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GRAPHICAL MARKOV MODELS

FOR INFINITELY MANY VARIABLES

DAVID MONTAGUE AND BALA RAJARATNAM

Abstract. Representing the conditional independences present in a multi-
variate random vector via graphs has found widespread use in applications,
and such representations are popularly known as graphical models or Markov
random fields. These models have many useful properties, but their funda-
mental attractive feature is their ability to reflect conditional independences
between blocks of variables through graph separation, a consequence of the
equivalence of the pairwise, local, and global Markov properties demonstrated
by Pearl and Paz (1985). Modern-day applications often necessitate working
with either an infinite collection of variables (such as in a spatial-temporal
field) or approximating a large high-dimensional finite stochastic system with

an infinite-dimensional system. However, it is unclear whether the conditional
independences present in an infinite-dimensional random vector or stochastic
process can still be represented by separation criteria in an infinite graph. In
light of the advantages of using graphs as tools to represent stochastic relation-
ships, we undertake in this paper a general study of infinite graphical models.
First, we demonstrate that näıve extensions of the assumptions required for
the finite case results do not yield equivalence of the Markov properties in the
infinite-dimensional setting, thus calling for a more in-depth analysis. To this
end, we proceed to derive general conditions which do allow representing the
conditional independence in an infinite-dimensional random system by means
of graphs, and our results render the result of Pearl and Paz as a special case
of a more general phenomenon. We conclude by demonstrating the applicabil-
ity of our theory through concrete examples of infinite-dimensional graphical
models.

1. Introduction

1.1. Background. Representing the conditional independences present in a multi-
variate random vector via graphs has found widespread use in applications and has
also led to important theoretical advances in probability. Such probabilistic Markov
models are popularly known as graphical models or Markov random fields and have
seen rapid development in recent years. Though the initial motivation for their
development primarily stemmed from statistical physics [12], they have become
particularly relevant in modern applications. In particular, graphical models are
widely used to provide easily interpreted graphical representations of complex mul-
tivariate dependencies that are present in a large collection of random variables.
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Thus, they are very valuable for analyzing modern high-dimensional throughput
data and have become staples in contemporary statistics, computer science, and
allied fields.

In such models, the nodes of a graph correspond to random variables. The
absence of an edge between a pair of nodes represents conditional independence
between the corresponding two random variables given all the other variables and
is known as the pairwise Markov property. A particularly useful feature of graphical
models is the equivalence of the so-called pairwise (P), local (L), and global (G)
Markov properties. These Markov properties relate a graph G = (V,E) and a
collection of random variables (Xi)i∈V as follows:

• (P) For i, j ∈ V , i �∼G j implies Xi ⊥⊥ Xj |XV \{i,j}.
• (L) Given i ∈ V , Xi ⊥⊥ XV \cl(i)|Xne(i).
• (G) Given A,B ⊆ V , and C ⊆ V separating A and B, we have XA ⊥⊥
XB|XC .

Here we have used the following notation: (1) for A ⊆ V , XA = (Xa)a∈A, (2)
i ∼G j means nodes i and j are adjacent in G, (3) ne(i) is the neighbor set of i in
G (so that ne(i) = {j ∈ V | i ∼G j}), and (4) cl(i) = {i} ∪ ne(i). In addition, in
the statement of property (G), when we say that C “separates” A and B we mean
that any path in the graph that starts at a vertex in A and ends at a vertex in B
contains at least one vertex in C.

Whereas the pairwise Markov relationship represents independences between
a pair of nodes, the global Markov property allows one to infer from the graph
conditional independences between two blocks of variables, given a third block, if
the first two blocks are “separated” by this third block in the graph.

One of the cornerstones of the field of graphical models is the equivalence of these
three Markov properties for finite graphical models, which holds under relatively
mild conditions and was first demonstrated by Pearl and Paz [18]. This equiva-
lence result provides a way to relate the local and global conditional independence
structure within a collection of random variables and establishes the value of the
graphical representation of these models. However, this equivalence between the
pairwise, local, and global Markov properties does not readily extend to infinite
collections of random variables.

There are both theoretical and practical reasons for studying infinite-dimensional
graphical models. First, the study of the limits of sequences of graphs has seen
much development in recent years [2,3,16], yet the ability of these “infinite graphs”
to represent multivariate dependencies in an infinite-dimensional random vector
is not well understood. Second, modern applications have to contend with very
high-dimensional data, and approximating such large finite systems with an infi-
nite system has some clear practical advantages. For instance, by the same broad
principles relevant when using general asymptotic or limiting approximations to
better understand or analyze finite models, an infinite-dimensional graphical model
can also serve to better illustrate the salient features of a large finite counterpart.
We expand on these and other compelling reasons for studying infinite-dimensional
graphical models in subsection 1.2.

The goal of this paper is therefore to understand the equivalence of the global,
local, and pairwise Markov properties for an infinite collection of variables. We
begin by first introducing a graphical framework which allows us to establish the
equivalence of analogues of the pairwise, local, and global Markov properties for
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ternary relations on infinite graphs from a purely set-theoretic perspective (Sec-
tion 4). We then develop the probability theory required to apply this graphical
framework to the relation induced by conditional independence on a countable
collection of random variables (Section 5). The set-theoretic framework is intro-
duced prior to developing the relevant probability theory in order to separate the
difficulties arising from infinite graphs versus infinite probability distributions. Fi-
nally, we demonstrate the broad applicability of our results through two general
classes of graphical stochastic processes: (a) Gaussian processes (Section 6) and
(b) discrete (i.e., {0, 1}-valued) processes (Section 7). More specifically, we obtain
sufficient conditions for the equivalence of the Markov properties in each of these
contexts and subsequently verify them on a collection of examples. These exam-
ples include, among others, autoregressive processes in the Gaussian setting and an
infinite-dimensional extension of the Ising model in the discrete setting. For these
examples, we also actually verify one of the Markov properties, allowing us to im-
mediately conclude the other two by equivalence and thus establish the collection
of variables as an infinite-dimensional graphical model.

The proofs of the various results contained in this paper are placed either in the
main text, the Appendix, or the Supplemental section depending on the centrality
of the result and so that they do not excessively detract from the flow in the main
body of the paper.

1.2. Motivation. One of the primary reasons for the popularity of graphical mod-
els in modern applications stems from their ability to facilitate the inference of con-
ditional independences between large sets of variables (as opposed to conditional
independence between just two variables). This is achieved through the global
Markov property by using separation statements in graphs and relies fundamen-
tally on the equivalence of the global, local, and pairwise Markov properties. The
Pearl and Paz [18] result relating the various Markov properties in the finite setting
has already been very useful for these purposes, but the more general infinite case
has yet to receive a similar treatment. We provide a number of compelling reasons
why such an investigation is important and long overdue, both from a theoretical
and application perspective:

(1) Due to the nature of modern data science and “Big Data” applications,
the number of variables or features under consideration is becoming in-
creasingly large. In fact, the number of variables can easily be in the
hundreds of thousands or even many millions (e.g., gene expression data,
EQTL high throughput data, single nucleotide polymorphism data, remote
sensing data, high frequency trading data, etc.). The verification of the
equivalence of the Markov properties by checking that the joint density is
positive is simply not feasible for many modern applications for at least
two reasons. First, note that the enormous number of variables is often
accompanied by limited samples. This sample-starved setting leads to ex-
tremely sparsely distributed data in very high-dimensional space. In such
settings traditional frequency curves or histograms are not useful for de-
scribing the underlying data generating mechanisms or probability models.
Second, the very large number of variables also means that the shape and
support of each of the marginal densities cannot be easily checked, let alone
the shape and support of the joint density. While the conditions for equiv-
alence of the Markov properties for infinite collections of random variables
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established in this paper do imply the existence of a positive density, they
may in some cases serve as a more directly verifiable safeguard for the very
high-dimensional but still finite setting, thus still allowing one to invoke the
global Markov property.

