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WEIGHTED FLOATING BODIES

AND POLYTOPAL APPROXIMATION

FLORIAN BESAU, MONIKA LUDWIG, AND ELISABETH M. WERNER

Abstract. Asymptotic results for weighted floating bodies are established
and used to obtain new proofs for the existence of floating areas on the sphere
and in hyperbolic space and to establish the existence of floating areas in
Hilbert geometries. Results on weighted best and random approximation and
the new approach to floating areas are combined to derive new asymptotic
approximation results on the sphere, in hyperbolic space, and in Hilbert geo-
metries.

Let K be a convex body (that is, compact convex set) in R
n. For δ > 0, the

floating body Kδ of K is obtained by cutting off all caps that have volume less than
or equal to δ. Extending results for smooth bodies (cf. [18]), Schütt and Werner
[34] showed for a general convex body K that

lim
δ→0

(
Vn(K)−Vn(Kδ)

)
δ−

2
n+1 = αn

∫
∂K

Hn−1(K,x)
1

n+1 dx,(1)

where αn is an explicitly known positive constant (see Section 1.1). Here Vn is
n-dimensional volume, Hn−1(K,x) is the Gauss-Kronecker curvature at x ∈ ∂K,
and integration is with respect to the (n− 1)-dimensional Hausdorff measure. The
integral on the right side is the affine surface area of K (cf. [20,22] and [31, Section
10.5] for more information).

Affine surface area also determines the asymptotic behavior of random polytopes.
Specifically, choose m points uniformly and independently in K and denote their
convex hull by Km. The random polytope Km is easily seen to converge to K in the
sense that E(Vn(K)−Vn(Km)) → 0 as m → ∞, where E denotes expectation. The
asymptotic behavior of Km has been studied extensively since the 1960s, starting
with the seminal results by Rényi and Sulanke [28, 29] (cf. [17, 27]). Extending
results of Bárány [1], Schütt [33] was able to prove the analog to (1) for the random
polytope Km in a general convex body K,

lim
m→∞

E
(
Vn(K)− Vn(Km)

)
m

2
n+1 = βn Vn(K)

2
n+1

∫
∂K

Hn−1(K,x)
1

n+1 dx,(2)

where βn is an explicitly known positive constant (see Section 1.2).
The aim of the paper is to extend (1) and (2) in a simple way to convex bodies

on the sphere, in hyperbolic space, and in Hilbert geometries. The approach is via
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weighted floating bodies and weighted approximation in Euclidean space and will also
be applied to random approximation by circumscribed polytopes and to asymptotic
best approximation. On the sphere, the asymptotic behavior is described by the
spherical floating area recently introduced in [6] and in hyperbolic space by the
hyperbolic floating area introduced in [7]. In Hilbert geometries, we obtain floating
areas that depend on the choice of volume and we establish a connection to centro-
affine surface area.

In the following section, a theorem for weighted floating bodies is stated, and
results on weighted approximation are collected. The results on polytopal random
and best approximation and floating bodies on the sphere, in hyperbolic space,
and in Hilbert geometries are established in Sections 2, 3, and 4. The final section
contains the proof for the theorem for weighted floating bodies.

1. Weighted floating bodies and polytopal approximation in R
n

Let K(Rn) denote the set of convex bodies (that is, compact convex sets) in R
n

with non-empty interior. For K ∈ K(Rn) and φ, ψ : K → (0,∞) integrable, define,
for A ⊂ R

n measurable, the measure Φ by Φ(A) =
∫
A
φ and the measure Ψ by

Ψ(A) =
∫
A
ψ. If

∫
Rn φ = 1, then Φ is a probability measure, and we write EΦ for

the expectation with respect to Φ.

1.1. Weighted floating bodies. For δ > 0, the weighted floating body Kφ
δ is the

intersection of all closed half-spaces whose defining hyperplanes H cut off sets of
Φ-measure less than or equal to δ from K, that is,

(3) Kφ
δ =

⋂{
H− : Φ(K ∩H+) ≤ δ

}
,

where H± are the closed half-spaces bounded by the hyperplane H. For φ ≡ 1, we
obtain (convex) floating bodies, which were introduced (independently) in [3, 34]
as a generalization of the classical floating bodies (see [31, Chapter 10.6] for more
information). Weighted floating bodies were introduced in [36], and generalizations
of (1) were established there.

The following result generalizes the results from volume to a general measure Ψ.

Theorem 1.1. For K ∈ K(Rn) and φ, ψ : K → (0,∞) continuous,

lim
δ→0

Ψ(K)−Ψ(Kφ
δ )

δ
2

n+1

= αn

∫
∂K

Hn−1(K,x)
1

n+1φ(x)−
2

n+1ψ(x) dx,(4)

where

αn :=
1

2

(
n+ 1

vn−1

) 2
n+1

(5)

and vn−1 is the (n− 1)-dimensional volume of the (n− 1)-dimensional unit ball.

The proof is given in Section 5.

1.2. Random polytopes. For K ∈ K(Rn), let φ : K → (0,∞) be a probability
density and let KΦ

m be the convex hull of m independent random points chosen
according to Φ. The following generalization of (2) was established by Böröczky,
Fodor, and Hug [9, Theorem 3.1].
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Theorem 1.2 ([9]). Let K ∈ K(Rn) and let ψ : K → (0,∞) be continuous. If
φ : K → (0,∞) is a continuous probability density and the random polytope KΦ

m is
the convex hull of m independent random points chosen according to Φ, then

lim
m→∞

EΦ

(
Ψ(K)−Ψ(KΦ

m)
)
m

2
n+1 = βn

∫
∂K

Hn−1(K,x)
1

n+1φ(x)−
2

n+1ψ(x) dx,(6)

where

βn :=
(n2 + n+ 2)(n2 + 1)

2(n+ 3) · (n+ 1)!
Γ

(
n2 + 1

n+ 1

)(
n+ 1

vn−1

) 2
n+1

.(7)

Efron showed that from the expected volume of a random polytope, the expected
number of vertices f0(Km) can be easily obtained. The same argument applies here
and

EΦf0(K
Φ
m) = m

(
1− EΦΦ(K

Φ
m−1)

)
(cf. [17]). Böröczky, Fodor, and Hug [9, Corollary 3.2] deduced the following result.

