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UNIFORM RESOLVENT AND STRICHARTZ ESTIMATES

FOR SCHRÖDINGER EQUATIONS

WITH CRITICAL SINGULARITIES

JEAN-MARC BOUCLET AND HARUYA MIZUTANI

Abstract. This paper deals with global dispersive properties of Schrödinger
equations with real-valued potentials exhibiting critical singularities, where
our class of potentials is more general than inverse-square type potentials and
includes several anisotropic potentials. We first prove weighted resolvent es-
timates, which are uniform with respect to the energy, with a large class of
weight functions in Morrey–Campanato spaces. Uniform Sobolev inequalities
in Lorentz spaces are also studied. The proof employs the iterated resolvent
identity and a classical multiplier technique. As an application, the full set of
global-in-time Strichartz estimates including the endpoint case, is derived. In
the proof of Strichartz estimates, we develop a general criterion on perturba-
tions ensuring that both homogeneous and inhomogeneous endpoint estimates
can be recovered from resolvent estimates. Finally, we also investigate uniform
resolvent estimates for long range repulsive potentials with critical singularities
by using an elementary version of the Mourre theory.

1. Introduction

Given a self-adjoint operator H on a Hilbert space H and z ∈ ρ(H), the resolvent
(H − z)−1 is a bounded operator on H and satisfies

||(H − z)−1||H→H =
1

dist(z, σ(H))

by the spectral theorem. Hence there is no hope of obtaining the estimate in the
operator-norm sense, which is uniform with respect to z close to the spectrum of H.
However, uniform estimates in z can be recovered for many important operators by
considering, e.g., the weighted resolvent w(H − z)−1w∗ with an appropriate closed
operator w. Such uniform resolvent estimates play a fundamental role in the study
of broad areas, including spectral and scattering theory for Schrödinger equations.
In particular, as observed by Kato [36] and Rodnianski and Schlag [56], uniform
resolvent estimates are closely connected to global-in-time dispersive estimates,
such as time-decay estimates, or Strichartz estimates, which are important tools
in the scattering theory for nonlinear dispersive partial differential equations; see
monographs [12, 62].
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In this paper we study uniform resolvent estimates and their applications to
global-in-time Strichartz estimates for Schrödinger operators

H = −Δ+ V (x)

on L2(Rn) with real-valued potentials V (x) exhibiting critical singularities, where
Δ is the usual Laplacian. Typical examples of critical potentials we have in mind
are inverse-square type potentials, i.e., |x|2V ∈ L∞, which represent a borderline
case for the validity of these estimates; see [19, 29]. Note however that our class of
potentials includes several examples so that |x|2V /∈ L∞.

If V decays sufficiently fast at infinity and has enough regularity, say V has a
finite global Kato norm (see [56]), then there is a vast literature on both uniform
resolvent estimates with various type of weights w and their applications to global-
in-time Strichartz estimates under certain regularity conditions on the zero energy;
see [30, 34, 35, 57] for resolvent estimates and [2, 4, 5, 16, 17, 21, 22, 28, 45, 56] for
dispersive and Strichartz estimates, and the references therein. On the other hand,
when V has at least one critical singularity and decays like |x|−2 at infinity, although
there are still many results on resolvent estimates (see [3,11,23,49,51] and references
therein), the choice of w has been limited to a specific type of weights which restricts
the range of applications. In particular, in contrast to the case of inverse-square
type potentials (for which we refer to [10, 11, 24, 44, 52, 53] and references therein),
there seems to be no previous literature on global-in-time Strichartz estimates for
large potentials with critical singularities which are not of inverse-square type; see
a recent result [43] for small potentials with critical singularities. Finally, if V has
at least one critical singularity and decays slower than |x|−2 at infinity, there seems
to be no positive results on both uniform resolvent and global-in-time dispersive
estimates, while there are several positive results on resolvent estimates if V is less
singular; see [26, 50].

In light of those observations, the purpose of this paper is twofold.
The first purpose is to investigate uniform estimates for the weighted resolvent

w(H − z)−1w with potentials V exhibiting critical singularities and with a wide
class of weight functions w in Morrey–Campanato spaces. We also consider uniform
estimates for (H − z)−1 in Lp spaces (or more generally, Lorentz spaces), known as
uniform Sobolev inequalities which are due to [40] for constant coefficient operators.
Our admissible class of potentials includes several anisotropic potentials, which are
more general than inverse-square type potentials, so that V can have a critical
singularity of type |x|−2 at the origin and multiple Coulomb type singularities
away from the origin.

As an application we show the full set of global-in-time Strichartz estimates (in-
cluding both homogeneous and inhomogeneous endpoint cases) for the above class
of potentials, which improves upon the previous references [10,11,43] in the follow-
ing directions. On one hand, we can consider a larger class of admissible potentials
with critical singularities. More importantly, we provide a general criterion on po-
tentials ensuring that both homogeneous and inhomogeneous endpoint Strichartz
estimates can be recovered from uniform resolvent estimates. More precisely, we
develop an abstract smooth perturbation method which enables us to deduce the
full set of Strichartz estimates for the perturbed operator H from corresponding
estimates for the unperturbed operator H0 and the uniform Sobolev inequality for
the resolvent (H − z)−1. This extends the previous techniques by [2, 11, 56] to a
quite general setting.
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Another important problem is to investigate the validity of global-in-time Strich-
artz estimates for Schrödinger operators with long range potentials with singulari-
ties (e.g., in the Coulombic case) in view of their applications to the study of long
time behaviors of the Hartree equation with external potentials, which is a nonlin-
ear model for the quantum dynamics of an atom. As a step toward this problem,
the second purpose of the paper is to consider resolvent estimates for long range
repulsive potentials with critical singularities. More specifically, we show how some
elementary version of the Mourre theory can be used to obtain uniform resolvent es-
timates in this strongly singular case (the potentials and weight functions in [26,50]
were not as singular as ours).

Finally, we mention several possible applications of the results in this paper. As
already observed, our Strichartz estimates could be used to study scattering theory
for nonlinear Schrödinger equations with singular potentials. For recent results
in this context we refer to [41, 42, 64] in which the case with the inverse-square
potential was studied. Another range of applications, which will be considered in a
subsequent work [47], is about eigenvalues estimates for Schrödinger operators with
complex-valued potentials. As already observed by [27], uniform resolvent estimates
with singular weights are an important input in the derivation of eigenvalues bounds
with singular potentials.

2. Notation and main results

Let us introduce the class of potentials we will use. We distinguish the dimension
n = 2 from the case n ≥ 3. For 1 ≤ σ ≤ q < ∞, we consider the Morrey–Campanato
norms

||W ||Mq,σ := sup
x∈Rn

r>0

r
n
q

(
r−n

∫
|y−x|<r

|W (y)|σdy
) 1

σ

.

The space Mq,σ is the set of measurable functions with finite || · ||Mq,σ norm. For
1 ≤ q, σ ≤ ∞, we will use the Lorentz norms

||W ||Lq,σ =
∣∣∣∣s 1

q−
1
σ W ∗∣∣∣∣

Lσ((0,∞),ds)
,

where W ∗(s) is the decreasing rearrangement of W (see paragraph 3.1 below for
basic properties of Morrey–Campanato and Lorentz spaces). We simply recall here
that these norms have the same scaling as the usual Lq norm; namely, they are
invariant under the scaling W (x) �→ λ

n
q W (λx). Also note that Lq,∞ ⊂ Mq,σ if

1 ≤ q < ∞ and 1 ≤ σ < q. Let us set

X σ
n :=

{
V : Rn → R | |x|V ∈ Mn,2σ and x · ∇V ∈ M

n
2 ,σ

}
if n ≥ 3 and (n− 1)/2 < σ ≤ n/2,

X2 :=
{
V : R2 → R | |x|2(x · ∇)�V ∈ L∞(R2), � = 0, 1

}
if n = 2.

Assumption 2.1 (n ≥ 3). There exists δ0 > 0 such that for all f ∈ C∞
0 (Rn \ 0),

〈(−Δ+ V )f, f〉 ≥ δ0||∇f ||2L2 ,(2.1)

〈(−Δ− V − x · (∇V ))f, f〉 ≥ δ0||∇f ||2L2 .(2.2)

Here and below, 〈f, g〉 =
∫
f(x)g(x)dx is the usual L2 inner product.
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Example 2.2 (n ≥ 3). A typical example satisfying Assumption 2.1 is the inverse-
square potential −c0|x|−2 with c0 < (n − 2)2/4. Our class also includes inverse-
square type potentials V such that

|x|2V ∈ L∞, |x|2x · ∇V ∈ L∞, V ≥ −c0|x|−2, −V − x · ∇V ≥ −c0|x|−2.

In these cases (2.1) and (2.2) follow from the classical Hardy’s inequality,

(n− 2)2

4

∣∣∣∣|x|−1f
∣∣∣∣2
L2 ≤ ||∇f ||2L2 , f ∈ C∞

0 (Rn \ 0).

Moreover, we have V ∈ X σ
n ∩Ln

2 ,∞ since |x|−1 ∈ Ln,∞ ⊂ Mn,2σ for all 1 ≤ σ < n/2.
Assumption 2.1 is actually general enough to accommodate several aniso-

tropic potentials so that |x|2V /∈ L∞. For instance, we let c1, c2 > 0, α ∈ R
n

and χ ∈ C1(R) such that 0 ≤ χ ≤ 1 and |χ(k)(t)| ≤ |t|−k−1 for |t| ≥ 1. Define

V (x) =
(
− (n− 2)2

4
+ c1

)
|x|−2 − c2χ(|x− α|)|x− α|−1.

Then V ∈ X σ
n ∩ L

n
2 ,∞ and V satisfies Assumption 2.1 with δ0 = c1−

c2(2 + sup |χ′|)(|α| + 1) if 0 < c2 < c1(2 + sup |χ′|)−1(|α|+ 1)−1. One can also
consider multiple Coulomb-type singularities.

Assumption 2.3 (n = 2). There exists δ0 > 0 such that, almost everywhere on
R2,

(2.3) V > 0, δ−1
0 V ≥ −x · ∇V ≥ (1 + δ0)V.

Furthermore, V −1 is locally integrable in R2.

Example 2.4 (n = 2). A typical example of V ∈ X2 satisfying Assumption 2.3 is
V = V1 + V2 such that

V1(x) = a(θ)r−ν〈r〉ν−μ, V2(x) = a(θ)r−2(1 + (log r)2)−δ, r = |x|, θ = x/r,

where a ∈ L∞(S1) such that a > c0 on S1 with some c0 > 0, μ ≥ 2, ν ∈ (1, 2], and
δ ≥ 0. Indeed,

−x·∇V1 =
(
μ− μ− ν

1 + r2

)
V1 ≥ νV1, −x·∇V2 =

(
2+δ− δ

1 + (log r)2

)
V2 ≥ (2+δ)V2.

Furthermore, if μ > 2, ν ∈ (1, 2) and δ > 1/2, then V1, V2 ∈ L1(R2).

Let us note that both X σ
n and X2 are invariant by the scaling

V (x) �→ λ−2V (x/λ), λ > 0,(2.4)

in the sense that all of norms
∣∣∣∣|x|V ∣∣∣∣

Mn,2σ , ||x · ∇V ||
M

n
2

,σ and
∣∣∣∣|x|2(x · ∇)�V

∣∣∣∣
L∞

are invariant under (2.4). Both Assumptions 2.1 and 2.3 are also invariant under
the scaling (2.4). More precisely, if one of them is satisfied by some V , it is still
satisfied by λ−2V (x/λ) with the same constant δ0. According to this invariance,
all estimates in theorems and corollaries in this section (except Theorem 2.19 and
Corollary 2.21) are invariant under the scaling (2.4).

In the rest of this paper, we letH be the self-adjoint realization of −Δ+V defined
in paragraph 3.2. The first result is on uniform weighted resolvent estimates in L2.



UNIFORM RESOLVENT AND STRICHARTZ ESTIMATES 7297

Theorem 2.5 (Uniform weighted resolvent estimates).

(1) Suppose n ≥ 3 and n−1
2 < σ ≤ n

2 . Let V ∈ X σ
n satisfy Assumption 2.1.

Then, for any w1, w2 ∈ Mn,2σ(Rn), z ∈ C \ [0,∞), and f ∈ C∞
0 (Rn)∣∣∣∣w1(H − z)−1w2f

∣∣∣∣
L2(Rn)

≤ C||w1||Mn,2σ ||w2||Mn,2σ ||f ||L2(Rn)(2.5)

with some constant C > 0 independent of w1, w2, f , and z.
(2) Suppose n = 2 and V ∈ X2 satisfies Assumption 2.3. Then

||V 1
2 (H − z)−1V

1
2 f ||L2(R2) ≤ C||f ||L2(R2), z ∈ C \ [0,∞), f ∈ C∞

0 (R2 \ 0).

This theorem means that we have uniform estimates for w(H−z)−1w (for n ≥ 3)

and V
1
2 (H−z)−1V

1
2 (for n = 2). To be completely rigorous, the uniform estimates

hold for the closure of those weighted resolvents to L2; indeed, in general the
multiplication by w or V

1
2 are not bounded on L2 so the weighted resolvents can

not be interpreted (for any fixed z) as compositions of bounded operators on L2.
For completeness, we record here that, for n = 3, w ∈ L2

loc, and hence wf ∈ L2,

whenever f ∈ C∞
0 (Rn). When n = 2, V

1
2 ∈ L∞

loc(R
2 \ 0) so V

1
2 f ∈ L2 when

f ∈ C∞
0 (R2 \ 0).

Remark 2.6. When w1 = w2 = |x|−1, (2.5) holds for more general potentials.
We refer to Theorem 6.1 which improves upon the previous results in [11] (we do
not assume |x|2V ∈ L∞) and [3] (see Remark B.3). Compared with this result, the
interest of Theorem 2.5(1) is that our class of admissible weights is quite general and
particularly includes the weight w1 = w2 = |V |1/2. This fact is crucial in applying
(2.5) to obtain estimates in Lp spaces, such as uniform Sobolev and Strichartz
estimates (see below) with potentials involving multiple singularities, as in Example
2.2.

It is also worth noting that, in contrast to higher-dimensional cases n ≥ 3, the
two-dimensional free resolvent (−ΔR2 − z)−1 has a logarithmic singularity at z = 0
(see, e.g., [35]), and hence one cannot hope to obtain uniform estimates in z with
any kind of physical weight w(x). Theorem 2.5(2) thus demonstrates a repulsive
effect of the potential V satisfying Assumption 2.3.

Let e−itH be the unitary group generated by H. For F ∈ L1
loc(R;L

2), we define

ΓHF (t) =

∫ t

0

e−i(t−s)HF (s)ds,

and call ΓH the Duhamel operator associated to H. It is defined by means of the
Bochner integral. Then, for ψ ∈ L2 and F ∈ L1

loc(R;L
2), the unique (mild) solution

u(t) to the Schrödinger equation

i∂tu = Hu+ F (t); u|t=0
= ψ,(2.6)

is given by the Duhamel formula (see, e.g., [1, Section 3])

u(t) = e−itHψ − iΓHF (t).(2.7)

Then Theorem 2.5 implies the following result. As usual, when B is a Banach space
and p ≥ 1, the norm ||v||Lp(R;B) stands for the Lp(R) norm of t �→ ||v(t)||B.
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Corollary 2.7 (L2 space-time estimates). Under the conditions of Theorem 2.5,
the solutions to (2.6) satisfy the following estimates.

(1) If n ≥ 3, w ∈ Mn,2σ(Rn), and w−1 ∈ L2
loc(R

n), then there exists C > 0
such that

||wu||L2(R;L2(Rn)) ≤ C||ψ||L2 + C||w−1F ||L2(R;L2(Rn))

for all ψ∈L2(Rn) and F ∈L1
loc(R;L

2(Rn)) such that w−1F ∈L2(R;L2(Rn)).
(2) If n ≥ 2, there exists C > 0 such that

||V 1
2 u||L2(R;L2(R2)) ≤ C||ψ||L2 + C||V − 1

2F ||L2(R;L2(R2))

for all ψ∈L2(R2) and F ∈L1
loc(R;L

2(R2)) such that V − 1
2F ∈L2(R;L2(R2)).

Under the same assumptions on V , we next consider estimates in Lebesgue or
Lorentz spaces.