(2) Many collections of random variables are by their very nature infinite-
dimensional. For instance, many collections of random variables evolve
in time and/or space with either a countable or uncountable index set.
Though such processes may be observed only at finite times due to practical
constraints, they are in principle actually infinite. At least in discrete exam-
ples of such settings (e.g., infinite lattice-based models), an understanding
of the conditional independences between variables that are present in the
true underlying random process can only be achieved by examining the
infinite analogues of the Markov properties.

(3) Consider the case of the standard Gaussian graphical model. In the finite-
dimensional setting it is well known that graphical structure corresponds
to classes of covariance matrices with zeros in the inverse. The families
of distributions of inferential interest here are thus Gaussian distributions
parameterized by sparse inverse covariance matrices. We shall show in this
paper that in order to obtain graphical structure in the infinite setting,
further conditions are required on infinite-dimensional covariance matri-
ces that parameterize Gaussian processes. In particular, our investigation
into infinite-dimensional probabilistic models identifies classes of probabil-
ity measures which enjoy graphical structure. Establishing and identify-
ing classes of such infinite graphical models therefore serves the important
purpose of laying the probabilistic foundations required for statistical in-
ference. It specifies clearly the families of measures on which inference is to
be undertaken if one is interested in obtaining probabilistic data generating
mechanisms which describe observed data in a parsimonious way.

(4) Recall that theoretical guarantees of traditional statistical inferential meth-
ods are proven in the “classical asymptotic regime” when the number of
variables (or dimension) p remains fixed and the sample size n tends to
infinity. The advent of high throughput data, especially in the last two
decades, has seen inferential techniques for estimating or recovering a sparse
graphical model in the “mixed asymptotic regime” when both sample size
n and number of variables p tend to infinity. Very recently, a new class of
methods for recovering sparse graphical models has been proposed in the
“purely high-dimensional asymptotic regime” when the sample size n is ac-
tually fixed but the dimension p tends to infinity [10, 11]. This regime has
been argued as the appropriate regime for modern “Big Data” applications
and corresponds to the infinite-dimensional setting. Establishing theoret-
ical safeguards of inferential procedures in the “purely high-dimensional”
asymptotic regime, however, requires conditions on both the joint distribu-
tions as well as sparsity in parameters of interest [10, 11]. These technical
conditions are motivated only by statistical considerations, but it is not
immediately clear if these inferential procedures actually yield true prob-
abilistic graphical models in the infinite setting (i.e., in which the global
Markov property can be invoked). The work in this paper thus also serves



GRAPHICAL MARKOV MODELS FOR INFINITELY MANY VARIABLES 7561

to address this gap by undertaking a probabilistic treatment of infinite
graphical models.

(5) Another compelling motivation for our work is an important technical one.
Recall that the equivalence of the Markov properties in the finite setting
relies fundamentally on the so-called intersection property. We demonstrate
in this paper that a näıve or straightforward extension of the intersection
property to infinite sets, and the verification thereof, does not ensure the
equivalence of the global, local, and pairwise Markov properties. Thus the
ability to infer conditional independences between blocks of variables in the
infinite setting is simply not guaranteed using assumptions from the finite-
dimensional case. The verification of such assumptions may give the false
impression that the global Markov property holds when it actually does
not, motivating a rigorous treatment of the infinite-dimensional setting.

2. Summary of main results

We now provide an overview of the main results in the paper. Our first goal is to
obtain equivalence of the pairwise, local, and global Markov properties for ternary
relations. First, we provide the necessary definitions.

Definition 2.1. Let V be any set. Let · ⊥ · | · be a ternary relation on the power
set P(V ). The following properties of the relation are satisfied if their respective
statements are true for all (potentially infinite) sets X,Y, Z,W ∈ P(V ):

• (P1*) Symmetry: X ⊥ Y | Z implies Y ⊥ X | Z;
• (P2*) Decomposition: X ⊥ (Y ∪W ) | Z implies X ⊥ Y | Z and X ⊥ W | Z;
• (P3*) Weak Union: X ⊥ (Y ∪W ) | Z implies X ⊥ Y | (Z ∪W );
• (P4*) Contraction: X ⊥ Y | (Z ∪ W ) and X ⊥ W | Z imply X ⊥
(Y ∪W ) | Z;

• (P5*) General Intersection: For any partition X =
⋃

k Xk into finite sub-

sets of V , if Xk ⊥ Y | Z ∪
(⋃

j �=k Xj

)
for all k, then X ⊥ Y | Z.

Following the nomenclature in [14], we call the relation · ⊥ · | · a semi-graphoid
relation on V provided it satisfies (P1*) – (P4*). If in addition the relation satisfies
(P5*), we call it an extended graphoid relation.

While (P1*)–(P4*) are essentially the same as their traditional finite counter-
parts which have already appeared in the literature, the statement of (P5*) is a
less straightforward generalization of the usual intersection property to the infinite
setting. We also note that the cardinality of the various sets in the statements of
(P1*)–(P5*) are bounded only by |V |; i.e., if |V | is uncountably infinite, then the
various sets X,Y, Z,W may also be.

Definition 2.2. If V is any set, G is any undirected graph on V , and · ⊥ · | · is
any ternary relation on P(V ), we say that (V,⊥) satisfies the pairwise (P*), local
(L*), or global (G*) set-Markov properties with respect to G provided that

• (P*) for each pair of vertices {i, j} ⊆ V ,

i �∼G j ⇒ {i} ⊥ {j} | V \ {i, j};
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• (L*) for each vertex i,

{i} ⊥ V \ cl(i) | ne(i);

• (G*) for each triple (A,B,S) of disjoint subsets of V with S separating A
from B, we have

A ⊥ B | S.
We say that (P*), (L*), or (G*) holds over G when (V,⊥) is clear from context.

We prove the following theorem, which in particular establishes the equivalence
of the set-Markov properties under (P1*)–(P5*), and in the case of finite V reduces
to the foundational result of Pearl and Paz [18].

Theorem 2.3. Suppose V is any set and · ⊥ · | · satisfies (P1*) – (P4*). Then

(V,⊥) satisfies (G*) ⇒ (V,⊥) satisfies (L*) ⇒ (V,⊥) satisfies (P*).

If, in addition, · ⊥ · | · satisfies (P5*), then we also have

(V,⊥) satisfies (P*) ⇒ (V,⊥) satisfies (G*).

After establishing the set-theoretic framework outlined above, we apply Theo-
rem 2.3 to the ternary relation induced by conditional independences present in a
countably infinite collection of random variables.

Corollary 2.4. Suppose that {Xn}n∈N is a collection of random variables satisfying
property (P5*). Then for the ternary relation · ⊥⊥X · | · on N induced by the
conditional independences in the collection of random variables {Xn}n∈N,

(N,⊥⊥X) satisfies (G*) ⇔ (N,⊥⊥X) satisfies (L*) ⇔ (N,⊥⊥X) satisfies (P*).

The above corollary establishes the importance of (P5*) but leaves its verifica-
tion untouched. Our next goal is to establish the equivalence of the various Markov
properties for a wide class of examples of infinite collections of random variables
by verifying (P5*). To this end, we introduce in the main text sufficient conditions
for (P5*) to hold for a general collection of random variables (we give these suffi-
cient conditions the names “infinite intersection property” (IIP) and “decorrelation
property” (DCP); see Definition 5.2 for their statements). We then verify these
conditions for two important and widely used classes of models: countably infinite
Gaussian processes and countably infinite discrete processes. Our primary results
in this regard are given below.

