (f0, g0) with f0, g0 > 0 in Ω. The

latter statement follows from the maximum principle. �

8. Nonlinear eigenvalue problems from mathematical physics

In this section we apply our main results to elliptic equations and systems appear-
ing in mathematical physics. More precisely, we approach eigenvalue-type problems,
that is, problems which can be written in the form

L1u1 = ω1u1, . . . , Lkuk = ωkuk (k ≥ 1),

where Li are nonlinear differential operators. There are two different kinds of nat-
ural questions: firstly, given ω1, . . . , ωk, does there exist a unique positive solution
to the problem? Secondly, does there exist a unique positive eigenvalue satisfying
the constraint

∫
u2
i = 1? These questions are, in general, not equivalent: in the

second framework, the eigenvalues are not fixed a priori and appear as Lagrange
multipliers. We will deal with these issues in the case of a quasilinear Schrödinger
equation (Section 8.1) and for a Gross-Pitaevskii–type system (Section 8.2), both
for Ω bounded and Ω = R

N .

8.1. Defocusing Schrödinger equation. Consider the equation

(8.1) −Δu− uΔu2 + V (x)u+ u3 = ωu in Ω,

where V (x) is the trapping potential |x|2 in case Ω = R
N or V ∈ L∞(Ω) and u = 0

on the boundary if Ω is a bounded regular domain and N ≥ 1. This equation arises
when looking for standing waves φ(t, x) = eıωtu(x) of the quasilinear defocusing
Schrödinger equation

i∂tφ−Δφ− φΔ|φ|2 + V φ+ φ3 = 0 in (0,∞)× Ω,

which serves as a model in many physical situations, for which we refer to [29, 69].
The first results for (8.1) appeared in [60, 69], where for Ω = R

N and ω = 0, a
constrained minimization is used to prove existence of solutions. Difficulties arise
due to the presence of the term uΔu2 and are related to the existence of three
different scales in the equation. In the variational setting the term

∫
u2|∇u|2 dx is

not well defined in H1(RN ), while the natural set {u ∈ H1(RN );
∫
u2|∇u|2 dx <

∞ } is not a vector space. To treat uΔu2, a substitution u = f(v) (cf. (8.2)) was
introduced in [28, 59], which reduced (8.1) to a semilinear equation, with a more
complicated nonlinear zero order term. This reduction, which has also been used
for example in [1, 29], allows one to work in the H1 setting.
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We will use the dual method as in [28]. Let f be the odd function such that

(8.2) f ′(t) =
1√

1 + 2f2(t)
in (0,∞), f(0) = 0.

If u is a solution to (8.1), by [28, §2], then v = f−1(u) is a solution of

(8.3) −Δv + (V (x)− ω)
f(v)√

1 + 2f2(v)
+

(f(v))3√
1 + 2f2(v)

= 0.

We recall from [28, Lemma 2.1] that

(8.4)
f(t)

t
→ 1 as t → 0,

f(t)√
t

→ 21/4 as t → +∞,

and from [28, Lemma 2.2] that

(8.5)
1

2
f(t) ≤ t√

1 + 2f2(t)
≤ f(t) for all t ∈ R.

For every fixed ω ∈ R, the solutions of (8.3) are critical points of the C1-action
functional Aω : H → R with

Aω(v) =
1

2

∫
Ω

|∇v|2 dx+
1

2

∫
Ω

(V (x)− ω)(f(v))2 dx+
1

4

∫
Ω

(f(v))4 dx,

where H = {u ∈ H1(RN );
∫
RN |u|2|x|2 dx < ∞} with the norm

‖u‖2H =

∫
RN

|∇u|2 + |u|2|x|2 dx

if Ω = R
N , and H = H1

0 (Ω) with the standard norm if Ω is a bounded regular
domain. Observe that Aω ∈ C1(H,R) since (8.5) implies that f2(t)+ 2f4(t) ≤ 4t2.

On the other hand, we can consider the constraint

M :=

{
v ∈ H;

∫
Ω

(f(v))2 dx = 1

}

and the energy E : M → R,

E(v) := 1

2

∫
Ω

|∇v|2 dx+
1

2

∫
Ω

V (x)(f(v))2 dx+
1

4

∫
Ω

(f(v))4 dx.

In this second framework, one looks for critical points of E|M, and ω appears as a
Lagrange multiplier.

When Ω is bounded we prove uniqueness of positive critical points both for Aω

and E|M, while for Ω = R
N , we deduce uniqueness of positive critical points of Aω.

The following statements are, to the best of our knowledge, new.

Theorem 8.1. Let Ω be a bounded regular domain of RN , with N ≥ 1, and assume
that V ∈ L∞(Ω). Then:

(i) For each ω ∈ R fixed, there exists at most one positive solution to (8.1)
with u = 0 on ∂Ω; that is, Aω has at most one positive critical point, which
exists if and only if ω > λV . Here λV stands for the first eigenvalue of
(−Δ+ V (x)I,H1

0 (Ω)).
(ii) There exists exactly one positive critical point of E|M.
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Theorem 8.2. Let Ω = R
N , with N ≥ 1, and take V (x) = |x|2. For each ω ∈ R

fixed, there exists at most one positive solution of (8.1), that is, at most one positive
critical point of Aω, which exists if and only if ω > λV . Here λV stands for the
first eigenvalue of (−Δ+ V (x)I,H).

In order to prove Theorem 8.2, we will need to deduce the sharp decay at infinity
for all positive solutions of (8.3). Since v = f−1(u) and f(t) ∼ t as t → 0, this
also gives the sharp decay result for positive solutions of our original problem (8.1).
Since we believe this to be of independent interest, we state these results as a
theorem.

