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RANDOM GEOMETRIC GRAPHS

AND ISOMETRIES OF NORMED SPACES

PAUL BALISTER, BÉLA BOLLOBÁS, KAREN GUNDERSON, IMRE LEADER,
AND MARK WALTERS

Abstract. Given a countable dense subset S of a finite-dimensional normed
space X, and 0 < p < 1, we form a random graph on S by joining, inde-
pendently and with probability p, each pair of points at distance less than 1.
We say that S is Rado if any two such random graphs are (almost surely)
isomorphic.

Bonato and Janssen showed that in �d∞ almost all S are Rado. Our main
aim in this paper is to show that �d∞ is the unique normed space with this
property: indeed, in every other space almost all sets S are non-Rado. We
also determine which spaces admit some Rado set: this turns out to be the
spaces that have an �∞ direct summand. These results answer questions of
Bonato and Janssen.

A key role is played by the determination of which finite-dimensional
normed spaces have the property that every bijective step-isometry (mean-
ing that the integer part of distances is preserved) is in fact an isometry. This
result may be of independent interest.

1. Introduction

In [2] Bonato and Janssen introduced a new random geometric graph model,
defined as follows. Let V be a finite-dimensional normed space, and let S be a fixed

countable dense subset of V . Let Ĝ = Ĝ(V, S) be the unit radius graph on S; that
is, x, y ∈ S are joined if ‖x − y‖ < 1. Form G = Gp(V, S) by taking a random

subgraph of Ĝ(V, S) in which each edge is chosen independently with probability p,
and let Gp(V, S) be the probability space of such graphs.

Motivated by the existence of the Rado graph, the unique infinite graph in the
Erdős–Rényi random graph model, Bonato and Janssen asked when the random
graph in their model is almost surely unique up to isomorphism. We say a set S is
Rado if the resulting graph is almost surely unique up to isomorphism, and we say
it is strongly non-Rado if any two such graphs are almost surely not isomorphic.
(Rather surprisingly, there are sets that are neither Rado nor strongly non-Rado;
see Theorem 2 below.)

Bonato and Janssen proved that, for V = �d∞ (the normed space on Rd with
norm defined by ‖(x1, x2, . . . , xd)‖ = maxi |xi|), almost all countable dense sets are
Rado.
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(The exact definition of ‘almost all’ for countable dense sets is a little subtle and
we discuss it at the end of section 2, but, for now, we remark that the only property
of almost all that we require is that almost all sets contain no integer distances,
and no integer distances (or coincidences) in projections on to natural subspaces,
such as the coordinate axes.)

In the same paper, Bonato and Janssen proved that all countable dense sets in
the Euclidean plane are strongly non-Rado. Subsequently in [3], they showed that
almost all countable dense sets in the plane with the hexagonal norm are strongly
non-Rado, and in [4] they showed that, for R2 with any norm that is strictly convex
or has a polygonal unit ball (apart from a parallelogram), there are no Rado sets.
They asked which normed spaces contain a Rado set.

Our first result implies that �d∞ is the only space for which almost all countable
dense sets are Rado.

Theorem 1. Let V be a finite-dimensional normed space not isometric to �d∞.
Then, for any 0 < p < 1, almost every countable dense set S is strongly non-Rado.

Theorem 1 shows what happens for ‘typical’ countable dense sets S, but leaves
open the possibility of exceptional cases. Our second result, Theorem 2 below, is a
refinement of Theorem 1 that answers the question of Bonato and Janssen, and, in
fact, describes the precise situation in each normed space.

Before stating the theorem, we need the following fact about finite-dimensional
normed spaces, which roughly says that any such space contains a unique maximal
�d∞ subspace embedded in an �∞ fashion. The precise statement (Proposition 14)
is that, for any finite-dimensional normed space V , there exists a unique maximal
subspace W isometric to �d∞ for some d, such that there is a subspace U with
V = U ⊕ W and ‖u + w‖ = max(‖u‖, ‖w‖) for all u ∈ U and w ∈ W . We
prove this result in section 3. This decomposition is useful since, in essence, the
complicated behaviour can only occur on the �d∞ part. We call this decomposition
the �∞-decomposition and write it as V = (U ⊕ �d∞)∞.

We are now ready to state the main result of the paper.

Theorem 2. Let V be a normed space with �∞-decomposition (U⊕�d∞)∞ as above,
and let 0 < p < 1. Then

(i) If V = �d∞ (equivalently, if U is trivial), then almost all countable dense
sets S are Rado, but there exist countable dense sets which are strongly
non-Rado. Additionally, there exist countable dense sets S for which the
probability that two graphs G,G′ ∈ Gp(V, S) are isomorphic lies strictly
between 0 and 1.

(ii) If d = 0 (that is, if V = U), then all countable dense sets S are strongly
non-Rado.

(iii) If d > 0 and U �= {0}, then almost all countable dense sets S are strongly
non-Rado, but there exist countable dense sets S which are Rado. Addi-
tionally, there exist countable dense sets for which the probability that two
graphs G,G′ ∈ Gp(V, S) are isomorphic lies strictly between 0 and 1.

As we mentioned above, the typical case in (i) was proved by Bonato and Janssen.
In fact they proved more: they showed that the graph is independent of S. More
precisely, they showed that for almost all countable dense sets S and S′ and for
any p, p′ ∈ (0, 1), two graphs G ∈ Gp(�

d
∞, S) and G′ ∈ Gp′(�d∞, S′) are almost surely

isomorphic. Of course, Theorem 2 shows that this does not hold for other normed
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spaces, as parts (ii) and (iii) show that, for almost all sets S, the probability that
G is isomorphic to any particular graph is zero.

We shall make use of a key lemma of Bonato and Janssen that shows that any
graph isomorphism must induce an approximate isometric action on S.

Definition. Let A ⊆ V . A step-isometry on A is a bijective function f : A → A
such that, for all x, y ∈ A,

�‖x− y‖	 = �‖f(x)− f(y)‖	 .
We remark that Bonato and Janssen’s definition was slightly different: they did

not require the function to be a bijection. However, all our maps will be bijective,
and many of the results we state only hold for bijective step-isometries, so we use
the above definition. Note that we use ‘isometry’ to mean any distance-preserving
map; in particular, it need not be surjective.

Bonato and Janssen [2] proved the following lemma.

Lemma 3 (Bonato and Janssen [2]). Suppose G ∈ Gp(V, S). Then, almost surely,
for every pair of points x, y ∈ S and every k ∈ N with k � 2 we have ‖x− y‖ < k
if and only if dG(x, y) � k.

In particular, for almost all graphs G,G′ in Gp(V, S), every function f : S → S
inducing an isomorphism of the graphs is a step-isometry on S.

To see why this is true, first note that it is immediate that the existence of a
path of length k implies that the norm distance is less than k. For the converse
they use the countable dense property to construct infinitely many edge disjoint

paths of length k between x and y in Ĝ. Each of these has a positive chance of
occurring in G so, almost surely, one of them does.

The second part now follows since an isomorphism between any two graphs
satisfying the first part must be a step-isometry. (The case of ‖x− y‖ < 1 requires
a small additional check.)

This result shows that a natural step towards characterising the possible graph
isomorphisms is to characterise all the step-isometries and, indeed, this will form
the bulk of this paper. As we shall prove (Proposition 24), any step-isometry of
S extends to a step-isometry of V itself. Thus, we want to characterise the step-
isometries of V .

Observe that a step-isometry on V need not be an isometry. Indeed, consider
the following example on R. Let g : [0, 1) → [0, 1) be any increasing bijection. Now
define f(x) = �x	+ g(x−�x	). It is easy to see that this is a step-isometry but not
an isometry (unless g is the identity function).

This example extends naturally to �d∞: we can do the above independently in
each coordinate. However, the following result shows this is essentially the only
example.

We need one piece of notation first. If V = U ⊕ W is a vector space and
f : V → V , then we say f factorises over the decomposition if there exist fU : U → U
and fW : W → W such that f(u+ w) = fU (u) + fW (w) for all u ∈ U and w ∈ W .
We write f = fU ⊕ fW .

Theorem 4. Let V be a finite-dimensional normed space with �∞-decomposition
V = (U ⊕ �d∞)∞, and let f : V → V be a step-isometry. Then f factorises over the
decomposition as f = fU ⊕ f�d∞ , where fU is a bijective isometry of U and f�d∞ is a

step-isometry of �d∞.
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Thus, to obtain a full characterisation of the step-isometries of V , we need to
classify the step-isometries of �d∞. The following result does exactly that.

Theorem 5. Let f be a step-isometry of �d∞. Then there exists a permutation σ
of [d], and ε = (ε1, ε2, . . . , εd) ∈ {−1,+1}d, and, for each i, an increasing bijection
gi : [0, 1) → [0, 1), such that

f

(
d∑

i=1

λiei

)
− f(0) =

d∑
i=1

(gi (λi − �λi	) + �λi	) εieσ(i),

where e1, e2, . . . , ed is the standard basis of �d∞.

Having established these two theorems, as we shall see, it is relatively straight-
forward to prove Theorems 1 and 2.

The layout of this paper is as follows. In the next section we introduce some
standard definitions and notation, and then in section 3 we prove the existence and
uniqueness of the �∞-decomposition together with some simple facts about it that
will be useful later. In section 4 we prove that any step-isometry on a dense subset
can be extended to a step-isometry on the whole space.

In sections 5–11 we prove Theorems 4 and 5. The proofs of these are quite
lengthy, and we break them down as follows. Sections 5 and 6 show that any
step-isometry is an isometry on the set of finite sums of extreme points of the unit
ball of V and that we can compose the step-isometry with an isometry so that
the combination fixes all these finite sums. Then sections 7 and 8 show that any
step-isometry that fixes these finite sums actually preserves many directions and
that this implies it must fix a particular subspace. Finally, section 9 shows that
this particular subspace is the non-�∞-component of the �∞-decomposition, and
sections 10 and 11 put these facts together to complete the proofs of Theorems 4
and 5.

Parts of the proof of Theorem 2 rely on the back and forth method; as we use
this several times, we abstract it out into section 12. Then in section 13 we use
Theorem 4 to prove Theorem 2. We conclude with a brief discussion of some other
exceptional cases and some open problems.

Throughout the paper we use standard results and notation from graph theory
(see, e.g., [1] or [6]) and functional analysis (see, e.g., [8]).

2. Normed space preliminaries

Throughout this paper we will be working exclusively in finite-dimensional
normed spaces, and we shall frequently make use of properties particular to such
spaces, such as the compactness of the unit ball and the fact that a linear injection
from the space to itself is necessarily a bijection.