Corollary 1.3 ([9]). Let K ∈ K(Rn). If φ : K → (0,∞) is a continuous probability
density and the random polytope KΦ

m is the convex hull of m independent random
points chosen in K according to the probability measure Φ, then

lim
m→∞

EΦf0(K
Φ
m)m−n−1

n+1 = βn

∫
∂K

Hn−1(K,x)
1

n+1φ(x)
n−1
n+1 dx,

where βn is the constant defined in (7).

1.3. Random polyhedral sets. Another model for random polytopes that was
also suggested by Rényi and Sulanke [30] and that can be considered as dual to the
above is the following: Given a convex body K in R

n, choose m random closed half-
spaces that contain K in a way that is described below and denote their intersection
by Km. The random polyhedral set Km may be unbounded, and therefore one
usually considers Km intersected with a bounded neighborhood of K. The classical
choice is the parallel body K+B

n of K, where Bn is the closed Euclidean unit ball;
that is, K + B

n is the set of all points of distance at most 1 from K.
To describe our choice of random half-spaces, we first consider the set H of

all closed half-spaces in R
n. We parametrize closed half-spaces H−(u, t) by their

normal u ∈ S
n−1 and the distance t from the origin, i.e.,

H−(u, t) := {x ∈ R
n : x · u ≤ t}.

The support function hK ofK is defined, for u ∈ R
n, by hK(u) = max{u·x : x ∈ K}.

For u ∈ S
n−1, the support function measures the signed distance between the origin

and a hyperplane with outer normal u that touches K, and the width of K in
direction u is given by hK(u) + hK(−u). The average width W (K), also known as
mean width of K, is

W (K) =
1

nvn

∫
Sn−1

(
hK(u) + hK(−u)

)
du =

2

nvn

∫
Sn−1

hK(u) du.(8)

On H there is a uniquely determined rigid motion invariant Borel measure μ such
that

μ
(
{H− ∈ H : 0 < Vn(K ∩H−)/Vn(K) < 1}

)
= W (K).



7132 FLORIAN BESAU, MONIKA LUDWIG, AND ELISABETH M. WERNER

For a Borel subset A of H, it is defined by

μ(A) =
1

nvn

∫
Sn−1

∫
R

1
[
H−(u, t) ∈ A

]
dt du,

where 1[P ] is the indicator function of the proposition P ; that is, 1[P ] = 1 if P
holds and 1[P ] = 0 otherwise. For K ∈ K(Rn), we consider the set of all half-spaces
that contain K and whose boundary hyperplanes meet K + B

n, i.e.,

HK =
{
H−(u, t) : u ∈ S

n−1, hK(u) ≤ t ≤ hK(u) + 1
}
.

This yields μ(HK) = 1, and therefore the restriction μK of μ to HK is a probability
measure. Write EμK

for the expectation with respect to μK . Böröczky, Fodor, and
Hug [9] obtained the following result, which can be seen as dual to Theorem 1.2
and Corollary 1.3.

Theorem 1.4 ([9]). Let K ∈ K(Rn). If the random polyhedral set Km is the
intersection of m independent random half-spaces chosen from HK according to
μK , then

lim
m→∞

EμK

(
W

(
Km ∩ (K + B

n)
)
−W (K)

)
m

2
n+1

= 2βn (nvn)
−n−1

n+1

∫
∂K

Hn−1(K,x)
n

n+1 dx

and

lim
m→∞

EμK
fn−1(K

m)m−n−1
n+1 = βn (nvn)

−n−1
n+1

∫
∂K

Hn−1(K,x)
n

n+1 dx,

where fn−1(K
m) is the number of facets of Km and βn is the constant from (7).

1.4. Weighted best approximation. Problems of asymptotic best approxima-
tion have been extensively studied since the 1940s (cf. [14]). We restrict our at-
tention to two problems and just remark that further notions of distance and ap-
proximation by inscribed and circumscribed polytopes with a given number of faces
have also been studied (cf. [14]). For K,P ⊂ R

n, write K	P for the symmetric
difference of K and P . Set

distΨ
(
K,Pm

)
= inf

{
Ψ(K	P ) : P polytope with at most m vertices

}
and

distΨ
(
K,P(m)

)
= inf

{
Ψ(K	P ) : P polytope with at most m facets

}
.

Extending results by L. Fejes Tóth [11] and Gruber [15], the following asymptotic
result was established in [19] for convex bodies with positive curvature, and in [8]
the curvature condition was relaxed to include all convex bodies with C2 boundary.

Theorem 1.5 ([8, 19]). For K ∈ K(Rn) with C2 boundary and ψ : K → (0,∞)
continuous,

lim
m→∞

distΨ
(
K,Pm

)
m

2
n−1 =

1

2
ldeln−1

(∫
∂K

Hn−1(K,x)
1

n+1ψ(x)
n−1
n+1 dx

)n+1
n−1

(9)
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and

lim
m→∞

distΨ
(
K,P(m)

)
m

2
n−1 =

1

2
ldivn−1

(∫
∂K

Hn−1(K,x)
1

n+1ψ(x)
n−1
n+1 dx

)n+1
n−1

,

where ldeln−1 and ldivn−1 are positive constants.

The exact values of ldeln−1 and ldivn−1 are only known for n = 2 and n = 3 (see
[10]). Weighted best approximation was first considered by Glasauer (see [13]).

2. Spherical space

Let Sn denote the unit sphere in R
n+1. A set K ⊂ S

n is a proper convex body
if it is closed, contained in an open hemisphere, and its positive hull posK = {λx :
x ∈ K,λ ≥ 0} is a convex set in R

n+1. Let K(Sn) denote the set of proper convex
bodies in S

n with non-empty interior. A hypersphere in S
n is a set H = {x ∈ S

n :
x · e = 0} with e ∈ S

n, where “ · ” is the inner product in R
n+1. Let H± be the

closed hemispheres bounded by H. For δ > 0, the spherical floating body Kδ was
introduced in [6] by

(10) Kδ =
⋂{

H− : voln(K ∩H+) ≤ δ
}
,

where voln is spherical volume, i.e., the n-dimensional Hausdorff measure on S
n.