Theorem 8.3. Let v ∈ H be any positive solution of the problem

(8.6) −Δv + (|x|2 − ω)
f(v)√

1 + 2f2(v)
+

(f(v))3√
1 + 2f2(v)

= 0 in R
N .

Then

(8.7) v(x) ∼ |x|
ω−N

2 e−
|x|2
2 as |x| → ∞;

that is, there exist C1, C2 > 0 such that

C1|x|
ω−N

2 e−
|x|2
2 ≤ v(x) ≤ C2|x|

ω−N
2 e−

|x|2
2 for large |x|.

Consequently, if u is a positive solution of

−Δu− uΔu2 + |x|2u+ u3 = ωu in R
N ,

then

u(x) ∼ |x|
ω−N

2 e−
|x|2
2 as |x| → ∞.

Let us proceed to the proof of the main results. Next, we will build suitable
paths to set the proofs of Theorems 8.1 and 8.2 in the framework of Theorem 1.1
and Corollary 1.2. The first step is to verify some convexity of the gradient of these
new paths.

Lemma 8.4. Let u, v ∈ H ∩W 1,∞(Ω) such that u, v > 0 in Ω. Set

(8.8) γ(t) = f−1
(√

(1− t)f2(u) + tf2(v)
)

for all t ∈ [0, 1].

Then γ : [0, 1] → H is well defined and, pointwise in Ω,

(8.9) t �→ |∇γ(t)|2 is convex on [0, 1].

Proof. First observe that min{u, v} ≤ γ(t) ≤ max{u, v} for all t ∈ [0, 1] since f2 is
increasing. Then, once (8.9) is proved, we infer that γ(t) ∈ H for all t ∈ [0, 1].

We use Lemma 3.5 and so we show that its hypotheses are satisfied. In this
case we have Q(z) = f2(z), M(z) = z2, and we prove that (z1, z2) �→ F (z1, z2) =

F1(z1)F2(z2) is concave on (0,∞)× [0,∞) where F1(z1) = Q′◦Q−1(z1) =
2z

1/2
1

(1+2z1)1/2

by (8.2) and F2(z2) = z
1/2
2 . It is simple to verify that F1 and F2 are concave and,

by direct computations,
(

F2

F ′
2

)′
− 1 = 1 and

(
F1(z1)
F ′

1(z1)

)′
− 1 = 1 + 8z1 ≥ 1. Hence, as

observed in Remark 3.8, F is concave. �

Next, we use Lemma 3.1 to prove that γ defined by (8.8) is locally Lipschitz at
t = 0 whenever u and v are comparable.
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Lemma 8.5. Consider u, v ∈ H such that

(8.10) u, v > 0 in Ω and there is δ ≥ 1 such that δ−1v ≤ u ≤ δv in Ω,

and let γ be as in (8.8). Then, γ : [0, 1] → H satisfies γ(0) = u, γ(1) = v, and γ is
locally Lipschitz at t = 0.

Proof. It is obvious that γ(0) = u, γ(1) = v, and so we just need to verify conditions
(a), (b), and (c) of Lemma 3.1. Take also into account that we can argue as
in (3.3) to infer that γ is locally Lipschitz at t = 0 with respect to the term
w �→

∫
RN |x|2|w|2 dx in the case of Ω = R

N .

In this case we have Q = f2 and so, by (8.2), Q′(z) = 2f(z)√
1+2f2(z)

, which implies

condition (a), and Q′′(z) = 1
(1+2f2(z))2 . Then (b) and (c) follow from (8.4) and

(8.5). �
Now, once the paths are built and their convexity properties established, we

prove Theorem 8.1.

Proof of Theorem 8.1. Here we take either

Aω = {u ∈ H; u > 0 and A′
ω(u) = 0} or AE = {u ∈ M; u > 0 and E ′|M(u) = 0}.

Step 1. Sets Aω and AE are empty or singletons.
Let u, v ∈ Aω or u, v ∈ AE (to shorten the proof, we will prove both statements of

the theorem at the same time). By combining Lemma 8.4 with the strict convexity
of the map t �→ t2, we immediately have for γ defined in (8.8) that for u �= v,

t �→ Aω(γ(t)) and t �→ E(γ(t)) are strictly convex on [0,1]

and γ(t) ∈ M for every t ∈ [0, 1] provided u, v ∈ M. Thus, in order to apply
Theorem 1.1 for Aω and Corollary 1.2 for AE , one needs to prove that γ is locally
Lipschitz at 0. For that, we will prove a comparison result like (8.10). Let ū and v̄
solve (8.3), which (for a positive solution) can be written in the form

−Δw+a(w)w = 0, with a(w)=(V (x)−ω)
f(w)

w
√
1 + 2f2(w)

+
f3(w)

w
√

1 + f2(w)
∈L∞.

Then Hopf’s Lemma implies that 1/δ ≤ v̄/ū ≤ δ on Ω as we desired, and so we can
apply Lemma 8.5.

Step 2. If ω ≤ λV , then Aω is empty. This follows after testing (8.1) by u.

Step 3. The set AE is not empty. Moreover, if ω > λV , then Aω is not empty as
well.

