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A NOTE ON HIGHER EXTREMAL METRICS

VAMSI PRITHAM PINGALI

Abstract. In this paper we introduce “higher extremal Kähler” metrics. We
provide an example of the same on a minimal ruled surface. We also prove a
perturbation result that implies that there are non-trivial examples of “higher
constant scalar curvature” metrics, which are basically metrics where the top
Chern form is harmonic. We also give a relatively short proof of Liu’s formula
for the Bando-Futaki invariants (which are obstructions for the existence of
harmonic Chern forms) of hypersurfaces of projective space.

1. Introduction

The problem of finding Kähler-Einstein metrics and, more generally, extremal
Kähler metrics is of active interest (for instance see [16] and the references therein).
Extremal metrics may be characterised as Kähler metrics for which the gradient

of the scalar curvature (expressed as S = nc1∧ωn−1

ωn ) is a holomorphic vector field.
Special cases of these are the constant scalar curvature Kähler (cscK) metrics, which
we interpret as those metrics for which the first Chern form is harmonic [2].

The Chern classes are important objects in algebraic geometry. In addition to
the classes, the first Chern-Weil form itself is quite natural to study because it
is the Ricci form for a Kähler manifold. Indeed, the first Chern form was used
by Yau to prove the Bogomolov-Miyaoka-Yau inequality as a consequence of the
Calabi conjecture [18]. As Yau stated in [19], the higher Chern-Weil forms are quite
mysterious. That being said, we note that at the level of classes the top Chern class
is the Euler class. Therefore, studying the top Chern form might potentially lead
to interesting consequences. We are thus led to study the equation

cn(ω) = λωn,(1.1)

where the gradient of λ is a holomorphic vector field. We call these metrics higher
extremal Kähler, and if λ is a constant, i.e., the top Chern form is harmonic, then
we dub them as higher constant scalar curvature (hcscK ).

The hcscK metrics and their avatars were considered earlier by Bando [2], who
came up with an obstruction for their existence. Another version of the higher
extremal metrics was studied by Futaki [8, 9], where he considered the perturbed

scalar curvature S(J, t) = c1+tc2+t2c3+...
ωn , where t is a small real number. Our ques-

tion is the case for large t in a sense. So Futaki’s results do not apply in any direct
manner that the author can see.
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In this paper we study examples of higher extremal and hcscK metrics. Our first
example comes from a minimal ruled surface. For the usual extremal Kähler metrics
this example was first studied in [17], and more general results were proven in [1].

Theorem 1.1. Let X be P(L⊕O) where L is a degree −1 line bundle over a genus
2 surface Σ. Let C be the Poincaré dual of any fibre and let S∞ be the copy of
Σ corresponding to the line L ⊕ {0}. There exists a Kähler metric ω in the class
2π(C + S∞) such that

c2(ω) =
λ

2(2π)2
ω2,(1.2)

where ∇(1,0)λ is a holomorphic non-zero vector field on X; i.e., it is higher extremal
Kähler but not hcscK.

Remark 1.1. The aforementioned theorem does not assert that for 2π(C +mS∞),
where m > 1, there are no extremal metrics. The author suspects that there might
be a maximum m (just as in the usual extremal Kähler case) beyond which there
may not exist a solution. The proof is by reducing the equation to an ODE1 that
unfortunately is not integrable and is non-autonomous. The analysis of the ODE
is somewhat delicate. In contrast to the usual case [17] where the corresponding
ODE always has a solution satisfying the desired boundary conditions (but it is
not clear that the solution actually gives rise to a Kähler metric), in our case the
difficulty lies with the existence of a solution to the ODE satisfying the boundary
conditions. Also, the proof of Theorem 1.1 shows that the assertion of the higher
extremal metric not being hcscK is true regardless of m.

In our quest to find more examples, we note that the hermitian symmetric spaces
are hcscK. This is because their metric, curvature, and hence characteristic forms
are constant linear combinations of invariant differential forms. Actually, in the
case of a surface X with ample canonical bundle, Yau [18] showed that if c21 = 3c2
numerically, then indeed it admits hcscK metrics and that they are all Kähler-
Einstein as well (by virtue of them being ball quotients).

It is natural to wonder if there are non-trivial (i.e., not X1 × X2 with prod-
uct Kähler-Einstein metrics) examples of hcscK metrics. Also, near the symmetric
Kähler-Einstein metrics are there any other hcscK metrics; i.e., does local unique-
ness hold? The following perturbation result addresses these questions in some
cases.

Theorem 1.2. Suppose that either (X,ω) = (D1/Γ1×D1/Γ2, π
∗
1ω1+π∗

2ω2), where
ω1, ω2 are constant curvature metrics, or X = D2/Γ equipped with a metric ω of
constant holomorphic sectional curvature. Suppose ω̃ is any closed real (1, 1)-form.
There exists an ε1, ε2 > 0 such that for |t| < ε1 there exists a unique smooth
function φ of zero average (with respect to ω) depending smoothly on t satisfying
‖φ‖C4,α < ε2 such that ω + tω̃ +

√
−1∂∂̄φ is hcscK.

Remark 1.2. Consider surfaces of general type satisfying c21 = 3c2. Noether’s for-
mula, Hodge theory, and the fact that c2 is the Euler characteristic allow us to
prove that h1,1 = h2,0 + h1,0 + 1 > 1 for any such surface (of which there are
infinitely many [3]) other than the 100 fake projective planes [5, 15]. For instance,
the Cartwright-Steger surface [4] is a concrete example. For such surfaces one can

1It is a version of Chini’s equation.
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come up with non-trivial examples of ω̃ and hence by Theorem 1.2 find non-trivial
hcscK metrics that are not Kähler-Einstein.