Theorem 2.8 (Uniform Sobolev estimates). Let n ≥ 3 and n−1
2 < σ ≤ n

2 . If

V ∈ X σ
n ∩ L

n
2 ,∞ satisfies Assumption 2.1, then there exists C > 0 such that

(2.8)
∣∣∣∣(H − z)−1f

∣∣∣∣
L

2n
n−2

,2
(Rn)

≤ C||f ||
L

2n
n+2

,2
(Rn)

,

z ∈ C \ [0,∞), f ∈ L2(Rn) ∩ L
2n

n+2 ,2(Rn).

This theorem means essentially that the resolvent (H−z)−1 is uniformly bounded

(in z) between L
2n

n+2 ,2 and L
2n

n−2 ,2, but, similarly to Theorem 2.5, we state it as above
to make a clear distinction between the resolvent (H − z)−1 (defined on L2) and

its closure to L
2n

n−2 ,2. A similar remark also holds for Theorem 2.11 below. The
additional condition V ∈ L

n
2 ,∞ is due to the use of the fact that the multiplication

by |V |1/2 is bounded from L
2n

n−2 ,2 to L2, which allows us to deduce (2.8) from
weighted estimates in Theorem 2.5(1) and a perturbation method in section 4.
Note that the norm in L

n
2 ,∞ is also invariant by the scaling (2.4).

Remark 2.9. Theorem 2.8 extends a part of the result by Kenig, Ruiz, and Sogge
[40] for constant coefficient operators to Schrödinger operators with potentials. Ex-
tending such uniform Sobolev estimates to variable coefficients operators is a topic
of current interest. Recently Guillarmou and Hassell [32] extended such estimates
to the Laplace operator on nontrapping asymptotically conic manifolds, and Has-
sell and Zhang [33] extended it to potential perturbations with smooth potentials
decaying at infinity like 〈x〉−3 and without 0 resonance or eigenvalue. Here we
provide a similar result on R

n for potentials with critical singularity and weaker
decay at infinity.

To state our results on Strichartz inequalities, we recall the following classical
definition.

Definition 2.10. A pair (p, q) is said to be an (n-dimensional) admissible pair if

2 ≤ p, q ≤ ∞,
2

p
= n

(1
2
− 1

q

)
, (n, p, q) = (2, 2,∞).
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Theorem 2.11 (Global Strichartz estimates).

(1) Let n ≥ 3, n−1
2 < σ ≤ n

2 , and V ∈ X σ
n satisfy Assumption 2.1. Then, for

any admissible pairs (p, q) and (p̃, q̃) with p, p̃ > 2, there exists C > 0 such
that the solution u to (2.6) satisfies

||u||Lp(R;Lq,2(Rn)) ≤ C||ψ||L2(Rn) + C||F ||Lp̃′ (R;Lq̃′,2(Rn))(2.9)

for all ψ ∈ L2(Rn) and F ∈ L1
loc(R;L

2(Rn)) ∩ Lp̃′
(R;Lq̃′,2(Rn)). Further-

more, if in addition V ∈ L
n
2 ,∞, then (2.9) holds for all admissible pairs

including the endpoint cases.
(2) If n = 2 and V ∈ X2∩L1 satisfies Assumption 2.3, then for any admissible

pairs (p, q) and (p̃, q̃), there exists C > 0 such that

||u||Lp(R;Lq,2(R2)) ≤ C||ψ||L2(R2) + C||F ||Lp̃′ (R;Lq̃′,2(R2))

for any ψ ∈ L2(R2) and F ∈ L1
loc(R;L

2(R2)) ∩ Lp̃′
(R;Lq̃′(R2)).

Technically, the additional condition V ∈ L1 in the two-dimensional case is due
to the fact that 〈x〉−1 is not −Δ-smooth; see after Proposition 5.2. Note also that
we take F ∈ L1

loc(R;L
2) to make sure that ΓHF has a clear sense; of course, the

above Strichartz estimates show that ΓH has a bounded closure as an operator
between Lp̃′

(R;Lq̃′,2) and Lp(R;Lq,2) if n ≥ 3, or Lp̃′
(R;Lq̃′) and Lp(R;Lq) if

n = 2. Using the continuous embeddings Lq,2 ⊂ Lq and Lq̃′,2 ⊂ Lq̃′ (see paragraph
3.1), we see that (2.9) allows us to recover the usual Strichartz estimates

||u||Lp(R;Lq(Rn)) ≤ C||ψ||L2 + C||F ||Lp̃′ (R;Lq̃′ (Rn))

for ψ ∈ L2(Rn) and F ∈ L1
loc(R;L

2(Rn)) ∩ Lp̃′
(R;Lq̃′(Rn)).

When n ≥ 3, we can also add a small scaling critical potential.

Corollary 2.12. Let n ≥ 3, n−1
2 < σ ≤ n

2 , and V1 ∈ X σ
n satisfy Assumption 2.1.

Let V2 be real valued such that ||V2||M n
2

,σ is sufficiently small. Then the solution

u to (2.6) with H = −Δ + V1 + V2 satisfies (2.9) for all admissible pairs (p, q)
and (p̃, q̃) with p, p̃ > 2. Moreover, if in addition ||V2||Ln

2
,∞ is small enough and

V1 ∈ L
n
2 ,∞, then (2.9) holds for all admissible pairs including the endpoint cases.

Remark 2.13. When n ≥ 3, Theorem 2.11(1) and Corollary 2.12 cover all admissible
cases, including the inhomogeneous endpoint case (p, q, p̃, q̃) = (2, 2n

n−2 , 2
2n
n−2 ), while

previous literature [10, 11, 56] considered homogeneous estimates only. Here we
recall that, for nonendpoint admissible pairs, the inhomogeneous estimates follow
from the homogeneous estimates and the Christ–Kiselev lemma (see Appendix A),
but this is not the case for the endpoint estimate. Also note that [2, 45] proved
Strichartz estimates for all admissible pairs, but only for bounded potentials so
that V = o(〈x〉−2〈log x〉−2) or C1 potentials satisfying ∂α

xV = O(〈x〉−2−|α|), |α| ≤
1. Similarly to Theorem 2.5, our assumption allows one strong singularity and
multiple weak singularities. We also refer to a recent result [43] which studied the
nonendpoint estimates for small V ∈ M

n
2 ,σ and the homogeneous endpoint estimate

for small V ∈ L
n
2 . Compared with this result, the novelty of Corollary 2.12 is again

the inhomogeneous endpoint estimate for small V2 ∈ L
n
2 ,∞.

When n = 2, the papers [10,24] considered a class of scaling invariant potentials
of the form V (x) = a(θ)r−2 with a(θ) > 0. Although we impose a slightly stronger
condition, such as V ∈ L1(R2), we do not require such symmetry. Moreover,
methods in [10, 24] essentially rely on the explicit formula of the kernel of e−itH ,
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and it seems to be difficult to extend them to potentials which are not invariant
under the scaling V (x) �→ λ2V (λx).

Remark 2.14. If we take δ0 = 0 in Assumption 2.1, the above results for n ≥ 3 do
not hold in general. For instance, endpoint Strichartz estimates can fail in the case

of V (x) = − (n−2)2

4|x|2 . We refer to a subsequent work [48] for more detail.

Remark 2.15. As in Corollary 2.12, Theorem 2.5 (resp. 2.8) still holds if we add a
small potential V2 ∈ M

n
2 ,σ (resp. V2 ∈ L

n
2 ,∞) to the operator H. This observation

will be essentially proved in the proof of Corollary 2.12 in section 6.5.

Remark 2.16. At a formal level, the proof of Theorems 2.5, 2.8, and 2.11 are very
simple and are based on the following iterated resolvent and Duhamel identities:

R(z) = R0(z)−R0(z)V R0(z) +R0(z)V R(z)V R0(z),

ΓH = Γ−Δ − iΓ−ΔV Γ−Δ − Γ−ΔV ΓHV Γ−Δ,

which can be seen, at least formally, by applying usual resolvent or Duhamel iden-
tities twice, where R(z) = (H − z)−1 and R0(z) = (−Δ − z)−1. In the case of
resolvent estimates, for instance, this resolvent formula, together with the decom-
position V = |x|−1 · |x|V , allows us to deduce desired estimates for R(z) from
estimates for free resolvents R0(z), R0(z)|x|V , |x|−1R0(z) and the estimate for the
weighted resolvent |x|−1R(z)|x|−1. The estimates for the free resolvents can be
proved by using the explicit formula of R0(z), while the proof of the estimate of
|x|−1R(z)|x|−1 relies on a multiplier technique by [3]. A rough strategy for the
proof of Strichartz estimates is similar.

However, we stress that, due to a strong singularity of V at the origin, justifying
the above formulas is not so obvious. In section 4, we develop, in a quite abstract
setting, such a perturbative technique with a rigorous justification of the above
observation.

In the following Theorem 2.19 we consider a different kind of assumption on the
potentials. They can be of long range type, but locally we allow them to have a
critical singularity which scales as our previous potentials (i.e., typically as |x|−2).

Assumption 2.17.

(1) If n ≥ 3, (x · ∇)�V ∈ L
n
2 ,∞
loc (Rn) for � = 0, 1, 2. If n = 2, V = V1 + V2 with

(x · ∇)�V1 ∈ L1
loc(R

2) and |x|2(x · ∇)�V2 ∈ L∞
loc(R

2) for � = 0, 1, 2.
(2) There exists δ0 > 0 such that for all f ∈ C∞

0 (Rn \ 0),
〈(−Δ+ V )f, f〉 ≥ δ0||∇f ||2L2 .

(3) There exists δ0 > 0 such that for all f ∈ C∞
0 (Rn \ 0),

〈(−2Δ− x · ∇V )f, f〉 ≥ δ0 ×
{
||∇f ||2L2 if n ≥ 3,

||∇f ||2L2 + ||wf ||2L2 if n = 2,

for some smooth positive function w on R
2 \ 0 such that |x|w ∈ L∞.

(4) There exists C > 0 such that for any f ∈ C∞
0 (Rn \ 0),

|〈(2V + x · ∇V )f, f〉| ≤ C〈(−Δ+ V + 1)f, f〉,
|〈(2x · ∇V + (x · ∇)2V )f, f〉| ≤ C〈(−2Δ− x · ∇V )f, f〉.

In (2), (3) and (4), all brackets are understood in the form sense (see para-
graph 3.2).
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Example 2.18. Assumption 2.17 is satisfied by any V ∈ C2(Rn \ {0}) such that,
for some μ ∈ (0, 2]:

• if n ≥ 3, there exist constants c0 < (n−2)2

4 and C > 0 such that

V (x)≥−c0|x|−2, −x · ∇V (x)≥C−1〈x〉−μ − 2c0|x|−2, |(x · ∇)2V (x)|≤C|x|−μ;

• if n ≥ 2, there exist constants c1, c2, C > 0 such that

V (x) ≥ c1|x|−μ, −x · ∇V (x) ≥ c2|x|−μ, |(x · ∇)2V (x)| ≤ C|x|−μ.

In this case, (3) holds with w(x) = |x|−μ
2 〈x〉−1+μ

2 .

Theorem 2.19. Let V satisfy Assumption 2.17, and let H = −Δ+ V .

(1) If n ≥ 3, then∣∣∣∣|x|−1(H − z)−1|x|−1f
∣∣∣∣
L2(Rn)

≤ C||f ||L2(Rn), z ∈ C \ R, f ∈ C∞
0 (Rn \ 0).

(2) If n = 2, then, for w in Assumption 2.17(3),∣∣∣∣w(H − z)−1wf
∣∣∣∣
L2(R2)

≤ C||f ||L2(R2), z ∈ C \ R, f ∈ C∞
0 (R2 \ 0).

Remark 2.20. The proof of this theorem is quite different from that of Theorem
2.5 and is based on a version of Mourre’s theory. The brief outline is as follows (see
section 7 for details): the commutator S := [H, iA] = −2Δ−x ·∇V is positive, and
the double commutator [H,S] satisfies −S � [H,S] � S by Assumption 2.17(3)
and (4), respectively, where A = −i(x ·∇+∇·x)/2 is the generator of the dilation.
Having in mind that the (trivial) strict Mourre’s estimate S ≥ (S1/2)2 holds without
any spectral localization, one can show by means of Mourre’s differential inequality
technique (in this step a careful justification of routine arguments will be required
due to the strong singularity of V ) that, for a large constant κ > 1, the operator

S1/2(A+ iκ)−1(H − z)−1(A− iκ)−1(S1/2)∗

is bounded on L2 uniformly in z /∈ R. This uniform bound, together with Hardy’s
inequality if n ≥ 3 or Assumption 2.17(3) itself if n = 2, yields the assertion.

As a consequence, we obtain weighted L2 space-time estimates.

Corollary 2.21. Let V satisfy Assumption 2.17. Let u be given by (2.7).

(1) If n ≥ 3, then there exists C > 0 such that∣∣∣∣|x|−1u
∣∣∣∣
L2(R;L2(Rn))

≤ C||ψ||L2(Rn) + C
∣∣∣∣|x|F ∣∣∣∣

L2(R;L2(Rn))

for all ψ! ∈L2(Rn) and F ∈L1
loc(R;L

2(Rn)) such that |x|F ∈L2(R;L2(Rn)).
(2) If n = 2, then then there exists C > 0 such that∣∣∣∣wu∣∣∣∣

L2(R;L2(R2))
≤ C||ψ||L2(R2) + C

∣∣∣∣w−1F
∣∣∣∣
L2(R;L2(R2))

for all ψ∈L2(R2) and F ∈L1
loc(R;L

2(R2)) such that w−1F ∈L2(R;L2(R2)).

Remark 2.22. Uniform resolvent estimates for long-range potentials decaying like
〈x〉−μ at infinity (with less singularities than the present case) have been previously
established by [26,50] with the usual smooth weight 〈x〉−ρ for some ρ > 1/2+μ/4.
Our assumption does not require such a pointwise decaying condition at infinity.
In passing, we also show that we can allow the singular weight |x|−1, which (as
already observed in Remark 2.6) would be an important input in the application
to Strichartz estimates for long-range singular potentials.
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Another closely related reference is the paper [55]. Compared to this one, our
main contribution is a simplification of the proof (which is closer to the original
Mourre theory and does not use interpolation spaces); we also consider more sin-
gular potentials but, as mentioned by [55] which formally only considered smooth
potentials, one can expect the techniques of [55] to work as well for potentials
similar to ours.

The rest of the paper is organized as follows. In the first part of section 3,
we record several basic facts on some function spaces used throughout the paper.
Its second part discusses the precise definition of our Schrödinger operator, H =
−Δ + V , and its domain. Section 4 is devoted to abstract perturbation methods
which play a crucial role in the proof of main theorems. In section 5 we collect
several known results on uniform estimates for the free resolvent. In section 6
we prove the main theorems, except Theorem 2.19 and Corollary 2.21, by using
materials prepared in sections 4 and 5 and Appendix B, while the proof of Theorem
2.19 and Corollary 2.21 is given in section 7. In Appendix A, we recall the Christ–
Kiselev lemma which will be used several times in the paper. Finally, Appendix
B is devoted to the proof of Theorem 6.1 on uniform resolvent estimates with the
homogeneous weight |x|−1.

3. Preliminary materials

3.1. Lorentz and Morrey–Campanato spaces. Given a measure space (X,μ)
and indices 0 < q, σ ≤ ∞, the Lorentz space Lq,σ is the set of measurable functions
f : X → C for which, if we let df (α) = μ({x | |f(x)| > α}) be the distribution
function defined for α ≥ 0 and we let f∗(s) = inf{α > 0 | df (α) ≤ s} be the
rearrangement defined for s > 0,

||f ||Lq,σ :=
∣∣∣∣s 1

q−
1
σ f∗∣∣∣∣

Lσ((0,∞),ds)
< ∞.