Observe that both Aω and AE contain a global minimum of the corresponding
functionals. In fact, both functionals are bounded from below and are coercive:
E(v) ≥ 1

2

∫
Ω
|∇v|2 dx+C1|Ω|, while Aω(v) ≥ 1

2

∫
Ω
|∇v|2 dx+C2|Ω|, where C1 and C2

are respectively the absolute minimum levels of the polynomials t �→ − 1
2‖V ‖∞t2 +

1
4 t

4 and t �→ − 1
2 (‖V ‖∞ + ω)t2 + 1

4 t
4, and we have compact embeddings of H1

0 (Ω)

into L2(Ω). By combining ω > λV with the behavior of f close to t = 0, we can
prove that ε �→ Aω(εϕ1) is negative for ε ∼ 0, where ϕ1 is a positive eigenfunction
of (−Δ+ V (x)I,H1

0 (Ω)), and therefore minH Aω is negative. �
In order to prove Theorem 8.2, we need first to show the sharp decay of the

positive solutions of our problem as in Theorem 8.3. This result is a consequence
of the following very general result.
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Lemma 8.6 ([64, Proposition 6.1]). Let N ≥ 1, γ < 2, and fix ρ ≥ 0 and a
nonnegative function W ∈ C1([ρ,∞)). If

(8.11) lim
s→+∞

W (s) > 0 and lim
s→+∞

W ′(s)s1+β = 0 for some β > 0,

then there exists a nonnegative radial function h : RN \Bρ(0) → R such that

−Δh(x) +
W 2(|x|)
|x|γ h(x) = 0 for all x ∈ R

N \Bρ(0)

and

lim
|x|→∞

h(|x|)|x|
N−1

2 − γ
4 exp

(∫ |x|

ρ

W (s)

s
γ
2

ds

)
= 1.

Proof of Theorem 8.3.

Step 1. We claim that v(x) → 0 as |x| → ∞.
Observe that

−Δv + (|x|2 + 1)v
f(v)

v
√
1 + 2f2(v)

+ v
f3(v)

v
√

1 + 2f2(v)
= (1 + ω)v

f(v)

v
√

1 + 2f2(v)
,

and therefore v solves

−Δv + a(v)v ≤ (1 + ω)b(v)v,

with

a(t) =
f(t)

t
√
1 + 2f2(t)

+
f3(t)

t
√
1 + 2f2(t)

, b(t) =
f(t)

t
√
1 + 2f2(t)

.

By (8.4) and (8.5), we have

a, b ∈ L∞(0,∞), and a is bounded away from 0.

In particular, there exist κ1, κ2 > 0 such that

−Δv + κ1v ≤ κ2v in R
N .

Now a classical Brezis-Kato/Moser Iteration Scheme yields that v ∈ L∞(RN ) (see
[65, pp. 1264-1265]). Moreover, reasoning as in [42, Section 3.4] we have |∇v| ∈
L∞(RN ), which, combined with v ∈ H and the Mean-Value Theorem, implies the
claim of this step.

Step 2. As an intermediate step, we prove that there exist C > 0 and R > 0 such
that

(8.12) v(x) ≤ Ce−
|x|2
4 for all |x| ≥ R .

Rewrite (8.6) as

(8.13) −Δv + (|x|2 − ω)v = (|x|2 − ω)

(
v − f(v)√

1 + 2f2(v)

)
− f3(v)√

1 + 2f2(v)
.

Since v → 0 as |x| → ∞, by (8.4), for each ε > 0 there exists R > 0 such that the
right hand side of (8.13) is less than or equal to (|x|2 − ω)εv outside BR(0), and
consequently

−Δv + (|x|2 − ω)(1− ε)v ≤ 0 in R
N \BR(0).



7114 D. BONHEURE ET AL.

Set ρ := max{R, 2
√
ω}. Then W (s) :=

√
(1− s−2ω)(1− ε) satisfies (8.11), since

W ′(s) ∼ Cs−3 as s → ∞. Then we apply Lemma 8.6 with γ = −2, obtaining the
existence of a positive function h satisfying

−Δh(x) + (|x|2 − ω)(1− ε)v = 0 in R
N \Bρ(0)

and

h(x) ∼ |x|−N
2 exp

(
−
∫ |x|

ρ

√
(s2 − ω)(1− ε) ds

)
as |x| → ∞.

Thus, for |x| sufficiently large, we infer that

h(x) ≤ Ce−
|x|2
4 , |x| ≥ R.

By replacing h by ah(x), where a is a sufficiently large constant, we can assume
that v(x) ≤ h(x) on ∂BR(0). Hence, by the maximum principle, v(x) ≤ h(x) on

R
N \BR(0), and thus the claim (8.12) follows.

Step 3. Finally, we show that the sharp decay (8.7) holds.
By (8.4), for small v the expressions∣∣∣∣∣1− f(v)

v
√
1 + 2f2(v)

∣∣∣∣∣ and
f3(v)

v
√
1 + 2f2(v)

are bounded by cv2 ≤ Ce−|x|2/2. Hence we have, for some C > 0, that

−Δv + (|x|2 − ω − Ce−
|x|2
4 ) ≤ 0, −Δv + (|x|2 − ω + Ce−

|x|2
4 ) ≥ 0

in R
N \ BR(0). Observing that W±(s) :=

√
1− s−2ω ± Cs−2e−

s2

4 satisfy the as-

sumptions of Lemma 8.6, with W ′(s) ∼ s−3 as s → ∞, for a ρ̃ ≥ R sufficiently
large, there exist positive functions h+, h− with

−Δh± + (|x|2 − ω ± Ce−
|x|2
4 )h± = 0 for all |x| ≥ ρ̃,

and

h±(x) ∼ |x|−N
2 exp

(
−
∫ |x|

ρ

√
s2 − ω ± Ce−s2/4 ds

)
as |x| → ∞.

Thus, by the maximum principle, there exist positive constants a+ and a− such
that

a+h+ ≤ ui ≤ a−h− for all |x| ≥ ρ̃.