As pointed out earlier, whenever holomorphic vector fields exist the Bando-
Futaki invariant provides an obstruction for the existence of hcscK metrics. It has
been computed explicitly in very few cases, most notably by Liu [12] for hypersur-
faces in CP

n. Her formula can be used to come up with examples of non-existence
of hcscK metrics. The theorem we are alluding to is Theorem 1.1 of [12].

Theorem 1.3 (Liu). Let M be a hypersurface in CP
n defined by a homogeneous

polynomial F of degree d ≤ n. Let Y be a holomorphic vector field on CP
n such

that Y F = κF for a constant κ. Then the q-th Bando-Futaki invariant is

Fq(Y, ωFS) = −(n+ 1− d)n−q (d− 1)(n+ 1)

n

q−1∑
j=0

(−d)j(j + 1)

(
n

q − j − 1

)
κ.

In this paper we give a simplified proof of Liu’s formula (whilst adhering to
her basic strategy). The technique of computation (relying on generating series)
might potentially be useful in calculating Bando-Futaki invariants in other cases.
The crucial simplification comes from a linear algebra lemma (Lemma 4.1) that
was used to similar effect in [14].

It is interesting to see if the Lebrun-Simanca kind of deformation results can
be proven for these objects. We hope to explore this and other questions in later
works.

2. A higher extremal metric on a ruled surface

First we give a high-level overview of this section. The aim is to produce a higher
extremal metric on a manifold with a lot of symmetry. Akin to [17] an ansatz reduces
the problem to finding a parameter C and solving an ODE depending on C for a
function φ on [1,m+ 1], where m is a given integer (that specifies the Kähler class
under consideration) satisfying φ(m+1) = 0. The ODE being non-integrable poses
difficulties with regard to existence. It turns out that for a connected set of C the
ODE does have a smooth solution depending smoothly on C, but it is not clear
whether φ(m + 1) = 0. So we produce a value of C so that φ(m + 1) > 0 and
another value so that φ(m + 1) < 0. Thus there is some admissible C for which
φ(m+ 1) = 0. In our proof we can do everything with the exception of producing
a C so that φ(m + 1) < 0. We can do this rigorously only for m = 1. However,
numerically solving the ODE using the Runge-Kutta method on Wolfram Alpha
seems to suggest that this is true for higher values of m too. It is just that one does
not know explicit error bounds on the numerical solution and hence cannot “trust”
it for a proof. With this bird’s eye view in mind we proceed further.

Let (Σ, ωΣ) be a genus 2 Riemann surface equipped with a metric of constant
scalar curvature −2. Let L be a degree −1 holomorphic line bundle on Σ equipped
with a metric h such that −ωΣ is the curvature of h. Let X be the ruled surface
P(L⊕O). Just as in [1,10,17] we will construct extremal Kähler metrics on X. In
whatever follows we follow the exposition of Székelyhidi [16].

The strategy is to first consider an ansatz on the total space of L minus the zero
section and then extend the resulting metric to all of X. One way to potentially
produce a metric is to pull back L to its total space and add the curvature of the
resulting bundle to the pullback of ωΣ. Motivated by this observation one writes
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the following ansatz (let p : X → Σ be the projection map, let z be a coordinate
on Σ, and let w be a coordinate on the fibres L):

ω = p∗ωΣ +
√
−1∂∂̄f(s),(2.1)

where s = ln |(z, w)|2h = ln |w|2 + lnh(z) and f is a strictly convex function that
makes ω a metric. We choose coordinates (z0, w0) around a point Q such that
dh(z0) = 0. Therefore at Q we have the following equalities:

∂s(Q) =
dw

w
, ∂̄s(Q) =

dw̄

w̄
,

√
−1∂∂̄s(Q) = p∗ωΣ,

ω(Q) = (1 + f ′(s))p∗ωΣ + f ′′(s)
√
−1

dw ∧ dw̄

|w|2 .(2.2)

The last equation is easily seen to hold at points other than Q as well.
Proceeding to study the Kähler class of ω we see that by the Leray-Hirsch the-

orem H2(X,R) = RC ⊕ RS∞, where C is the Poincaré dual of a fibre (i.e., C is a
sphere) and S∞ is a copy of Σ sitting in X as the “infinity section”, i.e., the line
L⊕{0}. It is clear that C.C = 0, C.S∞ = 1 = S∞.S∞. We wish our ansatz to be in
the cohomology class [ω] = 2π(C +mS∞), where m is a positive integer. Therefore
[ω].C = 2πm and [ω].S∞ = 2π(1 +m). Indeed,∫

C

ω =

∫
C−{0}

f ′′(s)
√
−1

dw ∧ dw̄

|w|2 = 2π( lim
s→∞

f ′(s)− lim
s→−∞

f ′(s)) = 2πm,∫
S∞

ω =

∫
Σ

lim
s→∞

(1 + f ′(s))ωΣ = (1 +m)

∫
Σ

ωΣ = 2π(1 +m).(2.3)

Thus 0 ≤ f ′(s) ≤ m.
Returning back to the metric ω we see that

ω2 = 2(1 + f ′(s))f ′′(s)p∗ωΣ

√
−1

dw ∧ dw̄

|w|2 .(2.4)

Calculating the curvature matrix of forms Θ = ∂̄(h−1∂h) we obtain the following.