Two functions of Lq,σ that coincide a.e. will be considered equal, as in usual
Lebesgue spaces. We note in passing that Lq,q = Lq when q ≥ 1. The func-
tional || · ||Lq,σ is in general not a norm (the triangle inequality fails). However,
when 1 < q < ∞ and 1 ≤ σ ≤ ∞, there is a norm ||| · |||Lq,σ on Lq,σ for which
Lq,σ is a Banach space and which is equivalent to || · ||Lq,σ in the sense that
||f ||Lq,σ ≤ |||f |||Lq,σ ≤ C(q, σ)||f ||Lq,σ for some positive constant C(q, σ). Thus
all continuity estimates for linear operators can be expressed in terms of || · ||Lq,σ .
The Lorentz spaces are nondecreasing in σ, i.e., Lq,σ1 ⊂ Lq,σ2 if σ1 ≤ σ2, with
continuous embeddings. If 1 ≤ q, σ ≤ ∞ and 1

q1
+ 1

q2
= 1

q ,
1
σ1

+ 1
σ2

= 1
σ , one has

the Hölder inequality

||fg||Lq,σ ≤ C||f ||Lq1,σ1 ||g||Lq2,σ2 .(3.1)

If 1 < q, σ < ∞ and if (X,μ) has no atoms and is sigma-finite, one has
(
Lq,σ

)∗
=

Lq′,σ′
and

||g||Lq′,σ′ ≈ sup
1=||f ||Lq,σ

∣∣∣∣∫
X

fgdμ

∣∣∣∣ ,(3.2)

where ≈ means that the quotient of the two sides (when g = 0) is bounded from
above and below by constants independent of g (see [31, pp. 54–55]). Here and in
what follows, p′ = p/(p− 1) denotes the Hölder conjugate exponent of p ∈ [1,∞].
Using that simple functions are dense in Lq,σ, one may restrict f to the set of simple
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functions in the above supremum. For 1 < q1, q2, σ1, σ2 < ∞, it is also useful to
recall that if there exist dense subsets D1 ⊂ Lq1,σ1 and D2 ⊂ Lq2,σ2 such that a
linear operator A satisfies

|〈Af, g〉| ≤ C||f ||Lq1,σ1 ||g||Lq2,σ2 , f ∈ D1, g ∈ D2,

where 〈f, g〉 :=
∫
X
fgdμ, then (3.2) and the fact (Lq,σ

)∗
= Lq′,σ′

imply that

||Af ||
Lq′2,σ′

2
≤ C||f ||Lq1,σ1 , f ∈ D1,

and thus A has a bounded closure as an operator in B(Lq1,σ1 , Lq′2,σ
′
2).

Since Lq,σ is a Banach space if 1<q, σ<∞, the space L2
TL

q,σ :=L2
(
[−T, T ], Lq,σ

)
is a Banach space for the norm ||F ||L2

TLq,σ = (
∫ T

−T
||F (t)||2Lq,σdt)1/2 (defined by

means of Bochner’s integrals, see [1]). We denote the natural (sesquilinear) duality

between L2
TL

q,σ and L2
TL

q′,σ′
by

〈F,G〉T =

∫ T

−T

(∫
X

F (t)G(t)dμ

)
dt.(3.3)

Similarly to (3.2), when (X,μ) is sigma-finite with no atoms, one has (see [31, Prop.
4.5.7]),

||F ||L2
TLq,σ ≈ sup

1=||G||
L2
T

Lq′,σ′

|〈F,G〉T |.(3.4)

Furthermore, since Lq,σ(X) is reflexive, it has the so-called Radon–Nikodym prop-

erty, hence one has
(
L2
TL

q,σ
)∗

= L2
TL

q′,σ′
; see [18]. As above, if there exist dense

subsets Dj ⊂ L2
TL

qj ,σj such that a linear operator A satisfies

|〈AF,G〉T | ≤ C||F ||L2
TLq1,σ1 ||G||L2

TLq2,σ2 , (F,G) ∈ D1 ×D2,

then (3.4) implies that A extends to a bounded operator from L2
TL

q1,σ1 to L2
TL

q′2,σ
′
2 .

In the special case where X = Rn with n ≥ 3, the Sobolev space H1 is contained
in L2∗,2 and

||f ||L2∗,2 ≤ C||∇f ||L2 ,(3.5)

which is slightly more precise than the usual Sobolev inequality since L2∗,2 ⊂ L2∗ ;
see [13, 61]. Here and below, when n ≥ 3, we use the classical notation

2∗ =
2n

n− 2
, 2∗ =

2n

n+ 2
.

We next recall basic results on Morrey–Campanato spaces. As Lebesgue and
Lorentz spaces (on Rn), they satisfy the Hölder inequality

||fg||Mq0,σ0 ≤ ||f ||Mq1,σ1 ||g||Mq2,σ2(3.6)

if 1 ≤ σj ≤ qj < ∞, 1
q0

= 1
q1

+ 1
q2
, and 1

σ0
= 1

σ1
+ 1

σ2
. They are nonincreasing in σ,

i.e.,
Lq = Mq,q ⊂ Lq,∞ ⊂ Mq,σ2 ⊂ Mq,σ1 , 1 ≤ σ1 ≤ σ2 < q.

We also recall that |x|−1 /∈ Lq for any q, but

|x|−1 ∈ Ln,∞ ∩Mn,σ0 , 1 ≤ σ0 < n.(3.7)

We also have the following important estimate (see [25, Corollary after Theorem 5
in Chap. II]): if V ∈ M

n
2 ,σ for some σ > 1, then∣∣∣∣|V | 12 f

∣∣∣∣
L2 ≤ C||∇f ||L2 , f ∈ C∞

0 (Rn \ 0).(3.8)
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We will see the interest of this property in the next paragraph and in Appendix B.

3.2. Self-adjoint realizations. We denote by H1 = {f ∈ L2(Rn) | ||f ||2L2 +
||∇f ||2L2 < ∞} the usual Sobolev space.

Given a locally integrable function V : Rn → R, n ≥ 2, we define the sesquilinear
form

QH(f, g) = 〈f, (−Δ+ V )g〉 := 〈∇f,∇g〉+
∫

V fḡdx,(3.9)

first on C∞
0 (Rn \ 0). If it is nonnegative (as will always be the case in this paper),

we let

G1 = closure of C∞
0 (Rn \ 0) for the norm

(
||f ||2L2 +QH(f, f)

)1/2
,

and still denote by QH the unique continuous extension of (3.9) to G1. Defining
(3.9) on C∞

0 (Rn \ 0) rather than on C∞
0 (Rn) allows V to have strong singularities

at the origin, typically in dimension 2 where the Hardy inequality fails. We note
however that when n ≥ 3, C∞

0 (Rn \ 0) is dense in H1, so if one knows additionally
that (δ − 1)||∇f ||2L2 ≤ 〈V f, f〉 ≤ C||f ||2H1 for some δ > 0 and all f ∈ C∞

0 (Rn \ 0),
then G1 = H1 (with equivalence of norms).

According to the assumptions (2.1) and (2.3), QH is nonnegative for the poten-
tials considered in Theorems 2.5, 2.8, and 2.11 (as well as in Corollaries 2.7 and
2.12). In dimension n ≥ 3, the estimate (3.8) implies that G1 = H1 since

V = |x|−1|x|V ∈ M
n
2 ,σ1 for some

n− 1

2
< σ1 <

n

2
(3.10)

by the Hölder inequality (3.6) and (3.7) (by choosing n − 1 < σ0 < n) together
with the fact that |x|V ∈ Mn,2σ. In dimension 2, we only have the continuous
embedding G1 ⊂ H1.

In Theorem 2.19 we consider Assumption 2.17 thanks to which the form (3.9) is
well-defined on C∞

0 (Rn \ 0); indeed, V f does not belong to L2 in general, but the
integral

∫
V fḡ is well-defined since V fḡ ∈ L1(Rn) if f, g ∈ C∞

0 (Rn\0) (in dimension

n ≥ 3, L
n
2 ,∞ ⊂ L1

loc using the Hölder inequality (3.1) and that characteristic

functions of compact sets belong to Ln/(n−2),1). Thanks to (2), QH is nonnegative
and G1 ⊂ H1. We also record in passing that 〈(x · ∇V )f, g〉 must be interpreted in
the distributions sense, −

∫
V∇x · (xfḡ)dx. The same remark holds for (x · ∇V )2.

In all these cases we can define the self-adjoint operator H : D(H) → L2 in the
usual way: The domain is given by

D(H) =
{
f ∈ G1 | |QH(f, g)| ≤ Cf ||g||L2 for all g ∈ G1

}
,

and then Hf is the unique element in L2 such that QH(f, g) = 〈Hf, g〉 for all
g ∈ G1. D(H) is dense in L2 and in G1. Furthermore, G1 is continuously embedded
into the Sobolev space H1.

4. A method of smooth perturbations

Let H be a complex Hilbert space with inner product 〈·, ·〉 and norm || · ||. Given
two self-adjoint operators (H0, D(H0)) and (H,D(H)) on H, we prepare abstract
smooth perturbation techniques which enable us to deduce estimates between Ba-
nach spaces for the resolvent (H − z)−1 or the evolution group e−itH of the per-
turbed Hamiltonian H from corresponding estimates for the free Hamiltonian H0

and weighted estimates for (H − z)−1 or e−itH in Hilbert spaces.
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Throughout this section we assume that H can be written as H = H0+Y ∗Z for
some densely defined closed operators (Y,D(Y )) and (Z,D(Z)) in the sense that

D(H0) ∪D(H) ⊂ D(Y ) ∩D(Z),(4.1)

〈Hf, g〉 = 〈f,H0g〉+ 〈Zf, Y g〉 for f ∈ D(H), g ∈ D(H0).(4.2)

These conditions will be satisfied in our applications. Note that under these con-
ditions, Y ∗, Z∗ are also densely defined closed operators (see [54, Theorem VIII.1])
and hence Y and Z are both H0- and H-bounded by the closed graph theorem. We
denote the resolvents of H0 and H by

RH0
(z) = (H0 − z)−1 : H → D(H0), RH(z) = (H − z)−1 : H → D(H),(4.3)

for z ∈ ρ(H0) ∩ ρ(H), where, given a linear operator A, ρ(A) denotes the resolvent
set of A.

Recall that a pair of two Banach spaces (A1,A2) is said to be a Banach couple
if A1,A2 are algebraically and topologically embedded in a Hausdorff topological

vector space Ã. Note that A1 ∩ A2 is well-defined in this case. Then our abstract
result on resolvent estimates is as follows.

Proposition 4.1 (Abstract resolvent estimates). Let A and B be two Banach
spaces such that (H,A) and (H,B) are Banach couples. Suppose z ∈ ρ(H0)∩ ρ(H)
and assume there exist positive constants r1, . . . , r5 (possibly depending on z) such
that ∣∣〈RH0

(z)ψ, ϕ〉
∣∣ ≤ r1||ψ||A||ϕ||B,(4.4)

||ZRH0
(z)ψ|| ≤ r2||ψ||A,(4.5)

||Y RH0
(z)ψ|| ≤ r3||ψ||A,(4.6)

||Y RH0
(z)ϕ|| ≤ r4||ϕ||B,(4.7)

||ZRH(z̄)Z∗h|| ≤ r5||h||(4.8)

for all ψ ∈ H ∩ A, ϕ ∈ H ∩ B, and h ∈ D(Z∗). Then, for all ψ ∈ H ∩ A and
ϕ ∈ H ∩ B, ∣∣〈RH(z)ψ, ϕ〉

∣∣ ≤ (
r1 + r2r4 + r3r4r5

)
||ψ||A||ϕ||B.(4.9)

Note that (4.1) and (4.3) guarantee that the left-hand sides of (4.5)–(4.8) are
well-defined.

Remark 4.2. As examples of H,A, and B, we mainly have in mind that H = L2(X)
and A,B are weighted L2-spaces w(x)L2(X) or Lorentz spaces Lp,q(X) on some
nonatomic sigma-finite measure space (X,μ). When X = R

n, n ≥ 2, one can also
consider weighted Sobolev spaces w(x)|∇|1/2L2(Rn) as examples of A,B.

Proof. The proof follows from the resolvent identity, which can be written in our
context as

〈RH(z)u, v〉 = 〈RH0
(z)u, v〉 − 〈ZRH(z)u, Y RH0

(z̄)v〉(4.10)

= 〈RH0
(z)u, v〉 − 〈Y RH0

(z)u, ZRH(z̄)v〉(4.11)

for u, v ∈ H. Equation (4.10) follows from (4.2) with f = RH(z)u and g = RH0
(z̄)v,

while (4.11) is verified by exchanging the roles of u and v in (4.10), replacing z by
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z̄ and taking the complex conjugate. Let ψ ∈ H∩A and ϕ ∈ H∩B. By (4.10) and
the Cauchy–Schwarz inequality, we have∣∣〈RH(z)ψ, ϕ〉

∣∣ ≤ ∣∣〈RH0
(z)ψ, ϕ〉

∣∣+ ||ZRH(z)ψ|| ||Y RH0
(z̄)ϕ||

≤ r1||ψ||A||ϕ||B + r4||ϕ||B||ZRH(z)ψ||,(4.12)

the second line following from (4.4) and (4.7). It remains to estimate

||ZRH(z)ψ|| = sup
||h||=1

∣∣〈ZRH(z)ψ, h〉
∣∣,

where one can take h ∈ D(Z∗) since this domain is dense in H. Using the other
resolvent identity (4.11), the Cauchy–Schwarz inequality, (4.5), (4.6), and (4.8), we
obtain ∣∣〈ZRH(z)ψ, h〉

∣∣ ≤ ∣∣〈RH0
(z)ψ,Z∗h〉

∣∣+ ∣∣〈Y RH0
(z)ψ,ZRH(z̄)Z∗h〉

∣∣
≤ r2||ψ||A + r3r5||ψ||A,

which together with (4.12) yields (4.9). �

Next we consider abstract methods to derive space-time inequalities for Schrö-
dinger equations. Proposition 4.1 follows mainly from the resolvent identity which,
in our abstract framework, is written in weak form; see (4.10) and (4.11). Similarly,
the proof of Theorem 4.7 below uses weak forms of the Duhamel formula; see
Proposition 4.4. Stating them rigorously requires some care and a preparatory
discussion since neither Y nor Z are assumed to be bounded on H.

Let us recall the notion of H-(super-)smoothness in the sense of Kato [36] and
Kato and Yajima [38]. A densely defined closed operator B : D(B) → H is H-
smooth (with bound a) if

sup
z∈C\R

|〈(RH(z)−RH(z))B∗f,B∗f〉| ≤ a2

2
||f ||2, f ∈ D(B∗).(4.13)

This is equivalent (see [54, Theorem XIII. 25]) to the fact that, for any ψ ∈ H,
e−itHψ belongs to D(B) for a.e. t ∈ R and

||Be−itHψ||L2
tH :=

(∫
R

||Be−itHψ||2dt
)1/2

≤ a||ψ||, ψ ∈ H.(4.14)

In particular, Be−itHψ ∈ L2([−T, T ];H) ⊂ L1([−T, T ];H) for any T > 0. We also
recall that if B is H-smooth, then D(H) ⊂ D(B) and B is H-bounded with relative
bound 0; see Theorem XIII.22 of [54]. A densely defined closed operator B is called
H-supersmooth (with bound a) if

sup
z∈C\R

|〈RH(z)B∗f,B∗f〉| ≤ a

2
||f ||2, f ∈ D(B∗).(4.15)

For instance, the assumption (4.8) is satisfied if Z is H-supersmooth with bound
2r5; note however that the assumptions of Proposition 4.1 hold for a single z, not
all z ∈ ρ(H0) ∩ ρ(H). Also note that if B is H-supersmooth with bound a, then B

is H-smooth with bound
√
2a.

The supersmoothness property (4.15) implies that for any simple function
F : R → D(B∗), Be−i(t−s)HB∗F (s) is Bochner integrable over s ∈ [0, t] (or [t, 0])
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and that for any T > 0,∣∣∣∣∣∣∣∣∫ t

0

Be−i(t−s)HB∗F (s)ds

∣∣∣∣∣∣∣∣
L2

TH
≤ a||F ||L2

TH;(4.16)

see [15, Theorem 2.4]. Here and below, we use the notation Lp
TB :=Lp([−T, T ],B).

Consider the Duhamel operator ΓH : L1
TH → CTH := C([−T, T ],H) defined by

ΓHF (t) =

∫ t

0

e−i(t−s)HF (s)ds

using the Bochner integral. It is not hard to check that one has

〈ΓHF,G〉T = 〈F,Γ∗
HG〉T , F,G ∈ L1

TH,(4.17)

where 〈F,G〉T :=
∫ T

−T
〈F,G〉dt and

(Γ∗
HG)(t) = 1R+(t)

∫ T

t

e−i(t−s)HG(s)ds− 1R−(t)

∫ t

−T

e−i(t−s)HG(s)ds.(4.18)

The following lemma gives the precise meaning of the operators BΓH and BΓ∗
H :

Lemma 4.3. Assume that B is H-smooth with bound a. Let χ ∈ C∞
0 (R) be such

that χ ≡ 1 near 0 and 0 ≤ χ ≤ 1. Then, the strong limits

BΓH := s-lim
ε→0

Bχ(εH)ΓH , BΓ∗
H := s-lim

ε→0
Bχ(εH)Γ∗

H

exist in L2
TH and satisfy, uniformly in T > 0,∣∣∣∣BΓHF

∣∣∣∣
L2

TH ≤ Ca
∣∣∣∣F ∣∣∣∣

L1
TH,

∣∣∣∣BΓ∗
H

∣∣∣∣
L2

TH ≤ Ca
∣∣∣∣F ∣∣∣∣

L1
TH

for some universal constant C.