Before stating any of the results that we need, we introduce some very basic
notation. Given a normed space V , we write B(x, r) for the closed ball of radius r
about x and, on the few occasions we need it, B◦(x, r) for the open ball.

In many cases the normed space will decompose naturally into subspaces, V =
U ⊕ W . Given a vector v = u + w, with u ∈ U and w ∈ W , we call u the U-
component of v. In most cases we use the ‘additive’ notation u+w for vectors, and
V = U ⊕ W for subspaces. However, in some cases it will be easier to think of a
vector v ∈ V as the ordered pair (u,w) and the space as V = U ×W , and we will
occasionally use this alternative notation.
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Much of our work will be on (not necessarily linear) functions mapping the
vector space V to itself. One key tool that we shall use several times is the Mazur–
Ulam Theorem (see, e.g., [7]). This states that any isometry is ‘affine’; that is, a
translation of a linear map. More formally:

Theorem 6 (Mazur–Ulam Theorem [9]). Let X and Y be normed spaces, and let

f : X → Y be a surjective isometry. Then the map f̂ : X → Y , given by f̂(x) =
f(x)− f(0), is linear.

Since we are concerned only with finite-dimensional normed spaces in this paper,
it is worth noting the following folklore result which shows that the Mazur–Ulam
Theorem has a particularly simple form in this setting.

Corollary 7. Suppose V is a finite-dimensional normed space and that f : V → V
is an isometry. Then f is an affine bijection.

Proof. By the Mazur–Ulam Theorem it suffices to show that f is surjective. First,
observe that, by translating f if necessary, we way assume that f(0) = 0.

We claim that f(V ) is closed. Indeed, if a sequence f(xn) tends to y, then f(xn)
is Cauchy. This implies that, since f is an isometry, the sequence (xn) is Cauchy,
and thus converges to some point, x say. But then f(x) = y, which completes the
proof of the claim.

Now, suppose, for a contradiction, that there is some point x �∈ f(V ). By the
claim, f(V ) is closed, so there exists ε > 0 such that the open ball B◦(x, ε) is
disjoint from f(V ).

Trivially, this implies that, for any n � 1, fn(x) �∈ B◦(x, ε) or, equivalently, that
‖fn(x)−x‖ > ε. Since f is an isometry, this shows that, for any n > m � 1, we have
‖fn(x)−fm(x)‖ = ‖fn−m(x)−x‖ > ε. Therefore, the sequence x, f(x), f2(x) · · · is
ε-separated. But these terms all have norm ‖x‖ (since f(0) = 0), so this contradicts
the compactness of the closed ball B(0, ‖x‖). �

Much of our work will concern properties of the closed unit ball B = B(0, 1),
and we recall some simple facts and notation related to B.

The ball B is a convex compact set, and the norm is determined by B. An
extreme point of B is a point x such that if y, z ∈ B and x is a convex combination
of y, z, then y = z = x (for general background on extreme points, see, e.g., [11]).
We write Ext(B) for the extreme points of B. The set B is the convex hull of its
extreme points; that is, conv(Ext(B)) = B. Since B is not contained in any proper
subspace, we see that the vectors in Ext(B) span all of V . For any set of vectors A
we use 〈A〉 to denote the span of the vectors in A.

It will be useful to work with finite sums of extreme points. Thus, we let Λ be
the ‘lattice’ generated by the extreme points of the unit ball B; that is, all points of
the form

∑
i λixi with λi ∈ Z and xi ∈ Ext(B). Note that Λ need not be discrete.

We start with a simple lemma that shows that Λ is not too sparse.

Lemma 8. Let V be a finite-dimensional normed space, and let v ∈ V . Then there
exists x ∈ Λ such that ‖x− v‖ � dimV/2.

Proof. As noted above, the extreme points of B span V , so let x1, x2, . . . xd, where
d = dimV , be any minimal spanning set of extreme points of B. Note that ‖xi‖ = 1
for all i.
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We can write v =
∑d

i=1 aixi. For each i let λi be ai rounded to the nearest
integer (so λi = �ai + 1/2	). Then

‖v − x‖ =

∥∥∥∥∥
d∑

i=1

(ai − λi)xi

∥∥∥∥∥ �
d∑

i=1

|ai − λi|‖xi‖ � d/2,

as claimed. �

We remark that it is easy to see that this bound is obtained for the space �d1 (the

space Rd with norm ‖(x1, x2, . . . , xd)‖ =
∑d

i=1 |xi|).
Since the set Λ need not be discrete, we will often work with its closure Λ which

has a relatively simple form.

Lemma 9. Let V be a d-dimensional normed space. Then there is a basis
e1, e2, . . . , ed of unit vectors in V and an r with 0 � r � d such that

Λ =
∑
i�r

Rei ⊕
∑
i>r

Zei.

Proof. As remarked above, the extreme points of B span V , so Λ spans V . Hence
Λ is a closed additive subgroup of V ≡ Rd, so it must have the form specified (see,
e.g., [5]). �

The following subspace will be important later.

Definition. We call the subspace
∑

i<r Rei in the decomposition given by Lemma 9

the continuous subspace of Λ, and we usually denote it U0.

We make the following simple observation for future reference.

Corollary 10. The extreme points of the unit ball B are covered by finitely many
cosets of the continuous subspace U0. �

We conclude this section with a brief discussion of the meaning of ‘almost all’
for countable dense sets. Before doing this, we remark that, for our purposes, all
we need is the following: if V = (U ⊕ �d∞)∞, then, for almost all sets S, no two
points of S have the same U -component, nor do they differ by an integer in any
coordinate direction in their �d∞-component. This obviously holds for any sensible
definition of ‘almost all.’

Indeed, there are several possible definitions in the literature, any of which would
be suitable. One such possibility is to take any distribution on Rd with a strictly
positive density function, and let S be the set formed by taking countably many in-
dependent samples from it. Another would be to take the union of countably many
density-1 Poisson Processes. (There are also rather less intuitive possibilities—for
example, taking S to be the set of all local minima of a Brownian motion on Rd.)
In fact Tsirelson [12] showed that these all give the same resulting measure. See
that paper for a thorough discussion of the whole area.

3. The �∞-decomposition

In this section we prove the existence of the �∞-decomposition mentioned in the
Introduction.
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Definition. A unit vector v is an �∞-direction if there exists a subspace U of V
such that V = (〈v〉 ⊕ U)∞; that is, if ‖αv + u‖ = max(|α|, ‖u‖) for all α ∈ R and
u ∈ U . We call U the subspace corresponding to v. Note, we view v and −v as the
same �∞-direction.

This definition is useful since, in any decomposition of V as (U ⊕ �d∞)∞, then
each basis vector of the �d∞ is an �∞-direction; see Proposition 14 for a formal proof.

Lemma 11. Suppose that v is an �∞-direction. Then the corresponding subspace
U is unique.

Proof. Fix a corresponding subspace U . Suppose u′ ∈ V is any vector satisfying
‖αv+ u′‖ = max(|α|, ‖u′‖) for all α ∈ R. We can write u′ = βv+ u for some β ∈ R

and u ∈ U . By the definition of an �∞-direction, ‖u′‖ � ‖u‖. Let γ = ‖u′‖. By our
assumption on u′, we have ‖u′+γv‖ = ‖u′−γv‖ so ‖u+(β+γ)v‖ = ‖u+(β−γ)v‖.
Since γ � ‖u‖, this implies β = 0 and, hence, u′ ∈ U . �

Lemma 12. Suppose that v1 and v2 are distinct �∞-directions with corresponding
subspaces U1 and U2. Then v2 ∈ U1.

Proof. First, we claim that, for any vector v′, the line {v′ + λv2 : λ ∈ R} either
contains a nontrivial interval of vectors of minimal norm (among points on the line)
or contains 0. Indeed, this line contains a point, say u′ of U2. Thus, we can write the
line as {u′ + λv2 : λ ∈ R}. Since ‖u′ + λv2‖ = max(|λ|, ‖u′‖), we see that if u′ = 0
we have the latter case; and if ‖u′‖ > 0, all vectors in the set {u′+λv2 : |λ| � ‖u′‖}
have minimal norm. The claim follows.

We can write v2 = αv1 + βu1 with u1 ∈ U1 and ‖u1‖ = 1. If α = 0, then v2 is
in U1, as claimed; if β = 0, then v2 = ±v1 so v2 is the same �∞-direction as v1,
contradicting the assumption that v1 and v2 are distinct �∞-directions.

Thus, we assume α, β �= 0 and, by negating either or both of v1 and u1, we may
assume α, β > 0. Consider the set of vectors

{v1 − u1 + λv2 : λ ∈ R}.
Since

‖v1 − u1 + λv2‖ = ‖(1 + λα)v1 − (1− λβ)u1‖ = max(|1 + λα|, |1− λβ‖),
we see that λ = 0 gives the unique vector of minimal norm in this set and that this
vector has norm 1 which contradicts the above claim that, whenever the minimum
norm on the line is not zero, there must be an interval of minimal norm. �

The next lemma shows that any set of �∞-directions combine to give an �∞
subspace of V .

Lemma 13. Suppose that v1, v2, . . . , vk are any (distinct) �∞-directions with cor-
responding subspaces U1, U2, . . . , Uk. Then

V =

(
〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vk〉 ⊕

k⋂
i=1

Ui

)
∞

.

Proof. First we show inductively that we can write any vector v as
∑j

i=1 λivi +wj

where wj ∈
⋂j

i=1 Ui. For j = 1 it is just the definition of an �∞-direction. Suppose it
holds for j. Then since vj+1 is an �∞-direction, we can write wj = λj+1vj+1+wj+1
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for some wj+1 ∈ Uj+1. Since, for each 1 � i � j, wj ∈ Ui and vj+1 ∈ Ui, we see

that wj+1 ∈ Ui. Hence wj+1 ∈
⋂j+1

i=1 Ui, and the induction is complete.
Next we show that the sum

〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vk〉 ⊕
k⋂

i=1

Ui

is direct. Suppose that u ∈
⋂k

i=1 Ui, that u +
∑k

i=1 λivi = 0 is a nontrivial linear
relation, and that λj �= 0. By Lemma 12, vi ∈ Uj for all i �= j, and obviously

u ∈ Uj . Hence vj =
1
λj

(
−u−

∑
i �=j λivi

)
∈ Uj , which is a contradiction.

To complete the proof, observe that, by applying the �∞-direction property in-
ductively, we have ∥∥∥∥∥

j∑
i=1

λivi + u

∥∥∥∥∥ = max(|λ1|, |λ2|, . . . , |λj |, ‖u‖)

for any j, λi ∈ R, and u ∈
⋂j

i=1 Ui. Taking j = k gives the result. �

Thus we see that the �∞-decomposition is unique in the strongest possible sense;
namely, that the �d∞-component is the space spanned by all the �∞-directions. We
sum this up in the following proposition.