Theorem 2.5. Let (Xn)n∈N be a Gaussian process with covariance matrix Σ which
satisfies the following bounds:

(1) There exist constants c and C such that for any finite subset of nodes A,
we have

0 < c < λi(ΣA) < C,

for all i, where λi(Σ) represents the ith largest eigenvalue of the matrix Σ.
(2) There exists a function g0(i, j) which bounds the covariances

|Cov(Xi, Xj)| ≤ g0(i, j) ∀i, j,
and if we recursively define

gn+1(i, j) = gn(i, j) +
∞∑
k=1

gn(i, k)gn(k, j),
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then for n ≤ 4, gn(i, j) exists and is finite, and moreover
∞∑
k=1

gn(i, k)k
ε < ∞

for some ε > 0 and all i.

Then the ternary relation · ⊥⊥X · | · satisfies the infinite intersection property
(IIP) and the decorrelation property (DCP) and hence (P5*).

Remark 2.6. We comment briefly on the intuitive interpretation of conditions (1)
and (2) above. The eigenvalue condition (1) ensures sufficient level of nonsingularity
of the distribution that it is possible to obtain a positive density, which will be
important for verifying (IIP). Condition (2) can be interpreted as a “decorrelation”
condition, as it forces |Cov(Xi, Xj)| to decay sufficiently fast as Xi and Xj become
further apart and will be important for verifying (DCP). One commonly used rich
class of models for which this second condition holds is the lattice model with the
exponential or Gaussian covariance function [22]. Full details for the Gaussian
covariance function are included in Example 6.8.

Remark 2.7. We note that the conditions on the gn from (2) in Theorem 2.5 are
conceptually similar to “decorrelation” conditions required for other probabilistic
results for dependent random variables. As a first example, the central limit theo-
rem for dependent variables requires that

lim
n→∞

1

n

n∑
i=1

n∑
j �=i

Cov(Xi, Xj) = γ

for some finite constant γ [15]. This condition is similar to that on the gn from
Theorem 2.5 in that both ultimately imply a certain level of decay in the covariances
of the variables in question. A second example of a useful decorrelation condition
is the often imposed assumption of absolute summability of the autocorrelations in
a covariance-stationary sequence of random variables:

∞∑
k=0

|Cov(X0, Xk)| :=
∞∑
k=0

|γk| < ∞.

This condition can be used to obtain a weak law of large numbers [7] and is actually
implied by the second part of condition (2) in Theorem 2.5.

Theorem 2.8. Suppose the random variables {Xn | n ∈ N} form a {0, 1}-valued
stochastic process satisfying the following conditions:

(1) For any finite increasing sequences of natural numbers I = (i1, . . . , im) and
J = (j1, . . . , jr), there is a constant cI depending only on I such that for
any two {0, 1}-valued sequences (a1, . . . , am) and (b1, . . . , br), we have

P((Xi1 , . . . , Xim) = (a1, . . . , am) | Xj1 = b1, . . . , Xjr = br) > cI a.s. XJ .

(2) Let n ∈ N and B ⊆ N be arbitrary, and let FB,−n = σ(XB, Xn, Xn+1, . . .).
For any m ∈ N and P-a.e. value of XB = xB, there is a function gm,B,xB

(n)
satisfying

• limn→∞ gm,B,xB
(n) = 0.

• For any A ∈ FB,−n,

(2.1) Var(P(A|X1, . . . , Xm, XB)|XB = xB) < gm,B,xB
(n).
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Then the {Xn | n ∈ N} satisfy the infinite intersection property (IIP) and the
decorrelation property (DCP) and hence (P5*).

Remark 2.9. The conditions (1) and (2) from Theorem 2.8 serve a similar role to
the conditions from Theorem 2.5. In particular, condition (1) again ensures “non-
singularity” of the distribution, permitting the existence of a positive density. Also,
condition (2) corresponds once again to a quantitative formulation of a “decorrela-
tion” condition.

For each of the two theorems above we provide multiple examples for which the
respective required conditions are satisfied. These examples will serve to demon-
strate the flexibility of our extended framework for the study of infinite-dimensional
graphical models.

3. Preliminaries

3.1. Graph theory.

Definition 3.1. An undirected graph G is a pair of objects (V,E), where V is
the set of vertices of G, and E is a subset of V × V containing the edges. By
convention, E does not contain edges of the form (i, i) or multiple edges between
any two vertices, and we do not distinguish between the edges (i, j) and (j, i). We
now introduce a number of additional definitions related to undirected graphs.

• Let i be a vertex in V . A vertex j is called adjacent to i, or a neighbor of i,
if (i, j) ∈ E. If j is a neighbor of i, we write i ∼G j, and otherwise we write
i �∼G j. The set of all neighbors of i is denoted by ne(i). We also define the
closure set cl(i) := {i} ∪ ne(i).

• Given a graph G = (V,E) and a subset A ⊆ V , the induced subgraph on A
is defined to be the graph (A,E ∩ (A×A)).

• The degree of a vertex i ∈ V is the cardinality of the neighbor set of i. That
is, the degree of a vertex i is equal to

deg(i) = |{j ∈ V | i ∼ j}|.
• Let A,B,C ⊆ V be three nonempty subsets of V . We say that C separates
A from B if every path from a vertex a ∈ A to a vertex b ∈ B contains
some vertex in C.

3.2. Conditional independence.

Definition 3.2. Given collections of random variables A, B, and C, we say that
A is conditionally independent of B given C, denoted

A ⊥⊥ B | C,
provided the σ-algebras σ(A), σ(B), and σ(C) satisfy

(3.1) P(E1|σ(C))P(E2|σ(C)) = P(E1 ∩ E2|σ(C))

for all events E1 ∈ σ(A) and E2 ∈ σ(B).

See [4] for a discussion of alternative definitions of conditional independence.
Consider a collection of random variables {Xv | v ∈ V }. Given a subset A ⊆ V

let XA denote the random vector (Xv)v∈A, and given subsets A,B,C ⊆ V , with a
slight abuse of notation we shall write A ⊥⊥ B | C to mean XA ⊥⊥ XB | XC .
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Now, suppose that A,B,C, and D are disjoint collections of random variables.
Then we may consider the following properties, known as the axioms of conditional
independence:

• (P1) Symmetry: A ⊥⊥ B | C implies B ⊥⊥ A | C;
• (P2) Decomposition: A ⊥⊥ (B∪C) | D implies A ⊥⊥ B | D and A ⊥⊥ C | D;
• (P3) Weak Union: A ⊥⊥ (B ∪ C) | D implies A ⊥⊥ B | (C ∪D);
• (P4) Contraction: A ⊥⊥ B | (C ∪ D) and A ⊥⊥ C | D implies A ⊥⊥

(B ∪ C) | D;
• (P5) Intersection: A ⊥⊥ B | (C ∪ D) and A ⊥⊥ C | (B ∪ D) implies A ⊥⊥
(B ∪ C) | D.

We note that properties (P1) – (P4) can be proved for arbitrary collections
of random variables (see Lemma 5.1 below). Property (P5) does not hold under
such extreme generality, but the following result does hold (as verified in [14], for
example).

Proposition 3.3 ([14]). Suppose for all v ∈ V that Xv is a random variable. If
every finite subcollection of the Xv has a joint density which is everywhere positive
with respect to an appropriate product measure, then (P1) – (P5) hold for all finite
subsets A,B,C,D ⊆ {Xv | v ∈ V }.

Remark 3.4. In Definition 2.1 we used the * in the labeling of properties (P1*) –
(P5*) and ⊥ instead of ⊥⊥ to distinguish those properties as abstract properties of
a ternary relation. This is as opposed to (P1) – (P5) above, which are specifically
related to conditional independence.

Remark 3.5. The only significant difference between (P1)–(P5) and (P1*)–(P5*)
occurs in the statement of (P5*). As we will show in Proposition B.1, (P5) and
(P5*) are equivalent when considering a finite collection of random variables. How-
ever, the more nuanced property (P5*) is necessary in order to obtain probability
theoretic results for infinite collections of random variables, which cannot be ob-
tained from (P5) alone.