Proof. We treat only the case of ΓH , the one of Γ∗
H being similar in view of the

expression (4.18). Note first that χ(εH) commutes with ΓH and that Bχ(εH) is
bounded on L2 since B is H-bounded so BΓHχ(εH) = Bχ(εH)ΓH is well-defined
on L1

TH. Since sup |χ| ≤ 1, the H-smoothness implies∣∣∣∣∣
∣∣∣∣∣Be−itH

∫
[−T,T ]

eisHχ(εH)F (s)ds

∣∣∣∣∣
∣∣∣∣∣
L2

TH

≤ a||F ||L1
TH.

The same upper bound also holds if we replace [−T, T ] by [0, T ] in the left-hand
side. Then, using the Christ–Kiselev Lemma (see Appendix A), we can replace
[−T, T ] by [0, t] up to the multiplication of a by some universal constant and obtain
the uniform bound

||Bχ(εH)ΓHF ||L2
TH ≤ Ca||F ||L1

TH.(4.19)

If F is of the form χ(ε0H)F0 for some fixed ε0, then Bχ(εH)ΓHχ(ε0H)F0 converges
to BΓHχ(ε0H)F0 in L2

TH by dominated convergence. The density of the functions
of the form χ(ε0H)F0 in L2

TH together with (4.19) allow us to prove by routine
arguments that Bχ(εH)ΓHF converges in L2

TH as ε → 0 for any F . This completes
the proof. �
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Proposition 4.4 (Weak Duhamel formula). Let b be a bounded Borel function on
R. Suppose that Y is H0-smooth and Zb(H) is H-smooth. Then, for all T > 0,
ψ ∈ H, and F,G ∈ L1

TH, one has

〈ΓHb(H)F,G〉T = 〈ΓH0
b(H)F,G〉T − i〈Zb(H)ΓHF, Y Γ∗

H0
G〉T ,(4.20)

〈e−itHb(H)ψ,G〉T = 〈e−itH0b(H)ψ,G〉T − i〈Zb(H)e−itHψ, Y Γ∗
H0

G〉T ,(4.21)

〈ΓHF, b(H)G〉T = 〈ΓH0
F, b(H)G〉T − i〈Y ΓH0

F,Zb(H)Γ∗
HG〉T .(4.22)

Proof. Let ϕ ∈ D(H) and ψ ∈ D(H0), and let f(t) = e−itHϕ, g(t) = e−itH0ψ.
Then, by (4.2),

(4.23)
d

dt
〈f(t), g(t)〉 = i〈f(t), H0g(t)〉 − i〈Hf(t), g(t)〉 = −i〈Zf(t), Y g(t)〉.

By integration between 0 and t and then substitution of ψ by eitH0θ with θ ∈ D(H0),
we find

〈e−itHϕ, θ〉 − 〈e−itH0ϕ, θ〉 = −i

∫ t

0

〈Ze−irHϕ, Y e−i(r−t)H0θ〉dr.

Note that the integrand is continuous in r, hence integrable, since (4.23) is con-
tinuous in t. Changing t into t − s and then replacing ϕ by Fε(s) and θ by Gε(t)
with Fε(s) = χ(εH)F (s) and Gε(t) = χ(εH0)G(t) (where χ is as in Lemma 4.3),
we obtain by integration in s between 0 and t,

〈ΓHFε(t), Gε(t)〉 − 〈ΓH0
Fε(t), Gε(t)〉

= −i

∫ t

0

(∫ t

s

〈Ze−i(τ−s)HFε(s), Y e−i(τ−t)H0Gε(t)〉dτ
)
ds.

The iterate integral is well-defined since

〈e−i(t−s)HFε(s), Gε(t)〉 − 〈e−i(t−s)H0Fε(s), Gε(t)θ〉

can be integrated in s on [0, t] by [1, Prop. 1.3.4, p. 24]. Then we wish to use
Fubini’s Theorem to prove the formally easy fact that

(4.24)

〈ΓHFε(t), Gε(t)〉 = 〈ΓH0
Fε(t), Gε(t)〉

= −i

∫ t

0

〈ZΓHFε(τ ), Y e−i(τ−t)H0Gε(t)〉dτ.

To do so, we need to justify that the map

[0, t]2 � (τ, s) �→ 1[s,t](τ )1[0,t](s)〈Ze−i(τ−s)HFε(s), Y e−i(τ−t)H0Gε(t)〉

is (measurable and) integrable for any given t, say t > 0 with the case t < 0 being
similar. To prove the measurability, we write

〈Ze−i(τ−s)HFε(s), Y e−i(τ−t)H0Gε(t)〉 = 〈F (s), G̃ε(τ )〉

with G̃ε(τ ) = ei(τ−s)H(Zχ(εH))∗Y χ(εH0)e
−i(τ−t)H0G(t). Clearly, G̃ε is continuous

on R. Since F is measurable, by definition (see [1, p. 6]) it can be approximated by

simple functions. Thus 〈F (s), G̃ε(τ )〉 can be approached by simple functions and
hence is measurable. The integrability follows from the estimate∣∣〈F (s), G̃ε(τ )〉

∣∣ ≤ ||Zχ(εH)||B(H)||Y χ(εH0)||B(H)||G(t)||L2 ||F0(s)||H
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whose right-hand side is integrable in (s, τ ) on [0, t]2. Therefore, Fubini’s Theorem
can be used to derive (4.24). Then, integrating (4.24) in t, and using now Fubini’s
Theorem in (t, τ ), we obtain

〈ΓHFε, Gε〉T = 〈ΓH0
Fε, Gε〉T + 〈iZΓHFε, Y Γ∗

H0
Gε〉T .(4.25)

This second application of Fubini’s Theorem is justified in the same way as above
by writing

〈ZΓHFε(τ ), Y e−i(τ−t)H0Gε(t)〉 = 〈ei(τ−t)H0(Y χ(εH0))
∗(Zχ(εH))ΓHF (τ ), G(t)〉,

where the first factor of the bracket in the right-hand side belongs to
C([−T, T ]2t,τ , L

2
x). Replacing F by b(H)F and letting ε → 0 in (4.25), we ob-

tain (4.20) by using Lemma 4.3. The proofs of (4.21) and (4.22) are similar (for
(4.22) we exchange the roles of H and H0). �

The following result clarifies the sense of the integral in the left-hand side of
(4.16).

Lemma 4.5. Let B be H-smooth, and let F : [−T, T ] → H be a simple function.
Then

BΓHF (t) =

∫ t

0

Be−i(t−s)HF (s)ds

for almost every t. In particular, the two sides of this inequality coincide in L2
TH.

Proof. Let us write F (s) =
∑

j 1Mj
(s)fj for some measurable sets Mj ⊂ [−T, T ]

and fj ∈ H. Here j runs over a finite set which we omit. It follows from Lemma

4.3 that BΓHF is the limit of Bχ(εnH)F in L2
TH, provided n → ∞. This implies

that, by taking some subsequence εnk
, there exist a subset N ⊂ [−T, T ] of measure

zero such that, for all t ∈ [−T, T ] \ N ,∣∣∣∣BΓHF (t)−Bχ(εnk
H)ΓHF (t)

∣∣∣∣
H → 0, k → ∞.

To obtain the result, it suffices to show that, for all t ∈ [−T, T ] \ N ,∣∣∣∣∣∣∣∣∫ t

0

Be−i(t−s)HF (s)ds−Bχ(εnk
H)ΓHF (t)

∣∣∣∣∣∣∣∣
H

→ 0, k → ∞.(4.26)

To prove this and to clarify the sense of
∫ t

0
Be−i(t−s)HF (s)ds, we use that B is

H-smooth, hence, for any f ∈ H, eisHf belongs to D(B) for a.e. s and∫
R

||BeisHf ||2Hds ≤ C||f ||2H.

Moreover, BeisHf ∈L1
loc(R,H) by Hölder’s inequality. Then using this and Hölder’s

inequality, the norm in (4.26) can be bounded by∑
j

∣∣∣∣∣
∣∣∣∣∣
∫
[0,t]∩Mj

BeisH(1− χ(εnk
H))e−itHfjds

∣∣∣∣∣
∣∣∣∣∣
H

≤ C
∑
j

|t| 12 ||(1− χ(εnk
H))fj ||H,

where the right-hand side goes to zero as k → ∞. This completes the proof. �

This lemma implies the following equivalence which is useful in obtaining the
estimates of BΓHB∗ or BΓ∗

HB∗ from the H-supersmoothness of B.
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Corollary 4.6. Assume that B is H-smooth. Let F : [−T, T ] → D(B∗) be a simple
function. Then (4.16) holds if and only if one of the following estimates hold:

||BΓHB∗F ||L2
TH ≤ a||F ||L2

TH, ||BΓ∗
HB∗F ||L2

TH ≤ a||F ||L2
TH.(4.27)

In particular, if in addition B is H-supersmooth with bound a, then estimates (4.27)
hold for all simple functions F : [−T, T ] → D(B∗).

Proof. Since B∗F (t) is a simple function in t with values in H, the equivalence
between the first estimate in (4.27) and (4.16) follows from Lemma 4.5. Then the
equivalence between the first and second estimates in (4.27) can be seen from the
relation (4.17) and Lemma 4.3. �

We are now in a position to state our abstract result on Strichartz estimates.

Theorem 4.7 (Abstract Strichartz estimates I. The endpoint case). Let A and
B be as in Proposition 4.1, and let b be a bounded Borel function on R. Suppose
that Y is H0-smooth and that there exist positive constants s1, . . . , s7 such that the
following conditions (S1)–(S4) are satisfied for all ψ ∈ H, f ∈ H ∩ A, and simple
functions F : [−T, T ] → D(H) ∩ A and G : [−T, T ] → D(H0) ∩ B.

(S1) Free endpoint Strichartz estimates:

|〈e−itH0ψ,G〉T | ≤ s1||ψ||||G||L2
TB,(4.28) ∣∣〈ΓH0

F,G〉T
∣∣ ≤ s2||F ||L2

TA||G||L2
TB.(4.29)

(S2) Free inhomogeneous smoothing estimates:

||Y Γ∗
H0

G||L2
TH ≤ s3||G||L2

TB,(4.30)

||Y ΓH0
F ||L2

TH ≤ s4||F ||L2
TA,(4.31)

||Z|b|2(H)ΓH0
F ||L2

TH ≤ s5||F ||L2
TA,(4.32)

where, in (4.32), we assume that |b|2(H)D(H0) ⊂ D(Z).
(S3) Zb(H) is H-supersmooth with bound s6.
(S4) Stability of A by b(H): |||b|2(H)f

∣∣|A ≤ s7||f ||A.
Then, for all ψ ∈ H, all simple functions F : [−T, T ] → D(H) ∩ A and
G : [−T, T ] → D(H0) ∩ B,∣∣〈e−itHb(H)ψ,G〉T

∣∣ ≤ (
s1||b||L∞ + (2s6)

1/2s3

)
||ψ||H||G||L2

TB,(4.33) ∣∣〈ΓH |b|2(H)F,G〉T
∣∣ ≤ (s2s7 + s3s5 + s3s4s6) ||F ||L2

TA||G||L2
TB.(4.34)

Proof. Using (4.21), (4.28), and (4.30), we find

|〈e−itHb(H)ψ,G〉T | ≤
(
s1||b||L∞ ||ψ||H + s3||Zb(H)e−itHψ||L2

TH

)
||G||L2

TB,

so we deduce (4.33) from the H-smoothness of Zb(H); see (4.14). To prove (4.34),
we start by using (4.20) together with (4.29), (4.30), and (S4) to obtain

|〈ΓH |b|2(H)F,G〉T |
≤ s2

∣∣∣∣|b|2(H)F
∣∣∣∣
L2

TA||G||L2
TB + ||Z|b|2(H)ΓHF ||L2

TH||Y Γ∗
H0

G||L2
TH

≤
(
s2s7||F ||L2

TA + s3||Z|b|2(H)ΓHF ||L2
TH

)
||G||L2

TB.

(4.35)
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Note that Z|b|2(H) = Zb(H)b̄(H) is H-smooth since Zb(H) is. To estimate

the term Z|b|2(H)ΓHF , take a simple function G̃ : [−T, T ] → D(Z∗) such that

||G̃||L2
TH = 1 and use (4.22) to obtain

〈Z|b|2(H)ΓHF, G̃〉T = 〈ΓHF, |b|2(H)Z∗G̃〉T
= 〈ΓH0

F, |b|2(H)Z∗G̃〉T − i〈Y ΓH0
F,Zb(H)Γ∗

Hb(H)∗Z∗G̃〉T .
By virtue of (4.32), the first term in the right-hand side can be estimated as

|〈ΓH0
F, |b|2(H)Z∗G̃〉T | ≤ ||Z|b|2(H)ΓH0

F ||L2
TH ≤ s5||F ||L2

TA,(4.36)

while we use (S3) and Corollary 4.6 as well as (4.31) to deal with the second term
as

|〈iY ΓH0
F,Zb(H)Γ∗

Hb(H)∗Z∗G̃〉T | ≤ s4s6||F ||L2
TA.(4.37)

By taking the supremum over all G̃, we have

||Z|b|2(H)ΓHF ||L2H ≤ (s5 + s4s6)||F ||L2
TA,

which together with (4.35) completes the proof of (4.34). �
Remark 4.8. As seen in the above proof, the H-smoothness of Z is sufficient to
prove only the homogeneous estimate (4.33), while the H-supersmoothness of Z is
unnecessary. (4.31), (4.32), and (S4) also have not been used in the proof of (4.33).

Remark 4.9. In above abstract theorems, we only consider estimates for the sesqui-
linear forms. It is also possible to state a criterion in an abstract setting to ob-
tain that RH(z), e−itHb(H), and ΓH |b|2(H) have bounded closures as operators
in B(A,B∗), B(H, L2

TB∗) and B(L2
TA, L2

TB∗), respectively, from the corresponding
statements for RH0

(z), e−itH0 and ΓH0
, and assumptions (4.4) to (4.8) or (S1) to

(S4), respectively. However, it requires additional assumptions on A, B, and their
dual spaces, such as the Radon–Nikodym property and the representation theorem
of the duality paring, which makes the proof and the statement rather involved.

On the other hand, in concrete applications, such a boundedness can be easily
seen from (4.9) (or (4.33) and (4.34)) and standard duality and density arguments
(especially materials recorded in subsection 3.1 in the case of A = B = L2∗,2).

For the nonendpoint case, we have the following abstract theorem, which is
essentially due to [56] in the case when both Y and Z are bounded. Here we do
not require such a boundedness.

Theorem 4.10 (Abstract Strichartz estimates II. The nonendpoint case). Let B
and b be as in Theorem 4.10. Assume there exist positive constants s1, s2, s3, and
p > 2 such that the following (S1′) to (S3′) are satisfied for all ψ ∈ H and all simple
functions G : [−T, T ] → D(H0) ∩ B:
(S1′) Free Strichartz estimates: |〈e−itH0ψ,G〉T | ≤ s1||ψ||||G||

Lp′
T B, where p′ =

p/(p− 1).
(S2′) Y is H0-smooth with bound s2.
(S3′) Zb(H) is H-smooth with bound s3.