Without loss of generality, we may restrict our attention to convex bodies con-
tained in the hemisphere S

n
+ = {x ∈ S

n : x · en+1 > 0}, where en+1 is a vector of
an orthonormal basis of Rn+1. The gnomonic (or central) projection g : Sn+ → R

n

is defined by

g(x) =
x

x · en+1
− en+1,

where we identify R
n with {x ∈ R

n+1 : x · en+1 = 0} (cf. [5, Section 4]). We
write x̄ = g(x) and K̄ = g(K). Note that g−1 : Rn → S

n maps the point x̄ to
(1 + ‖x̄‖2)−1/2(x̄ + en+1) and therefore has the Jacobian (1 + ‖x̄‖2)−(n+1)/2 (cf.
[6, Proposition 4.2]). Thus the pushforward of voln under g is the measure Ψn with
density ψn(x̄) = (1 + ‖x̄‖2)−(n+1)/2. For the spherical Gauss-Kronecker curvature,
we have

HS
n

n−1(K,x) = Hn−1(K̄, x̄)

(
1 + ‖x̄‖2

1 + (x̄ · nK̄(x̄))2

)n+1
2

(cf. [6, Lemma 4.4]), where nK̄(x̄) is the outer unit normal vector to K̄ at x̄, and
consequently

(11)

∫
∂K

HS
n

n−1(K,x)
1

n+1 dx =

∫
∂K̄

Hn−1(K̄, x̄)
1

n+1 (1 + ‖x̄‖2)−
n−1
2 dx̄

(cf. [6, p. 897]). These transformation rules allow us to translate the results from
Section 1 to spherical space.
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The following result is a corollary to Theorem 1.1. It was first established in [6].

Theorem 2.1 ([6]). For K ∈ K(Sn),

lim
δ→0

voln(K)− voln(Kδ)

δ
2

n+1

= αn

∫
∂K

HS
n

n−1(K,x)
1

n+1 dx,

where αn is the constant from (5).

Proof. Since g(Kδ) = g(K)ψn

δ , we have

voln(K)− voln(Kδ) =

∫
g(K)\g(K)ψn

δ

ψn.

Hence Theorem 1.1 with φ = ψ = ψn shows that

lim
δ→0

voln(K)− voln(Kδ)

δ
2

n+1

= αn

∫
∂K̄

Hn−1(K̄, x̄)
1

n+1 (1 + ‖x̄‖2)−
n−1
2 dx̄.

By (11), this completes the proof. �

Next, we consider random polytopes that are the spherical convex hull of points
chosen uniformly according to voln in K ∈ K(Sn). In the following, the expectation
EK is with respect to the probability density voln / voln(K).

Theorem 2.2. Let K ∈ K(Sn). If Km is the spherical convex hull of m random
points chosen uniformly in K, then

lim
m→∞

EK

(
voln(K)− voln(Km)

)
m

2
n+1 = βn voln(K)

2
n+1

∫
∂K

HS
n

n−1(K,x)
1

n+1 dx,

where βn is the constant from (7).

Proof. Set Φn = Ψn/Ψn(g(K)). Since g(Km) = g(K)Φn
m , we have

EK

(
voln(K)− voln(Km)

)
= EΦn

(
Ψn(g(K))−Ψn(g(K)Φn

m )
)
.

Thus the statement follows from Theorem 1.2 with ψ = ψn and (11). �

Theorem 2.2 complements a recent result by Bárány, Hug, Reitzner, and Schnei-
der [2] for random polytopes in hemispheres.

As a consequence of Corollary 1.3, we obtain the following result.

Corollary 2.3. Let K ∈ K(Sn). If Km is the spherical convex hull of m random
points chosen uniformly in K, then

lim
m→∞

EKf0(Km)m−n−1
n+1 = βn voln(K)−

n−1
n+1

∫
∂K

HS
n

n−1(K,x)
1

n+1 dx,

where βn is the constant from (7).

Finally, we consider best approximation. Let

distn
(
K,PS

n

m

)
= inf

{
voln(K	P ) : P spherical polytope with at most m vertices

}
and

distn
(
K,PS

n

(m)

)
= inf

{
voln(K	P ) : P spherical polytope with at most m facets

}
.

We obtain the following result.
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Theorem 2.4. For K ∈ K(Sn) with C2 boundary,

lim
m→∞

distn
(
K,PS

n

m

)
m

2
n−1 =

1

2
ldeln−1

(∫
∂K

HS
n

n−1(K,x)
1

n+1 dx

)n+1
n−1

and

lim
m→∞

distn
(
K,PS

n

(m)

)
m

2
n−1 =

1

2
ldivn−1

(∫
∂K

HS
n

n−1(K,x)
1

n+1 dx

)n+1
n−1

,

where ldeln−1 and ldivn−1 are the constants from Theorem 1.5.

Proof. Note that distn(K,PS
n

m ) = distΨn
(g(K),Pm) and distn(K,PS

n

(m)) =

distΨn
(g(K),P(m)). Thus the statement follows directly from Theorem 1.5 with

ψ = ψn and (11). �

2.1. Duality principle. Let K be a proper spherical convex body. Instead of
random polytopes Km contained in K we now consider random polytopes Km

containing K. The space of closed hemispheres H of Sn has a uniquely determined
rotation invariant probability measure μ. For each point x ∈ S

n there is a uniquely
determined hemisphere H−(x) = {y ∈ S

n : x · y ≤ 0}, and for a Borel subset A of
H we have

μ(A) =
1

voln(Sn)

∫
Sn

1
[
H−(x) ∈ A

]
dx.

A random polytope Km is obtained as the intersection of m closed hemispheres
chosen from HK := {H− ∈ H : K ⊆ H−} independently and according to μK :=
μ/μ(HK).

For K ∈ K(Sn), define the polar body K◦ by

K◦ = {y ∈ S
n : x · y ≤ 0 for all x ∈ K} =

⋂
x∈K

H−(x)

(cf. [32, Section 6.5]). Since K◦◦ = K, a hemisphere H−(y) contains K if and only
if y ∈ K◦. Thus we have HK = {H−(y) : y ∈ K◦} and μ(HK) = voln(K

◦).
Let Km be the intersection of m randomly chosen closed hemispheres in HK ;

that is, there are xi ∈ K◦, i = 1, . . . ,m, such that Km =
⋂m

i=1 H
−(xi). We have

Km =
(
conv{x1, . . . , xm}

)◦
=

(
K◦

m

)◦
,

whereK◦
m := (K◦)m. This means that the polar of a random polytope that contains

K is a polytope inside K◦. In this way we can transfer results about K◦
m to (Km)◦.