Proposition 14. Suppose V is a finite-dimensional normed space. Then there is a
unique maximal space W isometric to �d∞, for some d, with the property that there
is a subspace U with V = U ⊕ W and ‖u + w‖ = max(‖u‖, ‖w‖), for any u ∈ U
and w ∈ W .

Moreover, if v1, v2, . . . , vd are all the �∞-directions with corresponding subspaces

U1, U2, . . . , Ud, then W = 〈v1, v2, . . . , vd〉 and U =
⋂d

i=1 Ui.

Proof. As in the statement of the proposition, let v1, v2, . . . , vd be all the �∞-

directions, let W = 〈v1, v2, . . . , vd〉, and let U =
⋂d

i=1 Ui, where Ui is the corre-
sponding subspace to vi. By Lemma 13 V = U ⊕ W , and for any u ∈ U and

w =
∑d

i=1 λivi ∈ W , we have ‖w‖ = max(|λ1|, |λ2|, . . . , |λd|), so W is isometric to
�d∞ and, by Lemma 13 again,

‖u+ w‖ = max(‖u‖, |λ1|, |λ2|, . . . , |λd|) = max(‖u‖, ‖w‖),
as required.

To complete the proof, suppose that W ′ is any subspace isometric to �d
′

∞ for
some d′ and that U ′ is a subspace with the property that V = U ′ ⊕ W ′ and
‖u′ + w′‖ = max(‖u′‖, ‖w′‖) for any u′ ∈ U ′ and w′ ∈ W ′. Let e1, e2, . . . , ed′ be

the natural basis of W ′ viewed as �d
′

∞. We see that, for any λ1, λ2, . . . , λd′ and any
u′ ∈ U ′,

‖u′ +
d′∑
i=1

λiei‖ = max

⎛⎝‖u′‖, ‖
d′∑
i=1

λiei‖

⎞⎠
= max (‖u′‖, |λ1|, |λ2|, . . . , |λd′ |)

= max

⎛⎝|λ1|, ‖u+

d′∑
i=2

λiei‖

⎞⎠ ,
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so, in particular, e1 is an �∞-direction with the corresponding subspace
U ′ ⊕ 〈e2, e3, . . . , ed′〉. Thus e1 is one of the vi or −vi and, in particular, e1 ∈ W .
Since this is true for each ei, 1 � i � d′, we see that W ′ ⊆ W . �

Corollary 15. Let Q be a linear isometry of a finite-dimensional normed spaced
V with �∞-decomposition U ⊕ �d∞. Then Q factorises over the decomposition as
QU ⊕Q�d∞

and each factor is an isometry.

We remark that there are direct proofs of this result, based on Proposition 14;
our proof, whilst a little longer, will be useful for the next result.

Proof. First, observe that, since Q is linear, factorising over the decomposition is
the same as saying Q(U) ⊆ U and Q(�d∞) ⊆ �d∞, and this is what we shall show.

Suppose v1, v2, . . . , vd are the �∞-directions with corresponding subspaces
U1, U2, . . . Ud. Let v′i = Q(vi) and U ′

i = Q(Ui) for each i. We claim that v′i is
an �∞-direction with subspace U ′

i . Indeed, given v′ ∈ V , let v = Q−1(v′). Since
vi is an �∞-direction, we can write v = αvi + ui for some ui ∈ Ui, and we have
‖v‖ = max(|α|, ‖ui‖). Since Q is linear and writing u′

i for Q(ui), this implies that
v′ = Q(v) = Q(αvi + ui) = αv′i + u′

i with u′
i ∈ U ′

i . Since Q is an isometry, we have

‖v′‖ = ‖v‖ = max(|α|, ‖ui‖) = max(|α|, ‖u′
i‖),

as claimed.
Thus Q permutes the �∞-directions (possibly negating some of them) and, in

particular, maps �d∞ = 〈v1, v2, . . . , vd〉 to itself. Also, Q permutes the corresponding

subspaces so U =
⋂d

i=1 Ui is also mapped to itself. As observed above, this shows
that Q factorises as Q|U ⊕Q|�d∞ and, since the factors are just the restrictions of Q

to U and �d∞, respectively, we see that each factor is an isometry. �

The proof of Corollary 15 actually describes what the isometries of �d∞ are.

Corollary 16. Suppose that f is an (bijective) isometry of �d∞. Then there is a
permutation σ of [d] and ε = (ε1, ε2, . . . , εd) ∈ {−1,+1}d such that f is the linear
map that sends each basis vector ei to εieσ(i), combined with a translation.

Proof. Define f̂ by f̂(x) = f(x)− f(0). By the Mazur–Ulam Theorem f̂ is linear.

The proof of Corollary 15 shows that f̂ permutes the basis vectors of �d∞ (which are
obviously the �∞-directions), possibly changing the sign. The result follows. �

4. Extending step-isometries from S to V

Suppose that f is a step-isometry on a dense set S in V . In this section we show
that f extends to a continuous step-isometry f̄ : V → V .

As one would expect, we shall define f̄ in terms of sequences in S. We start by
proving some simple results about such sequences.

Lemma 17. Suppose f is a step-isometry on S, that (xn) is a sequence in S
converging to x, and that f(xn) converges to x′. Then, for any y ∈ S and k ∈ N

which satisfy ‖x− y‖ < k, we have ‖x′ − f(y)‖ � k.

Proof. Suppose ‖x− y‖ < k. Then, for all sufficiently large n, ‖xn − y‖ < k. Thus,
since f is a step isometry, ‖f(xn)− f(y)‖ < k. Hence ‖x′ − f(y)‖ � k. �
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Lemma 18. Suppose f is a step-isometry on S, that (xn), (yn) are sequences in
S converging to x and y, respectively, and that f(xn), f(yn) converge to x′ and y′,
respectively. Then, for any k ∈ N, ‖x− y‖ < 3k if and only if ‖x′ − y′‖ < 3k.

In particular, for any k ∈ N, if y ∈ S, then ‖x − y‖ < 3k if and only if
‖x′ − f(y)‖ < 3k.

Proof. Suppose that ‖x− y‖ < 3k. Since S is dense, we can pick s, t ∈ S such that
‖x − s‖ < k, ‖s − t‖ < k and ‖t − y‖ < k. By Lemma 17 ‖x′ − f(s)‖ � k and
‖f(t) − y′‖ � k. Also, since f is a step-isometry on S, ‖f(s) − f(t)‖ < k. Hence,
by the triangle inequality, ‖x′ − y′‖ < 3k.

We obtain the converse by applying the above to f−1, which is also a step-
isometry on S.

The final part follows by taking the sequence (yn) to be the constant sequence y.
�

Lemma 19. Suppose f is a step-isometry on S, that (xn), (yn) are two sequences
in S converging to x, and that f(xn), f(yn) converge to x′ and y′, respectively.
Then x′ = y′.

Proof. Suppose that x′ �= y′. Then the set

{v ∈ V : ‖x′ − v‖ < 3 and ‖y′ − v‖ > 3}
is open and nonempty. Since S is dense in V , there exists z′ ∈ S with ‖x′− z′‖ < 3
and ‖y′−z′‖ > 3. Let z = f−1(z′). Then, Lemma 18 applied to the sequences (xn)
and (yn) implies ‖x− z‖ < 3 and ‖x− z‖ � 3, which is a contradiction. �

Lemma 20. Suppose that (xn) is a sequence in S that converges in V . Then f(xn)
is a convergent sequence.

Proof. Since (xn) is convergent, there is an m such that, for all n > m, we have
‖xn − xm‖ < 1. Hence, since f is a step-isometry, ‖f(xn) − f(xm)‖ < 1 for
all n > m; in particular, f(xn) is a bounded sequence. Thus, since V is finite
dimensional, there is a subsequence (xni

) such that f(xni
) converges to some value

x′, say.
Suppose that f(xn) does not converge to x′. Then there exists a subsequence

bounded away from x′. As above we can take a further subsequence which converges
and is bounded away from x′; in particular, it must converge to some value x′′ �= x′.
But this contradicts Lemma 19. �

Corollary 21. Suppose f is a step-isometry on S. Then there is a unique contin-
uous function f̄ : V → V that extends f .

Proof. For any x ∈ V define f̄(x) as follows. Choose a sequence (xn) in S converging
to x, and let f̄(x) = limn→∞ f(xn). This limit exists by Lemma 20 and the function
is well-defined by Lemma 19.

Finally, it is easy to see that f̄ is continuous. Indeed, suppose that (xn) is a
sequence in V converging to x, say. By the definition of f̄ we can pick a sequence
(x′

n) in S such that ‖xn − x′
n‖ < 1/n and ‖f(x′

n) − f̄(xn)‖ < 1/n for all n. Then
x′
n → x, so, since f̄ is well-defined, f(x′

n) → f̄(x) and, thus, f̄(xn) → f̄(x), as
required. �

Corollary 22. Any step-isometry on V is continuous.
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Proof. This follows immediately from Corollary 21 by taking the dense set S to be
the whole of V . �

Lemma 18 shows that f̄ is a scaled step-isometry; that is, a step isometry in
the norm 1

3‖ · ‖. Whilst that would be sufficient for our needs, f̄ is actually a step
isometry in the original norm, and we prove that next. We start with the following
trivial fact.

Lemma 23. Suppose that S is a dense set in V and that x, y ∈ V . Then there
exist sequences (xn), (yn) of points in S converging to x and y, respectively, such
that ‖xn− yn‖ > ‖x− y‖ for all n. Similarly, providing x �= y, we may choose such
sequences (xn), (yn) such that ‖xn − yn‖ < ‖x− y‖ for all n.

Proof. Let ε > 0. Let r = ‖x−y‖. The point y′ = x+(1+ε)(y−x) has ‖y−y′‖ = εr
and ‖x − y′‖ = (1 + ε)r. Let x′′ be any point of S in the set B(x, εr/2) and y′′

any point of S in B(y′, εr/2). By the triangle inequality, we have ‖x− x′′‖ < εr/2,
‖y − y′′‖ < 3εr/2 and, also, ‖x′′ − y′′‖ > r.

We get the required sequence by setting xn, yn to be the points x′′, y′′ given by
the above argument when ε = 1/n.

The second inequality is very similar, but this time we choose y′ = x+
(1− ε)(y − x). �
Proposition 24. The function f̄ defined above is a step-isometry. Moreover, f̄
preserves integer distances.

Proof. Suppose x and y have ‖x − y‖ � k for some k ∈ Z. Then by Lemma 23
we can find sequences (xn) and (yn) in S that converge to x and y, respectively,
and have ‖xn − yn‖ > k. Hence, since f is a step-isometry, ‖f̄(x) − f̄(y)‖ =
limn→∞ ‖f(xn)− f(yn)‖ � k.