Since √
s2 − ω − Ce−s2/4 ≥

√
s2 − ω −

√
Ce−s2/4

and √
s2 − ω + Ce−s2/4 ≤

√
s2 − ω +

√
Ce−s2/4,

and e−s2/2 is an integrable function, we get the existence of two constants C1, C2 > 0
such that

C1|x|−
N
2 exp

(
−
∫ |x|

ρ̃

√
s2 − ω ds

)
≤ ui(x) ≤ C2|x|−

N
2 exp

(
−
∫ |x|

ρ̃

√
s2 − ω ds

)
,

and the statement now follows from∫ |x|

ρ̃

√
s2 − ω ds =

1

2

(
|x|

√
|x|2 − ω − ω ln(

√
|x|2 − ω + |x|)

)
+ C(ρ̃)
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and
|x|2 ≥ |x|

√
|x|2 − ω ≥ |x|2 −M , |x| ≥

√
|x|2 − ω ≥ m|x|

for appropriate M,m > 0 depending on ω and all sufficiently large |x|. �
Proof of Theorem 8.2. Take

Aω = {v ∈ H; v > 0 and A′
ω(v) = 0}.

Step 1. We claim that Aω is empty or a singleton.
Suppose u, v ∈ Aω with u �= v. As in the bounded domain case we have that

t �→ Aω(γ(t)) is strictly convex on [0,1]

with γ defined in (8.8). It remains to show that, given u, v ∈ Aω, there are C1, C2 >
0 such that

C1 ≤ v(x)

u(x)
≤ C2 for all x ∈ R

N ,

which follows from Theorem 8.3.

Step 2. We show that Aω is not empty if and only if ω > λV .
Since V (x) = |x|2 implies a compact embedding H ↪→ L2(RN ), we infer that

λV = inf
v∈H

∫
RN |∇v|2 + V (x)v2dx∫

RN v2dx
,

the first eigenvalue of (−Δ+ V (x)I,H), is positive.
By testing (8.1) by u we see that Aω is empty if ω ≤ λV .
Now, if ω > λV , as in the bounded domain case, we have that m := infH Aω is

negative. Moreover, observe that

Aω(v) ≥
1

2

∫
RN

|∇v|2 dx+ C3|B(0,
√
|ω|)|,

where C3 is the minimum of the function t �→ − 1
2 |ω|t2 +

1
4 t

4 for t ∈ [0,∞). Next,
we prove that there exists a positive function v ∈ H that satisfies Aω(v) = m :=
infH Aω, hence v ∈ Aω. Observe that, unlike for Ω bounded, it is not immediate
that minimizing sequences are bounded in ‖·‖H , due to the term

∫
RN |x|2(v(x))2 dx

in the definition of the norm.
However, since Aω is bounded from below, there is a minimizing sequence (vn) ⊂

H of Aω. Since Aω(|v|) = Aω(v), we can suppose that vn �≡ 0, vn ≥ 0, and
Aω(vn) < 0 for all n ∈ N. In addition, since Aω(v

∗) ≤ Aω(v) for all v ≥ 0 in
H1(RN ), where v∗ stands for the Schwarz symmetrization of v, we can assume that
vn are Schwarz symmetric.

From

Aω(vn) =
1

2

∫
RN

|∇vn|2 dx+
1

2

∫
RN

(|x|2 − ω)(f(vn))
2 dx+

1

4

∫
RN

(f(vn))
4 dx < 0,

we infer that
1

2

∫
RN

|∇vn|2 dx+
1

2

∫
RN

||x|2 − ω|(f(vn))2 dx+
1

4

∫
RN

(f(vn))
4 dx

≤
∫
|x|2<ω

(ω − |x|2)(f(vn))2 dx

≤ 1

8

∫
|x|2<ω

(f(vn))
4 dx+ C0(ω) ≤

1

8

∫
RN

(f(vn))
4 dx+ C0(ω)
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for some C0(ω) > 0, and hence

(8.14)
1

2

∫
RN

|∇vn|2 dx+
1

2

∫
RN

||x|2−ω|(f(vn))2 dx+
1

8

∫
RN

(f(vn))
4 dx ≤ C0(ω).

From (8.14) we infer that

(8.15)

∫
RN

(f(vn))
2 dx ≤

∫
|x|2<2ω

(f(vn))
2 dx+

1

ω

∫
|x|2≥2ω

(|x|2 − ω)(f(vn))
2 dx

≤ C1(ω) +

∫
RN

(f(vn))
4 dx

≤ C2(ω) .

Hence, from (8.14) and (8.15) one has

(8.16)
1

2

∫
RN

|∇vn|2 dx+
1

2

∫
RN

(|x|2 +1)(f(vn))
2 dx+

1

8

∫
RN

(f(vn))
4 dx ≤ C3(ω).

Since vn ∈ H1(RN ) is Schwarz symmetric, then vn ∈ C(RN\{0}), and so vn(1) =
Mn is well defined. As vn is decreasing in the radial direction, (8.16) implies that
Mn ≤ C4(ω). Indeed,

(f(Mn))
4|B1(0)| ≤

∫
|x|≤1

(f(vn))
4 dx ≤ 8C3(ω) .

From (8.4) there exists a positive constant C5(ω) such that t ≤ C5(ω)f(t) for all
t ∈ [0, C4(ω)]. Hence, from (8.5) and (8.16),∫

RN

|x|2v2n dx =

∫
|x|≤1

|x|2v2n dx+

∫
|x|>1

|x|2v2n dx

≤
∫
|x|≤1

v2n dx+ C2
5 (ω)

∫
|x|>1

|x|2(f(vn))2 dx

≤
∫
|x|≤1

[(f(vn))
2 + 2(f(vn))

4] dx+ C2
5 (ω)

∫
|x|>1

|x|2(f(vn))2 dx ≤ C6(ω) .

In particular, (vn) is uniformly bounded in H, and standard arguments show that
a weak limit v is a global minimizer of Aω.