Θ =

[
−∂∂̄ ln(1 + f ′(s))− 2p∗ωΣ 0

0 −∂∂̄ ln(f ′′(s))

]
.(2.5)

At this point we appeal to the unreasonable effectiveness of the Legendre transform
and define

τ = f ′(s) , f(s) + F (τ ) = sτ.(2.6)

Therefore, s = F ′(τ ), ds
dτ = F ′′(τ ). Since f ′′(s) seems to crop up often, define (as

Hwang-Singer did in [10]) the so-called momentum profile φ(τ ) = f ′′(s) = 1
F ′′ (τ)

.

Hence dτ
ds = 1

F ′′ (τ)
= φ(τ ). Moreover, f ′′′(s) = df ′′(s)

dτ φ(τ ) = φ′φ.
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In terms of γ = τ + 1 ∈ [1,m+ 1] the curvature form reads as

√
−1Θ =

[
−
√
−1∂∂̄ ln(γ)− 2p∗ωΣ 0

0 −
√
−1∂∂̄ ln(φ)

]

=

⎡⎣ √
−1∂γ∂̄γ

γ2 − 1
γ

√
−1∂∂̄γ − 2p∗ωΣ 0

0 −
(

φ′

φ

)′ √
−1∂γ∂̄γ − φ′

φ

√
−1∂∂̄γ

⎤⎦
=

[
φ
γ

[
φ
γ − φ′

]
dwdw̄
|w|2 − (φγ + 2)p∗ωΣ 0

0 −φ′′φ
√
−1dwdw̄

|w|2 − φ′p∗ωΣ

]
.

The top Chern form is c2 = 1
(2π)2 det(

√
−1Θ), which is

c2 =
1

(2π)2
p∗ωΣ

√
−1dwdw̄

|w|2
φ

γ2
(γ(φ+ 2γ)φ′′ + φ′(φ′γ − φ)) .(2.7)

We want

c2 =
1

(2π)2
λ

2
ω2(2.8)

to hold for some λ whose gradient is a holomorphic vector field, i.e.,

∇(1,0)λ = λ′∇(1,0)τ = λ′w
∂

∂w
,

which is a holomorphic vector field if and only if λ′ is a constant; i.e., λ = Aγ +B
for some A and B.

So our equation (2.8) boils down to an ODE for φ(γ):

γ(φ+ 2γ)φ′′ + φ′(φ′γ − φ) = (Aγ +B)γ3

⇒ 2γ2φ′′ + (
φφ′

γ
)′γ2 = (Aγ +B)γ3

⇒ 2φ′ +
φφ′

γ
= A

γ3

3
+B

γ2

2
+ C

⇒ (2γ + φ)φ′ = A
γ4

3
+B

γ3

2
+ Cγ,(2.9)

where A,B,C are constants. It can be easily seen that [16] for ω to extend across
the zero and infinity sections the following boundary conditions have to be met by
φ(γ):

φ(1) = φ(m+ 1) = 0,

φ′(1) = −φ′(m+ 1) = 1.(2.10)

So we need to solve (2.9) for φ as well as for A,B,C so that the boundary conditions
(2.10) are met and φ > 0 ∀ γ ∈ [1,m+1]. Unfortunately the form (2x+y)dy−p(x)dx
is not closed, and hence equation 2.9 cannot be integrated. Nevertheless, one can still
prove Theorem 1.1 for m = 1. In order to do so we prove the following preliminary
result about the ODE (2.9) with boundary conditions (2.10).
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Theorem 2.1. Given a positive integer m, consider the ODE

(2γ + φ)φ′ = A
γ4

3
+B

γ3

2
+ Cγ(2.11)

with the boundary conditions

φ(1) = φ(m+ 1) = 0,

φ′(1) = −φ′(m+ 1) = 1.(2.12)

If C < M (where M > 2) then there exist linear functions A(C), B(C) depending on
a parameter C and a smooth solution φ to (2.11) on [1,m+ 1] depending smoothly
on C satisfying all the conditions of (2.12) except φ(m + 1) = 0. There exists a
C < M such that φ(m + 1, C) > 0. Moreover, if there exists a smooth solution
satisfying all the boundary conditions, then φ > 0 on [1,m+ 1].

Proof. We impose the boundary conditions (2.10) on equation (2.9) to get the
following relations between A,B,C:

2 =
A

3
+

B

2
+ C,

−2 =
A(m+ 1)3

3
+

B(m+ 1)2

2
+ C

⇒ A(C) =
3C

m

[
1− 1

(m+ 1)2

]
− 6

m

[
1

(m+ 1)2
+ 1

]
,

B(C) = −2C

[
1 +

1

m
− 1

m(m+ 1)2

]
+ 4 +

4

m

[
1 +

1

(m+ 1)2

]
.(2.13)

Thus A(C) and B(C) are linear functions of C. Moreover, given C, if we manage
to solve (2.9) on [1,m + 1] with the initial condition φ(1) = 0, then (2.13) imply
that φ′ = 1 and if we further ensure that φ(m + 1) = 0, then φ′(m + 1) = −1
automatically. The bottom line is that we have to prove that given C, there exists
a smooth positive solution depending smoothly on C to the initial value problem

φ′ =
A(C)γ

4

3 +B(C)γ
3

2 + Cγ

2γ + φ
on [1,m+ 1],

φ(1) = 0(2.14)

and that there exists a C = Cm such that φ(m+ 1) = 0.
Near γ = 1 since the right-hand side of (2.14) is locally Lipschitz we have a

unique smooth solution locally. At this point it is convenient to change variables.