Theorem 2.5. If F be a non-negative measurable functional on spherical convex
polyhedral sets, then

EμK
F(Km) = EK◦F

(
(K◦

m)
◦ )

.

In the Euclidean setting a similar result was obtained in [9, Proposition 5.1].
As an application of this theorem we consider the spherical mean width U1(K)

of a spherical convex body K, which is defined by

U1(K) =
1

2

∫
G(n+1,n)

χ(K ∩H) dν(H),
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where χ is the Euler characteristic, G(n + 1, n) is the Grassmannian of all n-
dimensional linear subspaces in R

n+1, and ν denotes the invariant probability mea-
sure on G(n + 1, n). The probability that a random hypersphere hits K is equal
to 2U1(K). The name spherical mean width corresponds to the Euclidean notion
of mean width W (K̄) for K̄ ∈ K(Rn), which can be defined as the probability of
a random affine hyperplane hitting K̄. Equivalently, W (K̄) is given by (8), which,
however, does not have a natural analog in the spherical setting.

Corollary 2.6. Let K ∈ K(Sn). If Km is the intersection of m random hemi-
spheres containing K and chosen uniformly according to μK , then

lim
m→∞

EμK

(
U1(K

m)−U1(K)
)
m

2
n+1 =

βn

voln(Sn)
voln(K

◦)
2

n+1

∫
∂K

HS
n

n−1(K,x)
n

n+1 dx

and

lim
m→∞

EμK
fn−1(K

m)m−n−1
n+1 = βn voln(K

◦)−
n−1
n+1

∫
∂K

HS
n

n−1(K,x)
n

n+1 dx,

where βn is the constant from (7).

Proof. By [12, equation (20)], we have

U1(K) =
1

2
− voln(K

◦)

voln(Sn)
.

Also, the facets of Km correspond to the vertices of (Km)◦ = K◦
m. Thus fn−1(K

m)
= f0(K

◦
m). Hence, by Theorem 2.5, we find that

EμK

(
U1(K

m)− U1(K)
)
=

EK◦
(
voln(K

◦)− voln(K
◦
m)

)
voln(Sn)

and

EμK
fd−1(K

m) = EK◦f0(K
◦
m).

Applying Theorem 2.2 and Corollary 2.3 on K◦ we obtain

lim
m→∞

EμK

(
U1(K

m)− U1(K)
)
m

2
n+1

=
βn

voln(Sn)
voln(K

◦)
2

n+1

∫
∂K◦

HS
n

n−1(K
◦, x)

1
n+1 dx

and

lim
m→∞

EμK
fn−1(K

m)m−n−1
n+1 = βn voln(K

◦)−
n−1
n+1

∫
∂K◦

HS
n

n−1(K
◦, x)

1
n+1 dx.

By [6, Theorem 7.4], we have∫
∂K◦

HS
n

n−1(K
◦, x)

1
n+1 dx =

∫
∂K

HS
n

n−1(K,x)
n

n+1 dx,

which concludes the proof. �
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3. Hyperbolic space

Let Rn,1 denote the Lorentz-Minkowski space of dimension n+ 1, that is, Rn+1

with the indefinite inner product “◦” defined by

x ◦ x = x2
1 + · · ·+ x2

n − x2
n+1.

Then the hyperboloid model of hyperbolic space is given by

H
n =

{
x ∈ R

n,1 : x ◦ x = −1 and xn+1 > 0
}
.

The hyperbolic distance dH between two points x, y ∈ H
n is determined by

cosh dH(x, y) = −x ◦ y. A set K ⊂ H
n is a convex body if it is compact and the

positive hull is a convex set in R
n+1. Let K(Hn) denote the set of convex bodies in

H
n with non-empty interior. For a hyperplane H let H± be the closed half-spaces

bounded by H. For δ > 0, the hyperbolic floating body Kδ was introduced in [7]
by

Kδ =
⋂{

H− : voln(K ∩H+) ≤ δ
}
,

where voln is the hyperbolic volume on H
n.

We fix a Lorentz-orthonormal basis e1, e2, . . . , en+1 in R
n,1 such that en+1 is in

H
n. The gnomonic (or central) projection g : Hn → R

n is defined by

g(x) =
x

x ◦ en+1
+ en+1,

where we identify R
n with {x ∈ R

n,1 : x ◦ en+1 = 0}. We write x̄ = g(x) and
K̄ = g(K). Since

‖x̄‖2 = 1− (x ◦ en+1)
−2 = tanh2 dH(x, en+1),

we have ‖x̄‖ ∈ [0, 1). Therefore the gnomonic projection maps H
n into the open

unit ball intBn ⊂ R
n. Note that g−1 : intBn → H

n maps the point x̄ to
(1 − ‖x̄‖2)−1/2(x̄ + en+1). The gnomonic projection is an isometry between the
hyperboloid model Hn and the projective model (or Beltrami-Cayley-Klein model)
intBn. Thus the pushforward of voln under g is the measure Ψn with density
ψn(x̄) = (1 − ‖x̄‖2)−(n+1)/2. For the hyperbolic Gauss-Kronecker curvature, we
have

HH
n

n−1(K,x) = Hn−1(K̄, x̄)

(
1− ‖x̄‖2

1− (x̄ · nK̄(x̄))2

)n+1
2

(cf. [7, Corollary 3.16]), and furthermore

(12)

∫
∂K

HH
n

n−1(K,x)
1

n+1 dx =

∫
∂K̄

Hn−1(K̄, x̄)
1

n+1 (1− ‖x̄‖2)−
n−1
2 dx̄

(cf. [7, (3.12)]). So again, these transformation rules allow us to translate the results
from Section 1 to hyperbolic space. The proofs are identical to those in spherical
space (just replace (11) by (12)) and are therefore omitted.

As a corollary to Theorem 1.1 we obtain the existence of floating area for hyper-
bolic space, which was originally established in [7].

Theorem 3.1 ([7]). For K ∈ K(Hn),

lim
δ→0

voln(K)− voln(Kδ)

δ
2

n+1

= αn

∫
∂K

HH
n

n−1(K,x)
1

n+1 dx,

where αn is defined in Theorem 1.1.
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Next, we consider random polytopes that are the hyperbolic convex hull of points
chosen uniformly according to voln in K ∈ K(Hn). In the following, the expectation
EK is with respect to the density voln / voln(K).