Therefore, we conclude that v ∈ H is such that v ≥ 0 and realizes m := infH Aω.
Then, by the maximum principle, we infer that v ∈ Aω, as desired. �

Remark 8.7. All results proved in this section can be extended to

(8.17) −Δu− |u|α−2uΔ|u|α + |x|γu+ |u|p−1u = ωu in Ω,

with α > 1, p > 1, and γ > 0, a generalization considered in [1] (without the
trapping potential and in the defocusing case). The only difference in the proof of
Theorems 8.1 and 8.2 would be the definition of the energy functional

E(v) = 1

2

∫
Ω

|∇v|2 dx− 1

2

∫
Ω

(f(v))2 dx+
1

2

∫
Ω

|x|γ(f(v))2 + 1

p+ 1

∫
Ω

|f(v)|p+1 dx

and the action functional

Aω(v) = E(v)− ω

∫
Ω

(f(v))2 dx,
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where f is the odd function which solves

f ′(t) =
1√

1 + αf2α−2(t)
in (0,∞), f(0) = 0.

Remark 8.8. We end this section by observing that Selvitella in [73] proved existence
results for some general problems that include (8.17), proving some decay estimates,
which turn out to be nonoptimal in our setting.

8.2. Defocusing Gross-Pitaevskii system. Consider the following system with
k equations:

(8.18) −Δui + V (x)ui + ui

k∑
j=1

βiju
2
j = ωiui in Ω, i = 1, . . . , k,

where V (x) = |x|2 if Ω = R
N or V ∈ L∞(Ω) if Ω ⊂ R

N is a bounded regular
domain and N ≥ 1. Such a system arises when looking for standing wave solutions
φi(t, x) = eıωitui(x) of the following Gross-Pitaevskii system:

(8.19) ı∂tφi −Δφi + φi

k∑
j=1

βij |φj |2 = 0 .

We will assume that

B = (βij)ij symmetric, and either positive semidefinite or positive definite.

The symmetry assumption on B makes the problem variational. The positive
semidefiniteness implies that βii ≥ 0 for i = 1, . . . , k. In the case βii > 0, for
every i = 1, . . . , k, it is usually said that the self-interacting parameters are of
defocusing type.

Remark 8.9. Assume that β11, . . . , βkk > 0. With k = 2, (βij)ij being positive
semidefinite is equivalent to β2

12 ≤ β11β22. For a general k, this assumption is
fulfilled for instance when the off-diagonal terms βij (i �= j) are small with respect
to the diagonal ones βii.

These systems appear as a model in the physical phenomenon of Bose-Einstein
condensation or in nonlinear optics (see for instance [26, 75, 80] and references
therein for an easy-to-follow physical description). From a mathematical point of
view, there has been intense activity in the last ten years, both regarding existence
results (check for example the introduction of [77] or [10, 66] and their references)
as well as the regularity and asymptotic study of solutions as the competition in-
creases, namely, βij → +∞ for i �= j (see the recent survey [78] for an overview
of this topic). One of the interesting features of these systems is that they admit
solutions (u1, . . . , uk) with trivial components; that is, ui ≡ 0 for some i.

In order to consider solutions of (8.18), there are two (nonequivalent) points of
view. The first is to consider ω = (ω1, . . . , ωk) ∈ R

k fixed and look for solutions as
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critical points of the action functional

Aω(u1, . . . , uk) =
1

2

k∑
i=1

∫
Ω

(|∇ui|2 + (V (x)− ωi)u
2
i ) dx+

k∑
i=1

βii

4

∫
Ω

u4
i dx

+
∑
i<j

βij

2

∫
Ω

u2
iu

2
j dx ,

=
1

2

k∑
i=1

∫
Ω

(|∇ui|2 + (V (x)− ωi)u
2
i ) dx

+
1

4

∫
Ω

[u2
1 . . . u

2
k]B[u2

1 . . . u
2
k]

T dx

defined in H, where H = {u ∈ (H1(RN )∩L4(RN ))k;
∫
RN u2

i |x|2 dx < ∞ for all i}
and

‖u‖H :=

k∑
i=1

(∫
RN

(|∇u|2 + |x|2u2
i ) dx

)1/2

+

k∑
i=1

(∫
RN

u4
i dx

)1/4

if Ω = R
N or H = (H1

0 (Ω) ∩ L4(Ω))k and

‖u‖H :=
k∑

i=1

(∫
Ω

|∇u|2 dx
)1/2

+
k∑

i=1

(∫
Ω

u4
i dx

)1/4

if Ω is bounded.
The second point of view consists of fixing the L2–norm (i.e., the mass) rather

that the ωi’s:

M = {(u1, . . . , uk) ∈ H;

∫
Ω

u2
i = 1, for all i = 1, . . . , k}

and to look for solutions of (8.18) as critical points of the energy functional

E(u1, . . . , uk) =
1

2

k∑
i=1

∫
Ω

(|∇ui|2 + V (x)u2
i ) +

k∑
i=1

βii

4

∫
Ω

u4
i +

∑
i<j

βij

2

∫
Ω

u2
iu

2
j

=
1

2

k∑
i=1

∫
Ω

(|∇ui|2 + V (x)u2
i ) +

1

4

∫
Ω

[u2
1 . . . u

2
k]B[u2

1 . . . u
2
k]

T

constrained toM. Among these critical points, minimizers of E|M are called ground
state solutions. Within this second framework, the parameters ωi in (8.18) are not
fixed a priori but appear as Lagrange multipliers. These solutions are physically
relevant since both the energy and the mass are, at least formally, conserved along
trajectories t �→ (φ1(t), . . . , φk(t)) of the solutions of system (8.19).