Let v = (2γ+φ)2

2 . Equation (2.14) turns into the following:

v′ = 2
√
2
√
v + p(γ)γ,

v(1) = 2.(2.15)

We want to find a smooth solution to (2.15) on [1,m+1] so that v(m+1) = 2(m+1)2

and v(γ) > 2γ2 on (1,m+ 1).
As before we have a unique smooth solution depending smoothly on parameters

near γ = 1. If there is a solution on [1, γ∗) such that M ≥ v ≥ ε > 0, then since the
right-hand side is C1, by standard ODE theory the solution can be continued past
γ∗. An easy comparison argument using

√
v ≤ kv and Gronwall’s inequality shows

that v is always bounded above. In order to prove lower bounds on v we need to
study p(γ).
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Lemma 2.1. Let m ≥ 1 be a given positive integer and C be a real number. The

polynomial p(γ) = A(C)γ
3

3 +B(C)γ
2

2 +C (and hence p(γ)γ) satisfying p(m+1) = −2
and p(1) = 2 has exactly one root in [1,m + 1]. Moreover p(γ) has at most one
critical point γ = −B

A in [1,m + 1]. As a consequence on [1,m + 1] we have the
following:
(2.16) ∫ γ

1

p(t)tdt ≥ min(0,

∫ m+1

1

p(t)tdt) and∫ m+1

1

p(t)tdt = LC +N, where

L =
m2 + 2m

2
− (m+ 1)4 − 1

4

[
1 +

1

m
− 1

m(m+ 1)2

]
+

(m+ 1)5 − 1

5m

[
1− 1

(m+ 1)2

]
,

N = − (m+ 1)5 − 1

5

2

m

[
1 +

1

(m+ 1)2

]
+

1

2
((m+ 1)4 − 1)

[
1 +

1

m
+

1

m(m+ 1)2

]
.

If C ≤ 2, then LC +N > 0, which implies that
∫ γ
1
p(t)tdt > 0.

Proof. Since p(m+ 1) = −2 and p(1) = 2, p has an odd number of roots (counted
with multiplicity) in [1,m+1]. Now p′ = γ(A(C)γ+B(C)), which has at most one
root in [1,m + 1]. This implies that p has exactly one root γ0 in [1,m + 1]. This
also means that if there exists a smooth solution of (2.14) on [1,m + 1] satisfying
φ(m+ 1) = 0, then φ > 0 on (1,m+ 1).

Notice that γ →
∫ γ
1
p(t)tdt assumes its minimum over [1,m+1] on the boundary

because its only critical point is a local maximum. An easy calculation shows that

indeed

∫ m+1

1

p(t)tdt = LC +N where L and N are as above. The following proves

that indeed L < 0 and N > 0 for m ≥ 1:
(2.17)

L=
(m+ 1)2 − 1

2
− (m+ 1)4 − 1

4m

[
m+ 1− 1

(m+ 1)2

]
+
(m+ 1)4

5

[
1− 1

(m+ 1)2

]
+

(m+ 1)4 − 1

5m

[
1− 1

(m+ 1)2

]
=

3

10
(m+ 1)2 − 1

20
(m+ 1)4 − 1

4
− (m+ 1)4 − 1

20m

[
1− 1

(m+ 1)2

]
< 0 ∀ m ≥ 1,

N=−m(m+ 1)4 − 1 + (m+ 1)4

5

2

m

[
1 +

1

(m+ 1)2

]
+

(m+ 1)4 − 1)

2m

[
m+ 1 +

1

(m+ 1)2

]
=

1

10
(m+ 1)4 − 1

2
− 2

5
(m+ 1)2 +

(m+ 1)4 − 1

10m

[
1 +

1

(m+ 1)2

]
>0 ∀ m≥1.
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Let C = 2− δ where δ ≥ 0. Then

LC +N = 2L+N − δL > 2L+N

= (m+ 1)2 − 1 + ((m+ 1)4 − 1)
1

m(m+ 1)2
− 4

5

(m+ 1)5 − 1

m(m+ 1)2

= (m+ 1)2−1+((m+ 1)4−1)
1

m(m+ 1)2
− 4

5

(m+ 1)4 − 1

m(m+ 1)2
− 4

5
(m+ 1)2

=
(m+ 1)2

5
− 1 +

1

5
((m+ 1)4 − 1)

1

m(m+ 1)2

=
(m+ 1)2

5
− 4

5
+

m+ 1

5
+

1

5(m+ 1)
+

1

5(m+ 1)2
>

2

5
.(2.18)

�

We now conclude the proof of Theorem 2.1. Given m, if C is chosen so that∫ m+1

1

p(γ)γdγ ≥ −2 + ε,

i.e., LC +N ≥ −2 + ε,(2.19)

then

v(γ)− v(1) =

∫ γ

1

2
√
2
√
v +

∫ γ

1

p(t)tdt

⇒ v(γ) > 2− 2 + ε = ε.(2.20)

This implies that for C satisfying (2.19) (in particular, by Lemma 2.1 C ≤ 2
satisfies (2.19) for all m ≥ 1) we have a smooth solution to (2.15), hence to (2.14),
on [1,m + 1]. Now we have to somehow choose a C so that φ(m + 1) = 0, i.e.,
v(m+1) = 2(m+1)2. One possible strategy is to show that there is a C satisfying
(2.19) such that v(m+ 1, C) < 2(m+ 1)2 and likewise another C for which v(m+
1, C) > 2(m+ 1)2. Thus there will exist a C so that v(m+ 1, C) = 2(m+ 1)2.