Theorem 3.2. Let K ∈ K(Hn). If Km is the hyperbolic convex hull of m random
points chosen uniformly in K, then

lim
m→∞

EK

(
voln(K)− voln(Km)

)
m

2
n+1 = βn voln(K)

2
n+1

∫
∂K

HH
n

n−1(K,x)
1

n+1 dx,

where βn is the constant from (7).

As a consequence, we obtain the following result.

Corollary 3.3. Let K ∈ K(Hn). If Km is the hyperbolic convex hull of m random
points chosen uniformly in K, then

lim
m→∞

EKf0(Km)m−n−1
n+1 = βn voln(K)−

n−1
n+1

∫
∂K

HH
n

n−1(K,x)
1

n+1 dx,

where βn is the constant from (7).

Finally, we consider best approximation. Let

distn
(
K,PH

n

m

)
=inf

{
voln(K	P ) : P hyperbolic polytope with at most m vertices

}
and

distn
(
K,PH

n

(m)

)
=inf

{
voln(K	P ) : P hyperbolic polytope with at most m facets

}
.

We obtain the following result.

Theorem 3.4. For K ∈ K(Sn) with C2 boundary,

lim
m→∞

distn
(
K,PH

n

m

)
m

2
n−1 =

1

2
ldeln−1

(∫
∂K

HH
n

n−1(K,x)
1

n+1 dx

) n+1
n−1

and

lim
m→∞

distn
(
K,PH

n

(m)

)
m

2
n−1 =

1

2
ldivn−1

(∫
∂K

HH
n

n−1(K,x)
1

n+1 dx

)n+1
n−1

,

where ldeln−1 and ldivn−1 are the constants from Theorem 1.5.

4. Hilbert geometries

Hilbert’s Fourth Problem asks for a characterization of metric geometries whose
geodesics are straight lines. Hilbert constructed a special class of examples, now
called Hilbert geometries (see [26, Chapter 15] for more information). A Hilbert
geometry (C, dC) is defined on the interior of a convex body C ∈ K(Rn) in the
following way: For distinct points x, y ∈ intC, the line passing through x and y
meets ∂C at two points p and q, say, such that one has p, x, y, q in that order on
the line. Define the Hilbert distance of x and y by

dC(x, y) =
1

2
log[p, x, y, q],

where [p, x, y, q] is the cross ratio of p, x, y, q, that is,

[p, x, y, q] =
‖y − p‖
‖x− p‖

‖x− q‖
‖y − q‖ .
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Note that the invariance of the cross ratio by projective maps implies the projective
invariance of dC . Unbounded closed convex sets with non-empty interiors and not
containing a straight line are projectively equivalent to convex bodies. Hence the
definition of Hilbert geometry naturally extends to the interiors of such convex sets.
If C is an ellipsoid, then the Hilbert geometry on intC is isometric to hyperbolic
space.

Straight lines are geodesics in a Hilbert geometry (C, dC), and if C is strictly
convex, then the affine segment between two distinct points is the unique geodesic
joining them (see e.g. [26, p. 60]). Hence, if C is strictly convex, then hyperplanes
are the totally geodesic submanifolds of co-dimension 1. A convex body K ∈ K(Rn)
that is contained in intC is therefore also a convex body of the Hilbert geometry
(C, dC), and polytopes are an intrinsic notion of (C, dC). Thus we may consider
polytopal approximation in a Hilbert geometry (C, dC) for a strictly convex body
C. In the following K(C) denotes the space of convex bodies K ⊂ intC.

The Hilbert metric dC is induced by a weak Finsler structure in the following
way: For x ∈ intC define a (weak) Minkowski norm ‖.‖x by

‖v‖x =
1

2

( 1

t+
+

1

t−

)
,

for v ∈ R
n, where t± is determined by x ± t±v ∈ ∂C. If we identify R

n with
the tangent space Tx R

n, then ‖ · ‖x defines a Minkowski norm on Tx R
n for every

x ∈ intC. The map FC : x �→ ‖ · ‖x defines a (weak) Finsler structure on intC.
The length of a C1 curve γ : [a, b] → intC is defined by

�(γ) =

∫ b

a

‖γ̇(t)‖γ(t) dt,

and the Hilbert metric between two distinct points x, y ∈ intC is just the minimal
length of a C1 curve joining them. In particular, if C is C2

+, that is, the boundary
of C is a C2 manifold with positive curvature, then (intC,FC) defines a Finsler
manifold in the classical sense.

The unit ball of the Minkowski norm ‖ · ‖x is ICx = {v ∈ R
n : ‖v‖x ≤ 1}. Recall

that the polar body K∗ of a convex body K is defined by K∗ = {y ∈ R
n : x · y ≤

1 for all x ∈ K}, and the difference body DK is defined by D(K) = 1
2 (K −K) =

1
2{x− y : x, y ∈ K}. For a fixed x ∈ intC we find that

‖v‖x = h
(
D(C − x)∗, v

)
and ICx =

(
D(C − x)∗

)∗
.

Hence ICx is the harmonic symmetrization of C in x (see [25]).
There are several good choices for volume volC in (C, dC) which give a pro-

jective invariant notion of volume, for example, the Busemann volume or the
Holmes-Thompson volume of the associated Finsler manifold. The Busemann vol-
ume is the n-dimensional Hausdorff volume of the metric space (C, dC). Its den-
sity function with respect to Lebesgue measure λn is given by vn/λn(I

C
x ). The

Holmes-Thompson volume has density λn((I
C
x )∗)/vn. Both, the Busemann and the

Holmes-Thompson volume have the property that the density σC is non-negative
and continuous. This allows us to directly apply the results from Section 1 to
Hilbert geometries with these volume densities.

First, we consider random polytopes that are the convex hull of points chosen
uniformly according to volC in K ∈ K(C). In the following, the expectation EK is
with respect to the density volC / volC(K).
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Theorem 4.1. Let K ∈ K(C). If Km is the convex hull of m random points chosen
uniformly in K with respect to volC , then

lim
m→∞

EK

(
volC(K)− volC(Km)

)
m

2
n+1

= βn volC(K)
2

n+1

∫
∂K

Hn−1(K,x)
1

n+1 σC(x)
n−1
n+1 dx,

where βn is the constant from (7).

As a consequence of Corollary 1.3, we obtain the following result.