3.3. Markov properties and graphical models. Suppose now that G = (V,E)
is an undirected graph with |V | < ∞. Let X = (X1, . . . , X|V |) be a |V |-variate
random variable. Then we say that X satisfies the (P) pairwise, (L) local, or (G)
global Markov properties with respect to the graph G provided that:

• (P) for each pair (i, j) of vertices,

i �∼G j (i.e., i and j not adjacent) ⇒ Xi ⊥⊥ Xj | XV \{i,j};

• (L) for each vertex i,

Xi ⊥⊥ XV \cl(i) | Xne(i);

• (G) for each triple (A,B, S) of disjoint subsets of V with S separating A
and B, we have

XA ⊥⊥ XB | XS .

The following foundational result of Pearl and Paz [18] shows that, under general
circumstances, these three Markov properties are equivalent.

Theorem 3.6 (Pearl and Paz, 1985 [18]). Suppose V is a finite set and that X is
a collection of random variables indexed by V such that for any disjoint nonempty
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subsets A,B,C,D ⊆ V the intersection property

(P5) XA ⊥⊥ XB | XC∪D and XA ⊥⊥ XC | XB∪D ⇒ XA ⊥⊥ XB∪C | XD

holds. Then with respect to a given graph G,
X satisfies (P) ⇔ X satisfies (L) ⇔ X satisfies (G) .

4. Graphoid relations and separation for infinite graphs

We now introduce a graphical framework in which we can analyze the Markov
properties from a purely set-theoretic perspective which is independent of proba-
bility theory. Making this distinction in our mathematical treatment will allow us
to understand better what drives the equivalence of the Markov properties.

Conditions (P1*) – (P4*) are precisely the same as (P1) – (P4) when the relation
in question is that induced by conditional independence (as in Definition 3.2). While
the statements of (P5*) and (P5) are different, (P5*) is in fact a generalization of
(P5) which is equivalent when V is finite, a result stated formally in Proposition
B.1 in the Supplemental section.

We now recall Definition 2.2 of the set-theoretic analogues of the Markov prop-
erties for ternary relations, which we will ultimately consider for semi-graphoid and
extended graphoid relations.

Definition. If V is any set, G is any undirected graph on V , and · ⊥ · | · is any
ternary relation on P(V ), we say that (V,⊥) satisfies the pairwise (P*), local (L*),
or global (G*) set-Markov properties with respect to G provided that

• (P*) for each pair of vertices {i, j} ⊆ V , we have i �∼G j ⇒ {i} ⊥ {j} |
V \ {i, j};

• (L*) for each vertex i, we have {i} ⊥ V \ cl(i) | ne(i);
• (G*) for each triple (A,B,S) of disjoint subsets of V with S separating A
from B, we have A ⊥ B | S.

We say that (P*), (L*), or (G*) holds over G when (V,⊥) is clear from context.

Note that if V is finite and · ⊥ · | · is the conditional independence relation from
Definition 3.2, these set-Markov properties are precisely the usual probabilistic
Markov properties. That is, (P) = (P*), (L) = (L*), and (G) = (G*).

We now prove Theorem 2.3, which asserts the equivalence of the set-theoretic
Markov properties under (P1*) – (P5*) for collections of random variables of arbi-
trary cardinality.

Theorem. Suppose V is any set and · ⊥ · | · satisfies (P1*) – (P4*). Then

(V,⊥) satisfies (G*) ⇒ (V,⊥) satisfies (L*) ⇒ (V,⊥) satisfies (P*).

If in addition · ⊥ · | · satisfies (P5*), then we also have

(V,⊥) satisfies (P*) ⇒ (V,⊥) satisfies (G*).

Proof.
(G*) ⇒ (L*): For any subset A ⊆ V , the neighbor set ne(A) separates A and
V \ (A∪ �= (A)), so (G*) trivially implies (L*).

(L*) ⇒ (P*): Let i, j be any two vertices in V which are not adjacent. Then
j �∈ cl(i). By (L*), i ⊥ V \ cl(i) | ne(i). Since j �∈ cl(i), we may conclude from
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(P3*) that i ⊥ j | V \ {i, j}, proving (P*).

(P*) ⇒ (G*): Suppose that A,B, S ⊆ V are such that S separates A and B. Let

Ã be the set of vertices in V that can be reached by a path starting at some vertex

in A and that does not include any vertex in S. Define B̃ = V \ (Ã ∪ S), noting

that S separates Ã and B̃ and that B ⊆ B̃.

Fix a vertex i ∈ Ã. Then, since i is separated from B̃ by S, we know in

particular that for any j ∈ B̃, i and j are not adjacent. Therefore, by (P*),

we have i ⊥ j | V \{i, j}, and we also have that V \{i, j} = (Ã\{i})∪S∪ (B̃ \{j}).
Since this holds for all j in B̃, we have by property (P5*) that i ⊥ B̃ | (Ã \ i) ∪ S,

and a second application of (P5*) gives Ã ⊥ B̃ | S.
Finally, since A ⊆ Ã and B ⊆ B̃, two applications of property (P2*) allow us to

conclude that A ⊥ B | S, finishing the proof that (P*) ⇒ (G*). �

We are now in a position to deduce the result of Pearl and Paz [18] formulated
in terms of set-Markov properties as a special case of Theorem 2.3 above.

Corollary 4.1 (Pearl and Paz, 1985 [18]). Suppose V is a finite set and · ⊥ · | · is
a ternary relation on P(V ) satisfying (P1*)–(P4*) and is such that for any disjoint
nonempty subsets A,B,C,D ⊆ V the intersection property

(P5) A ⊥ B | C ∪D and A ⊥ C | B ∪D ⇒ A ⊥ B ∪ C | D
holds. Then

· ⊥ · | · satisfies (P) ⇔ · ⊥ · | · satisfies (L) ⇔ · ⊥ · | · satisfies (G) .

Proof. By Proposition B.1, the assumption of (P5) is equivalent to that of (P5*).
Thus, we may apply Theorem 2.3. �

One could ask the question whether the general intersection property (P5*) is
the minimal assumption required to get equivalence of the set-Markov properties.
This is addressed in the following proposition, the proof of which is contained in
the Supplemental section.

Proposition 4.2. If (P1*)–(P4*) hold, and (P*) ⇒ (G*), then (P5*) must hold.

This proposition shows that (P5*) is a necessary property to obtain the equiv-
alence of the set-Markov properties, and so is indeed minimal. Importantly, this
affirms the notion that (P5*) is the correct generalization of (P5).

5. Markov properties for infinite sets of random variables

Our goal in this section is to obtain general conditions under which (P5*) holds
for the conditional independence relation. This will allow us to verify the equiva-
lence of the infinite probabilistic Markov properties.

5.1. Axioms of conditional probability. The first step toward this goal is to
note that properties (P1*)–(P4*) hold for any collection of random variables satis-
fying the general conditional independence definition (Definition 3.2).

Lemma 5.1. If (Xv)v∈V is any collection of random variables with V at most
countably infinite, then (P1*)–(P4*) hold with respect to the conditional indepen-
dence relation · ⊥⊥ · | · .
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Proof. The proof follows standard measure theoretic arguments. Similar results are
commonly referenced in the literature, and some proofs can be found, for example,
in [5, 17]. �

In the next section, we will consider the generality in which (P5*) holds.

5.2. Sufficient conditions for the general intersection property. When the
vertex set V is finite, there are well-known sufficient conditions for the intersection
property (P5) to hold (see [19] for an approach involving densities and product
measures, and see [5] for a more general σ-algebra oriented approach). In particular,
(P5) holds if the random variables have a joint density which is positive everywhere.
However, in the infinite setting, sufficient conditions for the general intersection
property (P5*) to hold are not immediately evident. We address this by introducing
a set of sufficient conditions under which the general intersection property holds
for the conditional independence relation.