Then, for all ψ ∈ H and all simple functions G : [−T, T ] → D(H0) ∩ B, one has∣∣〈e−itHb(H)ψ,G〉T
∣∣ ≤ (s1||b||L∞ + 2Cps1s2s3) ||ψ||H||G||

Lp′
T B,(4.38)

where Cp = 22/p(1− 21/p−1/2)−1.
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Proof. Let us first show that (S2′) implies, for any simple function G : [−T, T ] →
D(H0) ∩ B,

||Y Γ∗
H0

G||L2
TH ≤ 2Cps1s2||G||

Lp′
T B.(4.39)

To this end, we let χ be as in Lemma 4.3 and consider the following two operators:

KεG(t) := Y χ(εH0)Γ
∗
H0

G(t), K̃εG(t) := Y χ(εH0)

∫ T

−T

e−i(t−s)H0G(s)ds,

where Y χ(εH0) is bounded on H thanks to the relative H0-boundedness of Y . Then
(S2′) implies

||K̃εG||L2
TH =

∣∣∣∣∣∣Y e−itH

∫ T

−T

eisH0χ(εH0)G(s)ds
∣∣∣∣∣∣
L2

TH

≤ s2

∣∣∣∣∣∣ ∫ T

−T

eisH0χ(εH0)G(s)ds
∣∣∣∣∣∣
H
,

where, by the duality argument and (S1′) as well as the fact |χ| ≤ 1, the right-hand
side reads

s2

∣∣∣∣∣∣ ∫ T

−T

eisH0χ(εH0)G(s)ds
∣∣∣∣∣∣
H

= s2 sup
||ϕ||=1

|〈G, e−isH0χ(εH0)ϕ〉T | ≤ s1s2||G||
Lp′

T B.

Taking formula (4.18) of Γ∗
H0

into account, we use the Christ–Kiselev lemma to
obtain

||KεG(t)||L2
TH ≤ 2Cps1s2||G||

Lp′
T B,

where we note that p′ < 2. This uniform bound in ε, together with the fact that
Y Γ∗G = limε→0 KεG, shows (4.39). Now the assertion is a consequence of (4.21),
(S1′), (4.39), and (S3′). �

5. Free resolvent estimates

In this section we collect several estimates on the free resolvent R0(z) =
(−Δ− z)−1 of the Laplacian Δ on Rn, n ≥ 2. The following estimate is a general-
ization to Lorentz spaces of a special case of uniform Lp resolvent estimates, also
called uniform Sobolev inequalities, due to [40].

Proposition 5.1. Let n ≥ 3. Then there exists C > 0 such that for all z ∈
C \ [0,∞),

||R0(z)f ||L2∗,2 ≤ C||f ||L2∗,2 , f ∈ L2∗,2 ∩ L2.

Proof. The following proof is due to T. Duyckaerts [20]; see also [33, Remark 8.8].
We first show that there exists C > 0 such that for all z ∈ C,

||f ||L2∗,2 ≤ C||(−Δ− z)f ||L2∗,2 f ∈ S(Rn),(5.1)

where S(Rn) is the space of Schwartz functions. Let u(t) := eiztf which solves

i∂tu = Δu+ F, u|t=0 = f,

where F = eizt(−Δ − z)f . Then the endpoint Strichartz estimate for the free
Schrödinger equation in Lorentz spaces (see [39, Theorem 10.1]) implies that for
any T > 0,

||u||L2
TL2∗,2 ≤ C||f ||L2 + C||F ||L2

TL2∗,2 ,(5.2)
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where C is independent of T . By virtue of the specific formula of u and F , one can
compute

||u||L2
TL2∗,2 = γ(z, T )||f ||L2∗,2 , ||F ||L2

TL2∗,2 = γ(z, T )||(−Δ− z)f ||L2∗,2 ,

where γ(z, T ) := ||eizt||L2
T

≥
√
T , since |eizt| ≥ 1 either on [0, T ] or [−T, 0]. In

particular, γ(z, T ) → ∞ as T → ∞ for each z, so dividing by γ(z, T ) and letting
T → ∞ in (5.2), we obtain (5.1).

Now we show that (5.1) implies the assertion. For z ∈ C \ [0,∞), (−Δ − z)−1

maps S(Rn) into itself so, by plugging g = (−Δ − z)−1f with f ∈ S(Rn) into
(5.1), we obtain the assertion for f ∈ S(Rn), which also implies the assertion for
all f ∈ L2 ∩ L2∗,2 by the density. �

We next record two results on weighted resolvent estimates.

Proposition 5.2. For any w ∈ L2(R2), the multiplication operator by w is
−Δ-smooth.

Proof. Using the characterization (4.14), it is an immediate consequence of the
estimate

||eitΔψ||L∞
x L2

t
≤ C||ψ||L2

proved in [58, Theorem 3], and the trivial inequality ||wf ||L2 ≤ ||w||L2 ||f ||L∞ . �

Note that 〈x〉−1 is known to be not −Δ-smooth if n = 2 (see [63]), so L2(R2)
cannot be replaced by L2,∞(R2) in general, in contrast to higher dimensions n ≥ 3.
This is the main reason to take V ∈ L1(R2) in Theorem 2.11.

Proposition 5.3. Let n ≥ 3. Let α1, α2, σ satisfy 2n
n+1 < α1, α2 ≤ 2, and

n−1
α1+α2−2 < σ ≤ n

αM
, where αM =max(α1, α2). Then there exists C=C(n, α1, α2, σ)

> 0 such that, for any w1 ∈ M
2n
α1

,2σ and w2 ∈ M
2n
α2

,2σ with w1, w2 > 0, any
z ∈ C \ [0,∞) and any ϕ, ψ ∈ C∞

0 (Rn),

|〈R0(z)w1ϕ,w2ψ〉| ≤ C|z|−1+
α1+α2

4 ||w1||
M

2n
α1

,2σ ||w2||
M

2n
α2

,2σ ||ϕ||L2 ||ψ||L2 .(5.3)

Note that w1, w2 ∈ L2σ
loc ⊂ L2

loc so the right-hand side of (5.3) has a clear sense.
This proposition (and its proof) is a slight modification of [27, Lemma 4], the change
being that we allow w1 to be different from w2. It turns out to be useful for the
applications. We will need it in the proof of Theorem 2.5 in paragraph 6.1; this is
also useful for proving eigenvalues estimates; see [47].

Proof. Since ||w(λ·)||
M

2n
α

,2σ = λ−α/2||w||
M

2n
α

,2σ , it suffices to show (5.3) for |z| = 1,

z = 1. We take ψ, ϕ ∈ C∞
0 (Rn) and may assume ||ψ||L2 = ||ϕ||L2 = 1. We wish to

interpolate between the simple bound∣∣〈(−Δ− z)−itwit
1 ϕ,w

−it
2 ψ

〉∣∣ ≤ CeC|t|, t ∈ R,

and the nontrivial one below, for some suitable s ≥ 1 to be found,

∣∣〈(−Δ− z)−s−itws+it
1 ϕ,ws−it

2 ψ
〉∣∣ ≤ CeCt2 ||w1||s

M
2n
α1

,2σ
||w2||s

M
2n
α2

,2σ
, t ∈ R.

(5.4)

Using that s + it �→ 〈(−Δ − z)−s−itws+it
1 ϕ,ws−it

2 ψ〉 is holomorphic for s ∈ (0, σ)
and continuous for s ∈ [0, σ], (5.3) will follow by interpolation. Note that the
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upper bound s ≤ σ ensures ws
1, w

s
2 ∈ L2

loc. Let us prove (5.4). The first tool is the
following pointwise bound on the kernel of (−Δ− z)−s−it,

|(−Δ− z)−s−it(x− y)| ≤ CeCt2 |x− y|−
n+1
2 +s,(5.5)

which holds for n−1
2 ≤ s < n+1

2 , t ∈ R, and uniformly in |z| = 1, z = 1. This is seen
from the explicit formula of the kernel in term of Bessel functions; see [40, Section 2
(2.21)–(2.25)]. The second tool is a weighted boundedness of the fractional integral
operator Iβ (the convolution with |x|−n+β for 0 < β < n). It is shown in [59] that
if w, v > 0 satisfy, for some 1 < p < ∞,

sup
x,r

{
rβ

(
r−n

∫
Br(x)

w(y)pdy
) 1

2p
(
r−n

∫
Br(x)

v(y)−pdy
) 1

2p
}
≤ Cp,(5.6)

then there exists C = C(n, β) > 0 independent of w, v and Cp such that∣∣∣∣w 1
2 Iβϕ

∣∣∣∣
L2 ≤ CCp

∣∣∣∣v 1
2ϕ

∣∣∣∣
L2 , ϕ ∈ C∞

0 (Rn).(5.7)

If v = w̃−1, then the left-hand side of (5.6) is dominated by

||w1/2||
M

2n
β2

,2p ||w̃1/2||
M

2n
β1

,2p ,

provided 2β = β1 + β2 and 1 < p ≤ n/max(β1, β2) (this last condition is required
since the second index of a Morrey–Campanato space cannot be smaller than the
first one). Therefore, (5.7) shows that∣∣〈w1/2Iβw̃

1/2ϕ, ψ〉
∣∣ ≤ C||w1/2||

M
2n
β2

,2p ||w̃1/2||
M

2n
β1

,2p(5.8)

with some C = C(n, β1, β2, p) > 0 independent of w, w̃, ϕ, and ψ. Now, using
(5.5) and (5.8) with w1/2 = ws

2, w̃
1/2 = ws

1, β1 = α1s, β2 = α2s, p = σ/s, and
β = n−1

2 + s, we find∣∣〈ws+it
2 (−Δ− z)−s−itws+it

1 ϕ, ψ〉
∣∣ ≤ CeCt2 ||ws

1||
M

2n
β1

,2p ||ws
2||

M
2n
β2

,2p

= CeCt2 ||w1||s
M

2sn
β1

,2sp
||w2||s

M
2sn
β1

,2sp
.

In other words, (5.4) holds with s = n−1
α1+α2−2 which belongs to [(n − 1)/2,

(n + 1)/2)) and [1, σ) under our assumptions (note that, assuming σ is strictly
greater than n−1

α1+α2−2 ensures that p = σ/s > 1). The result follows by interpola-

tion (note that if n = 3 and α1 = α2 = 2, one obtains (5.3) directly from (5.4) with
s = 1 ∈ [(n− 1)/2, (n+ 1)/2). �

6. Proofs of the main results

In the present section, we show how to use the following Theorem 6.1 and ab-
stract techniques prepared in section 4 to prove all results stated in section 2, except
Theorem 2.19 and Corollary 2.21, which will be proved in section 7.
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Theorem 6.1.

(1) Let n ≥ 3, and suppose that V satisfies Assumption 2.1 and that∣∣∣∣|V | 12 g
∣∣∣∣
L2 +

∣∣∣∣|x · ∇V | 12 g
∣∣∣∣
L2 +

∣∣∣∣|x|V g
∣∣∣∣
L2 ≤ C||g||H1 , g ∈ H1.(6.1)

Then there exists C > 0 such that

|||x|−1(H − z)−1|x|−1f ||L2 ≤ C||f ||L2 , z ∈ C \ [0,∞), f ∈ C∞
0 (Rn \ 0).

(2) Let n = 2 and V ∈ X2 satisfy Assumption 2.3. Then

||V 1
2 (H − z)−1V

1
2 f ||L2 ≤ C||f ||L2 , z ∈ C \ [0,∞), f ∈ C∞

0 (R2 \ 0).
Note that (6.1) holds if V ∈ X σ

n with n−1
2 < σ ≤ n

2 . The proof of this theorem
itself is based on the techniques of [3] which we follow closely. However, we cannot
use directly the result of [3] since our assumptions are slightly different from theirs
(see Remark B.3), so we give a complete proof in Appendix B.

6.1. Proof of Theorem 2.5. If n = 2, the statement is exactly Theorem 6.1(2),
so we assume that n ≥ 3. We use the decomposition H = H0 + Y ∗Z of section
4, so we let V = Y ∗Z with Y := |x|V , Z := |x|−1, and H0 = −Δ. Recall that
|x|V ∈ Mn,2σ by assumption. We may assume w1, w2 ≥ 0 without loss of generality
since if we write wj = sgnwj |wj |, then sgnwj is bounded on L2.

Let us first prove the result with additional conditions that w−1
1 , w−1

2 ∈ L2
loc and

w1, w2 > 0. We shall use Proposition 4.1 with H = L2, A = w2L
2, B = w1L

2

with norms ||ψ||A = ||w−1
2 ψ||L2 and ||ϕ||B = ||w−1

1 ϕ||L2 , where we note that A,B
are Banach spaces under the additional conditions above. By Proposition 5.3 with
σj = σ and αj = 2, (4.4)–(4.7) are satisfied with

r1 ≤ C||w1||Mn,2σ ||w2||Mn,2σ ,

r2, r3 ≤ C||w2||Mn,2σ || |x|V | |Mn,2σ ≤ C||w2||Mn,2σ ,

r4 ≤ C||w1||Mn,2σ || |x|−1| |Mn,2σ ≤ C||w1||Mn,2σ ,

where C > 0 is independent of w1, w2 and z ∈ C \ [0,∞). The condition (4.8) with
some r5 (independent of wj and z) follows from Theorem 6.1(1). Hence we learn
by (4.9) that

|〈(H − z)−1ψ, ϕ〉| ≤ C||w1||Mn,2σ ||w2||Mn,2σ ||w−1
2 ψ||L2 ||w−1

1 ϕ||L2 , z ∈ C \ [0,∞),

for all ψ ∈ L2 ∩ w2L
2 and ϕ ∈ L2 ∩ w1L

2, which implies

|〈w1(H − z)−1w2ψ, ϕ〉| ≤ ||w1||Mn,2σ ||w2||Mn,2σ ||f ||L2 ||g||L2 , z ∈ C \ [0,∞),

for all f, g ∈ C∞
0 (Rn), where we have used (3.8) to see that C∞

0 (Rn) ⊂ L2∩w−1
j L2.

By density and duality arguments, w1(H − z)−1w2 extends a bounded operator on
L2 and satisfies

||w1(H−z)−1w2f ||L2 ≤C||w1||Mn,2σ ||w2||Mn,2σ ||f ||L2 , f ∈C∞
0 (Rn), z∈C\[0,∞).

For general wj ∈ Mn,2σ , we set wj(ε) = wj + ε〈x〉−2 and apply the above result
to obtain

||w1(ε)(H − z)−1w2(ε)f ||L2 ≤ C||w1(ε)||Mn,2σ ||w2(ε)||Mn,2σ ||f ||L2 .(6.2)

It is not hard to see that w1(ε)(H − z)−1w2(ε)f → w1(H − z)−1w2f for any
f ∈ C∞

0 (Rn) and ||wj(ε)||Mn,2σ → ||wj ||Mn,2σ as ε → 0 (note that ||wj ||Mn,2σ ≤
||wj(ε)||Mn,2σ ≤ ||wj ||Mn,2σ +Cε). Hence, letting ε → 0 in (6.2), we have the desired
bound for w1(H − z)−1w2. �
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6.2. Proof of Corollary 2.7. It follows from Theorem 2.5 with (4.14) and (4.16).
�

6.3. Proof of Theorem 2.8. We wish to use Proposition 4.1 with A = B = L2∗,2,
H0 = −Δ, H = −Δ+ Y ∗Z, Y := |V | 12 , and Z := sgn(V )|V | 12 . Using the condition

that |V | 12 belongs to Ln,∞, Hölder’s inequality (3.1) yields

||Y g||L2 + ||Zg||L2 ≤ C||g||L2∗,2 , ||Y f ||L2∗,2 ≤ C||f ||L2 ,(6.3)

so using Proposition 5.1, we obtain

||Y R0(z)f ||L2 + ||ZR0(z)f ||L2 ≤ C||f ||L2∗,2

for all z ∈ C \ [0,∞) and f ∈ L2 ∩L2∗,2; i.e., the conditions (4.4)–(4.7) are satisfied
(uniformly in z). The bound (4.8) follows from Theorem 6.1(1). Then we obtain

|〈(H − z)ψ, ϕ〉| ≤ C||ψ||L2∗,2 ||ϕ||L2∗,2 , ψ, ϕ ∈ L2∗,2 ∩ L2,

which, together with duality argument (see paragraph 3.1), implies the assertion.
�

6.4. Proof of Theorem 2.11. Let H0, H, Y , and Z be as in the proof of Theorem
2.8. Recall that the solution to (2.6) is given by u = e−itHψ − iΓHF . First of all,
it was proved by [39, Theorem 10.1] that eitΔ and Γ−Δ satisfy

||eitΔψ||Lp
tL

q,2
x

≤ C||ψ||L2
x
, ||Γ−ΔF ||Lp

tL
q,2
x

≤ C||F ||
Lp̃′

t Lq̃′,2
x

(6.4)

for any admissible pairs (p, q) and (p̃, q̃). Also recall that, for any 1 ≤ p, q < ∞ and
any dense subset D ⊂ Lq,2, simple functions G : [−T, T ] → D are dense in Lp

tL
q,2
x .