Corollary 4.2. Let K ∈ K(C). If Km is the convex hull of m random points
chosen uniformly in K with respect to volC , then

lim
m→∞

EKf0(Km)m−n−1
n+1 = βn volC(K)−

n−1
n+1

∫
∂K

Hn−1(K,x)
1

n+1 σC(x)
n−1
n+1 dx,

where βn is the constant from (7).

Next, we consider best approximation. Let

distC
(
K,PC

m

)
= inf

{
volC(K	P ) : P ⊂ intC polytope with at most m vertices

}
and

distC
(
K,PC

(m)

)
= inf

{
volC(K	P ) : P ⊂ intC polytope with at most m facets

}
.

We obtain the following result.

Theorem 4.3. For K ∈ K(C) with C2 boundary,

lim
m→∞

distC
(
K,PC

m

)
m

2
n−1 =

1

2
ldeln−1

(∫
∂K

Hn−1(K,x)
1

n+1 σC(x)
n−1
n+1 dx

) n+1
n−1

and

lim
m→∞

distC
(
K,PC

(m)

)
m

2
n−1 =

1

2
ldivn−1

(∫
∂K

Hn−1(K,x)
1

n+1 σC(x)
n−1
n+1 dx

) n+1
n−1

,

where ldeln−1 and ldivn−1 are the constants from Theorem 1.5.

Finally, we obtain the following result for the weighted floating body KσC

δ .

Theorem 4.4. For K ∈ K(C),

lim
δ→0

volC(K)− volC(K
σC

δ )

δ
2

n+1

= αn

∫
∂K

Hn−1(K,x)
1

n+1 σC(x)
n−1
n+1 dx,

where αn is defined in Theorem 1.1.

Note that the floating area

ΩC(K) =

∫
∂K

Hn−1(K,x)
1

n+1 σC(x)
n−1
n+1 dx

depends on the Hilbert geometry (C, dC) and the choice of the volume density
σC . Let K(0)(R

n) be the set of convex bodies in R
n containing the origin in their

interiors. For C ∈ K(0)(R
n) and λ < 1, the floating area ΩC(λC) is a centro-affine

(or GL(n)) invariant by the definition of floating area and the projective invariance
of the volume volC (however, note that ΩC(λC) is not a projective invariant). For
the limiting case λ → 1 and the Busemann floating area, we obtain the following
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result. The proof is based on results by Berck, Bernig, and Vernicos [4], who studied
the limiting behavior of the volume entropy of λC.

Theorem 4.5. For C ∈ K(0)(R
n) with C1,1 boundary,

Ωn(C) = 2
n−1
2 lim

λ→1−
ΩC(λC)(1− λ)

n−1
2 ,

where ΩC is the Busemann floating area.

Here Ωn(C) is the classical centro-affine surface area of C, which is defined as

Ωn(C) =

∫
∂C

Hn−1(C, x)
1
2(

x · nC(x)
)n−1

2

dx.

Centro-affine surface area is an upper semicontinuous and GL(n) invariant valuation
on Kn

(0)(R
n). Moreover, it is basically the only such functional (see [21]). For more

information on centro-affine surface area, which is also called Ln-affine surface area,
see [23, 24, 35].

Proof. Berck, Bernig, and Vernicos [4, Proposition 2.8] obtained that

(13) lim
λ→1−

σC(λx)(1− λ)
n+1
2 =

Hn−1(C, x)
1
2(

2x · nC(x)
)n+1

2

,

for x ∈ ∂C. Using a version of Blaschke’s rolling theorem, they also showed in
[4, Proposition 2.10] that

(14) σC(λx) ≤ c(1− λ)−
n+1
2 ,

where the constant c does not depend on x and λ. Thus,

lim
λ→1−

ΩC(λC)(1− λ)
n−1
2

= lim
λ→1−

λnn−1
n+1

∫
∂C

Hn−1(C, x)
1

n+1

(
(1− λ)

n+1
2 σC(λx)

)n−1
n+1

dx

=

∫
∂C

Hn−1(C, x)
1

n+1

⎛
⎝ Hn−1(C, x)

1
2(

2x · nC(x)
)n+1

2

⎞
⎠

n−1
n+1

dx

= 2−
n−1
2 Ωn(C),

where the last inequality uses Lebesgue’s Dominated Convergence Theorem and
(14). �

Theorem 4.5 holds true not only for the Busemann volume but also for other
notions of volume. This follows, since according to Berck, Bernig, and Vernicos
[4], equation (13) holds true for the volume densities of all volumes that satisfy the
following very general assumptions:

• The volume measure volC is a Borel measure on intC and absolutely con-
tinuous with respect to the Lebesgue measure.

• If A ⊂ C ⊂ C ′ where C,C ′ ∈ K(Rn), then volC(A) ≥ volC′(A).
• If C is an ellipsoid, then volC is the hyperbolic volume.
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All volume measures that satisfy these conditions are equivalent; i.e., if σC and σ̄C

are the volume densities of two volume measures volC and v̄olC , then there exist
positive real constants a, b such that

aσC(x) ≤ σ̄C(x) ≤ bσC(x);

see e.g. [26, p. 249]. Hence, by (14), we conclude that

σ̄C(λx) ≤ bc(1− λ)−
n+1
2 .

Therefore Theorem 4.5 also holds for any volume measure that satisfies these con-
ditions and in particular for the Holmes-Thompson volume.

5. Proof of Theorem 1.1

The first step of the proof is the following disintegration result, which follows
easily from the area formula (see e.g. [7, Proposition 3.7] or [9, Lemma 4.2] for
related results).

Lemma 5.1. Let K,L be convex bodies such that L ⊆ K and 0 ∈ intL. For
x ∈ ∂K,

Ψ(K)−Ψ(L) =

∫
∂K

nK(x) · (x‖x‖−n)

∫ ‖x‖

‖xL‖
ψ(tx‖x‖−1)tn−1 dt dx,

where {xL} = ∂L ∩ [0, x].