If C is very negative, then LC + N can be made as large as we want. Thus
v(m + 1, C) > 2 + LC + N > 2(m + 1)2. This completes the proof of Theorem
2.1. �

We proceed further to prove Theorem 1.1. As mentioned earlier, this reduces to
choosing C so that LC+N ≥ −2+ε for some ε > 0 so that v(m+1, C) < 2(m+1)2.
This is a tricky business. Here is where we use the assumption that m = 1. For this
we need to choose δ > 0 to be very small so that among other things C = 2 + δ

satisfies LC +N = −33

20
, A(C) > 0, and B(C) < 0. Upon calculation we have the

following:

A

3
=

δ

m

[
1− 1

(m+ 1)2

]
− 4

m(m+ 1)2
,

B

2
= −δ

[
1 +

1

m
− 1

m(m+ 1)2

]
+

4

m(m+ 1)2

⇒ if δ >
4

(m+ 1)2 − 1
, then A > 0 , B < 0,

LC +N = δL+
(m+ 1)2

5
− 4

5
+

m+ 1

5
+

1

5(m+ 1)
+

1

5(m+ 1)2
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= δ

(
3

10
((m+ 1)2 − 1)− 1

20
((m+ 1)4 − 1)

− (m+ 1)4 − 1

20m

[
1− 1

(m+ 1)2

])

+
(m+ 1)2

5
− 4

5
+

m+ 1

5
+

1

5(m+ 1)
+

1

5(m+ 1)2

= δ′L, where δ = δ′ +
4

(m+ 1)2 − 1

⇒ A

3
=

δ′

m

[
1− 1

(m+ 1)2

]
,

B

2
= −δ′

(m+ 1)3 − 1

m(m+ 1)2
− 4

(m+ 1)2 − 1
.(2.21)

Therefore δ
′
= −33

20L .

We now prove that form = 1 and the chosen value of C = 2+ 4
(m+1)2−1−

1.5
L = 22

3 ,

the solution v satisfies v′ > 0 on [1, 2]. Before this we note that A = 9 and B = 50
3 .

If γ0 is the root of p(γ) on [1, 2], then on [1, γ0] we see that

v′ ≥ 2
√
2
√
v

⇒ (
√
v)′ ≥

√
2 ⇒

√
v(γ0) ≥

√
2 +

√
2(γ0 − 1) =

√
2γ0.

Therefore, v′ > 0 on [1, γ0]. On the other hand, the root γ0 in [1, 2] of the polynomial

p(γ)γ = 3γ4 − 25
3 γ3 + 22

3 γ is clearly larger than 1.2. Therefore
√
v(γ0) > 1.2

√
2.

Moreover, one can also see (by graphing for instance) that p(γ)γ > −4.5 on [1, 2].

But v′(γ0) = 2
√
2
√
v(γ0) = 4.8, and hence when γ > γ0 we see that v′(γ) >

−4.5 + 4.8 = 0.3. This proves that v′ > 0 on [1, 2].
As a consequence, for a, a+ h ∈ [1, 2] we see that

2
√
2v(a)h+

∫ a+h

a

p(γ)γdγ < v(a+ h)− v(a) < 2
√
2v(a+ h)h+

∫ a+h

a

p(γ)γdγ

⇒ 2
√
2v(a) +

∫ a+h

a

p(γ)γdγ ≤ v(a+ h)

≤ 4h2 + v(a) +

∫ a+h

a

p(γ)γdγ + 2h

√√√√4h2 + 2

(
v(a) +

∫ a+h

a

p(γ)γdγ

)
.(2.22)

Using inequality (2.22) twice with h = 1
2 and a = 1 we see that v(2) ≤ 7.5 <

2(1+1)2 = 8. This proves that form = 1 indeed there exists a C so that φ(m+1) = 0
thus almost proving Theorem 1.1. The only thing left is to prove that there cannot
exist any hcscK metrics.

Indeed, if such a metric exists, then there is a solution to (2.14) satisfying φ > 0
(and hence v > 2γ2) and A = 0. In this case B = − 12

(m+1)2−1 and C = 4+ 8
(m+1)2−1 .
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This implies that

∫ m+1

1

p(γ)γdγ = 2. Therefore,

v(m+ 1) = 4 +

∫ m+1

1

2
√
2vdγ > 4 + 4

∫ m+1

1

γdγ

= 4 + 2((m+ 1)2 − 1) > 2(m+ 1)2.

This is a contradiction.

3. Perturbation results

In this section we prove Theorem 1.2. Let (X,ω) be a compact Kähler surface,
let ω̃ be any closed real (1, 1)-form, and let B1 and B2 be spaces of C4,α functions
on X with zero average and C0,α (2, 2)-forms on X with zero average respectively.
Denote by U an open subset of R × B1 consisting of (t, φ) ∈ R × B1 such that
ω + tω̃ +

√
−1∂∂̄φ > 0. Consider the following map L : U → B2:

L(t, φ) = c2(ω + tω̃ +
√
−1∂∂̄φ)−

∫
X

c2∫
X

(ω + tω̃)2
(ω + tω̃ +

√
−1∂∂̄φ)2.(3.1)

Clearly L−1(0) consists of hcscK metrics in the Kähler class [ω + tω̃]. Assume
now that ω is an hcscK metric satisfying c2(ω) =

λ
2(2π)2ω

2. In order to apply the

implicit function theorem on Banach manifolds, we will linearise L with respect to
φ at φ = 0, t = 0. Indeed,

DLt=0,φ=0(ψ) =
d

ds
|s=0c2(ω + s

√
−1∂∂̄ψ)− λ

(2π)2
ω
√
−1∂∂̄ψ.(3.2)

We have a small lemma in the making.

Lemma 3.1. The linearisation DL given by equation (3.2) is uniformly elliptic in
ψ if the holomorphic sectional curvature has a definite sign throughout X.