Consider the nonendpoint estimates for n ≥ 3. We shall use Theorem 4.10 with
B := Lq′,2 and b ≡ 1. (S1′) is exactly the first estimate in (6.4). Since b ≡ 1, (S2′)
and (S3′) follow from Proposition 5.3 or Theorem 2.5(1), respectively. Theorem
4.10 thus implies the homogeneous estimates

||e−itHψ||Lp
tL

q,2
x

≤ C||ψ||L2
x

for all nonendpoint admissible pairs (p, q). Then, a standard argument using the
Christ–Kiselev lemma and the duality (see, e.g., [7, Lemma 7.4]) implies the inho-
mogeneous estimates

||ΓHF ||Lp
tL

q,2
x

≤ C||F ||
Lp̃′

t Lq̃′,2
x

for all nonendpoint admissible pairs (p, q) and (p̃, q̃).
In the case of the endpoint estimate for n ≥ 3 under the additional condition

V ∈ L
n
2 ,∞, we shall use Theorem 4.7 with A = B := L2∗,2. Condition (S1) follows

from (6.4). To derive condition (S2), we observe that the second estimate in (6.4)
and its dual estimate, together with (6.3), imply that

||Y Γ−ΔF ||L2
TL2

x
+ ||Y Γ∗

−ΔF ||L2
TL2

x
+ ||ZΓ−ΔF ||L2

TL2
x
≤ C||F ||L2

TL2∗,2
x

.(6.5)

This estimate, together with Lemma 4.5, yields that Y Γ−ΔF (t) = Y Γ−ΔF (t),
Y Γ∗

−ΔF (t) = Y Γ∗
−ΔF (t), and ZΓ−ΔF (t) = ZΓ−ΔF (t) for any simple function

F : [−T, T ] → L2 ∩ L2∗,2 and for a.e. t ∈ R. In particular, condition (S2) follows
from (6.5). Condition (S3) follows from Theorem 2.5(1) with w1 = w2 = |V |1/2
and Corollary 4.6. Condition (S4) is trivial since b ≡ 1. Therefore, Theorem 4.7
together with density and duality arguments implies

||e−itHψ||
L2

tL
2∗,2
x

≤ C||ψ||L2
x
, ||ΓHF ||

L2
tL

2∗,2
x

≤ C||F ||L2
tL

2∗,2
x

.
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When n = 2, we use the same decomposition for V and Theorem 4.10 with
B = Lq′,2. Condition (S1′) again follows from (6.4), while the Δ- (resp. H-)
smoothness of Y (resp. Z) follows from Proposition 5.2 (resp. Theorem 2.5(2)).
Hence Theorem 4.10 implies the homogeneous estimates. Inhomogeneous estimates
are again derived by using the Christ–Kiselev lemma. �

6.5. Proof of Corollary 2.12. Let us set H0 = −Δ + V1, H = H0 + V2, Y =
sgn(V2)|V2|

1
2 , and Z = |V2|

1
2 . As in paragraph 3.2, (2.1) and (3.8) imply that

both H and H0 are proportional to −Δ in the sense of forms on C∞
0 (Rn) provided

||V ||
M

n
2

,σ is small enough. In particular, we see that

D(H) ∪D(H0) ⊂ H1 = D(QH0
) = D(QH) ⊂ D(Z) = D(Y ),

which, together with the density of D(Y ) = D(Z) in L2, implies that Y and Z are
relatively bounded with respect to both H0 and H.

Let us first show the H-supersmoothness of Z when ||V2||M n
2

,σ is sufficiently

small. The resolvent identity (4.10) with (u, v) = (Zf, Zg) for f, g ∈ D(Z) (note
that Z is self-adjoint) implies

〈RH(z)Zf, Zg〉 = 〈RH0
(z)Zf, Zg〉 − 〈ZRH(z)Zf, Y RH0

(z)Zg〉.

Theorem 2.8 with w1 = w2 = |V2|
1
2 for RH0

(z) then shows, for z ∈ C \ [0,∞),

||ZRH(z)Zf ||L2 = sup
||g||=1

|〈RH(z)Zf, Zg〉| ≤ C||V2||M n
2

,σ (||f ||L2+ ||ZRH(z)Zf ||L2)

with C > 0 independent of V2 and z. Therefore, taking ||V2||M n
2

,σ small enough,
one has

||ZR(z)Zf ||L2 ≤ C||V2||M n
2

,σ (1− C||V2||M n
2

,σ )−1||f ||L2

for f ∈ D(Z) which implies the H-supersmoothness since D(Z)(⊃ H1) is dense in
L2.

Next we prove the assertion in the nonendpoint case. We use Theorem 4.10
with B = Lq′,2. Conditions (S1′) and (S2′) follow from Theorem 2.11(1) and
Theorem 2.5(1), respectively, while (S3′) is an immediate consequence of the H-
supersmoothness of Z. Therefore, Theorem 4.7 can be applied to obtain nonend-
point Strichartz estimates for e−itH . Estimates for the Duhamel operator ΓH again
follow from the estimates for e−itH and the Christ–Kiselev lemma.

In order to derive the assertion for the endpoint case under the smallness of
||V2||Ln

2
,∞ , we shall use Theorem 4.7 with A = B = L2∗,2. Conditions (S1) and

(S2) again follow from Theorem 2.11(1) and (6.3) with H replaced by H0, where
we have used the condition V2 ∈ L

n
2 ,∞ to obtain (6.3). Condition (S3) is exactly

the H-supersmoothness of Z, which follows from the same argument as above since
||V2||M n

2
,σ ≤ C||V2||Ln

2
,∞ . Finally, (S4) is trivial since b ≡ 1. Thus Theorem 4.7

gives us the assertion in the endpoint case. �

7. A weakly conjugate operator method

In this section, we consider operators H = −Δ+V with V satisfying Assumption
2.17. Let us recall the definition of the usual group of dilations

eitAf(x) = etn/2f(etx),(7.1)
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which is the strongly continuous unitary group on L2(Rn) with generator

A :=
1

2i
(x · ∇+∇ · x).(7.2)

In Assumption 2.17, condition (1) with � = 1, 2 allows us to define the commu-
tators

[H, iA] = −2Δ− x · ∇V = 2H − 2V − x · ∇V,

[[H, iA], iA] = −4Δ + (x · ∇)2V = 2[H, iA] + 2x · ∇V + (x · ∇)2V

as sesquilinear forms on C∞
0 (Rn \ 0)× C∞

0 (Rn \ 0), i.e.,
Q[H,iA](f, g) := QH(f, iAg)−QH(Af, ig)

= 2QH(f, g)− 〈(2V + x · ∇V )f, g〉,(7.3)

Q[[H,iA],iA](f, g) := Q[H,iA](f, iAg)−Q[H,iA](Af, ig)

= 2Q[H,iA](f, g) + 〈(2x · ∇V + (x · ∇V )2V )f, g〉.(7.4)

The first condition in Assumption 2.17(4) implies that

|Q[H,iA](f, g)| ≤ C||f ||G1 ||g||G1 , f, g ∈ C∞
0 (Rn \ 0),(7.5)

showing that the sesquilinear form Q[H,iA](f, g) extends from C∞
0 (Rn \ 0)×

C∞
0 (Rn\0) to a continuous sesquilinear form on G1×G1, still denoted byQ[H,iA](f, g)

see paragraph 3.2 for G1. Condition (3) in Assumption 2.17 implies in particular
that

QS(f) := Q[H,iA](f, f) ≥ 0.

This allows us to define D(S1/2) ⊂ L2 as the closure of C∞
0 (Rn \ 0) for the norm(

||f ||2L2 + QS(f)
)1/2

. By (7.5), G1 is continuously and densely embedded into

D(S1/2). The sesquilinear form Q[H,iA] then extends continuously to D(S1/2) and

gives rise to a nonnegative self-adjoint operator S : D(S) → L2, such that

Q[H,iA](f, g) = 〈f, Sg〉, f ∈ D(S1/2), g ∈ D(S).

Note that the notation D(S1/2) is unambiguous since this space is exactly the

domain of
√
S defined by functional calculus of nonnegative self-adjoint operators.

The second condition in Assumption 2.17(4) (see also (7.3) and (7.4)) ensures
that

|Q[[H,iA],iA](f, f) | ≤ CQ[H,iA](f, f), f ∈ C∞
0 (Rn \ 0),(7.6)

so, by (7.5), the form Q[[H,iA],iA] can be extended continuously to G1 on which it
still satisfies (7.6). The estimate (7.6) is technically important in the proof of the
following theorem.

Theorem 7.1. If κ > 0 is large enough, then S1/2(A + iκ)−1 is H-supersmooth;
that is

sup
z∈C\R

∣∣∣〈(A−iκ)−1S1/2f, (H−z)−1(A−iκ)−1S1/2g
〉∣∣∣ ≤ C||f ||L2 ||g||L2 , f, g∈G1.

This theorem can be seen as a consequence of some version of the weakly conju-
gate operator method (see [8,9,55]) in that it only uses the nonnegativity of [H, iA]
and the upper bound (7.6). Our version is fairly simpler than in the previous ref-
erences, for we do not use interpolation spaces nor even that ||S1/2u||L2 defines a
norm. The stronger lower bound (3) in Assumption 2.17 is only used to obtain
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Theorem 2.19, i.e., to replace the operator (A− iκ)−1S1/2 by the physical weights
|x|−1 or w (when n = 2).

Before proving Theorem 7.1, we show how it implies Theorem 2.19.

Proof of Theorem 2.19. We prove the cases n ≥ 3 and n = 2 simultaneously by
setting w(x) = |x|−1 if n ≥ 3; indeed, in Assumption 2.17(3), the lower bound in

dimension n ≥ 3 can be replaced by ||∇f ||2L2 +
∣∣∣∣|x|−1f

∣∣∣∣2
L2 thanks to the Hardy

inequality (and up to possibly changing δ0). The result will then clearly be a
consequence of∣∣〈(H − z)−1wϕ,wψ〉

∣∣ ≤ C||ϕ||L2 ||ψ||L2 , z ∈ C \ R, ϕ, ψ ∈ C∞
0 (Rn \ 0).(7.7)

Write first
wϕ = lim

ε↓0
(A− iκ)−1S

1
2 (S + ε)−

1
2 (A− iκ)wϕ,

using that (A− iκ)wϕ ∈ L2 (since w ∈ C1(Rn \0)) and that S is a nonnegative self-
adjoint operator with no 0 eigenvalue by Assumption 2.17(3). Thanks to Theorem
7.1, we have

∣∣〈(H−z)−1wϕ,wψ〉
∣∣ ≤ C sup

ε>0
||(S+ε)−

1
2 (A−iκ)wϕ||L2 ||(S+ε)−

1
2 (A−iκ)wψ||L2 ,

(7.8)

where the constant C is independent of z and ϕ, ψ. Note here that

(S + ε)−
1
2 (A− iκ)wϕ

does not clearly belong to G1 (and likewise with ψ), as is required in Theorem 7.1;
however for fixed ε, it can be approached by a sequence of G1 which allows us to
fully justify (7.8). Then, by writing

(A− iκ)w =

(
∇ · x
i

− n

2i
− iκ

)
w

and using on the other hand that Assumption 2.17(3) implies∣∣∣∣(S + ε)−
1
2∇u

∣∣∣∣
L2 +

∣∣∣∣(S + ε)−
1
2wu

∣∣∣∣
L2 ≤ C||u||L2 , u ∈ C∞

0 (Rn \ 0),
with C independent of ε, we see that the right-hand side of (7.8) is bounded by

C
(
||xwϕ||L2 + ||ϕ||L2

)(
||xwψ||L2 + ||ψ||L2

)
.

Since |x|w is bounded by assumption, this yields (7.7). �

Proof of Corollary 2.21. It follows from Theorem 2.19 together with (4.14) and
(4.16). �

The rest of the section is devoted to the proof of Theorem 7.1. We let G−1 be the
(anti)dual of G1, i.e., the space of continuous conjugate linear forms on G1. To avoid
any ambiguity, we denote by 〈u, f〉G−1,G1 := u(f) the duality between u ∈ G−1 and
f ∈ G1 (it is linear in u and conjugate linear in f). We keep the notation 〈·, ·〉 for
the inner product on L2 only.

Then, we define three linear continuous operators H̃, S̃, S̃′ : G1 → G−1 by

H̃f := QH(f, ·), S̃f := Q[H,iA](f, ·), S̃′ = Q[[H,iA],iA](f, ·), f ∈ G1.(7.9)

The operators H̃ and S̃ are extensions of H and S, respectively, to G1, in the sense
that

H̃f = Hf if f ∈ D(H), S̃f = Sf if f ∈ G1 ∩D(S)
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or, to be completely rigorous, H̃f = 〈Hf, ·〉 and S̃f = 〈Sf, ·〉, respectively.

Proposition 7.2. Let z ∈ C \R. Let ε ∈ R such that εIm(z) ≥ 0 (i.e., either ε = 0
or ε and Im(z) have the same strict sign). Then

H̃ − z − iεS̃ : G1 → G−1

is an isomorphism. The multiplication by z means f �→ 〈zf, .〉 = z〈f, .〉.

Proof. Let us assume, e.g., that Im(z) > 0 and ε ≥ 0. Then, for all f ∈ G1, one has

Re〈(H̃ − z − iεS̃)f, f〉G−1,G1 = QH(f, f)− Re(z)||f ||2L2 ,

−Im〈(H̃ − z − iεS̃)f, f〉G−1,G1 = Im(z)||f ||2L2 + εQ[H,iA](f, f) ≥ Im(z)||f ||2L2 .

(7.10)

Plugging the estimate of the second line in the first line implies easily the coercivity
estimate

||f ||2G1 = QH(f, f) + ||f ||2L2 ≤
(
1 +

|Re(z)|+ 1

Im(z)

) ∣∣∣〈(H̃ − z − iεS̃)f, f〉G−1,G1

∣∣∣ .
One then has the expected bijectivity by an application of the Lax–Milgram the-
orem to the sesquilinear form (f, g) �→ 〈(H̃ − z − iεS̃)f, g〉G−1,G1 = QH(f, g) −
iεQ[H,iA](f, g)− z〈f, g〉. �

This proposition allows us to consider Gε(z) := (H̃−z− iεS̃)−1. We record that,
upon the identification of any f ∈ L2 with the form 〈f, ·〉 which belongs to G−1,
one has for ε = 0

G0(z)f = (H − z)−1f, f ∈ L2,

which simply follows from the fact that QH

(
(H − z)−1f, g

)
= 〈H(H − z)−1f, g〉

for any g ∈ G1. Also, it is useful and not hard to check that Gε(z) and G−ε(z̄) are
adjoint to each other in the precise sense that, for all u, v ∈ G−1,

〈u, Gε(z)v〉G−1,G1 = 〈v, G−ε(z̄)u〉G−1,G1 .(7.11)

To derive (7.11), it suffices to write u =
(
H̃ − z̄ + iεS̃

)
G−ε(z̄)u and to use the

symmetry of QH and Q[H,iA]. We also record at this stage the useful formula

d

dε
Gε(z) = Gε(z)iS̃Gε(z),(7.12)

which follows from the differentiability of ε �→ H̃ − z − iεS̃ in the operator norm.

Proposition 7.3. Let B : G1 → L2 be a bounded linear map. Then, for εIm(z) > 0,∣∣∣∣S1/2Gε(z)B
∗∣∣∣∣

L2→L2 ≤ |ε|− 1
2

∣∣∣∣BGε(z)B
∗∣∣∣∣ 1

2

L2→L2 .

Proof. Let f ∈ L2. Denoting for simplicity B∗f instead of B∗(〈f, ·〉), one has∣∣∣∣S1/2Gε(z)B
∗f

∣∣∣∣2
L2 = Q[H,iA](Gε(z)B

∗f,Gε(z)B
∗f)

≤ 1

ε

(
εQ[H,iA](Gε(z)B

∗f,Gε(z)B
∗f) + Im(z)||Gε(z)B

∗f ||2
)
,

where, according to (7.10), the parentheses in the second line is

−Im〈(H̃ − z − iεS̃)Gε(z)B
∗f,Gε(z)B

∗f〉G−1,G1 = −Im〈B∗f,Gε(z)B
∗f〉G−1,G1 .

Thus,
∣∣∣∣S1/2Gε(z)B

∗f
∣∣∣∣2
L2 ≤ |ε|−1|〈f,BGε(z)B

∗f〉| yields the result. �
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To prepare all the material needed to follow the usual differential inequality
technique of Mourre, we need a technical result.