Similarly, if x and y have ‖x−y‖ � k, then, by taking sequences with ‖xn−yn‖ <
k, we see that ‖f̄(x)− f̄(y)‖ � k.

This shows that if ‖x− y‖ ∈ (k, k + 1), then ‖f̄(x)− f̄(y)‖ ∈ [k, k + 1]. Also, if
‖x− y‖ = k, then ‖f̄(x)− f̄(y)‖ = k; that is, f̄ preserves integer distances.

Observe that f−1 is also a step-isometry on S, so it extends to f−1 a step-
isometry on V . Since we have f−1 ◦ f̄ = f̄ ◦f−1 = id on S, and f̄ and f−1 are both
continuous, we see that f̄−1 = f−1. Thus, if ‖f̄(x)− f̄(y)‖ = k, then ‖x− y‖ = k,
and the result follows. �
Corollary 25. Suppose f is a step-isometry on V . Then f preserves integer dis-
tances. Moreover, for any integer k and x ∈ V , we have f(B(x, k)) = B(f(x), k).

Proof. For the first part, take S = V in Proposition 24. By the definition of a
step-isometry, f maps the open ball B◦(x, k) to B◦(f(x), k) so, since it and its
inverse preserve integer distances, the second part follows. �

5. Extreme points

For this section we assume f is a (necessarily continuous by Corollary 22) step-
isometry on all of V that fixes 0. The assumption that 0 is fixed makes the results
simpler to state and this case is sufficient for our needs.

Our aim in this section is to prove that f maps the extreme points of the unit
ball to themselves, and that restricted to these extreme points it is an isometry.

First we characterise the extreme points of B in a purely norm/metric way.
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Lemma 26. Suppose that x is an extreme point of B = B(0, 1) and n ∈ N. Then
B(0, 1) ∩B(nx, n− 1) = {x}.

Proof. Suppose that y ∈ B and ‖nx − y‖ � n − 1. Then ‖y‖ � 1 and
‖ n
n−1x− 1

n−1y‖ � 1. Since

x =
n− 1

n

(
n

n− 1
x− 1

n− 1
y

)
+

1

n
y

and x is an extreme point of B, we see that y = x. �

Lemma 27. A point x in the unit ball B = B(0, 1) is an extreme point if and only
if there exists a point z such that B(z, 1) ∩B(0, 1) = {x}.

Proof. If x is an extreme point, then the point z = 2x is such a point by Lemma 26.
Now suppose that z is a point such that B(z, 1) ∩B(0, 1) = {x}. Let y = z − x.

Then ‖y‖ � 1. Hence, the point y is in B(0, 1) and B(z, 1). Thus, since x is the
unique point in the intersection, y = x, so z = 2x.

Now suppose that x = 1
2 (y + w) for some y, w ∈ B. Then 2x − y = w ∈ B, so

y ∈ B(0, 1)∩B(2x, 1). Using the fact that x is the unique point in this intersection
again, we have y = w = x, and we see that x is an extreme point of B. �

We use this characterisation of the extreme points to show that f maps them
among themselves.

Corollary 28. The extreme points of the unit ball map to themselves under f .

Proof. Lemma 27 characterises the extreme points by their integer distance prop-
erties. These are preserved by the step-isometry so the extreme points must be.
Indeed, suppose x is an extreme point of B. Then by Lemma 26 the point 2x has the
property that B(0, 1)∩B(2x, 1) = {x}. Hence, by Corollary 25, B(0, 1)∩B(f(2x), 1)
must be the single point f(x). Thus, by Lemma 27, f(x) is an extreme point
of B. �

The final aim in this section is to show that f restricted to the extreme points
of B is an isometry.

Lemma 29. Suppose that n ∈ N and that x is an extreme point of B. Then
f(nx) = nf(x).

Proof. Obviously, f is also a step-isometry in the norm 1
n‖ · ‖ which has unit ball

nB. Thus, since nx is an extreme point of nB, it must map to a point ny which
is an extreme point of nB and, thus, y is an extreme point of B. We need to show
that f(x) = y.

By Lemma 26, B(0, 1)∩B(nx, n−1) = {x}. Hence, by Corollary 25, B(f(0), 1)∩
B(f(nx), n− 1) = {f(x)}. Since f(0) = 0 and f(nx) = ny, Lemma 26 again shows
that

B(f(0), 1) ∩B(f(nx), n− 1) = B(0, 1) ∩B(ny, n− 1) = {y},
and, thus, f(x) = y, as required. �

The next lemma provides a useful criterion for certain distances to be preserved.

Lemma 30. Suppose x, y ∈ V have the property that f(nx) = nf(x) and f(ny) =
nf(y) for any n ∈ N. Then ‖x− y‖ = ‖f(x)− f(y)‖.
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Proof. By hypothesis, for any n ∈ N,

‖f(x)− f(y)‖ =
1

n
‖f(nx)− f(ny)‖.

Also, since f is a step-isometry,

�‖nx− ny‖	 = �‖f(nx)− f(ny)‖	 ,
in particular ∣∣‖f(nx)− f(ny)‖ − ‖nx− ny‖

∣∣ < 1.

Hence,

‖f(x)− f(y)‖ = lim
n→∞

1

n
‖f(nx)− f(ny)‖ = lim

n→∞

1

n
‖nx− ny‖ = ‖x− y‖. �

Proposition 31. The function f is an isometry on the extreme points of B.

Proof. Suppose x and y are extreme points of B. We know that they map to
extreme points. By Lemma 29 we know that f(nx) = nf(x) and f(ny) = nf(y)
for all n ∈ N. Hence, by Lemma 30, ‖x− y‖ = ‖f(x)− f(y)‖. Since this is true for
all x, y ∈ Ext(B), f is an isometry on Ext(B). �

6. The lattice generated by the extreme points

Throughout this section we assume that f is a (continuous) step-isometry of V
that fixes 0. In the previous section we showed that f maps the extreme points of
B to themselves. Obviously, the same argument shows that f maps the extreme
points of B(y, 1) to extreme points of B(f(y), 1). We start this section by showing
that this mapping is the ‘same’ mapping.

Lemma 32. Suppose x is an extreme point of B. Then for any y ∈ V , we have
f(y + x) = f(y) + f(x).

Proof. The point y+x is an extreme point of B(y, 1) so, by Corollary 28, f(y+x) =
f(y) + z for some extreme point z ∈ B and, by Lemma 29, f(y + nx) = f(y) + nz
for all n ∈ N. Now the pairs of points nx and y + nx are each ‖y‖ apart: in
particular, these distances are bounded. Thus, since f is a step-isometry, the same
is true of the pairs f(nx) = nf(x) and f(y+ nx) = f(y) + nz. Hence, z = f(x), as
claimed. �

Corollary 33. For any extreme point x of B, we have f(−x) = −f(x).

Proof. This is instant from Lemma 32. Indeed

0 = f(0) = f(x+ (−x)) = f(x) + f(−x). �

Next we show that f behaves well on the lattice Λ. (Recall from section 2 that
Λ denotes the lattice generated by the extreme points of B.)

Corollary 34. The function f maps Λ to itself with

f

(
n∑

i=1

λixi

)
=

n∑
i=1

λif(xi)

for any λi ∈ Z and xi ∈ Ext(B). Moreover, for any x ∈ Λ and y ∈ V , we have
f(y + x) = f(y) + f(x).

Proof. Both parts follow by applying Lemma 32 and Corollary 33 repeatedly. �
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Lemma 35. The function f restricted to Λ is an isometry.

Proof. By Corollary 34

f

(
n∑

i=1

λixi

)
=

n∑
i=1

λif(xi).

In particular for any n ∈ N and x ∈ Λ, we have f(nx) = nf(x). Thus Lemma 30
shows that, for any x, y ∈ Λ, we have ‖x − y‖ = ‖f(x) − f(y)‖; that is, f is an
isometry on Λ. �

Of course this isometry extends from Λ to Λ.

Corollary 36. f restricted to the closure Λ of Λ is an additive isometry.

Proof. f is continuous and is an additive isometry on Λ. �

Our final aim in this section is to show that there exists an isometry Q of V such
that Q◦f fixes Λ pointwise. Obviously, Q◦f is also a step-isometry, so in our later
arguments we are able to reduce to the case when f fixes Λ.

Lemma 37. There exists a unique linear isometry f̂ : V → V such that f̂ and f
agree on Λ.

Proof. First, define f̂ on QΛ by f(qv) = qf(v), where q ∈ Q and v ∈ Λ. This is

well-defined and linear since f is additive on Λ. Since f is an isometry on Λ, f̂ is an

isometry on QΛ. Now, since Λ is spanning, QΛ is dense in V , and thus f̂ extends
to a linear isometry on V .

The uniqueness is trivial since Λ is spanning. �

Corollary 38. There exists an isometry Q of V such that Q ◦ f fixes Λ pointwise.

Proof. Let Q be the isometry extending f−1, as guaranteed by the previous lemma.
Then Q ◦ f fixes Λ pointwise. �

7. Extreme lines and preserved directions

In this section we assume that f is a step-isometry of V that fixes Λ pointwise,
and so, in particular, f(0) = 0.

Our aim in this section is to show that many directions are unchanged or pre-
served.

Definition. A preserved direction is a vector x such that, for all α ∈ R and for all
y ∈ V , the vector f(y + αx)− f(y) is a multiple of x.

In particular, since we are assuming f(0) = 0, for any preserved direction x,
f(x) is a multiple of x.

Preserved directions turn out to be closely related to extreme lines, which are a
standard generalisation of the notion of extreme points.

Definition. Suppose A is a convex body. An extreme line of A is a line segment
[x, y] in A such that, for all z ∈ [x, y], if z is a convex combination of s, t ∈ A, then
s, t ∈ [x, y].

Remark. Obviously, if [x, y] is an extreme line, then x and y are extreme points
of A.
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Just as extreme points are characterised by the intersection properties of balls,
so are extreme lines.

Lemma 39. Suppose [x, y] is an extreme line of the unit ball B = B(0, 1). Then

[x, y] = B(0, 1) ∩B(x+ y, 1).

Proof. Since x, y ∈ B, we have x, y ∈ B(x+ y, 1), so x, y ∈ B ∩B(x+ y, 1). Hence,
by convexity, [x, y] ⊆ B ∩B(x+ y, 1).

Suppose that z ∈ B ∩B(x+ y, 1). Then z ∈ B and x+ y − z ∈ B. Thus

x+ y − z

2
+

z

2
=

x+ y

2

is a point in [x, y] that is a convex combination of points in B. Since [x, y] is an
extreme line, this implies that z ∈ [x, y]. �

We will be interested in the directions of the extreme lines rather than the lines
themselves. Thus we make the following definition.