Proof. Let P (A,B) be the polarisation of the determinant of 2× 2 matrices A and
B; i.e., if A and B are thought of as 2-forms, then P (A,B) = A∧B

2 . Proposition
6 of [6] states (in this special case) that there exists a smoothly varying family of
Bott-Chern forms bc2(h, k) such that the following holds:

c2(ω + s
√
−1∂∂̄ψ)− c2(ω) = −

√
−1∂∂̄

2π
bc2(ω + s∂∂̄ψ, ω), and

d

ds
bc2(ω + s

√
−1∂∂̄ψ, ω) = −2

√
−1P

(
h−1 dh

ds
,

√
−1

2π
Θh

)
,

where h = ω + s
√
−1∂∂̄ψ and Θh is the curvature of h. Using this result, we may

compute the linearisation of L to be the following:

DLφ=0,t=0(ψ) = −2
1

(2π)2
∂̄∂P

(
ωik̄

√
−1

∂2ψ

dzjdz̄k
,Θ

)
− λ

(2π)2
ω
√
−1∂∂̄ψ,(3.3)

where Θ is the curvature of ω. In order to find the principal symbol let us choose
coordinates such that ω =

√
−1
∑

dzi ∧ dz̄i. Replacing ∂ by a covector ξ we see
that the prinicipal symbol is 2

(2π)2Θ(ξ ∧ ξ̄, ξ ∧ ξ̄)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2, which is just

the holomorphic sectional curvature. Hence, it having a definite sign (along with
compactness of X) implies uniform ellipticity. �
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From now on we will specialise to (X,ω) being one of the symmetric surfaces
in the statement of Theorem 1.2. In the cases considered in Theorem 1.2 the holo-
morphic sectional curvature has a sign, and hence by Lemma 3.1 equation (3.3) is
uniformly elliptic of the fourth order. By the Fredholm alternative, it is surjective
if and only if the kernel of its formal adjoint operator is trivial. It is easy to see that
DLφ=0,t=0 is symmetric on the space of smooth functions. The following lemma
implies that DL is an isomorphism.

Lemma 3.2. If (X,ω) is a Kähler surface in Theorem 1.2, then the kernel of
DLφ=0 is trivial.

Proof. Suppose DL(ψ) = 0. Multiplying and integrating by parts we see that (im-
plicitly writing in terms of normal coordinates)

2

∫
X

∂∂̄ψ ∧ P (ψij̄ ,Θ) + λ

∫
X

√
−1∂ψ ∧ ∂̄ψ ∧ ω = 0.(3.4)

For the surfaces in question it is clear that λ > 0. Suppose we choose normal
coordinates such that ψij̄ = diag(μ1, μ2). Then

∂∂̄ψ ∧ P (ψij̄ ,Θ) =
∑

μidz
i ∧ dz̄i ∧ μ1Θ22̄ + μ2Θ11̄

2

=−(μ2
1Θ22̄22̄ + 2μ1μ2Θ11̄22̄ + μ2

2Θ11̄11̄)
√
−1

2
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

=−Θ(
∑

μi
∂

∂zi
∧ ∂

∂z̄i
,
∑

μi
∂

∂zi
∧ ∂

∂z̄i
)
√
−1

2
dz1∧dz̄1∧dz2∧dz̄2.(3.5)

For X = D2/Γ and X = D1/Γ1 × D1/Γ2 equipped with their “canonical” metrics,
the curvature operator is non-positive. Hence ∇ψ = 0, and thus ψ = 0. �

By the Fredholm alternative and the Schauder estimates DL is indeed an iso-
morphism. Therefore by the implicit function theorem on Banach spaces, for small
t there exists a unique hcscK metric in a C2,α neighbourhood of ω in the class
[ω + tω̃] depending smoothly on t. In particular, for some ball quotients we can
choose ω̃ to be in a cohomology class that is not a multiple of the first Chern class
and therefore get a non-Kähler-Einstein example of an hcscK metric.

4. Bando-Futaki invariants of projective hypersurfaces

Let M be a compact Kähler manifold. The Bando-Futaki invariants associated to
a given Kähler class ω and a given holomorphic vector field Y (henceforth denoted
as Fk(Y, ω)) are obstructions to the harmonicity of the Chern forms ck of the
holomorphic tangent bundle. By Hodge theory there exists a smooth function gk
such that

ck −H(ck) =

√
−1

2π
∂∂̄gk,

where H(ck) is the harmonic projection of ck. The Bando-Futaki invariants are
defined as

Fk(Y, ω) =

∫
M

LY gk ∧ ωn−k+1,

where LY is the Lie derivative with respect to Y .
The fact that these functions are actually invariants of the Kähler class was

proven by Bando [2]. In Liu’s paper [12] these invariants were computed for a
smooth, degree d hypersurface M of CPn for the Fubini-Study Kähler class. Liu
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speculated that an “abstraction” of the procedure used is desirable (in order to com-
pute the same for complete intersections). We simplify some aspects of Liu’s proof
(whilst following the same basic strategy), thus providing a possible abstraction of
that method.

An important tool in our calculations is the following linear algebra lemma,
which has proven to be quite useful in the calculation of characteristic forms [14].

Lemma 4.1. Let A be a matrix over C or over a commutative algebra A over C,
where in the latter case all its matrix elements are nilpotent. Suppose that A2 = aA
for some a ∈ A and that 1 − λa is invertible for all λ in some domain D ⊂ C

containing 0. Then for such λ we have

(I − λA)−1 = I +
λ

1− λa
A

and

det(I − λA) = exp

{
TrA

a
log(1− λa)

}
.