In what follows, we will say that (u1, . . . , uk) is positive if ui > 0 for every
i = 1, . . . , k. Using the first point of view leads to the set

(8.20) Aω = {(u1, . . . , uk) ∈ H; ui > 0 for all i, A′
ω(u1, . . . , uk) = 0} ,

while the second leads to

(8.21) AE = {(u1, . . . , uk) ∈ M; ui > 0 for all i, E ′|M(u1, . . . , uk) = 0}.
These sets in principle do not coincide, since two critical points of E|M, or even
two ground states, may have different associated Lagrange multipliers.
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Observe that if the set Aω is not empty, then necessarily ωi > λV for at least one
i ∈ {1, . . . , k}, where λV stands for the first eigenvalue of (−Δ + V (x)I,H). The
equivalence is not clear since the functional Aω admits, in general, critical points
with trivial components.

On the other hand, the set AE is nonempty if B is positive semidefinite, con-
taining necessarily a ground state solution, that is, a minimizer of E|M. In fact,
the level minM E is clearly achieved by (ui, . . . , uk), a critical point of E|M with all
positive components (by eventually taking |ui| and using the maximum principle).
Observe that H � L2(Ω) in both cases Ω = R

N or Ω bounded.

Let us first discuss the case Ω bounded. Using Theorem 1.1 and Corollary 1.2,
our contribution is the following new result.

Theorem 8.10. Let Ω be a bounded regular domain and let B = (βij)ij be a
symmetric matrix.

(i) Assume that B is positive definite. Then, for ω1, . . . , ωk ∈ R fixed, the
functional Aω has at most one positive critical point; that is, system (8.18)
has at most a positive solution.

(ii) Assume that B is positive semidefinite. Then there exists exactly one pos-
itive critical point of E|M. In particular, the ground state is unique, up to
sign.

Remark 8.11. As will be illustrated in the proof of Theorem 8.10, if B is not positive
definite, then in item (i) the only thing we can conclude in general is that either
Aω = ∅ or there exists u = (u1, . . . , uk) ∈ Aω such that

(8.22) Aω ⊂ {(α1u1, . . . , αkuk); αi > 0 for every i}.
Observe that the strict convexity of Lemma 3.9 is essential in this case. There
are particular cases when B is positive semidefinite, det(B) = 0, and Aω is not
a singleton: if for instance Ω is bounded with λ1(Ω) < 1, V (x) ≡ 0, k = 2,
ω1 = ω2 = 1, and βij = 1 for every i, j = 1, 2, then (taking also into account (8.22)
and Example 4.9):

A0=
{
(α1u, α2u) ; −Δu = u− u3, u > 0 in Ω,

u = 0 on ∂Ω, α2
1 + α2

2 = 1, α1, α2 > 0} .

The result of Theorem 8.10 (i) was proved in [4, Theorem 4.1] by using different
techniques. The proof there consists of using the identity obtained when one mul-
tiplies the i-th equation of (8.18) by 1

2ui((
ui

vi
)2− 1), where u and v are two positive

solutions.

Remark 8.12. If ωi > λV for every i, it is straightforward to prove that Aω �= ∅,
and thus this set is a singleton if B is positive definite. In fact, the level minH Aω is
clearly achieved, and if it were achieved by a vector with some trivial components,
say for e.g. (0, u2, . . . , uk), then by taking ϕ1 an eigenfunction associated with λV

and using the fact that ω1 > λV , it is easy to show that

Aω(εϕ1, u2, . . . , uk) < Aω(0, u2, . . . , uk),

a contradiction.

As an immediate consequence of the second statement of Theorem 8.10, we have
the following classification result.
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Corollary 8.13. Assume that Ω is a bounded regular domain, V (x) ≡ 0, B =
(βij)ij is a symmetric positive semidefinite matrix, and there exists β such that

k∑
j=1

βij = β for all i = 1, . . . , k.

Then the unique positive critical point of E|M is u = (U, . . . , U), where U is the

unique positive critical point of Ẽ |S , where

Ẽ(w) = 1

2

∫
Ω

|∇w|2dx− β

4

∫
Ω

w4, w ∈ H1
0 (Ω),

and S = {w ∈ H1
0 (Ω);

∫
Ω
w2dx = 1}.

In the case Ω = R
N (with trapping potential), our results are the following.

Theorem 8.14. Assume that B = (βij)ij is a symmetric matrix, Ω = R
N , and

V (x) = |x|2. Then,

(i) Assume that B is positive definite. Given ω1, . . . , ωk ∈ R, the system (8.18)
admits at most one positive solution.

(ii) Assume that B is positive semidefinite. There exists a unique positive crit-
ical point of E|M. In particular, the ground state is unique, up to sign.

The first result is a generalization of [2, Theorem 1.3(1)] for systems with an
arbitrary number of equations. Moreover, our proof seems simpler. The second
result is a generalization of [2, Theorem 1.3(2)] (which holds for two equations).

In the proof of the previous theorem, a key step is the sharp decay at infinity of
the solutions of (8.18).

Proposition 8.15. Let (u1, . . . , uk) ∈ H be a positive solution of

−Δui + |x|2ui + ui

k∑
j=1

βiju
2
j = ωiui in R

N .

Then, for every i = 1, . . . , k,

ui(x) ∼ |x|
ωi−N

2 e−
1
2 |x|

2

as |x| → ∞.

This result will replace Hopf’s Lemma (not available when working in R
N ) and

imply a global comparison principle between positive solutions; this will be used
in the proof of item (i). Since the decay depends on the Lagrange multipliers
ωi, in order to prove (ii) we will not have at our disposal a global comparison
between solutions, and instead of using Corollary 1.2 we will combine the sharp
decay information with the strategy previously used in [2].

Let us proceed to the proofs of the results.

Proof of Theorem 8.10. Let A be either (8.20) (for item (i)) or (8.21) (for item (ii)).
Given u = (u1, . . . , uk), v = (v1, . . . , vk) ∈ A with u �= v, take

γ(t) = (γ1(t), . . . , γk(t)), with γi(t) =
√
(1− t)u2

i + tv2i .