Definition. Suppose B is the unit ball of a normed space V . An extreme line
direction is any nonzero multiple of the vector x− y where [x, y] is an extreme line
in B.

Remark. We view extreme line directions that are (nonzero) multiples of each other
as the same extreme line direction.

The key result for preserved directions is that all extreme line directions are
preserved directions.

Proposition 40. Suppose B is the unit ball and [x, y] is an extreme line. Then
x− y is a preserved direction.

Proof. Suppose v1, v2 ∈ V satisfy v2 = v1 + α(y − x) for some α > 0. Let n = �α�
and u = v1 − nx. Then we have v1, v2 ∈ u+ [nx, ny].

Now, by Lemma 39, for any point z ∈ u + [nx, ny], we have z ∈ B(u, n)∩
B(u + nx + ny, n). Hence, since f is a step-isometry, f(z) ∈ B(f(u), n)∩
B(f(u+nx+ny), n). Since nx+ny ∈ Λ, by Corollary 34, we have f(u+nx+ny) =
f(u) + nx+ ny. Thus,

f(z) ∈ B(f(u), n) ∩B(f(u) + nx+ ny, n) = f(u) + [nx, ny]

by Lemma 39 again. In particular, both f(v1) and f(v2) lie in f(u)+[nx, ny]. Thus

f(v2)− f(v1) = β(x− y)

for some β, as claimed. �

Remark. The map f need not preserve the directions of the extreme points: indeed,
consider the �2∞ case where f can treat each coordinate separately and, thus, need
not preserve the line y = x through the extreme point (1, 1).

8. Strongly fixed subspaces

In this section we assume that f is a step-isometry of V that fixes Λ pointwise.

Definition. We say a subspace U of V is strongly fixed if, for all u ∈ U and v ∈ V ,
we have f(u+ v) = u+ f(v).
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Remark. It is immediate from the definition that if U and U ′ are strongly fixed
subspaces, then U + U ′ is a strongly fixed subspace.

We have seen (Corollary 34) that f(u+ v) = u+ f(v) for all u ∈ Λ and v ∈ V .
Hence, the continuous subspace U0 of Λ is a strongly fixed subspace. Our aim
in the next two sections is to show that the whole of U in the �∞-decomposition
of V is strongly fixed; in this section we show that a ‘large’ subspace is strongly
fixed. Then, in the next section, we show that what is left is essentially an �∞
subspace—in particular, that it is spanned by �∞-directions.

Lemma 41. Suppose x1, x2, . . . , xk is a linearly independent set of preserved di-
rections. Then

f

(
k∑

i=1

λixi

)
=

k∑
i=1

f(λixi)

for any λ1, λ2, . . . , λk ∈ R.

Proof. We prove this by induction on k. It is trivial for k = 1.
Suppose it is true for k − 1; that is, suppose

f

(
k−1∑
i=1

λixi

)
=

k−1∑
i=1

f(λixi)

for all λ1, λ2, . . . , λk−1 ∈ R.

Since
∑k

i=1 λixi−
∑k−1

i=1 λixi = λkxk, which is a preserved direction, we see that

f

(
k∑

i=1

λixi

)
= f

(
k−1∑
i=1

λixi

)
+ μkxk =

k−1∑
i=1

f(λixi) + μkxk

for some μk.
Similarly, by applying the induction hypothesis to the last k−1 summands rather

than the first, we see that

f

(
k∑

i=1

λixi

)
= f

(
k∑

i=2

λixi

)
+ μ1x1 =

k∑
i=2

f(λixi) + μ1x1.

The xi are preserved directions so f(λixi) is a multiple of xi for each i. Thus, since
the xi are linearly independent, we see that μkxk = f(λkxk) as required. �

Lemma 42. Suppose x1, x2, . . . , xk form a minimal linearly dependent set of pre-
served directions and that k � 3. Then 〈x1, x2, . . . , xk〉 is a strongly fixed subspace.

Proof. Suppose that
∑k

i=1 λixi = 0 is a nontrivial linear dependence. Since the xi

form a minimal linear dependent set all the λi are nonzero. Thus we may assume
λ1 = 1.
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We start by showing that for any m ∈ N, we have f(mx1) = mf(x1). We prove
this by induction. The case m = 1 is trivial, so suppose that f((m − 1)x1) =
(m− 1)f(x1). We have

f(mx1) = f

(
(m− 1)x1 −

k∑
i=2

λixi

)

= f

(
(m− 1)x1 −

k−1∑
i=2

λixi

)
+ Cxk (for some C)

= f((m− 1)x1) + f

(
k−1∑
i=2

−λixi

)
+ Cxk

= f((m− 1)x1) + f

(
k∑

i=2

−λixi

)
+ C ′xk (for some C ′)

= (m− 1)f(x1) + f(x1) + C ′xk

= mf(x1) + C ′xk,

where the second line follows since xk is a preserved direction; the third line by
Lemma 41 twice, since x1, . . . , xk−1 are linearly independent; the fourth since xk is
a preserved direction; and the fifth by the inductive hypothesis.

But since x1 is a preserved direction and x1, xk are linearly independent, C ′ = 0,
and the induction is complete.

Obviously, αx1 is also a preserved direction for any α �= 0, so the above shows
that f(αx1) = αf(x1) for all α ∈ Q with α > 0. Since f is continuous, this means
that f(αx1) = αf(x1) for all α > 0.

Now, for any α > 0, by Lemma 8 there is a point y ∈ Λ with ‖αx1−y‖ � dimV/2.
Thus, since f is a step-isometry, we have

‖f(αx1)− f(y)‖ � ‖αx1 − y‖+ 1 � dimV/2 + 1.

But f fixes Λ pointwise so f(y) = y and, thus, ‖f(αx1)−αx1‖ is bounded indepen-
dently of α. Since ‖f(αx1) − αx1‖ = α‖f(x1) − x1‖, this implies that f(x1) = x1

and, thus, that f(αx1) = αx1 for all α > 0. The same argument applied to −x1—
obviously also a preserved direction—shows that f(−αx1) = −αx1. This shows
that f is the identity on 〈x1〉.

We have shown that f fixed 〈x1〉 pointwise, but we want to show more: that f
strongly fixes 〈x1〉. For any v ∈ V , the function g defined by g(x) = f(x+v)−f(v)
is also a step-isometry and, by Corollary 34, fixes Λ. Moreover, g also preserves
the directions xi. Thus, by the above argument g is the identity on 〈x1〉. Hence
f(v + αx1) = f(v) + αx1 for all α ∈ R; that is, 〈x1〉 is a strongly fixed subspace.

Since this is true for each xi, we see that 〈x1, x2, . . . xk〉 is a strongly fixed
subspace. �

The previous lemmas show that the span of linearly dependent preserved direc-
tions is strongly fixed. Of course, we also know that the continuous subspace U0

of Λ is strongly fixed. Thus we make the following definition to cover the largest
subspace that we know (so far) is strongly fixed. Later, we shall show that this is
the non-�d∞-component of the �∞-decomposition.
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Before stating the main definition, we need a little more notation. Suppose that
W is any subspace of V and x1, x2, . . . , xk are vectors in V . A linear combination
of the xi over W is any sum of the form w +

∑
i λixi, where w ∈ W ; the span

of the xi over W is 〈W,x1, x2, . . . , xk〉; the xi are linearly independent over W if∑
i λxi ∈ W implies that λi = 0 for all i.

Definition. Suppose that V is a normed space with unit ball B, that U is a
subspace, and xi, i ∈ I are the extreme line directions in U . Then U is well-
spanned if

(1) it contains the continuous subspace U0 of Λ,
(2) the xi span U over U0,
(3) every xi ∈ U \ U0 can be written as a linear combination of the other xj

over U0.

First, we show that there is a unique maximal well-spanned subspace and then
that any step-isometry that pointwise fixes Λ strongly fixes this subspace.

Lemma 43. Suppose that V is a normed space with unit ball B. Then there is
a unique maximal well-spanned subspace U . Moreover, the extreme line directions
outside U are linearly independent over U .

Proof. Obviously U0 is well-spanned. Now suppose that U and U ′ are well-spanned
subspaces of V . We show that U +U ′ is also well-spanned. Indeed, it is immediate
that (1) and (2) of the definition hold. To show condition (3), suppose that x is
an extreme line direction in (U + U ′) \ U0. If x is in U , then, since condition (3)
holds in U , x can be written as the required linear combination, and similary if
x ∈ U ′. On the other hand, if x �∈ U ∪ U ′, then, since condition (2) holds in U
and U ′, x can be written as a linear combination (over U0) of the extreme line
directions inside each of these spaces (which cannot include x as x is not contained
in U or U ′). Thus U+U ′ is well-spanned. It follows that there is a unique maximal
well-spanned subspace.

To prove the second part, let U be the maximal well-spanned subspace and let
xi, i ∈ I, be the extreme line directions in U . Suppose that y1, y2, . . . , yl ∈ V \U is
a minimal linearly dependent set of extreme line directions over U . Then, since the
xi span U over U0, we see that, for each j, yj can be written as a linear combination
of the {xi : i ∈ I}∪{yi : i �= j} over U0. Hence U+〈y1, y2, . . . , y�〉 is a well-spanned
subspace contradicting the maximality of U . �
Corollary 44. Suppose that V is a normed space with maximal well-spanned sub-
space U and that f is a step-isometry fixing Λ. Then U is a strongly fixed subspace.

Proof. We have seen that f strongly fixes U0. Consider any extreme line direction v
in U . Then v occurs in a minimal linear relation with other extreme line directions in
U over U0. Since, by Proposition 40, extreme line directions are preserved directions
of f , Lemma 42 shows that f is strongly fixed on the span of these directions and,
in particular, on 〈v〉. Since this is true for every extreme line direction in U and
these directions span U over U0, we see that U is strongly fixed. �

9. The complement of the maximal well-spanned subspace

In this section we prove that V = (U ⊕ 〈v1〉 ⊕ 〈v2〉 · · · 〈vk〉)∞, where U is the
maximal well-spanned subspace and v1 · · · vk are extreme line directions outside of
U , and, thus, we deduce that U is the non-�d∞-component in the �∞-decomposition.
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We start by showing that, unless U = V , there is an extreme line direction
outside of U . Since we use induction, it is convenient to prove a (stronger) result
for a general convex set rather than just for the unit ball of the normed space.