Definition 5.2. Let {Xi | i ∈ N} be a collection of real-valued random variables.
The Xi are said to satisfy the Infinite Intersection Property (IIP) and Decorrelation
Property (DCP) respectively provided that:

(IIP) Given any (possibly infinite) subset D ⊆ N and any finite A,B,C ⊆ N\D,
we have that

(XA ⊥⊥ XB | XC∪D and XA ⊥⊥ XC | XB∪D) ⇒ (XA ⊥⊥ XB∪C) | XD.

(DCP) Given any (possibly infinite) subset D ⊆ N and any event

E ∈
⋂
n

σ(XD, Xn, Xn+1, Xn+2, . . .),

there exists an event E′ ∈ σ(XD) such that P(EΔE′) = 0.

Remark 5.3. In the finite-dimensional setting, the infinite intersection property
(IIP) reduces precisely to (P5), since in that case all subsets A,B,C, and D under
consideration will be finite. In addition, the decorrelation property (DCP) holds
trivially in the finite-dimensional setting since, in that case,⋂

n

σ(XD, Xn, Xn+1, . . .) = σ(XD).

Thus, the assumption of both the infinite intersection property (IIP) and decorre-
lation property (DCP) reduces precisely to (P5) in the finite-dimensional setting.
As we shall see, (IIP) and (DCP) are also sufficient to obtain (P5*) in the infinite-
dimensional setting.

Remark 5.4. One can think of (IIP) as an intermediate infinite extension of (P5)
which is necessary for, but not quite as strong as, (P5*) and hence is more readily
verifiable. (DCP) is not a necessary condition for (P5*), but provides a quantita-
tive formulation of the idea that the infinite collection of variables is sufficiently
“decorrelated”, which in turn allows the verification of (P5*).

Theorem 5.5. Suppose that {Xn | n ∈ N} is a collection of random variables
satisfying properties (IIP) and (DCP). Then the ternary relation · ⊥⊥X · | · corre-
sponding to conditional independence satisfies (P5*).
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Proof. Let I,D ⊆ N be arbitrary (potentially infinite) subsets, let C ⊆ N be finite,
and suppose that Xi ⊥⊥ XC | X(I∪D)\{i} for all i ∈ I. By iterative application of
property (IIP) we may conclude that for any finite J ⊆ I,

XJ ⊥⊥ XC | X(I∪D)\J .

We may therefore assume that I is infinite, since the above verifies (P5*) when I
is finite.

Let I = {i1, i2, i3, . . .}, and let In = {in, in+1, in+2, . . .}. Applying property (P2)
gives

XJ ⊥⊥ XC | X(I∪D)\K

for any K satisfying J ⊆ K ⊆ I, and so for all sufficiently large n, we have

XJ ⊥⊥ XC | XIn∪D.

Now, let A be an event in σ(XJ) and B an event in σ(XC). Then by the
backward martingale convergence theorem (for a reference see, e.g., [13]), it holds
pointwise that

lim
n→∞

P(A|XIn , XD) = P(A|F),

lim
n→∞

P(B|XIn , XD) = P(B|F), and

lim
n→∞

P(A ∩B|XIn , XD) = P(A ∩B|F),

where F =
⋂

n σ(XIn , XD). Thus, since the independence factorization holds al-
most surely for all sufficiently large n, we have that almost surely P(A|F)P(B|F) =
P(A ∩B|F).

Now, note that σ(XD) ⊆ F , and by property (DCP), for any E ∈ F , there exists
E′ ∈ σ(XD) satisfying P(EΔE′) = 0. We may therefore apply Lemma A.4 and
obtain that P(A|F) = P(A|XD), and similarly for B and A ∩ B, and so we have
A ⊥⊥ B | XD.

Since A and B were arbitrary elements of σ(XJ) and σ(XC) respectively, we
have that XJ ⊥⊥ XC | XD for all finite J ⊆ I.

Now, let E ∈ σ(XI). By Proposition A.6, there is a sequence of sets En ∈
σ(Xi1 , . . . , Xin) such that P(EΔEn) → 0. Since En ∈ σ(XJ) for a finite J ⊆ I, we
have En ⊥⊥ XC | XD. Let F ∈ σ(XC) be arbitrary. Then

(5.1) P(En|XD)P(F |XD)− P(En ∩ F |XD) = 0

for all n almost surely. Since P(EΔEn) → 0, we have that E[1EΔEn
] → 0. So

E[E[1EΔEn
|XD]] → 0, and since E[1EΔEn

|XD] = P(EΔEn|XD) ≥ 0, we may
conclude that P(EΔEn|XD) → 0 almost surely. Thus, since

|P(E|XD)− P(En|XD)| ≤ |P(E \ En|XD)|+ |P(En \ E|XD)| = |P(EΔEn|XD)|,
we may conclude that P(En|XD) → P(E|XD) almost surely. A similar argument
works to show that P(En ∩F |XD) → P(E ∩F |XD) almost surely, and therefore we
may obtain from line (5.1) that almost surely,

P(E|XD)P(F |XD)− P(E ∩ F |XD) = 0.

This finishes the proof that XI ⊥⊥ XC | XD for finite C.
Suppose now that C is infinite. Then for any finite subset C ′ ⊆ C, we have

Xi ⊥⊥ XC′ | X(I∪D)\{i}, and so the above arguments show that XI ⊥⊥ XC′ | XD for
any finite C ′⊆C. Note that C :={E ∈ σ(XC) | E ∈ σ(XC′) for some finite C ′ ⊆ C}
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is a π-system and that for any event EI ∈ σ(XI), the set of events E ∈ σ(XC)
satisfying

(5.2) P(EI |XD)P(E|XD) = P(EI ∩E | XD)

forms a λ-system containing C. We may then conclude by Dynkin’s π-λ theorem
that line (5.2) is satisfied for all EI ∈ σ(XI) and all E ∈ σ(C) = σ(XC), and so
XI ⊥⊥ XC | XD is even if C is infinite. Thus we have demonstrated (P5*). �

The following result provides a convenient way to verify (DCP) in practice.

Lemma 5.6. Let (Xn)n∈N be a collection of random variables satisfying the fol-
lowing: For any D ⊆ N, let FD,−n = σ(XD, Xn, Xn+1, . . .). For any m ∈ N and
P-a.e. value of XD = xD, there is a function gm,D,xD

(n) satisfying

(1) limn→∞ gm,D,xD
(n) = 0 and

(2) for any A ∈ FD,−n we have

(5.3) Var(P(A|X1, . . . , Xm, XD)|XD = xD) ≤ gm,D,xD
(n) a.s.

Then the (Xn)n∈N satisfy property (DCP).
Moreover, for (DCP) to hold, it is sufficient that inequality (5.3) be valid for all

A ∈ FD,−n,−N (for all N > n), where

FD,−n,−N := σ(XD, Xn, Xn+1, . . . , XN ).

Proof. Let D ⊆ N and A ∈
⋂

n FD,−n be arbitrary. By assumption,

Var(P(A|X1, . . . , Xm, XD)|XD = xD) ≤ gm,D,xD
(n) a.s. XD ∀n,

and thus

Var(P(A|X1, . . . , Xm, XD)|XD = xD) = 0 a.s. XD.

Thus, we have that P(A|X1, . . . , Xm, XD) is almost surely just a function of XD.
That is,

P(A|X1, . . . , Xm, XD) = P(A|XD)

almost surely for all m. By the Lévy zero-one law, we may conclude that

1A = lim
m→∞

P(A|XD, X1, . . . , Xm) = P(A|XD)

almost surely, so there is some A′ ∈ σ(XD) such that 1A = 1A′ almost surely, or
equivalently, P(AΔA′) = 0. Thus (DCP) holds.