In particular, if αi, βi, i = 1, . . . , k, are odd elements in some graded-commutative
algebra over C (e.g., the algebra of complex differential forms on X) and Aij = αiβj,

then A2 = aA where a = −TrA = −
∑k

i=1 αiβi, and

det(I − λA) =
1

1− λa
.

Proof. For λ ∈ D we have

(I − λA)−1 = I +
λ

1− λa
A.

To prove the formula for the determinant, we use the identity

d

dλ
log det(I − λA) = −Tr

{
A(I − λA)−1

}
, λ ∈ D.

It is well-known for matrices over C (and easily proved using the Jordan canonical
form), and for matrices with nilpotent entries it easily follows from the definition
of the determinant. Using the formula for the inverse, we obtain

d

dλ
log det(I − λA) = − TrA

1− λa
=

d

dλ

TrA

a
log(1− λa),

and integrating from 0 to λ using det I = 1 gives the result. �

Our starting point of Liu’s formula is the expression for the curvature of the
induced metric on the hypersurface M defined by F (Z0, Z1, . . . , Zn) = 0 where F
is a homogeneous polynomial with non-zero gradient. On the set where Z0 �= 0,
define the complex coordinates zi =

Zi

Z0
for i ≥ 1. Defining f = F [1, Z1

Z0
, . . . , Zn

Z0
],

if ∂f
∂z1

�= 0, then by the implicit function theorem z1 is a holomorphic function

of the other coordinates. Let ai = ∂z1
∂zi

, g̃ be the metric on M induced by the

Fubini-study metric ωFS =
√
−1
2π

∑
i,j

(
δij

1+|z|2 − ziz̄j
(1+|z|2)2

)
dzi ∧ dz̄j , Fk = ∂F

∂Zk
, and
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ρ =
∑k=n

k=0 |Fk|2
(1+|z|2)|F1|2 . It is easy to see that2

g̃μν =
δμν + aμāν
1 + |z|2 − (z̄μ + z̄1aμ)(zν + z1āν)

(1 + |z|2)2 ,

Θμν = g̃ijdzi ∧ ¯dzjδμν − g̃μj ¯dzj ∧ dzν − 1

ρ
(
∂aμ
∂zi

dzi ∧
∂ās
∂z̄j

g̃νs ¯dzj).

Now, we shall state and prove Lemma 2.3 of [12].

Lemma 4.2. The qth Chern form of the degree d hypersurface M is

cq(Θ) =

q∑
k=0

αqk(

√
−1

2π
ω)k ∧ (

√
−1

2π
∂∂̄ξ)q−k,

where ξ = log(
∑n

k=0 |Fk|2

(
∑k=n

k=0 |Zk|2)d−1 ), and

α00 = 1,

αqq =

(
n+ 1

q

)
− dα(q−1)(q−1),

αq(q−k) = −[dα(q−1)(q−k−1) + α(q−1)(q−k)] for k = 1, . . . , q − 1,

αq0 = (−1)q,

where q ranges from 1 to n− 1.

Proof. We use Lemma 4.1 quite often in what follows. For the sake of brevity we
denote a ∧ b by ab from now on:

Θij = ωδij + viwj + αiβj ,

det(I + tΘ) = det(δij(1 + tω) + t(viwj + αiβj))

= (1 + tω)n−1 det(δij +
t

1 + tω
(viwj + αiβj))

= (1 + tω)n−1 det(δij +
t

1 + tω
viwj)× det(δij + (δab +

t

1 + tω
vawb)

−1 t

1 + tω
αiβj)

= (1 + tω)n−1 det(δij + λviwj) det(I + λA),

where ω = g̃μνdzμ∧dz̄ν , vμ = −g̃μjdz̄j , wν = dzν , αμ = − 1
ρ
∂aμ

∂zi
dzi, βν = ∂ās

∂z̄j
g̃νsdz̄j ,

λ = t
1+tω , ui =

t
(1+tω)+twj∧vj

vi, and Aij = (δab +
t

1+tω vawb)
−1αiβj .

Now notice that A2 = (βiαi − βjujwkαk)A = −tr(A)A. Using Lemma 4.1, we
see that

det(1 + tΘ) = (1 + tω)n+1 1

1 + tω + t
ρ
∂aμ

∂zi
dzi ∧ ∂ās

∂z̄j
g̃μsdz̄j

.

From [12] we see that 1
ρ
∂aμ

∂zi
dzi ∧ ∂ās

∂z̄j
g̃μsdz̄j = (d − 1)ω + ∂∂̄ξ. Hence, we see that

the coefficient of tk in the above expression is

ca(Θ) =
∑
b

∑
l

(
n+ 1

b

)
dlωb+l(−1)a−b

(
a− b

l

)
(∂∂̄ξ)a−b−l

2Either using [12] or by noting that one may compute the inverse of the metric and hence the
curvature by using Lemma 4.1.
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=

a∑
k=0

k∑
b=0

(
n+ 1

b

)
dk−bωk(−1)a−b

(
a− b

k − b

)
(∂∂̄ξ)a−k.

From this, the lemma follows. �
At this juncture we may compute the Bando-Futaki invariants using a gener-

ating series version of Liu’s approach. Our basic strategy of proof is the same as
Liu’s, in that we shall not compute the invariant directly. Instead, we observe that
iY (c(Θ)) − iY (H(c(Θ))) − ∂̄(iY (∂f)) = 0 (where c and f are the Chern and the
Futaki polynomials respectively). This shall be rewritten as ∂̄η = 0, and after that
we shall find the harmonic part of η to finally compute the integral. In the course
of the proof we use Lemma 4.1 repeatedly.