Lemma 45. Suppose U is a codimension 1 subspace of V , that v ∈ V \U , and that
Ui = U +λiv, 1 � i � k, are distinct cosets of U with λ1 < λ2 < · · · < λk. Further,
suppose that, for each i, Ai is a (nonempty) compact convex subset of Ui and that,
for some s < k, x ∈ As is an extreme point of A = conv(

⋃
i Ai). Then there exists

t > s and y ∈ At such that [x, y] is an extreme line of A.

Proof. We prove this by induction on the dimension of V . If dimV = 1 it is trivial:
V = R and each Ai is a single point. Since s < k and x is an extreme point, we
must have x ∈ A1, and the line from x to the point in Ak is the required extreme
line. Thus suppose that the result holds for all spaces of dimension less than dimV .

Let H0 be a codimension 1 tangent hyperplane at x to A, and let h0 be a
corresponding linear functional; that is, such that H0 = {y ∈ V : h0(y) = h0(x)}.
We may assume that h0(y) � h0(x) for all y ∈

⋃
i Ai.

Let q be the linear functional on V defined, for any u ∈ U and λ, by q(u+λv) = λ.
By hypothesis q(Ui) = λi is increasing with i. Consider the family of hyperplanes
Hα through x given by the functionals hα = h0 + αq; that is, Hα = {y ∈ V :
hα(y) = hα(x)}. Let H−

α = {y ∈ V : hα(y) � hα(x)}. Note that, Ai ⊆ H−
0 for all

i.
For each i > s, the function αi(y) = (h0(x)− h0(y))/(λi − λs) is continuous and

nonnegative on the compact set Ai and so attains an absolute minimum α∗
i ≥ 0.

Set β = mini>s{α∗
i } ≥ 0. Then, by the choice of β, for every i > s and y ∈ Ai,

we have hβ(y) ≤ hβ(x). Additionally, for every i � s, and y ∈ Ai, since β � 0
and λi � λs, we also have hβ(y) ≤ hβ(x). Thus,

⋃
i Ai ⊆ H−

β , so Hβ is a tangent
hyperplane to A at x.

Furthermore, since all the minimums α∗
i were attained in the choice of β, there

is at least one j > s and y ∈ Aj with hβ(y) = hβ(x), and so Hβ ∩ (
⋃

i>s Ai) �= ∅.
Let H = Hβ and H− = H−

β , and, for each i, let A′
i = Ai ∩H. Note some of the

Ai may be empty and we ignore these sets. Let

A′ = conv(
⋃
i

A′
i) = conv(

⋃
i

Ai ∩H) = conv(
⋃
i

Ai) ∩H = A ∩H,

where the third equality follows since
⋃

i Ai ⊂ H−. Now each A′
i lies in Ui ∩ H

which are cosets of U ∩H which is codimension 1. Obviously the A′
i are compact

convex subsets. Also x ∈ A′
s and, since A′ ⊂ A, we see that x is an extreme point

of A′. Finally, by our choice of H, at least one of the A′
s′ for s′ > s is nonempty.

Hence the A′
i satisfy the induction hypothesis. Thus, there exists y ∈ A′

t with t > s
such that [x, y] is an extreme line of A′.

To complete the induction step and thus the proof, we show that [x, y] is extreme
line of A. Indeed, suppose z ∈ [x, y] is a convex combination of s, t ∈ A. Since
[x, y] ⊂ A′ ⊂ H and A ⊂ H−, both s, t must lie in H, and thus s, t ∈ A′. Since
[x, y] is an extreme line in A′, this shows that s, t ∈ [x, y], and thus [x, y] is an
extreme line of A, as claimed. �

We use this result to deduce that there are many extreme line directions.

Corollary 46. Suppose that U is the maximal well-spanned subspace of V . Then
the extreme line directions outside U span V over U .
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Proof. If U = V , then the statement is (rather vacuously) true, so assume U �= V .
Since Ext(B) spans V , there is an extreme point x �∈ U . Let yi, i ∈ I, be the
endpoints of the extreme lines [x, yi] which have x as the other endpoint. If U
together with the vectors x − yi span V , then the result holds, so suppose they
do not.

Let U ′ be a codimension 1 subspace containing U and all the vectors x− yi. Fix
v ∈ V \U ′, and let U ′

1, U
′
2, . . . , U

′
k be the cosets of U ′ covering the extreme points of

B, where U ′
i = U + λiv are such that the λi are increasing. By Corollary 10, such

a k exists and, since B is not contained in any codimension 1 affine hyperplane,
k � 2.

By replacing v with −v (and thus reversing the order of the U ′
i) if necessary, we

may assume x ∈ U ′
s for some s < k. Now apply the previous lemma with U ′, taking

the set Ai in U ′
i to be B ∩ U ′

i for each i. Note that, since all the extreme points of
B are contained in

⋃
i Ai, we have conv(

⋃
i Ai) = B.

This gives an extreme line [x, y] of B with x − y not in U ′, contradicting the
choice of U ′. �

Lemma 47. Suppose that v1 is an extreme line direction not in the maximal well-
spanned subspace U . Then v1 is an �∞-direction and U is a subset of U1, the
corresponding subspace.

Proof. Let v2, . . . , vk be the other extreme line directions outside of U . We may
assume that they all, and v1, have norm 1. By Lemma 43, the vi are linearly
independent over U , and by Corollary 46 they span over U .

Let U ′ be the subspace spanned by U and v2, v3, . . . , vk. Since the vi are linearly
independent and span over U , we see that U ′ has codimension 1.

Suppose that U ′
1, U

′
2, . . . , U

′
t are finitely many cosets (Corollary 10) of U ′ that

cover the extreme points of B. Our first step is to show that, from every extreme
point of B, we can either add or subtract a multiple of v1 and stay in B.

Write U ′
i = U ′ + λiv1, and we may assume that the λi are increasing. Define

A1, A2, . . . , At by Ai = B ∩ U ′
i . Note that B = conv(

⋃
i Ai).

For any extreme point x of B in some Ai with i < t, Lemma 45 shows that there
exists y in one of the As with s > i such that x − y is an extreme line direction.
Since v1 is the only extreme line direction not in U ′, we must have that x− y is in
the same direction as v1. Thus, y = x + λv1 for some λ, and since s > i, we see
λ > 0.

By applying Lemma 45 again, this time to the Ai in reverse order, we see that
any extreme point x′ of B in any of the Ai with i > 1 there is also a y′ ∈ As for
some s < i with x′ − y′, an extreme line direction. Again x′ − y′ must be the same
direction as v1; that is, y

′ = x′ + λ′v1. This time, since s < i, we see that λ′ < 0.
Since the extreme points of B span V and B is symmetric, we see that Ext(B) is

not a subset of U ′ or any single coset of U ′, and thus t � 2. Hence, for any extreme
point of B, at least one of the two cases above applies; thus, we have shown that
from any extreme point of B, we can either add or subtract a multiple of v1 and
stay in B.

It now follows that t = 2; that is, the extreme points of B are contained in
two cosets of U ′. Indeed, suppose t � 3. By applying the two cases above to any
extreme point x in A2, we see that x + λv1 and x + λ′v1 are both in B for some
λ > 0 and λ′ < 0. But this contradicts x being an extreme point of B.
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Since B is symmetric, we must have U ′
1 = U ′ − λv1 and U ′

2 = U ′ + λv1 for some
λ > 0. Let B1 = A1+λv1 and B2 = A2−λv1 be the projections of A1, A2 onto U ′.

We claim that B1 = B2. For a contradiction suppose there is a point in B2 \B1.
Then there must be an extreme point z of B2 in B2 \B1. Obviously, z′ = z+λv1 ∈
A2, is an extreme point of B. However, since z �∈ B1, we see that we cannot add
or subtract any multiple of v1 to z′ and stay in B, which is a contradiction.

Now since v1 ∈ B (recall we assumed ‖v1‖ = 1), we see λ � 1. Also for any
z ∈ A1, the vector z + 2λv1 ∈ A2, so z and z + 2λv1 are both in B; in particular
λ � 1. Thus λ = 1.

Combining this, we see that B = conv(B1 + v1, B1 − v1). We use this to show
that v1 is an �∞-direction. Given any v ∈ V , write v = αv1+βu1 for some α, β ∈ R

and u1 ∈ U ′ with ‖u1‖ = 1. Observe that the description of B above shows that
B ∩ U ′ = B1. Thus, since ‖u1‖ = 1, we see that u1 ∈ B so u1 ∈ B1.

Now
‖v‖ = inf{λ : v/λ ∈ B} = max(α, β) = max(α, ‖βu1‖).

Since U ⊆ U ′, the result follows. �

Lemma 48. Suppose that x is an �∞-direction with corresponding subspace W .
Then x is an extreme line direction and the maximal well-spanned subspace U is
contained in W .

Proof. Let BW = B ∩ W be the unit ball in W . We claim that B =
conv(BW + x,BW − x). Suppose v ∈ V . Then, since x is an �∞-direction, we
can write v = w + λx, and we have ‖v‖ = ‖w + λx‖ = max(‖w‖, |λ|). This im-
plies that, if ‖v‖ � 1, then v is a convex combination of w+ x and w− x, for some
w ∈ BW , that is B ⊆ conv(BW +x,BW −x); conversely, it implies that BW +x ⊂ B
and BW − x ⊂ B, so conv(BW + x,BW − x) ⊆ B. This completes the proof of the
claim.

It is immediate that x is an extreme line direction; indeed, for any w ∈ Ext(BW ),
[w − x,w + x] is an extreme line.

We also see that Ext(B) ⊂ (W + x) ∪ (W − x), so, in particular, the continuous
subspace U0 is contained in W . Moreover, the only extreme line direction outside
W is x. Indeed, suppose [y1, y2] is an extreme line. If y1, y2 are both contained in
W+x or both in W−x, then y2−y1 ∈ W . Thus assume y1 ∈ W−x and y2 ∈ W+x.
Write y1 = z1−x and y2 = z2+x, so z1, z2 ∈ BW . The point 1

2 (z1+z2) ∈ [y1, y2] is
a convex combination of z1 + x, z2 − x. Since [y1, y2] is an extreme line, this shows
that z1 + x, z2 − x ∈ [y1, y2], and thus z1 = z2 and y2 − y1 = 2x. It follows that the
extreme line [y1, y2] has direction x.

In particular, this shows that x is not a linear combination of other extreme
line directions over U0, which implies that x is not in any well-spanned subspace.
Moreover, since all other extreme line directions and the continuous subspace lie in
W , we see that the maximal well-spanned subspace is contained in W . �

Finally, we show that the well-spanned subspace is actually the non-�d∞-compo-
nent in the �∞-decomposition.

Proposition 49. Suppose that V is a normed space with �∞-decomposition
(W ⊕ �d∞)∞ and that U is the maximal well-spanned subspace. Then U = W .