Now, suppose instead that we only assume

Var(P(E|X1, . . . , Xm, XD)|XD = xD) ≤ gm,D,xD
(n) a.s. XD

for those E contained in FD,−n,−N = σ(XD, Xn, Xn+1, . . . , XN ) for some n,N .
The algebra given by A =

⋃
N σ(XD, Xn, Xn+1, . . . , XN ) generates FD,−n, and

so by Proposition A.6, for all n ∈ N, ε > 0, there exist some N ∈ N and an
event An,ε ∈ FD,−n,−N such that P(AΔAn,ε) < ε. Thus, in particular, we have
1An,ε

→ 1A almost surely.
By the dominated convergence theorem, we may thus conclude that

Var(P(An,ε|X1, . . . , Xm, XD)|XD = xD) → Var(P(A|X1, . . . , Xm, XD)|XD = xD)

and therefore that

Var(P(A|X1, . . . , Xm, XD)|XD = xD) ≤ gm,D,xD
(n)
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for all n (since A ∈
⋂

n FD,−n). Then we may follow the above argument to obtain
the existence of A′ ∈ σ(XD) such that P(AΔA′) = 0 and conclude that (DCP)
holds. �

Remark 5.7. A few natural questions arise immediately regarding the technical
conditions required to obtain the equivalence of the Markov properties.

(1) Is a more straightforward extension of the intersection property (as given by
(P5) in the finite setting) sufficient to obtain the equivalence of the various
Markov properties in the infinite setting?

The most natural extension of (P5) to an infinite collection of variables
is the assumption that (P5) holds for all finite subcollections of the infinite
collection, but this is not sufficient to obtain the equivalence of the Markov
properties even if we also assume that (DCP) holds. This is demonstrated
in detail in Example B.2 in the Supplemental section.

(2) Does the infinite intersection property (IIP) imply the decorrelation prop-
erty (DCP) or vice versa?

There are examples of collections of random variables for which (IIP)
holds and (DCP) does not and vice versa. It is also the case in these
examples that (P*) does not imply (G*). In particular, in Example B.2
we obtain a collection of random variables satisfying (DCP) and not (IIP),
and in Example B.3 we obtain a collection satisfying (IIP) and not (DCP)
(both examples are contained in the Supplemental section). In both cases,
(P*) does not imply (G*).

(3) Is the infinite intersection property (IIP) or the decorrelation property
(DCP) in any sense a necessary condition for (P5*)?

The infinite intersection property (IIP) is a necessary condition for (P5*),
but (DCP) is not. However, one can obtain some partial necessity results,
such as Proposition B.7 from the Supplemental section.

A more detailed treatment of these questions is contained in subsection B.2 from
the Supplemental section.

6. Graphical Gaussian processes

Two of the most important classes of graphical models that have been studied
in the literature are Gaussian graphical models and discrete log-linear models. In
this section and the one that follows, we give a comprehensive treatment of their
countably infinite analogues and important special cases thereof.

6.1. Infinite-dimensional Gaussian graphical models and properties. We
begin by introducing some definitions and notation.

Definition 6.1.

• A Gaussian process is a collection of random variables (Xi)i∈I such that
each Xi is a normal random variable, and every finite collection of the Xi

has a multivariate normal distribution. We will assume in this paper that
in a Gaussian process, all of the random variables have mean zero. For any
subset A ⊆ I, we use XA to denote the random variable (Xa)a∈A.

• For A,B ⊆ I, we use ΣAB to represent the cross-covariance matrix of XA

and XB. We also write ΣA to represent ΣAA.
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• If A,B ⊆ I are finite and disjoint, we use ΣA|B to represent the covariance
matrix of XA given XB. It is well known that when ΣB is invertible,

ΣA|B = ΣA − ΣABΣ
−1
B ΣBA.

• For a finite-dimensional matrix M , we use the notation λi(M) to represent
the ith largest eigenvalue of M .

We now introduce a theorem which is a critical ingredient in the verification of
(IIP) and (DCP) for Gaussian processes.

Theorem 6.2. Let (Xn)n∈N be a Gaussian process. For any finite A ⊆ N of size
r and any (possibly infinite) B ⊆ N disjoint from A, there is a σ(XB)-measurable
function μA|B and an r × r symmetric, positive-definite matrix ΣA|B such that

XA|XB ∼ N (μA|B(XB),ΣA|B).

Proof. Suppose that Y is a univariate random variable which is normally distributed
given XBn

for all n. Let Fn := σ{XBn
}. Then the conditional characteristic

function of Y given Fn takes the form

(6.1) E[exp(iλY ) | Fn] = exp(−λ2σ2
n/2 + iλμn), λ ∈ R,

where σ2
n ≥ 0 is the conditional variance and μn is the conditional mean. By Lévy’s

zero-one law, this converges almost surely to E[exp(iλY ) | XB]. Next, note that
if we multiply the two values of the right hand side of line (6.1) for λ = 1 and
λ = −1, we get exp(−σ2

n). Since we know the left hand side converges for both
of these values of λ, this implies that there is a constant φ to which exp(−σ2

n)
converges. Since the conditional variance of any variable in a multivariate normal
distribution is bounded by its marginal variance, we also know that σ2

n does not
tend to infinity, so φ > 0.

Define σ2 := − log(φ) = limn→∞ σ2
n. Because of the convergence of line (6.1)

and the fact that σ2
n has a limit almost surely, we can conclude that μn also has a

limit μ almost surely. In addition, since the integral of the right hand side of (6.1)
over λ ∈ R is bounded, by Fubini’s theorem we can conclude that limn exp(iλμn)
almost surely exists for almost every λ ∈ R. Note that we can in fact extend this
to all λ ∈ R by noting that

lim
n

exp(iλμn) = lim
n

exp(i(λ− x+ x)μn)(6.2)

= lim
n

exp(i(λ− x)μn) ∗ lim
n

exp(ixμn),(6.3)

assuming that both of the limits in line (6.3) exist. However, since limn exp(−ixμn)
exists a.s. for almost every x ∈ R, we can conclude for any fixed λ that there exists
some x in R such that both limn exp(i(λ − x)μn) and limn exp(ixμn) exist. This
implies that limn exp(iλμn) exists based on line (6.2) above.

Thus, we have shown that it is almost surely the case that

E[exp(iλY ) | XB] = exp(−λ2σ2/2 + iλμ), ∀λ ∈ R,

so that Y is normally distributed after conditioning on XB.
For a general multivariate Y , note that any linear combination of the coordi-

nates is a univariate normal random variable which is normally distributed when
conditioned on XB, and by the linearity of expectation, this implies that any linear
combination of the coordinates of Y conditioned onXB is also normally distributed.
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Thus, we may conclude that Y has a multivariate normal distribution when condi-
tioned on XB.

Note. We thank an anonymous referee for helping us simplify our original proof.

�

Lemma 6.3. Under the assumptions of Theorem 2.5, the Gaussian process
(Xn)n∈N satisfies (IIP).

Proof. The proof follows by exploiting the existence of a density using standard
techniques. Details are provided in the Supplemental section. �

Remark 6.4. The proof of Lemma 6.3 amounts to verifying an only slightly extended
version of the finite-dimensional intersection property (P5), since the only difference
between (P5) and (IIP) lies in potentially conditioning on an infinite-dimensional
random variable. For more on the conditions under which the intersection property
holds in the finite-dimensional case, see [19].

Lemma 6.5. Under the assumptions of Theorem 2.5, the Gaussian process
(Xn)n∈N satisfies the decorrelation property (DCP).

Proof. We will appeal to Lemma 5.6. Let D ⊆ N, XD = xD, and m ∈ N be arbi-
trary. We need to show that there is a function gm,D,xD

(n) with limn→∞ gm,D,xD
(n)

= 0 which satisfies the property that for any

E ∈ FD,−n,−N := σ(XD, Xn, Xn+1, . . . , XN ),

we have

Var(P(E|X1, . . . , Xm, XD)|XD = xD) < gm,D,xD
(n) a.s. XD.