The next step is to give upper and lower bounds of the weighted floating body

Kφ
δ by a reparametrized Euclidean floating body. To be more precise, we find

δ1 = δ1(δ) and δ2 = δ2(δ) such that 0 < δ1 ≤ δ2 and Kδ2 ⊆ Kφ
δ ⊆ Kδ1 . Before we

go into the details of this proof, we need to fix a few notions.
For v ∈ S

n−1 and t ∈ R, define, as before, the closed half-spaces H−(v, t) :=

{y ∈ R
n : y · v ≤ t} and H+(v, t) := H−(−v,−t). The weighted floating body Kφ

δ

can be expressed as

Kφ
δ =

⋂{
H−(v, tδ(v)) : v ∈ S

n−1
}
,(15)

where tδ(v) = t(K,φ, δ, v) is determined implicitly by

δ = Φ
(
K ∩H+

(
v, tδ(v)

))
=

∫ hK(v)

tδ(v)

∫
K ∩H(v,s)

φ(x) dλH(v,s)(x) ds.(16)

Here λH(v,s) is the Lebesgue measure in the affine hyperplane H(v, s) = {y ∈ R
n :

y · v = s}. Note that there exists δ0 > 0 such that tδ(v) is uniquely determined for
all (δ, v) ∈ (0, δ0)× S

n−1 and in this case the function (δ, v) �→ tδ(v) is continuous
and limδ→0+ tδ(v) = hK(v).

Lemma 5.2. Let K ∈ K(Rn) and let ε ∈ (0,min∂K φ). For

(17) α := min
∂K

φ− ε, β := max
∂K

φ+ ε,

there exists δ0 = δ0(ε) > 0 such that for all δ ∈ (0, δ0), we have

Kδ/α ⊆ Kφ
δ ⊆ Kδ/β .
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Proof. Note that by our assumptions φ is continuous and positive on ∂K and
therefore min∂K φ > 0. First we show that there is δ1 = δ1(ε) > 0 such that
for all δ ∈ (0, δ1) and v ∈ S

n−1 we have

(18) K ∩H+
(
v, tδ(v)

)
⊆

{
x ∈ K : φ(x) ≤ β

}
.

Assume the opposite. Then for all δ > 0 there exists v(δ) ∈ S
n−1 and y(δ) ∈ K such

that φ(y(δ)) ≥ β and y(δ) · v(δ) ≥ tδ(v(δ)). By compactness there are converging
subsequences with limits v0 ∈ S

n−1 and y0 ∈ ∂K such that φ(y0) ≥ β and y0 · v0 ≥
t0(v0) = hK(v0). Thus y0 ∈ ∂K and therefore φ(y0) ≤ max∂K φ < β ≤ φ(y0), a
contradiction.

By (18), we have that

δ = Φ
(
K ∩H+

(
v, tδ(v)

))
≤ βλn

(
K ∩H+

(
v, tδ(v)

))
,

which yields t(K, 1, δ/β, v) ≥ t(K,φ, δ, v). Thus, by (15) and (16), Kφ
δ ⊆ Kδ/β .

Conversely, there is δ2 = δ2(ε) > 0 such that for all δ ∈ (0, δ2) and v ∈ S
n−1 we

have

K ∩H+
(
v, t(K,φ, δ, v)

)
⊆

{
x ∈ K : φ(x) ≥ α

}
.

Similarly to the above we first have

δ = Φ
(
K ∩H+

(
v, tδ(v)

))
≥ αλ

(
K ∩H+

(
v, tδ(v)

))
,

and therefore Kδ/α ⊆ Kφ
δ . Setting δ0 = min{δ1, δ2} concludes the proof. �

For two distinct points x, y ∈ R
n the affine segment joining x and y is denoted

by [x, y]. The previous lemma immediately implies the following result.

Corollary 5.3. Let K ∈ K(Rn), let α, β be as in (17), and let z ∈ int K. For
x ∈ ∂K we set{

xδ/α

}
= ∂Kδ/α ∩ [x, z],

{
xδ/β

}
= ∂Kδ/β ∩ [x, z],

{
xφ
δ

}
= ∂Kφ

δ ∩ [x, z].

Then for δ > 0 sufficiently small, we have∥∥xδ/α − z
∥∥ ≤

∥∥xφ
δ − z

∥∥ ≤
∥∥xδ/β − z

∥∥.
To complete the proof, we proceed as follows: The left-hand side of (4) can be

written as an integral over ∂K by Lemma 5.1. Theorem 1.1 follows by applying
Lebesgue’s Dominated Convergence Theorem and calculating the pointwise limit
of the integrand. To do so, we need to bound the integrand from above by an
integrable function.

We denote by rK : ∂K → [0,+∞) the maximal radius of a Euclidean ball that
contains x ∈ ∂K and is contained in K. It was proven in [34] that for α > −1 we
have ∫

∂K

rK(x)α dx < +∞.

Hence rK is an integrable function and it was already used as the upper bound of
the integrand for the Euclidean floating body. The following upper bound for the
weighted floating body follows by the Euclidean results obtained in [34].
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Lemma 5.4. Let K ∈ K(Rn) with 0 ∈ int K. There exists C = C(K) > 0 such
that for δ > 0 sufficiently small

x · nK(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xφ
δ ‖

tn−1ψ(tx/‖x‖) dt ≤ C
(
max
K

ψ
)
rK(x)−

n−1
n+1 ,

for almost all x ∈ ∂K.

Proof. Since 0 ∈ intK, by Corollary 5.3 we have ‖xφ
δ ‖ ≥ ‖xδ/α‖. We conclude that

x · nK(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xφ
δ ‖

tn−1ψ(tx/‖x‖) dt ≤
(
max
K

ψ
) x · nK(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xδ/α‖
tn−1 dt.

Furthermore,

x · nK(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xδ/α‖
tn−1 dt ≤ x · nK(x)

‖x‖

∥∥x− xδ/α

∥∥
δ2/(n+1)

≤ CrK(x)−
n−1
n+1 ,

where the last inequality is the Euclidean result established in [34, Lemma 6]. �

To calculate the pointwise limit of the integrand, we also use the Euclidean
result to obtain the result for the weighted floating body. We recall some notions
for boundary points of a convex body (see, for example, [31, Sections 2.2 and 2.5]).

A boundary point x of K is called regular if there is a unique outer unit normal
nK(x) to K at x. Almost all boundary points are regular. Recall that for a convex
body K the boundary ∂K is C2 almost everywhere in the following sense: If x is a
regular boundary point, there is ε > 0 and an open neighborhood U of x such that
U ∩ ∂K can be described as

U ∩ ∂K =
{
x+ v − f(v)nK(x) : v ∈ nK(x)⊥ ∩ εBn

}
,

where f : nK(x)⊥ ∩ εBn → R is a convex function which satisfies f ≥ 0, f(0) = 0,
and nK(x)⊥ = {y ∈ R

n : y · nK(x) = 0}. A regular boundary point x ∈ ∂K
is normal (or second order differentiable) if f is twice differentiable at 0 in the
following sense: f is differentiable at 0 and there exists a symmetric linear map
A : Rn → R

n such that for v, w ∈ nK(x)⊥,

f(w) = f(v) +∇f(v) · (w − v) +
1

2
A(w − v) · (w − v) + o

(
‖w − v‖2

)
,

as ‖w − v‖ → 0. Note that almost all boundary points are normal (see [31, Theo-
rem 2.5.5]) and the (generalized) Gauss-Kronecker curvature Hn−1(K,x) = det(A)
exists for normal boundary points.