By the standard Hopf Lemma, we have that the comparison condition (3.2) in
Section 3 is satisfied for each pair (ui, vi), and Corollary 3.3 yields that γ is Lipschitz
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continuous at 0. The assumption that (βij) is positive semidefinite ensures that the
quadratic form

R
k → R, z �→ zBzT =

∑
i

βiiz
2
i + 2

∑
i<j

βijzizj

is convex, and, using Lemma 3.9, we infer that

t �→ Aω(γ(t)) and t �→ E(γ(t)) are strictly convex on [0,1].

Indeed, it is clear that t �→ Aω(γ(t)) is strictly convex if B is positive definite. In
the second case, with u, v ∈ M and since u �= v, there exists i ∈ {1, . . . , k} such
that ui and vi are linearly independent and, in this case, the strict convexity of
t �→ E(γ(t)) follows from the strict convexity of the gradient term given by Lemma
3.9. Therefore, in the case of (i) the conclusion follows by Theorem 1.1, and we
infer that AE is empty or a singleton by Corollary 1.2. As above, recall that Aω �= ∅
by standard compactness arguments. �
Proof of Proposition 8.15. The proof closely follows the proof of Theorem 8.3, and
we only highlight the differences. First of all, observe that ui, |∇ui| ∈ L∞(RN ),
and ui → 0 as |x| → ∞. In fact, note that the potential |x|2 is bounded on the ball
B2

√
ωi
(0), being bounded away from zero outside, and the Moser iteration scheme

applies. Next, as in Step 2 in the proof of Theorem 8.3, one has that for each i,

−Δui + (|x|2 − ωi − κ)ui ≤ 0,

and analogously one obtains

h(x) ≤ Ce−
|x|2
4 , |x| ≥ R,

for some C,R > 0. Then, ∣∣∣∣∣∣
k∑

j=1

βiju
2
j

∣∣∣∣∣∣ ≤ αe−
|x|2
2 ,

and therefore

−Δui + (|x|2 − ωi − αe−
|x|2
2 )ui ≤ 0, −Δui + (|x|2 − ωi + αe−

|x|2
2 )ui ≥ 0,

in R
N \BR(0). The proof now follows as in the proof of Theorem 8.3 with obvious

modifications. �
Proof of Theorem 8.14. (i) We can repeat the proof of Theorem 8.10(i) almost word
for word, with the exception that now, instead of using Hopf’s Lemma, we get the
comparison condition (3.2) in Section 3 for any two possible positive solutions of
(8.18) from the sharp decay of Proposition 8.15.

(ii) Our main results, Theorem 1.1 and Corollary 1.2, cannot be directly applied
in this case, since two critical points u and v can have different Lagrange multipliers
ω and therefore different decay at infinity. In such a situation it is not clear how to
choose a path γ which is Lipschitz continuous at the endpoints.

Instead, our strategy will basically follow the ideas of [2, Theorem 1.3(2)] (see
also [4, Theorem 4.1]), and we refer to it for the exact computations and more
details. Our main contribution here is an extension to k equations and weaker
assumptions on B. The key step is a use of the sharp estimates of Proposition 8.15.

For any two positive critical points u, v we claim that

(8.23) E(u1, . . . , uk) = E(v1, . . . , vk) + F (w1, . . . , wk),
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where wi := ui/vi and

F (w1, . . . , wk) =
k∑

i=1

∫
RN

|∇wi|2v2i
2

+
1

4

∫
RN

[v21(w
2
1 − 1) . . . v2k(w

2
k − 1)]B[v21(w

2
1 − 1) . . . v2k(w

2
k − 1)]T .

Assume that (ui) and (vi) satisfy (8.18) respectively with Lagrange multipliers
(ωi) and (μi). By using integration by parts, we have, for every R > 0 fixed,∫

BR(0)

−Δvivi(w
2
i − 1) +

∫
∂BR(0)

∂νvi

(
u2
i

vi
− vi

)

=

∫
BR(0)

(
|∇vi|2(w2

i − 1) + 2viwi∇vi · ∇wi

)
.

Observe that, since ∇vi ∈ L∞ and

ui(x) ∼ |x|
ωi−N

2 e−
1
2 |x|

2

, vi(x) ∼ |x|
μi−N

2 e−
1
2 |x|

2

,

then∣∣∣∣∣
∫
∂BR(0)

∂νvi

(
u2
i

vi
− vi

)∣∣∣∣∣≤CRN−1Rωi−N−μi−N

2 e−
R2

2 +CRN−1R
μi−N

2 e−
1
2R

2 →0

as R → ∞ .

Consequently, since u solves (8.18)∫
RN

(|∇vi|2(w2
i −1)+2viwi∇vi ·∇wi) = −

∫
RN

(|x|2v2i +βiiv
4
i +v2i

∑
j 
=i

βijv
2
j )(w

2
i −1),

where we used that ui and vi have the same mass, that is, (u1, . . . , uk), (v1, . . . , vk) ∈
M, and therefore

μi

∫
RN

v2i (w
2
i − 1) = μi

∫
RN

(u2
i − v2i ) = 0.

Now, by using this identity in E(u1, . . . , uk) = E(v1w1, . . . , vkwk), we get (8.23).
Since B is positive semidefinite, F (w1, . . . , wk) ≥ 0 and (8.23) yields E(u1 . . . , uk)

≥ E(v1 . . . , vk). By interchanging u and v, we have E(u1 . . . , uk) = E(v1 . . . , vk),
and thus F (w1, . . . , wk) = 0. This, in turn, gives w2

i ≡ αi, for some constant αi.
Actually αi = 1, since

∫
RN u2

i dx =
∫
RN v2i dx = 1.