By Theorem 6.2, after conditioning on XD = xD we know that (X1, . . . , Xm,
Xn, . . . , XN ) has some conditional multivariate normal distribution. Let E ∈
FD,−n,−N (with n > m). Then we have that

Var(P(E|X1, . . . , Xm, XD)|XD = xD)

= E [(P(E|X1, . . . , Xm, XD)

− E

[
P(E|X1, . . . , Xm, XD)|XD = xD])2|XD = xD

]
≤ E

[
(P(E|X1 = x1, . . . , Xm = xm, XD)

− P(E|X1 = 0, . . . , Xm = 0, XD))
2 |XD = xD

]
= E

[∫ 1

0

d

dt
|t=yP(E|(X1, . . . , Xm) = t(x1, . . . , xm), XD = xD)dy)2|XD = xD

]
.

(6.4)

Consider the quantity

d

dt
|t=yP(E|(X1, . . . , Xm) = t(x1, . . . , xm), XD = xD).
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If we let fxD
denote the corresponding multivariate normal density, we have

d

dt
|t=yP(E|(X1, . . . , Xm) = t(x1, . . . , xm), XD = xD)

=
d

dt
|t=y

∫
E

fxD (xn, . . . , xN , tx1, . . . , txm)dxn . . . dxN

=

∫
E

d

dt
|t=yfxD (xn, . . . , xN , tx1, . . . , txm)dxn . . . dxN

=

∫
E

fxD (xn, . . . , xN , yx1, . . . , yxm)
d

dt
|t=y

⎛
⎝−1

2

(
vxD+t

(
m∑

j=1

cn,jxj , . . . ,

m∑
j=1

cN,jxj

))T

Σ−1
{n,...,N}|{1,...,m}∪D

(
vxD + t

(
m∑

j=1

cn,jxj , . . . ,

m∑
j=1

cN,jxj

)))
dxn . . . dxN ,

(6.5)

where vxD
is an N − n + 1 dimensional vector depending on xD, n, and N which

represents the total contribution of XD to the mean of (Xn, . . . , XN ) given XD =
xD, and ci,j is the factor by whichXj contributes to the mean ofXi. More explicitly,
we have

vxD
= (ΣrDΣ−1

DDxD)Nr=n,

with ΣrDΣ−1
DD defined as a whole by the same definition as in the proof of Theorem

6.2; i.e.,

(6.6) (vxD
)r =

∑
d1∈D

σrd1

∑
d2∈B

σd1d2xd2
,

and

(6.7) ci,j =
∑
k

σikσ
kj = O

(∑
k

g0(i, k)g1(k, j)

)
= O(g2(i, j)).

Note that the double sum from line (6.6) is convergent since σrd1
= O(g0(r, d1))

and

|σd1d2 | ≤ |σd1d2
|+
∑
k

|σd1kσkd2
| = O(g1(d1, d2)),

and so

(vxD
)r = O

(∑
d1∈D

∑
d2∈D

g0(r, d1)g1(d1, d2)xd2

)

= O

(∑
d2∈B

g2(r, d2)xd2

)
(6.8)

= OxD ,r(1) a.s. , XD,(6.9)

where here and elsewhere the subscript on the O means that the implicit constant
may depend on the subscripted variables, and we have obtained line (6.9) by noting
that xd2

= O(dε2) a.s. XD from Proposition A.5.
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The presence of the density fxD
in the expression from line (6.5) gives

= E

[
1E

d

dt

∣∣∣∣
t=y

⎛⎜⎝−1

2

⎛⎝vxD
+ t

⎛⎝ m∑
j=1

cn,jxj , . . . ,
m∑
j=1

cN,jxj

⎞⎠⎞⎠T

Σ−1
{n,...,N}|{1,...,m}∪D

⎛⎝vxD
+ t

⎛⎝ m∑
j=1

cn,jxj , . . . ,
m∑
j=1

cN,jxj

⎞⎠⎞⎠⎞⎠
∣∣∣∣∣(X1, . . . , Xm) = y(x1, . . . , xm), XD = xD

]
.(6.10)

Letting (Σ−1
{n,...,N}|{1,...,m}∪D)ij = σij , the quantity in the derivative above is

equal to

−1

2

N∑
k=n

N∑
�=n

σk�

⎛⎝vxD ,k + t

m∑
j=1

ck,jxj

⎞⎠⎛⎝vxD ,� + t

m∑
j=1

c�,jxj

⎞⎠
= −1

2

N∑
k=n

N∑
�=n

σk�

⎛⎝t
⎛⎝vxD ,k

m∑
j=1

c�,jxj + vxD ,�

m∑
j=1

ck,jxj

⎞⎠
+ t2

⎛⎝ m∑
j=1

ck,jxj

⎞⎠⎛⎝ m∑
j=1

c�,jxj

⎞⎠+ C̃

⎞⎠ ,

where C̃ represents a constant term not depending on t, and therefore we have that
the derivative with respect to t at t = y is given by

−1

2

N∑
k=n

N∑
�=n

σk�

(
vxD ,k

m∑
j=1

c�,jxj + vxD ,�

m∑
j=1

ck,jxj

+ 2y

(
m∑
j=1

ck,jxj

)(
m∑
j=1

c�,jxj

))
.

Thus, incorporating the results of lines (6.7) and (6.8), the derivative from line
(6.10) is bounded in absolute value by

O

⎛⎝ N∑
k=n

N∑
�=n

g1(k, �)

⎛⎝∑
d2∈D

g2(k, d2)|xd2
|

⎛⎝ m∑
j=1

|g2(�, j)xj |

⎞⎠
+

⎛⎝ m∑
j=1

|g2(k, j)xj |

⎞⎠( m∑
h=1

|g2(�, h)xh|
)⎞⎠⎞⎠

= O

⎛⎝ ∞∑
k=n

∞∑
�=n

∑
d∈D

m∑
j=1

g2(d, k)g1(k, �)g2(�, j)|xd|(max
j≤n

|xj |)

+
∞∑

k=n

∞∑
�=n

m∑
j=1

m∑
h=1

g2(j, k)g1(k, �)g2(�, h)(max
j≤n

|xj |)2
⎞⎠ .(6.11)
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Now, consider the quantity from line (6.11) with n = 1 and N = ∞. Applying
the recursive definition of gn, it satisfies

= O

⎛⎝∑
d∈D

m∑
j=1

g4(d, j)|xd|max
j≤n

|xj |+
m∑
j=1

m∑
h=1

g4(j, h)max
j≤n

|xj |2
⎞⎠ ,(6.12)

where both double sums are convergent by our assumptions. Thus, as n → ∞ in
line (6.11), the sums decrease to zero (since as n → ∞ all terms are removed from
the sum), and so we have demonstrated that for any fixed m, the derivative in
question is bounded by a quantity of the form

on(1)(max
j≤m

|xj |+ (max
j≤m

|xj |)2)

(where on means as n → ∞). Combining this with line (6.4) gives

Var(P(E|X1, . . . , Xm, XD)|XD = xD)

≤ E

[(∫ 1

0

d

dt
|t=yP(E|(X1, . . . , Xm) = t(x1, . . . , xm), XD = xD)dy

)2
∣∣∣∣∣XD = xD

]
= o(1)E(max

j≤m
|xj |) + (max

j≤m
|xj |)2|XD = xD],

demonstrating the existence of the desired function gm,D,xD
(n). �

We are now in a position to immediately prove Theorem 2.5.

Proof of Theorem 2.5. Combining Theorem 5.5 with Lemmas 6.3 and 6.5 allows us
to deduce (P5*), concluding the proof of Theorem 2.5. �

6.2. Applications and examples of infinite-dimensional Gaussian graph-
ical models. We now illustrate the broad applicability of the theory developed
above by means of three examples. To do so, we verify (P5*) by checking the
conditions of Theorem 2.5. These entail (1) a uniform eigenvalue bound on the
covariance matrices of the marginals and (2) a covariance decay condition. For a
given class of models, the decay condition is relatively straightforward to estab-
lish as compared to the eigenvalue condition. As a result, we will emphasize the
verification of the eigenvalue condition in the examples below.