Proposition 7.4.

(1) For all t ∈ R, eitA leaves G1 invariant, and there exists c0 ≥ 0 such that

||eitAf ||G1 ≤ ec0|t|||f ||G1

for all t ∈ R and f ∈ G1. In particular, for |κ| > c0, (A + iκ)−1 maps G1

into itself continuously.
(2) There exists c1 ≥ 0 such that, for all f ∈ G1 and t ∈ R,∣∣∣∣S1/2eitAf

∣∣∣∣
L2 ≤ ec1|t|||S1/2f ||L2 .

In particular, for |κ| > max(c0, c1), there exists Cκ such that

||S1/2(A+ iκ)−1f ||L2 ≤ C||S1/2f ||L2 , f ∈ G1.(7.13)

Proof. Let f ∈ C∞
0 (Rn \ 0). Since C∞

0 (Rn \ 0) is stable by eitA by the explicit
formula (7.1), the quantity Q(t) := QH(eitAf, eitAf) is well-defined. We shall
check its differentiability in t. To this end, it suffices to check the differentiability
at t = 0 by the group property of eitA. We compute
(7.14)
Q(t)−Q(0) = QH(eitAf − f, eitAf − f) +QH(f, eitAf − f ) +QH(eitAf − f, f),

where the second and third terms of the right-hand side satisfy

d

dt

(
QH(f, eitAf − f) +QH(eitAf − f, f)

)∣∣∣
t=0

= Q[H,iA](f, f),(7.15)

since t �→ eitAf is differentiable as a G1-valued map. Next we shall show

QH(eitAf − f, eitAf − f) = O(t2), |t| ≤ 1.(7.16)

To treat the gradient term inQH , we use the representation eitAf−f=
∫ t

0
iAeisAfds

to see

(7.17)
∣∣∣∣∇(eitAf − f)

∣∣∣∣2
L2 ≤ |t|2 sup

|t|≤1

∣∣∣∣∇AeitAf
∣∣∣∣2
L2 ≤ C|t|2||∇Af ||2L2 ,

where in the last line we have used the formula e−itA∇eitA = et∇ and the fact
||eitA||B(L2) = 1. For the potential term we consider two cases n ≥ 3 or n = 2

separately. Suppose n ≥ 3 and V ∈ L
n
2 ,∞
loc . Let K � R

n contain supp(eitAf) for
|t| ≤ 1. By (3.1) and (3.5)

(7.18)
|〈V (eitAf − f), eitAf − f〉| ≤ C

∣∣∣∣1K |V | 12
∣∣∣∣2
Ln,∞

∣∣∣∣∇(eitAf − f)
∣∣∣∣2
L2

≤ C|t|2
∣∣∣∣1K |V | 12

∣∣∣∣2
Ln,∞ ||∇Af ||2L2 ,

from which (7.16) follows. Next we let n = 2 and decompose V = V1 + V2 with
V1 ∈ L1

loc and r2V2 ∈ L∞
loc. By Hölder’s inequality, the first potential satisfies

(7.19)
|〈V1(e

itAf − f), eitAf − f〉| ≤ ||V ||L1(K)||eitAf − f ||2L∞(K)

≤ C||V ||L1(K)|t|2||Af ||2L∞(K).

For the second potential, since A = −ix · ∇ − i and e−itA|x|−1eitA = et|x|−1, we
have

|x|−1(eitAf − f) = i

∫ t

0

eseisA
(
|x|−1Af

)
ds
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so that
∣∣∣∣|x|−1(eitAf − f)

∣∣∣∣
L2 ≤ C|t|

(∣∣∣∣|x|−1f
∣∣∣∣
L2 + ||∇f ||L2

)
for |t| ≤ 1, and hence

|〈V2(e
itAf − f), eitAf − f〉| ≤ C|t|2

∣∣∣∣|x|2V2

∣∣∣∣
L∞(K)

(||∇f ||2L2 +
∣∣∣∣|x|−1f

∣∣∣∣2
L2).

(7.20)

Then (7.17) to (7.20) show (7.16). Moreover, by (7.14), (7.15), and (7.16), we have

d

dt
QH(eitAf, eitAf)

∣∣∣
t=0

= Q[H,iA](f, f).

Using more generally the differentiability at any t, we obtain the formula

QH(eitAf, eitAf) = QH(f, f) +

∫ t

0

Q[H,iA](e
isAf, eisAf)ds.(7.21)

Combining this with (7.5) and the fact ||eitAf ||L2 = ||f ||L2 implies

||eitAf ||2G1 ≤ ||f ||2G1 +
c0
2

∫ |t|

0

||eisAf ||2G1ds,

with c0 = 2C coming from (7.5). Gronwall’s inequality then shows ||eitAf ||G1 ≤
ec0|t|||f ||G1 for f ∈ C∞

0 (Rn \ 0), which remains true on G1 by density. The bound-
edness of (A + iκ)−1, say for κ > 0, follows from the fact that (A + iκ)−1 =

i−1
∫ +∞
0

e−tκeitAdt.
The proof of the second assertion is similar. Indeed, x · ∇V satisfies the same

conditions as V , namely x · ∇V ∈ L
n
2 ,∞
loc for n ≥ 3 or x · ∇V ∈ L1

loc + |x|−2L∞
loc for

n = 2. This allows us to differentiate QS(e
itAf) in t for f ∈ C∞

0 (Rn\0). Then (7.6)
allows us to use Gronwall’s argument. We conclude using the density of C∞

0 (Rn \0)
in G1 and the fact that ||S1/2f ||L2 ≤ C||f ||G1 . �

Remark 7.5. The first statement (1) of Proposition 7.4 also holds under the con-
ditions in Theorem 6.1, namely (6.1) if n ≥ 3 or V ∈ X2 if n = 2. Indeed, under
these conditions, Q[H,iA](f, g) is well-defined for f, g ∈ C∞

0 (Rn \ 0) and satisfies
(7.5). Moreover, (7.16) is also satisfied for n ≥ 2. To see this, take the fact
eitAf − f ∈ H1 into account and use (6.1) to obtain

|〈V (eitAf − f), eitAf − f〉| ≤ C|t|2||∇Af ||2L2 , f ∈ C∞
0 (Rn \ 0)

if n ≥ 3, which implies (7.16). When n = 2, the condition |x|2V ∈ L∞
loc, which is

weaker than the condition V ∈ X2, is sufficient to ensure (7.16). Once we obtain
(7.5) and (7.16), the other part of the proof of Proposition 7.4(1) is completely the
same as above. This remark will be used in the proof of Theorem 6.1 (see the proof
of Lemma B.1 in Appendix B).

With this proposition at hand, we can define B := S1/2(A+iκ)−1 as an operator
from G1 to L2 and then define the bounded operator Fε(z) : L

2 → L2 by Fε(z) :=
BGε(z)B

∗. It is useful to record that (7.11) implies that

Fε(z)
∗ = F−ε(z̄).(7.22)

Seeing S1/2 as an operator from G1 to L2, we denote its adjoint as (S1/2)∗ (it
maps conjugate linear forms on L2 to conjugate linear forms on G1). Notice that,
on D(S1/2) ⊂ L2, (S1/2)∗ coincides with S1/2 in the sense that (S1/2)∗〈f, .〉 =
〈S1/2f, .〉 as elements of G−1. We use the notation (S1/2)∗ to distinguish clearly
S1/2 : G1(⊂ D(S1/2)) → L2 from (S1/2)∗ : L2 → G−1.
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Proposition 7.6. Consider S̃′ : G1→G−1 introduced in (7.9). Then for εIm(z)>0,

d

dε
Fε(z) = 2iκFε(z)− S1/2Gε(z)B

∗ +BGε(z)(S
1/2)∗ − εBGz(ε)S̃

′Gz(ε)B
∗.

Proof. We note first that eitA is strongly continuous on G1. This is the case on
C∞

0 (Rn \ 0) (for the G1 topology) according to the proof of Proposition 7.4, and it
remains true on G1 by density and the locally uniform bound ||eitA||G1→G1 ≤ ec0|t|.
Using (7.21) whose integrand is continuous by the strong continuity of eitA on G1,
we find that

Q[H,iA](f, g) =
d

dt
QH(eitAf, eitAg)

∣∣∣∣
t=0

(7.23)

for all f, g ∈ G1. Note that we do not use (nor claim) that eitAf and eitAg are
differentiable at t = 0 for any f, g ∈ G1. Similarly, for all f, g ∈ G1,

Q[[H,iA],iA](f, g) =
d

dt
Q[H,iA](e

itAf, eitAg)

∣∣∣∣
t=0

.(7.24)

Define e−itA on G−1 by 〈e−itAu, f〉G−1,G1 = 〈u, eitAf〉G−1,G1 so that it is a bounded

operator on G−1, with bounded inverse eitA. This allows us to define the t dependent
families of operators

Lt := H̃t − iεS̃t, H̃t := e−itAH̃eitA, S̃t = e−itAS̃eitA.

Then (7.23) and (7.24) show that these families are weakly differentiable at t = 0.
In particular

d

dt
Lt

∣∣∣∣
t=0

= S̃ − iεS̃′.(7.25)

By Proposition 7.2, the operator Lt − z is invertible with inverse Gt
ε(z) :=

e−itAGε(z)e
itA. By the uniform boundedness principle, the weak differentiability

of Lt at t = 0 implies that∣∣∣∣Lt − L0

∣∣∣∣
G1→G−1 = O(t),

∣∣∣∣Gt
ε(z)−Gε(z)

∣∣∣∣
G−1→G1 = O(t),

the second estimate being a consequence of the first one. Then

1

t

(
Gt

ε(z)−Gε(z)
)
= Gz(ε)

1

t

(
L0 − Lt

)
Gε(z) +

(
Gt

z(ε)−Gz(ε)
)1
t

(
L0 − Lt

)
Gε(z),

(7.26)

where the second term in the right-hand side is O(t) in the G−1 → G1 operator
norm by (7.26). On the other hand, using (7.11) and (7.25), it is easy to see that
for any u, v ∈ G−1,〈
u,Gz(ε)

1

t

(
L0−Lt

)
Gε(z)v

〉
G−1,G1 →−

〈
u,Gz(ε)

(
S̃ − iεS̃′)Gε(z)v

〉
G−1,G1 as t → 0.

In other words, Gt
ε(z) is weakly differentiable at t = 0 with derivative

Gz(ε)(iεS̃
′ − S̃)Gz(ε). Taking into account the formula (7.12), we find that

d

dε
BGε(z)B

∗ = −i
d

dt
Be−itAGε(z)e

itAB∗
∣∣∣∣
t=0

− εBGε(z)S̃
′Gε(z)B

∗.
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This formula is true for any bounded operator B : G1 → L2. For B =
S1/2(A + iκ)−1, one can test the above identity against f, g ∈ G1 (which is dense
in L2) so that by using

d

dt
eitAB∗g

∣∣∣∣
t=0

= iA(A− iκ)−1S1/2g = S1/2g − iκB∗g,

we obtain easily the result. �

Proof of Theorem 7.1. For simplicity, we denote by || · || the operator norm on L2.
Since ||Fε(z)|| ≤ Cκ|ε|−1/2||Fε(z)||1/2 by Proposition 7.3 and (7.13), we have the
following estimate uniform in z such that εIm(z) > 0,

||Fε(z)|| ≤ C2
κ|ε|−1.(7.27)

Note that we only need to work with ε small for in the end we shall let it go to
zero. On the other hand, using Proposition 7.6, the norm

∣∣∣∣ d
dεFε(z)

∣∣∣∣ is bounded
(from above) by

2κ
∣∣∣∣Fε(z)

∣∣∣∣+ ∣∣∣∣S1/2Gε(z)B
∗∣∣∣∣+ ∣∣∣∣S1/2G−ε(z̄)B

∗∣∣∣∣
+ C ′|ε|

∣∣∣∣S1/2G−ε(z̄)B
∗∣∣∣∣∣∣∣∣S1/2Gε(z)B

∗∣∣∣∣
with C ′ such that |Q[[H,iA],iA](f, g)| ≤ C ′||S1/2f ||L2 ||S1/2g||L2 . This is obtained
easily by testing the expression of Proposition 7.6 and by using (7.11). From Propo-
sition 7.3 and (7.22), we obtain∣∣∣∣∣∣∣∣ ddεFε(z)

∣∣∣∣∣∣∣∣ ≤ (
2κ+ C ′)∣∣∣∣Fε(z)

∣∣∣∣+ 2|ε|−1/2
∣∣∣∣Fε(z)

∣∣∣∣1/2.(7.28)

Together with (7.27), this gives a uniform bound ||Fε(z)|| ≤ C for εIm(z) > 0;
indeed, using (7.27) in (7.28), we have dFε(z)/dε = O(ε−1), hence that ||Fε(z)|| =
O(| ln ε|), and then by plugging this estimate in (7.28), we obtain the integrability
of dFε(z)/dε in ε, which then yields the boundedness of Fε(z). Since Gε(z) and

Fε(z) are continuous up to ε = 0 (as H̃ − z − iεS̃ is), one obtains the result by
letting ε → 0 in∣∣〈B∗f,Gε(z)B

∗g〉G−1,G1

∣∣ = |〈f, Fε(z)g〉| ≤ C||f ||L2 ||g||L2 ,

and by using that, for f ∈ G1, B∗f is given by the L2 function (A−iκ)−1S1/2f . �

Appendix A. The Christ–Kiselev lemma

We record a special case taken from [60, Lemma 3.1] of the Christ–Kiselev
lemma [14].

Lemma A.1. Let a, b ∈ R, and let X and Y be Banach spaces. Consider the
integral operator

Tf(t) =

∫ b

a

K(t, s)f(s)ds.

Suppose that K ∈ L1
loc(R

2,B(X,Y )), and suppose T is bounded from Lp([a, b];X) to
Lq([a, b];Y ) and satisfies

||Tf ||Lq([a,b];Y ) ≤ C0||f ||Lp([a,b];X)
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for some 1 ≤ p < q ≤ ∞ and C0 > 0. Then the operator T̃ defined by

T̃ f(t) =

∫ t

a

K(t, s)f(s)ds

is also bounded from Lp([a, b];X) to Lq(a, b];Y ) and satisfies∣∣∣∣T̃ f ∣∣∣∣
Lq([a,b];Y )

≤ C1||f ||Lp([a,b];X),

where C1 = C02
1−2(1/p−1/q)(1− 2−(1/p−1/q))−1.

Note that the condition p < q is essential in the sense that if K(t, s) = (t− s)−1,
then this lemma fails for 1 < p = q < ∞.

Appendix B. Proof of Theorem 6.1

Here we prove Theorem 6.1. It will be convenient to use the notations r = |x|
and ∂r = x

|x| · ∇.

Let f ∈ C∞
0 (Rn\0), z = λ+iε ∈ C\[0,∞) with λ, ε ∈ R. Let u = (H−λ−iε)−1f

be the solution to the Helmholtz equation

(H − λ− iε)u = f.(B.1)

Note that H is nonnegative (by assumption (2.1) or (2.3)) so we may take ε = 0
if λ < 0. Below, we only consider the case ε ≥ 0 (i.e., ε > 0 if λ ≥ 0 or ε ≥ 0 if
λ < 0) since the proof for the case ε < 0 is analogous. The proof basically follows
the method of [3, Sections 2 and 3] which is based on the following two lemmas.