Proof. Let u1, u2, . . . , uk be the extreme line directions outside U , and let U ′ =
〈u1, u2, . . . , uk〉. Let w1, w2, . . . , wd be all the �∞-directions, with corresponding
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subspaces Wi, and let W ′ = 〈w1, w2, . . . , wd〉 (so W ′ is the �d∞-component in the
�∞-decomposition).

By Lemma 47, each ui is an �∞-direction, so U ′ ⊆ W ′. Also, by Lemma 48, U ⊂
Wi for each i, so U ⊂

⋂d
i=1 Wi = W (Proposition 14). Since the sum V = W ⊕W ′

is direct, we must have U = W (and U ′ = W ′). �

10. Proof of Theorem 4

Finally, we are in a position to prove Theorem 4. We prove it first for the case
when f fixes Λ pointwise.

Lemma 50. Suppose that V is a normed space with �∞-decomposition V =
(U ⊕ �d∞)∞ and that f is a step-isometry fixing Λ pointwise. Then f factorises
over the decomposition as fU ⊕ f�d∞ , where fU is the identity on U and f�d∞ is a

step-isometry on �d∞.

Proof. Let fU be the identity on U , and define f�d∞ = f |�d∞ . We show that this is

a factorisation of f over the decomposition U ⊕ �d∞. By Proposition 49, U is the
maximal well-spanned subspace, so by Corollary 44 it is strongly fixed by f . Thus
f = fU ⊕f�d∞ . Obviously, fU maps U to itself, so it remains to show that f�d∞ maps

�d∞ to itself.
Let v1, v2, . . . , vd be the �∞-directions (that is, the natural basis of the �d∞-

component). By Lemma 48, each vi is an extreme line direction, so by Proposi-

tion 40 it is a preserved direction. Suppose that v =
∑d

i=1 λivi. Then, inductively
using the fact that each vi is a preserved direction, we have

f�d∞(v) = f(v) = f(

d∑
i=1

λivi) =

d∑
i=1

λ′
ivi

for some λ′
i, and thus f�d∞ does map �d∞ to itself.

It is easy to see that the factors in any factorisation of a bijection are also
bijections. Thus, since f�d∞ is just the restriction of f to �d∞, we see that f�d∞ is a
step-isometry as claimed. �

Proof of Theorem 4. We have that f is any step-isometry on V . Define f̂ = f −
f(0). Then f̂ is a step-isometry that fixes zero. By Corollary 38 there is a linear

isometry Q of V such that Q ◦ f̂ is a step-isometry fixing Λ. Let g = Q ◦ f̂ .
By Lemma 50, g factorises over the �∞-decomposition V = (U ⊕ �d∞)∞ as gU ⊕

g�d∞ , where gU is the identity on U and g�d∞ is a step-isometry on �d∞.

Obviously, Q−1 is a linear isometry of V , so by Corollary 15 it factorises as
qU ⊕ q�d∞ over U ⊕ �d∞ and is an isometry on each part. Note that qu and q�d∞ are

both bijective (either immediate from linearity, or from Corollary 7).
Define fU = qU ◦ gU and f�d∞ = q�d∞ ◦ g�d∞ . By definition, fU maps U to itself

isometrically and f�d∞ maps �d∞ to itself as a step-isometry. Furthermore,

f(u+ w) = Q−1(g(u+ w)) = Q−1(gU (u) + g�d∞(w))

= qu(gU (u)) + q�d∞(g�d∞(w))

= fu(u) + f�d∞(w).

Hence, f = fU ⊕ f�d∞ is a factorisation of f over V = U ⊕ �d∞. This completes the
proof. �
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11. Proof of Theorem 5

In this section we use the results we have proved to deduce Theorem 5. We prove
it first for the case d = 1; that is, when V = R.

Lemma 51. Suppose f is a step isometry of R. Then there exists an isometry Q
of R and a continuous increasing bijection g : [0, 1) → [0, 1) such that

Q ◦ f(x) = �x	+ g(x− �x	).

Proof. Trivially, the lattice Λ generated by the unit ball is just the set Z. Thus, by
Corollary 38, there exists an isometry Q such that Q◦f fixes Z, and by Corollary 34

(1) Q ◦ f(x+ k) = Q ◦ f(x) + k

for any x ∈ R and k ∈ Z. Let f̂ = Q ◦ f . Since f̂ is a step-isometry and fixes both

0 and 1, it must map (0, 1) to (0, 1), as must f̂−1. Hence, defining g = f̂ |[0,1), we
see that g maps [0, 1) to [0, 1) bijectively. From (1) we see that

Q ◦ f(x) = �x	+ g(x− �x	).
It is immediate that g is continuous (it a restriction of the continuous function f̂),

so, to complete the proof, we just need to show that g is increasing. Suppose that

0 � x < y < 1. Pick z ∈ (1+x, 1+y). We showed above that f̂ maps (0, 1) to itself

and similarly it also maps (1, 2) to itself; in particular, f̂(z) ∈ (1, 2). Thus, since f̂ is

a step-isometry, we have f̂(z) > 1+ f̂(x) = 1+g(x) and f̂(z) < 1+ f̂(y) = 1+g(y),
which shows g(x) < g(y), as claimed. �

Proof of Theorem 5. By Corollary 38 there is an isometry Q such that Q ◦ f is a
step-isometry fixing Λ the lattice generated by the extreme points of B.

By Proposition 40, the step-isometry Q ◦ f preserves extreme line directions. It

is obvious that the points
∑d

i=1 ei and
∑d

i=1 ei − 2ej are endpoints of an extreme
line with direction ej . Thus, each coordinate direction ej is preserved, and we
see that Q ◦ f decomposes into independent actions on each coordinate direction.
Each of these has the form specified by Lemma 51. Since Q has the form given by
Corollary 16, the result follows. �

12. The back and forth method in our setting

A standard technique for proving infinite graphs are isomorphic is the back and
forth method. As we shall use it several times in the proof of Theorem 2 from
Theorem 4, we collect precisely what we need here. We need the following notation.
For graphs G and H we write G ∼= H to denote that G and H are isomorphic
graphs. For any subset S0 of V (G), we write G[S0] for the (induced) subgraph of
G restricted to S0.

Lemma 52. Let V = (U ⊕ R)∞, and let SU be a countable dense subset of U .
Suppose that S is a countable dense subset of V such that, for each s ∈ SU , S ∩
({s} ×R) is dense in {s} × R, and no two points in S differ by an integer in their
R-component. Then S is Rado.

Further, suppose S0 is any finite set of points in V with no two points, one from
S and one from S0, differing by an integer in their R-components. Then, for two
graphs G,G′ in Gp(S ∪ S0), we have

P(G ∼= G′ | G[S0] = G′[S0]) = 1.
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Remark. Note, we do not require this to be the �∞-decomposition; for example, it
also holds for V = �d∞ = (�d−1

∞ ⊕ R)∞ itself. Indeed, we do not even need U to be
nontrivial; that is, it holds when V = R.

Proof. We start by showing that almost all graphs G in Gp(V, S) have the following
property P : for every point s′ ∈ SU , every open subset A of R, and every pair of
disjoint finite sets T1, T2 ⊂ S such that {s′} × A ⊂

⋂
x∈T1∪T2

B◦(x, 1), there exist
infinitely many s ∈ ({s′}×A)∩S such that st ∈ E(G) for all t ∈ T1 and st �∈ E(G)
for all t ∈ T2.

It is obviously sufficient to prove the claim for all open sets in any base for R. In
particular, if we take a countable base, there are only countably many choices for
A, s′, T1, and T2. For each choice there are infinitely many points in ({s′}×A)∩S.
Since, each of these points has distance strictly less than one to each point of T1∪T2,
each such point has a positive probability of having the required adjacency. Thus,
almost surely, infinitely many of them do have the required adjacency. The claim
follows.

To complete the proof, we show that if G and G′ are two graphs in Gp(V, S) both
having property P , then G and G′ are isomorphic.

Indeed, we construct our isomorphism guaranteeing that it factorises over U ⊕R

as fU ⊕ fR and that fU is actually the identity on U . In other words f(u + w) =
u+ fR(w). Further, we insist that fR is monotone and satisfies

(2) fR = �x	+ fR(x− �x	)

(in fact this is essentially forced if fR is to be a step-isometry).
For the rest of the proof fix an enumeration s1, s2, s3, . . . of S. We use the

back and forth method to construct the desired isomorphism. Start the process by
mapping s1 = u1 + w1 to itself. In particular, this defines fR(w1) = w1, so, by our
requirement on fR, this defines fR on w1 +Z by fR(w1+ k) = w1 + k, for all k ∈ Z.

Suppose that v = u + w is the first point in the enumeration for which f has
not already been defined and that vi = ui + wi, for 1 � i � n, are the points for
which f has already been defined. Let v′i = f(vi) for each i. Consider the set of
points for which we have already defined fR, namely

⋃
i(wi+Z). The point w must

lie between two consecutive points of this set, say x and y. (It is not one of these
points since we have assumed there are no two points differ by an integer in their
R-component.)

Let A be the open interval (fR(x), fR(y)), and let T be the subset of the v′i
that have distance strictly less than one from any point (equivalently, all points) of
{u} × A, and partition T into T1 and T2 according to whether vi is joined to v in
G or not.

Since G′ has property P , there are infinitely many points v′ ∈ {u} × A which
are joined to everything in T1 and nothing in T2. Let v

′ be any such point that has
not already been used (i.e., not in {v′1, v′2, . . . , v′n}), and set f(v) = v′. Let w′ ∈ R

be the W -component of v′ (so v′ = u+w′). By our requirement on fR this defines
fR on w + Z by fR(w + k) = w′ + k, for all k ∈ Z. By our choice of v′ we see that
fR is still a monotone and increasing and satisfies (2).

We repeat this argument, but this time mapping from G′ to G. That is, we
take the first point v′ in our enumeration of S that is not one of the v′i and define
f−1(v′) = v for a suitable point v found as above but working with f−1.
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Thus, since as we alternate back and forth, the process takes the first point not
yet defined in G or G′ at each stage, this process creates a bijection. Since we
maintain the isomorphism and the step-isometry at each stage, this bijection is an
isomorphism (and a step isometry), as claimed.

To prove the final part, just start the process with the map f : S0 → S0 de-
fined to be the identity which, since we are conditioning on G[S0] = G′[S0], is an
isomorphism. �

13. Proof of Theorems 1 and 2 from Theorem 4

In this section we prove Theorem 2 (which includes Theorem 1).

Lemma 53. Let V be a finite-dimensional normed space, and let S be a countable
dense set in V .

(1) Suppose that there are only countably many step-isometries on S. Then S
is strongly non-Rado.