Once again Aω �= ∅ by standard compactness arguments. �
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[52] M. A. Krasnosel′skĭı, Positive solutions of operator equations, translated from the Russian by
Richard E. Flaherty, edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964. MR0181881

[53] Alexander Kurganov and Philip Rosenau, On reaction processes with saturating diffusion,
Nonlinearity 19 (2006), no. 1, 171–193, DOI 10.1088/0951-7715/19/1/009. MR2191624

[54] Vy Khoi Le, Some existence results on nontrivial solutions of the prescribed mean curva-
ture equation, Adv. Nonlinear Stud. 5 (2005), no. 2, 133–161, DOI 10.1515/ans-2005-0201.
MR2126734

[55] Elliott Lieb, Robert Seiringer, and Jakob Yngvason, Bosons in a trap: A rigorous derivation
of the Gross-Pitaevskii energy functional, Phys. Rev. A 61 (2000), no. 4, 043602.

[56] Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Non-
linear Anal. 12 (1988), no. 11, 1203–1219, DOI 10.1016/0362-546X(88)90053-3. MR969499

[57] Erik Lindgren and Peter Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential
Equations 49 (2014), no. 1-2, 795–826, DOI 10.1007/s00526-013-0600-1. MR3148135

[58] Peter Lindqvist, On the equation div (|∇u|p−2∇u) + λ|u|p−2u = 0, Proc. Amer. Math. Soc.
109 (1990), no. 1, 157–164, DOI 10.2307/2048375. MR1007505

[59] Jia-quan Liu, Ya-qi Wang, and Zhi-Qiang Wang, Soliton solutions for quasilinear Schrödinger
equations. II, J. Differential Equations 187 (2003), no. 2, 473–493, DOI 10.1016/S0022-
0396(02)00064-5. MR1949452

[60] Jiaquan Liu and Zhi-Qiang Wang, Soliton solutions for quasilinear Schrödinger equations.
I, Proc. Amer. Math. Soc. 131 (2003), no. 2, 441–448, DOI 10.1090/S0002-9939-02-06783-7.
MR1933335

[61] Marcello Lucia and S. Prashanth, Simplicity of principal eigenvalue for p-Laplace oper-
ator with singular indefinite weight, Arch. Math. (Basel) 86 (2006), no. 1, 79–89, DOI
10.1007/s00013-005-1512-x. MR2201301

[62] Sandra Mart́ınez and Julio D. Rossi, Isolation and simplicity for the first eigenvalue of the p-
Laplacian with a nonlinear boundary condition, Abstr. Appl. Anal. 7 (2002), no. 5, 287–293,

DOI 10.1155/S108533750200088X. MR1908191
[63] Marcos Montenegro, The construction of principal spectral curves for Lane-Emden systems

and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 1, 193–229.
MR1765542

http://www.ams.org/mathscinet-getitem?mr=816345
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=775682
http://www.ams.org/mathscinet-getitem?mr=2361738
http://www.ams.org/mathscinet-getitem?mr=0046395
http://www.ams.org/mathscinet-getitem?mr=0442468
http://www.ams.org/mathscinet-getitem?mr=2431415
http://www.ams.org/mathscinet-getitem?mr=2988315
http://www.ams.org/mathscinet-getitem?mr=0213694
http://www.ams.org/mathscinet-getitem?mr=0181881
http://www.ams.org/mathscinet-getitem?mr=2191624
http://www.ams.org/mathscinet-getitem?mr=2126734
http://www.ams.org/mathscinet-getitem?mr=969499
http://www.ams.org/mathscinet-getitem?mr=3148135
http://www.ams.org/mathscinet-getitem?mr=1007505
http://www.ams.org/mathscinet-getitem?mr=1949452
http://www.ams.org/mathscinet-getitem?mr=1933335
http://www.ams.org/mathscinet-getitem?mr=2201301
http://www.ams.org/mathscinet-getitem?mr=1908191
http://www.ams.org/mathscinet-getitem?mr=1765542


7126 D. BONHEURE ET AL.

[64] Vitaly Moroz and Jean Van Schaftingen, Nonexistence and optimal decay of supersolutions
to Choquard equations in exterior domains, J. Differential Equations 254 (2013), no. 8, 3089–
3145, DOI 10.1016/j.jde.2012.12.019. MR3020872

[65] Benedetta Noris, Hugo Tavares, Susanna Terracini, and Gianmaria Verzini, Convergence
of minimax structures and continuation of critical points for singularly perturbed sys-
tems, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 4, 1245–1273, DOI 10.4171/JEMS/332.
MR2928850

[66] Benedetta Noris, Hugo Tavares, and Gianmaria Verzini, Stable solitary waves with prescribed
L2-mass for the cubic Schrödinger system with trapping potentials, Discrete Contin. Dyn.
Syst. 35 (2015), no. 12, 6085–6112, DOI 10.3934/dcds.2015.35.6085. MR3393268

[67] Franco Obersnel and Pierpaolo Omari, Positive solutions of the Dirichlet problem for the
prescribed mean curvature equation, J. Differential Equations 249 (2010), no. 7, 1674–1725,
DOI 10.1016/j.jde.2010.07.001. MR2677812

[68] Franco Obersnel, Pierpaolo Omari, and Sabrina Rivetti, Asymmetric Poincaré inequalities
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Département de Mathématique, Université libre de Bruxelles, CP 214, Boulevard du

Triomphe, B-1050 Bruxelles, Belgium

Email address: denis.bonheure@ulb.ac.be

Department of Mathematics, University of Virginia, 141 Cabell Drive, Kerchof

Hall, Charlottesville, Virginia 22904

Email address: foldes@virginia.edu
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