Lemma B.1. Let n ≥ 2. Then r
1
2 u and r

1
2∇u belong to L2, and we have the

following five identities:∫ (
|∇u|2 − λ|u|2 + V |u|2

)
dx = Re

∫
fudx,(B.2)

−ε

∫
|u|2dx = Im

∫
fudx,(B.3) ∫ (

r|∇u|2 − λr|u|2 + rV |u|2 +Re(u∂ru)
)
dx = Re

∫
rfudx,(B.4) ∫ (

− εr|u|2 + Im(u∂ru)
)
dx = Im

∫
rfudx,(B.5) ∫ (

2|∇u|2 − (r∂rV )|u|2 − 2εIm(ur∂ru)
)
dx = Re

∫
f(2r∂ru+ nu)dx.(B.6)

Proof. Note that G1 = H1 if n ≥ 3 and G1 is the completion of C∞
0 (R2 \ {0}) with

respect to the norm (QH(u)+ ||u||2L2)1/2 if n = 2 under conditions in Theorem 6.1.
Identities (B.2) and (B.3) just correspond to the expressions of the real and

imaginary parts of the identity QH(u, u) − z||u||L2 = 〈f, u〉, which follow from
(B.1). We point out that the integral

∫
V |u|2dx is well-defined, thanks to (6.1) if

n ≥ 3. If n = 2, we use that V 1/2u belongs to L2 for u ∈ G1 since if uj ∈ C∞
0 (R2\0)

approaches u in G1, then V 1/2uj is a Cauchy sequence in L2.
At a formal level, (B.4) and (B.5) follow by multiplying (B.1) by rū, then by

integrating and taking real and imaginary parts. To make this calculation rigorous,
we pick χ ∈ C∞

0 (R) equal to 1 near 0 and multiply (B.1) by rχ(δr)ū =: rχδū. It is
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not hard to check that rχδu ∈ G1, which allows to use the identity QH(u, rχδu) =
〈Hu, rχδu〉. Taking the imaginary part (and using (B.1)), we obtain∫

−εrχδ|u|2dx = Im

∫ (
χδrfū− (rχδ)

′ū∂ru
)
dx.

Since the right-hand side has a limit as δ → 0 while the integrand of the left-hand
side has a fixed sign, we can let δ → 0 and get (B.5) by monotone convergence (we
can choose χ such that χδ(r) ↑ 1 as δ ↓ 0). In particular, we have r1/2u ∈ L2. Next
by taking the real part of QH(u, rχδu) = 〈Hu, rχδu〉, we have∫

χδr|∇u|2dx =

∫
λrχδ|u|2 − rχδV |u|2 − Re

(
(rχδ)

′ū∂ru
)
dx+Re

∫
χδrfūdx,

whose right-hand side converges as δ → 0 since we have already shown that r1/2u ∈
L2 while rV |u|2 is integrable by the Cauchy–Schwarz inequality and (6.1) if n ≥ 3
or Assumption 2.3 if n = 2. Letting δ → 0, we get (B.4). In particular, it shows

that r
1
2∇u ∈ L2.

It remains to prove (B.6). Formally, it is obtained by multiplying (B.1) by iAū,
integrating and taking the real part. However Aū does not clearly belong to L2 (we
do not know that r∂ru ∈ L2), so we need more arguments to justify the formula.
For δ > 0, we replace Au by A(δA2 + 1)−1u. Note that by Proposition 7.4(1) and
Remark 7.5 G1 is stable by A(δA2 + 1)−1 = A(δ1/2A + i)−1(δ1/2A − i)−1. Using
(B.1) and the fact that f ∈ C∞

0 (Rn) ⊂ D(A), we have first

2Re〈Hu, iA(δA2 + 1)−1u〉 = 2ε〈u,A(δA2 + 1)−1u〉+ Im〈Af, (δA2 + 1)u〉.

Using that r1/2u, r1/2∂ru ∈ L2 and that

(δ1/2A± i)−1r
1
2 = r

1
2

(
δ1/2A± i(1∓ δ1/2/2)

)−1
,

we can let δ → 0 in this identity so that

2Re〈Hu, iA(δA2 + 1)−1u〉 → 2εIm

∫
r

1
2 ūr

1
2 ∂rudx+ Im

∫
Afūdx.(B.7)

On the other hand, since A(δA2 + 1)−1u belongs to G1, one can write

2Re〈Hu, iA(δA2 + 1)−1u〉 = iQH

(
A(δA2 + 1)−1u, u

)
− iQH(u,A(δA2 + 1)−1u).

(B.8)

To let δ → 0 in this expression, we study separately the contribution of −Δ and of
V . It is not hard to check that (δA2 + 1)−1u → u in G1 as δ → 0 (by writing the
resolvent of A in terms of eitA as in the proof of Proposition 7.4). Let QH = QH0

be the quadratic form associated to the Laplacian, i.e., to V = 0. Setting uδ =

(δ
1
2A+ i)−1u and using the formulas [∂j , (δ

1
2A± i)−1] = iδ

1
2 (δ

1
2A± i)−1∂j(δ

1
2A±

i)−1, it is not hard to check that

iQH0

(
A(δA2 + 1)−1u, u

)
= iQH0

(
Auδ, uδ

)
+O

(∣∣∣∣δ 1
2Auδ

∣∣∣∣
H1 ||u||H1

)
.

We omit the details such as the possible approximation of u by a C∞
0 function in

G1. Next we observe that δ
1
2Auδ → 0 in H1 as δ → 0; this is obvious on L2 by

the spectral theorem, and it remains true on H1 by using that ∂j(δ
1
2A + i)−1 =

(δ
1
2A+ i− δ

1
2 i)−1∂j . Thus, in the right-hand side of (B.8), the contribution of QH0
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as δ → 0 is Q[H0,iA](u, u) = 2||∇u||2L2 . We next study the contribution of V in the
right-hand side of (B.8) which reads

2

∫
V Re

(
ū(r∂r − n/2)(δA2 + 1)−1u

)
dx

δ↓0−→ 2

∫
V Re

(
ū(r∂r − n/2)u

)
dx =

∫
V∇ · x(|u|2)dx.

To take the limit δ ↓ 0, we use, when n ≥ 3, that ||rV ū||L2 ≤ C||u||H1 and that
(δA2 + 1)−1 goes strongly to 1 in H1. When n = 2, we use that ||rV ū||L2 ≤
||rV 1

2 ||L∞ ||V 1
2u||L2 with ||V 1

2 u||L2 < ∞ for u ∈ G1 and that (δA2 + 1)−1 → 1
strongly in G1 (to control the term with n/2). This is obtained by using∫ ∞

0

e−t||eitδ
1
2 Au− u||G1dt → 0,

by dominated convergence and the strong continuity of eitA on G1; see Propo-
sition 7.4 and Remark 7.5. To integrate by part in the limit and rewrite it as
−
∫ (

r∂rV
)
|u|2dx, we use that

∫
V∇ · x(|v|2)dx depends continuously on v ∈ G1

for the same reasons as the above convergence, and we then approximate v by C∞
0

functions so that the integration by part holds in the sense of distributions and re-
mains true in the limit since v �→ −

∫ (
r∂rV

)
|v|2dx is also continuous on G1 thanks

to the assumption that ||r1/2|∂rV |1/2f ||L2 ≤ C||f ||H1 . To sum up, we have shown
that the right-hand side of (B.8) goes to 2||∇u||2L2 −

∫
(r∂rV )|u|2dx as δ → 0 so,

taking (B.7) into account, we obtain (B.6). �

Lemma B.2. Let n ≥ 2, 0 < ε < λ, and vλ = e−iλ
1
2 ru. Then one has

(B.9)

∫ (
|∇vλ|2 + ελ− 1

2 r|∇vλ|2
)
dx

=

∫ (
∂r(rV )|vλ|2 − ελ− 1

2 rV |vλ|2 − ελ− 1
2Re(ueiλ

1
2 r∂rvλ)

)
dx

+Re

∫ (
(n− 1)fu+ ελ− 1

2 rfu+ 2rfeiλ
1
2 r∂rvλ

)
dx.

Proof. At first observe from the identity |z − iw|2 = |z|2 + |w|2 − 2Im(zw) for
z, w ∈ C that

|∇vλ|2 = |∇u− iλ
1
2 |x|−1xu|2 = |∇u|2 + λ|u|2 − 2λ

1
2 Im[(∂ru)u].(B.10)

Then formula (B.9) is derived by computing

(B.6)− (B.2)− 2λ
1
2 × (B.5) + ελ− 1

2 × (B.4)

as follows. First, taking (B.10) into account, (B.6)− (B.2) reads

(B.11)

∫ (
|∇vλ|2 + 2λ

1
2 Im[(∂ru)u]− (∂r(rV ))|u|2 − 2εIm[(r∂ru)u]

)
dx

= Re

∫ (
f(2r∂ru+ (n− 1)u)

)
dx.
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To eliminate 2λ
1
2 Im[(∂ru)u], we subtract 2λ

1
2 × (B.5) from (B.11) to obtain

(B.12)

∫ (
|∇vλ|2 − (∂r(rV ))|u|2 − 2εIm[(r∂ru)u] + 2ελ

1
2 r|u|2

)
dx

=

∫ (
Re[f(2r∂ru+ (n− 1)u)]− 2λ

1
2 Im(rfu)

)
dx.

Since −Im(rfu) = Re(rf−iu) and ∂ru− iλ
1
2 u = eiλ

1
2 r∂rvλ, the right-hand side of

(B.12) reads

Re[f(2r∂ru+ (n− 1)u)]− 2λ
1
2 Im(rfu) = Re

(
2rfeiλ

1
2 r∂rvλ + (n− 1)fu

)
.

(B.13)

Using (B.10), we next compute

(B.14) −2εIm[(r∂ru)u] + 2ελ
1
2 r|u|2 + ελ− 1

2 (r|∇u|2 − λr|u|2) = ελ− 1
2 r|∇vλ|2.

It is then seen from (B.13) and (B.14) that (B.12) + ελ− 1
2 × (B.4) reads

(B.15)∫ (
|∇vλ|2 − (∂r(rV ))|u|2 + ελ− 1

2 r|∇vλ|2 + ελ− 1
2 rV |u|2 + ελ− 1

2Re(u∂ru)
)
dx

= Re

∫ (
2rfeiλ

1
2 r∂rvλ + (n− 1)fu+ ελ− 1

2 rfu
)
.

Finally, since Re(u∂ru) = Re[u(∂ru− iλ
1
2u)] = Re(ueiλ

1/2r∂rvλ), (B.15) is equiva-
lent to (B.9). �

Proof of Theorem 6.1(1). Here we consider the case when n ≥ 3. It suffices to show

||r−1u||L2 ≤ C||rf ||L2(B.16)

uniformly in λ > 0 and ε > 0 or in λ < 0 and ε = 0. When ε ≥ λ > 0, (B.2) and
(B.3) imply∫ (

|∇u|2 + V |u|2
)
dx ≤ (1 + λ+/ε)

∫
|fu|dx ≤ δ1||r−1u||2L2 + δ−1

1 ||rf ||2L2(B.17)

for any δ1 > 0, where λ+ = max{0, λ}. Note that if λ < 0 and ε = 0, (B.17) still
holds with 1 + λ+/ε replaced by 1. On the other hand, the hypothesis (2.1) and
Hardy’s inequality show∫ (

|∇u|2 + V |u|2
)
dx ≥ δ0

∫
|∇u|2dx ≥ δ0CCH

∫
r−2|u|2dx.

Choosing δ1 > 0 so small that δ := δ0CCH
− δ1 > 0, we obtain (B.16).

We next let ε < λ. By Hardy’s inequality, ||∇vλ||L2 ≥ CCH
||r−1vλ||2L2 =

CCH
||r−1u||2L2 . Hence it suffices to show (B.16) that there exist δ, Cδ > 0, in-

dependent of λ and ε, such that the right-hand side of (B.9) is bounded from above

by (1− δ)||∇vλ||2L2 + (1− δ)ελ− 1
2 ||r 1

2∇vλ||2L2 +Cδ||rf ||2L2 . By hypothesis (2.2) the
first term of the right-hand side of (B.9) satisfies∫

∂r(rV )|vλ|2dx ≤ (1− δ0)||∇vλ||2L2 .(B.18)
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This implies that the first term of the right-hand side of (B.9) can be absorbed in
the left-hand side (of (B.9)). For the second term of the right-hand side of (B.9),
it follows from (2.1) that

−ελ− 1
2

∫
rV |vλ|2dx ≤ ελ− 1

2 (1− δ0)||∇(r
1
2 vλ)||2L2 ,(B.19)

provided we know that r
1
2 vλ belongs to H1. This follows from the fact that

r
1
2 u, r

1
2∇u ∈ L2 by Lemma B.1 together with following weighted Hardy’s inequality

(see, e.g., [46, Proposition 8.1] in which a simple proof can be found),

||r− 1
2 v||L2 ≤ C||r 1

2∇v||L2 .

Since ∇(r
1
2 vλ) = r

1
2∇vλ + 1

2r
− 1

2
x
|x|vλ and ε < λ, the right-hand side of (B.19) is

bounded by

ελ− 1
2 (1− δ0)||r

1
2 vλ||2L2 + Cε

1
2

(∫
|vλ||∂rvλ|+ r−1|vλ|2dx

)
.

The interest of this bound is that its first term can be absorbed in the left-hand side
of (B.9). For the other terms, using the Cauchy–Schwarz and Hardy inequalities,
we can bound them by

δ1||∇vλ||2L2 + C1δ
−1
1 ε||vλ||2L2

for any δ1 > 0 with C1 being independent of δ1 and ε. Then (B.3) and Hardy’s
inequality imply

ε||vλ||2L2 = ε||u||2L2 ≤
∫

|fu|dx ≤ C−1
1 δ21 ||∇vλ||2L2 + Cδ−2

1 ||rf ||2L2 .

Summing up, we have shown that (B.9) implies

δ0

∫ (
|∇vλ|2 + ελ− 1

2 r|∇vλ|2
)
dx

≤ 2δ1||∇vλ||2L2 + Cδ−3
1 ||rf ||2L2 +

∫ (
− ελ− 1

2Re(ueiλ
1
2 r∂rvλ)

)
dx(B.20)

+ Re

∫ (
(n− 1)fu+ ελ− 1

2 rfu+ 2rfeiλ
1
2 r∂rvλ

)
dx.

To bound the two integrals in the right-hand side, similar computations yield

ελ− 1
2

∣∣∣Re ∫ eiλ
1
2 r(∂rvλ)udx

∣∣∣ ≤ √
ε||∇vλ||L2 ||vλ||L2 ≤ δ1||∇vλ||2L2 + Cδ−3

1 ||rf ||2L2 ,∣∣∣(n− 1)Re

∫
fudx

∣∣∣+ ∣∣∣2Re∫ rfeiλ
1
2 r∂rvλdx

∣∣∣ ≤ δ1||∇vλ|||2L2 + Cδ−1
1 ||rf ||2L2 ,

ελ− 1
2

∣∣∣ ∫ rfudx
∣∣∣ ≤ √

ε||rf ||L2 ||u||2L2 ≤ δ1||∇vλ||2L2 + Cδ−3
1 ||rf ||2L2 .

Together with (B.20), these estimates show that

δ0||∇vλ||2L2 ≤ 5δ1||∇vλ||2L2 + Cδ−3
1 ||rf ||2L2 ,

hence by choosing δ1 so that δ0 − 5δ1 > 0, we obtain (B.16) by using the Hardy
inequality. �
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Remark B.3. It was claimed in [3] that r−1 is H-supersmooth under (6.1), (2.1),
and (2.2). However, their argument used a weighted Hardy type inequality∫

rV |f |2dx ≤ (1− δ0)||r
1
2∇f ||L2 , δ0 > 0, f ∈ H1,

with an explicit constant 1 − δ0 to deal with the term −ελ− 1
2

∫
rV |vλ|2dx, which

seems to be not an obvious consequence of (6.1), (2.1), and (2.2).

Proof of Theorem 6.1(2). Next we consider the case n = 2. It suffices to show

||V 1
2 u||L2 ≤ C||V − 1

2 f ||L2(B.21)

uniformly in λ ∈ R and ε > 0 or in λ < 0 and ε = 0, where we note that V − 1
2 f ∈ L2

for f ∈ C∞
0 since V − 1

2 ∈ L2
loc. When ε ≥ λ, (B.17) implies, for any δ > 0,

||V 1
2 u||2L2 ≤ 2

∫
|fu|dx ≤ δ||V 1

2 u||2L2 + δ−1||V − 1
2 f ||2L2 .

Taking δ < 1, we obtain (B.21). When ε < λ, Assumption 2.3(2) and (B.9) imply

||∇vλ||2L2 + c||V 1
2 vλ||2L2 ≤

√
ε

∫
(|u∂rvλ|+ |rfu|)dx+ C

∫
(|fu|+ r|f∂rvλ|)dx

with some c, C > 0. As in the case when n ≥ 3, for any δ > 0 there exists Cδ > 0
such that

||∇vλ||2L2 + c||V 1
2 vλ||2L2 ≤ δ(||∇vλ||2L2 + ||V 1

2 vλ||2L2) + Cδ(||V − 1
2 f ||2L2 + ||rf ||2L2).

Choosing δ > 0 so small that δ < min(1, c) and using the fact r2V ∈ L∞, we obtain
(B.21). �
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