Proof of Theorem 1.3. First, we recall that det(I + tΘ) = (1+tω)n+1

1+t(ωd+∂∂̄ξ)
. The har-

monic part of the same may be obtained by putting ξ = 0. Hence,

c−Hc = (1 + tω)n+1(
1

1 + t(ωd+ ∂∂̄ξ)
− 1

1 + tωd
)

= −t∂∂̄(
ξ(1 + tω)n+1

(1 + t(ωd+ ∂∂̄ξ))(1 + tωd)
)

= ∂∂̄f.

In what follows, θ is the “Hamiltonian” function [12] such that iY ω = −∂̄θ. We
shall use the fact that iY is a derivation (and hence the quotient and the product
rules for derivatives may be used when interpreted suitably):

iY (Hc) =
(n+ 1)(1 + tω)ntiY (ω)(1 + tωd)− tiY (ω)d(1 + tω)n+1

(1 + tωd)2

= ∂̄(
t(1 + tω)nθ(d− (n+ 1)− ntωd)

(1 + tωd)2
)

= ∂̄α2,

(I + tΘ)−1 =
1

1 + tω
(δij +

t

1 + tω
(viwj + αiβj))

−1

=
1

1 + tω
(δij +

t

1 + tω
viwj)

−1(δij +
t

1 + tω
((δab +

t

1 + tω
vawb)

−1)ikαkβj)
−1.

Using Lemma 4.1 and noticing that wkvk = −ω and βkαk = (d− 1)ω+ ∂∂̄ξ we see
that

((I + tΘ)−1)ab =
1

1 + tω
(δac − tvawc)(δcb −

t(αcβb − tvcwkαkβb)

1 + tωd+ t∂∂̄ξ − t2βkvkwlαl
),

iY (c) = det(I + tΘ)tr(tiY (Θ)(I + tΘ)−1)

= −t∂̄(det(I + tΘ)tr(∇Y (I + tΘ)−1)).(4.1)

We use the following equations from [12]:

(∇Y )lk = −g̃lj∂k∂̄jθ,

Φ = −1

ρ
Y l
;k

∂al
∂zp

∂ās
∂z̄q

g̃ks̄dzp ∧ dz̄q

= div(Y )((d− 1)ω + ∂∂̄ξ)− ∂∂̄θ + ∂∂̄Δθ

− (n+ 1)θ((d− 1)ω + ∂∂̄ξ).
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Upon simplification of equation (4.1) (recall that since ai =
∂z1
∂zi

, wkαk = 0) we get

iY (c) = −t∂̄(
(1 + tω)n

1 + tωd+ t∂∂̄ξ
(div(Y ) + t∂̄∂θ − tΦ

1 + tωd+ t∂∂̄ξ
))

= ∂̄α1,

iY (∂f) = t
−Y (ξ)(1 + tω)n+1

(1 + t(ωd+ ∂∂̄ξ))(1 + tωd)

− t2(1 + tω)n+1∂ξ

(1 + t(ωd+ ∂∂̄ξ))2(1 + tωd)2
∂̄[θ((n+ 1− d+ ntωd)(1 + t(ωd+ ∂∂̄ξ))

− (1 + tω)(1 + tωd)d) + Y (ξ)((1 + tω)(1 + tωd))].

It is easy to see that for an appropriate form γ, we have

α1 − α2 − iY (∂f) = ∂̄γ +
t(1 + tω)n

(1 + tωd)2
θ(ntωd+ n+ 1− d)− iY (∂f)

−t
(1 + tω)n

1 + t(ωd+ ∂∂̄ξ)2
(div(Y )(1 + tω) + (n+ 1)tθ((d− 1)ω + ∂∂̄ξ)).

We shall use this identity [13]:

div(Y )− Y (ξ)− (n− d+ 1)θ = −κ.

Replacing div(Y ) by the above identity and simplifying we have

α1 − α2 − iY (∂f) = ∂̄γ + t2
κ(1 + tω)n+1

(1 + t(ωd+ ∂∂̄ξ))2

− ∂̄

(
t2(1 + tω)n+1∂ξ

(1 + t(ωd+ ∂∂̄ξ))2(1 + tωd)

×
[θ((n+ 1− d+ ntωd)(1 + t(ωd+ ∂∂̄ξ))−(1 + tω)(1 + tωd)d)

1 + tωd
+ (1 + tω)Y (ξ)

])
.

Thus, the harmonic part is t2 κ(1+tω)n+1

(1+t(ωd+∂∂̄ξ))2
. Notice that (the integral of a non-top

form is defined to be zero)∫
M

LY f ∧ 1

1− ω
=

∫
M

(diY + iY ∂)f ∧ 1

1− ω

=

∫
M

(α1 − α2 − t2
κ(1 + tω)n+1

(1 + t(ωd+ ∂∂̄ξ))2
) ∧ 1

1− ω

=

∫
M

(α1 −
t(1 + tω)nθ(d− (n+ 1)− ntωd)

(1 + tωd)2
− t2

κ(1 + tω)n+1

(1 + tωd)2
) ∧ 1

1− ω
,

where Stokes’ theorem was used to deduce that
∫
M

diY f ∧ 1
1−ω = 0, to replace

1 + t(ωd + ∂∂̄ξ) by 1 + tωd, and to ignore the integral of the anharmonic part of
α1 − α2 − iY (∂f).

From Lemma 2.6 of [12], it follows that
∫
M

α1

1−ω = 0. After replacing t by
√
−1
2π , one

may easily compute the integral using the facts that
∫
M

θωn−1 = κ
n and

∫
ωn−1 = d.

This completes the proof. �
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