(2) Instead, suppose that S contains a subset T , which contains infinitely many
pairs of points at distance less than one, and the step-isometries on S induce
only countably many distinct mappings of T . Then S is strongly non-Rado.

Proof. Obviously, the second statement gives the first statement, so it suffices to
prove that.

Let P be the property that, for every pair of points x, y ∈ S and every k ∈ N

with k � 2, we have ‖x − y‖ < k if and only dG(x, y) � k. Let G0 be the set
of graphs for which property P fails. By Lemma 3, G0 has measure zero. Any
G �∈ G0 can only be isomorphic to graphs in G0 or to a graph f(G) where f is
step-isometry of S. Obviously, if f is an isomorphism between G and G′, then f |T
is an isomorphism between G[T ] and G′[f(T )]. Since T has infinitely many pairs
of points at distance less than one, it has infinitely many potential edges, and the
probability any particular mapping f |T is an isomorphism is zero. By hypothesis
there are only countably many such mappings, so the probability that any such
mapping is an isomorphism is zero.

We have shown that almost every graph G is isomorphic to almost no other
graphs. Thus, by Fubini’s theorem, two independent random graphs are almost
surely not isomorphic. (The event that two graphs are isomorphic, although not
Borel, is product measurable because it is analytic; see e.g., [10].) �

Throughout the proof of Theorem 2 we shall use the �∞-decomposition. We
make the following definition.

Definition. Suppose V is a normed space with �∞-decomposition V = (U⊕�d∞)∞.
Then, for any u ∈ U , the fibre over u is the set {u+ w : w ∈ �d∞}.

Proof of Theorem 2(ii). Suppose f is a step-isometry of S. By Proposition 24, f
extends to a step-isometry of V . Since U = V in the �∞-decomposition, Theorem 4
shows that f = fU must be a (bijective) isometry on the whole of V . By the
Mazur–Ulam Theorem this isometry is an affine map.

Let S′ ⊂ S be an affine basis of V (an affine basis is a linear basis together with
any one point not in its affine span). Then, the affine map f is determined by its
action on S′. Since f maps S to S, there are only countably many choices for the
images of the points of S′. Hence, the number of such isometries is countable.
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This shows that the number of step-isometries on S is countable so, by Lemma 53,
S is strongly non-Rado. �

Proof of Theorem 2(iii). First suppose that no two (distinct) points u+w, u′+w′ ∈
S have u = u′ (that is, each fibre over U contains zero or one point). Obviously,
almost all countable dense sets have this property. Again, suppose that f is a step-
isometry of S. As before, it extends to a step-isometry of V . By Theorem 4, f
factorises as f = fU ⊕ f�d∞ , where fU is a (bijective) isometry on U . Thus, by the
Mazur–Ulam Theorem again, fU is an affine map.

Let S′ ⊂ S be a set of points u1 + w1, u2 + w2, . . . , uk + wk, where ui ∈ U and
wi ∈ �d∞ for each i, and u1, u2, . . . , uk form an affine basis of U . The map fU is
determined by its action on u1, u2, . . . , uk, so is determined by f ’s action on S′. As
in part (ii), f maps S to S so there are only countably many choices for the images
of the points of S′. Thus the number of possible fU is countable.

However, fU determines f since, once we know the U -component of f(s), the
fact that f(s) ∈ S determines the point uniquely (there may be no possible point,
but that only helps us since it reduces the number of potential step-isometries).
Hence, exactly as in the proof of part (ii), this means there are only countably
many such step-isometries so, again by Lemma 53, S is strongly non-Rado.

The fact that there are some sets S that have atypical behaviour is immediate
from Lemma 52. Indeed, write V = (U ′ ⊕R)∞, where U ′ = (U ⊕ �d−1

∞ )∞, then any
S of the form required by that lemma is Rado. We remark that this construction
also works in the case V = �d∞, but it is not atypical there.

Since our construction of sets for which the probability the graphs are isomorphic
has probability strictly between 0 and 1 works for both parts (i) and (iii) of the
theorem, we defer it until after our proof of part (i). �

Proof of Theorem 2(i). The almost all statement of part (i) was proved by Bonato
and Janssen. They showed that all countable dense sets that do not contain any two
points differing by an integer in any coordinate are Rado. (In fact, they claimed
the slightly stronger result that any set which does not contain two points an
integer distance apart is Rado—but this is not true. Indeed, it is easy to construct
counterexamples along the lines of the examples given in the next section.)

The following shows that there are countable dense sets S which are strongly
non-Rado. Let S′ be any countable dense set in Rd−1. Let S = S′ ×Q in Rd, and
fix s′ ∈ S′. Suppose f is a step-isometry mapping on S. As usual f extends to a
step-isometry of V . Consider the action of f on the subset T = {s′} × (Z ∪ Z+ 1

2 )
of the fibre {s′} × Q. By Theorem 5 we see that this action is determined by the
permutation σ of the basis vectors, the vector ε of signs, together with the images
f(s′, 0) and f(s′, 1/2). Since f(s′, 0, ), f(s′, 1/2) ∈ S, there are only countably many
choices for the step-isometry’s action on T . Thus, since T contains infinitely many
pairs of points with distance less than one, Lemma 53 shows that S is strongly
non-Rado.

We deal with the case of sets where the probability that two graphs are isomor-
phic is strictly between zero and one in the following proposition. �

Finally, we complete the proof of Theorem 2 by proving that there exist sets
which are neither Rado nor strongly non-Rado; that is, sets S for which the prob-
ability two graphs are isomorphic lies strictly between zero and one.
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Proposition 54. Let V = (U ⊕R)∞. Then there exist countable dense sets S such
that the probability that two random graphs taken from Gp(V, S) are isomorphic lies
strictly between zero and one.

Remark. Again, we do not require this to be the �∞-decomposition; for example,
it holds for V = �d∞ = (�d−1

∞ ⊕ R)∞ and for V = R.

Proof. The key idea is to find a set S with some finite subset S0 such that all step-
isometries map S0 to S0. If we do this, then an obvious necessary condition for two
graphs G and G′ to be isomorphic via a step-isometry is that G[S0] is isomorphic to
G′[S0], which is an event with probability strictly between zero and one, provided
S0 contains at least one possible edge.

Of course, that is just a necessary condition; to find a set S with the desired
property, we wish to make this a sufficient condition for the existence of such an
isomorphism.

One natural possibility is to let S0 be two points that are the unique pair of
points at unit distance in S. Since step-isometries preserve integer distances, any
step-isometry must map S0 to S0. However, S0 does not contain any potential
edge. Instead, fix a unit vector u, and let S0 = {0, u, 3u/2, 5u/2}. Provided 0, u
and 3u/2, 5u/2 are the only pairs of points at unit distance in S, then S0 must map
to itself. Moreover, S0 contains a unique possible edge (that is a unique pair of
vertices at distance strictly less than one)—that between the points u and 3u/2—
and we see that any step-isometry must map these two points to themselves.

Having found our set S0, we turn to defining S, which we do as in Lemma 52—we
just add the requirements that no point of S is at unit distance from any point in
S ∪ S0.

As discussed above, all step isometries map the set {u, 3u/2} to itself and, in
particular, a necessary condition for G and G′ to be isomorphic via a step-isometry
is that they agree on the potential edge u, 3u/2. (As Lemma 3 shows that the
probability two graphs are isomorphic via a function which is not a step-isometry
is zero, we can ignore this possibility.)

Conversely, if they agree on this edge, then G[S0] = G′[S0] so, by Lemma 52
they are almost surely isomorphic.

Thus, the probability that G and G′ are isomorphic is the probability that they
agree on the edge u, 3u/2 which is p2 + (1− p)2; in particular it is strictly between
zero and one. �

14. Further results and open problems

We have not completely classified the behaviour of all countable dense sets in
the cases (i) and (iii) above, and that is our main open question.

Question 1. Let V be a normed space with �∞-decomposition V = (U ⊕ �d∞)∞
for some d � 1. Which countable dense sets are Rado?

It is easy to extend the argument for the typical case of part (iii) above to show
that, in that setting, if each fibre over U contains a discrete set (rather than just
zero or one points as above), then the set is strongly non-Rado. Thus, the open
cases include cases where a fibre is neither dense nor discrete.

However, since the behaviour when all fibres are discrete (strongly non-Rado) is
different from the case when all fibres are dense (Rado—assuming some no integer
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difference conditions) it is unsurprising that sets with some fibres discrete and some
fibres dense can give either behaviour. We briefly outline two sets which look very
similar but have different behaviour. The examples we give are in in V = (U⊕R)∞,
but it is easy to generalise them to either (U ⊕ �d∞)∞ or (with slightly more effort
along the lines of the proof of the atypical case of part (i) above) to �d∞.

Let SU be a dense set in U and let S be a set which is dense in each fibre over
SU and contains no two points differing by an integer in their R-component. (So
far this is exactly the set used in the atypical case of part (iii) above.)

Now let TU be an infinite 1-separated family in U disjoint from SU , and let T be
a set containing exactly one point from each fibre over TU , such that no two points
in S ∪ T differ by an integer in their R-component.

We claim that, by choosing the single points in each fibre of T , we can ensure
that S ∪ T is Rado, or that it is strongly non-Rado. Suppose that T is the set
{(t1, r1), (t2, r2), . . . }.

As usual, any step-isometry f of S ∪ T extends to a step-isometry of V , which
factorises as fU ⊕fR, where fU is an isometry and fR is a step-isometry. Obviously,
fU maps T to itself (as all other fibres contain either no points or infinitely many
points). Thus, once we know the U -component of the image f(t) of a point t ∈ T ,
we know its R-component; that is, fU determines fR(ri) for each i. If the ri mod 1
are dense in [0, 1], then, since fR is a step-isometry, this determines fR entirely. As
in our proofs above there are only countably many step-isometries mapping S ∪ T
to itself, so by Lemma 53 S ∪ T is strongly non-Rado.

On the other hand if the rn = n+1/n and no point of S has integer R-component,
then S ∪ T is Rado. Indeed, we construct our map fixing U and use the back and
forth argument as in Lemma 52, observing that the key property used there—that
for every point (u,w) ∈ S ∪ T not yet mapped, the point w lies in an open interval
between consecutive previously defined points—still holds in this case.

The above discussion shows that the classification of exactly which countable
dense sets give a unique graph will be rather complicated. Thus we have restricted
ourselves to the typical case and have shown that the atypical cases can occur.

Finally, all our work in this paper has been finite-dimensional spaces without
consideration for the infinite-dimensional setting. It would be interesting to know
what happens there.

Question 2. Suppose that V is an infinite-dimensional normed space and that S
is a countable dense subset. When is S Rado?
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