Lemma 5.5. Let K ∈ K(Rn). If x ∈ ∂K is a normal boundary point, then

lim
δ→0+

x · nK(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xφ
δ ‖

tn−1ψ(tx/‖x‖) dt = αn Hn−1(K,x)
1

n+1 φ(x)−
2

n+1 ψ(x).

In the proof of Lemma 5.5 we will use the following two results.

Lemma 5.6 ([7, Lemma 2.9]). Let K ∈ K(Rn) with 0 ∈ int K and ε > 0. If x ∈ ∂K
is a normal boundary point such that Hn−1(K,x) > 0, then there is δ0 = δ0(ε) such
that for all δ ∈ (0, δ0),

[x, 0] ∩ Lφ
δ = [x, 0] ∩Kφ

δ ,
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where L = K ∩ (x + εBn). In particular, if we set {xφ,K
δ } = ∂Kφ

δ ∩ [x, 0] and

{xφ,L
δ } = ∂Lφ

δ ∩ [x, 0], then xφ,K
δ = xφ,L

δ .

Lemma 5.7 ([34]). Let K ∈ K(Rn). If x ∈ ∂K is a normal boundary point, then

lim
δ→0+

x · nK(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xδ‖
tn−1 dt = αn Hn−1(K,x)

1
n+1 .

Proof of Lemma 5.5. Since x is normal, Hn−1(K,x) exists. First, if Hn−1(K,x) =
0, then

x · nK(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xφ
δ ‖

tn−1ψ(tx/‖x‖) dt ≤
(
max
K

ψ
) x · nK(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xδ/α‖
tn−1 dt.

By Lemma 5.7, we conclude that

lim sup
δ→0+

x · nK(x)

δ
2

n+1 ‖x‖n

∫ ‖x‖

‖xφ
δ ‖

tn−1ψ
( tx

‖x‖
)
dt

≤ maxK ψ

α
2

n+1

lim sup
δ→0+

x · nK(x)

(δ/α)
2

n+1 ‖x‖n

∫ ‖x‖

‖xδ/α‖
tn−1 dt = 0.

Now assume Hn−1(K,x) > 0 and let ε > 0 be arbitrary. Set L = K ∩ (x+ εBn).
Then Hn−1(L, x) = Hn−1(K,x) and nK(x) = nL(x). Furthermore, for δ small
enough, we have

x · nK(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xφ,K
δ ‖

tn−1ψ(tx/‖x‖) dt = x · nL(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xφ,L
δ ‖

tn−1ψ(tx/‖x‖) dt.

Let z ∈ (intL)∩ [0, x]. We apply Corollary 5.3 on L with ε and obtain, for y ∈ ∂L,

‖yδ/β − z‖ ≥ ‖yφ,Lδ − z‖ ≥ ‖yδ/α − z‖,

where β = max∂L φ+ε and α = min∂L φ−ε. Since ‖x‖ = ‖z‖+‖x−z‖, this yields
‖xδ/β‖ ≥ ‖xφ,L

δ ‖ ≥ ‖xδ/α‖. We conclude that

x · nL(x)

δ
2

n+1 ‖x‖n

∫ ‖x‖

‖xφ,L
δ ‖

tn−1ψ
( tx

‖x‖
)
dt

≤ x · nL(x)

δ
2

n+1 ‖x‖n

(
max

t∈
[
‖xL

δ/α
‖,‖x‖

]ψ( tx

‖x‖
))∫ ‖x‖

‖xL
δ/α

‖
tn−1 dt,

and therefore

lim sup
δ→0+

x · nL(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xφ,L
δ ‖

tn−1ψ(tx/‖x‖) dt ≤ αn Hn−1(L, x)
1

n+1
ψ(x)

α2/(n+1)
.

Conversely, we have

x · nL(x)

δ
2

n+1 ‖x‖n

∫ ‖x‖

‖xφ,L
δ ‖

tn−1ψ
( tx

‖x‖
)
dt

≥ x · nL(x)

δ
2

n+1 ‖x‖n

(
min

t∈
[
‖xL

δ/β
‖,‖x‖

]ψ( tx

‖x‖
))∫ ‖x‖

‖xL
δ/β

‖
tn−1 dt,
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and hence

lim inf
δ→0+

x · nL(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xφ,L
δ ‖

tn−1ψ(tx/‖x‖) dt ≥ αn Hn−1(L, x)
1

n+1
ψ(x)

β2/(n+1)
.

Since ε > 0 can be chosen arbitrarily small and β, α → φ(x) for ε → 0, we conclude
that

lim
δ→0+

x · nL(x)

δ2/(n+1)‖x‖n
∫ ‖x‖

‖xφ,L
δ ‖

tn−1ψ(tx/‖x‖) dt = αn Hn−1(L, x)
1

n+1 φ(x)−
2

n+1 ψ(x).

This finishes the proof, as, for δ > 0 sufficiently small, we have nL(x) = nK(x),

Hn−1(L, x) = Hn−1(K,x), and xφ,L
δ = xφ,K

δ . �

The proof of (4) is now straightforward. By Lemma 5.1 we have

Ψ(K)−Ψ(Kφ
δ )

δ
2

n+1

=

∫
∂K

x · nK(x)

δ(n+1)/2‖x‖n
∫ ‖x‖

‖xδ‖
tn−1ψ(tx/‖x‖) dt dx.

By Corollary 5.3, there is δ0 > 0 such that the integrand is bounded by an integrable
function for all δ < δ0. By Lebesgue’s Dominated Convergence Theorem and
Lemma 5.5, we conclude that

lim
δ→0+

Ψ(K)−Ψ(Kφ
δ )

δ
2

n+1

= αn

∫
∂K

Hn−1(K,x)
1

n+1φ(x)−
2

n+1ψ(x) dx.
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