Example 6.6 (Infinite-dimensional autoregressive model). Let Xn by a col-
lection of random variables defined by

Xn =
N∑
j=1

βnjXn−j + εn,

where X0, X−1, . . . , X−N+1 = 0, and the (εn)n∈N are i.i.d. N (0, 1). Assume that

there exists δ > 0 such that for all n we have
∑N

j=1 |βnj | < 1− δ.
The conditions of Theorem 2.5 can be verified for these Xn, and so the Xn satisfy

properties (IIP), (DCP), and (P5*). It can also be shown that they satisfy (P*)
with respect to the graph G = (V,E) on N for which (i, j) ∈ E iff |i − j| ≤ N .
Theorem 2.3 thus implies that the Xi satisfy (G*) with respect to this graph as
well. The technical details are contained in the Supplemental section.
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Example 6.7 (Diagonally dominant Gaussian processes). Let (Xn)n∈N be
a Gaussian process and let σij = Cov(Xi, Xj). Suppose the σij are uniformly
diagonally dominant, in the sense that there exists some ε > 0 such that

(6.13) |σii| > ε+
∑
j �=i

|σij | ∀i.

Suppose also that there is a constant C such that

(6.14) |σii| ≤ C ∀i

and that the function g0(i, j) := |σij | and the corresponding g1, g2, g3, and g4 satisfy
the bounds of Theorem 2.5, i.e., the easily verifiable covariance decay condition
alluded to above.

Combining the uniform diagonal dominance with the Gershgorin circle theorem,
we obtain the lower bound of ε on all eigenvalues of Σn for any n. In addition,
conditions (6.13) and (6.14) combine to show that 2C is an upper bound on all row
sums of Σn for any n (where Σn is the covariance matrix of (X1, . . . , Xn)), and
so is an upper bound on all eigenvalues of Σn for any n. Thus, the conditions of
Theorem 6.2 are satisfied, and so the (Xn)n∈N satisfy (P5*).

Conditions (6.13), (6.14), and the condition on the gi are satisfied, for example,
if each n ∈ N has integer coordinates c(n) ∈ Z

m, and the covariance between Xi

and Xj is determined by applying the powered exponential covariance function to
d(c(i), c(j)), the Euclidean distance between c(i) and c(j), for certain values of the
covariance function parameters. More explicitly, this is the case if the σij satisfy

σij = exp(−d(c(i), c(j))α/V ),

where 0 < α ≤ 2 and V is positive and sufficiently small (depending on α). For
more information on this family of covariance functions, known as the powered
exponential family, see [23].

For the technical details of this example, see the Supplemental section.

Example 6.8 (Gaussian lattice model). Let (Xp)p∈Zr be a Gaussian process
indexed by Z

r (i.e., on a lattice) satisfying

σp1p2
:= Cov(Xp1

, Xp2
) = exp(−d(p1, p2)

2/V ),

where the function d represents Euclidean distance, and V > 0 is arbitrary (so
that the covariances are specified by a Gaussian covariance function). Note that
unlike the previous example, the above covariances are in general not diagonally
dominant.

The Gaussian process with the above covariance function can be shown to satisfy
(IIP), (DCP), and (P5*) by verifying the conditions of Theorem 2.5. For the
technical details, see Appendix A.

Remark 6.9. Example 6.8 is intended to demonstrate that many processes of in-
terest satisfy (IIP), (DCP), and (P5*). For such processes, if (P*) is satisfied,
then (G*) will be satisfied, allowing the notion of an infinite-dimensional graphi-
cal model. However, we wish to clarify that our intention in this example is not
necessarily to obtain a process for which (P*) is satisfied.
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7. Graphical discrete processes

7.1. Graphical models for infinitely many discrete random variables.

Definition 7.1. A collection of random variables {Xi | i ∈ I} is called a discrete
process provided that each Xi takes values in {0, 1}.

Remark 7.2. While we restrict our attention in this paper to discrete processes
taking on only two values, standard arguments allow the following results to be
extended to the setting where the random variables may take one of r distinct
values for any finite r > 2.

We now prove Theorem 2.8, which is the central result of this section.

Proof of Theorem 2.8. We first use property (1) to obtain a positive density, which
is used to prove (IIP).

Let A,B,C,D be disjoint subsets of N, and let A,B,C be finite. If D is finite,
assumption (1) implies that (XA, XB, XC , XD) has an everywhere-positive density
with respect to the counting measure on {0, 1}|A|+|B|+|C|+|D|, and so (P5) will hold.
Thus, we may assume D is infinite. Let m = |A|+ |B|+ |C|.

We have by assumption that

cI < P((XA, XB, XC) = (a1, . . . , am) | Xd1
= b1, . . . , Xdr

= br)

for all r and any {0, 1} valued sequence (bn)n∈N. By the Lévy zero-one law,

lim
r→∞

P((XA, XB, XC) = (a1, . . . , am) | Xd1
, . . . , Xdr

)

= P((XA, XB, XC) = (a1, . . . , am) | XD)

with probability 1 with respect to the marginal distribution, and therefore P-almost
surely we have

P((XA, XB, XC) = (a1, . . . , am) | XD) > cI .

Note that since we only need the above line to hold with respect to the marginal
distribution, it is enough that it hold for the P-a.e. value of XD.

From here, the argument verifying (IIP) is similar to the proof of Lemma 6.3.
Lemma 5.6 shows that (DCP) holds under the second assumption, and Theorem

5.5 verifies (P5*), finishing the argument. �

7.2. Applications and examples of infinite-dimensional discrete graphical
models.

Example 7.3 (Two-state Markov chain). Let (Xn)n∈N be a {0, 1}-valued
Markov chain, with transition probabilities

pn = P(Xn+1 = 1|Xn = 1) and tn = P(Xn+1 = 1|Xn = 0).

Suppose that 0 < P(X1 = 1) < 1 and that 0 < pn, tn < 1 for all n ∈ N. Suppose
also that

∞∑
n=1

(1− (pn − tn)) = ∞.

Then the {Xn | n ∈ N} satisfy properties (IIP) and (DCP), and hence (P5*).

Proof. The proof is an application of Theorem 2.8 and is provided in the Supple-
mental section. �
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In the previous example, the collection of random variables was assumed to have
graphical structure (as it forms a Markov chain). We now provide an example which
is more general in the sense that it makes no assumption of a graphical relationship
between the variables in the discrete process and which will be useful in Example
7.7 below.

Example 7.4 (Sparse countable sequences). Let (Xn)n∈N be a {0, 1}-valued dis-
crete stochastic process, and suppose the following:

(1) for all m ∈ N, there exists εm > 0 such that for any {0, 1}-valued sequence
(i1, i2, . . . , im), and any finite B ⊆ N disjoint from {1, . . . ,m},

P((X1, . . . , Xm) = (i1, . . . , im)|XB = xB) > εm, and

(2) for τ (ω) := #{Xi(ω) = 1}, we have τ < ∞ almost surely.

Then the {Xn | n ∈ N} satisfy properties (IIP) and (DCP).

Proof. See Appendix A. �
Remark 7.5. By exchanging Xi with Yi = 1 − Xi, for any {0, 1}-valued sequence
Z1, Z2, . . . , the above result can be generalized to the case where #{Xi �= Zi} < ∞
almost surely.

7.3. The Ising model. The Ising model is a well-known and well-studied family
of models of finitely many discrete random variables with graphical structure [12,
20]. Even infinite-dimensional versions of the Ising model have been well studied
[8], but much of this study has focused around lattice-based models and physics
applications.

Our goal in this subsection is to obtain a graph-based infinite-dimensional gen-
eralization of the Ising model distribution with the ultimate goal of verifying (IIP)
and (DCP), and also (P*) with respect to some nontrivial graph. In order to ob-
tain this generalization in a rigorous manner, we must first establish a number of
results about limits of the finite Ising model distributions. Existence and unique-
ness results for related distributions have been established by other authors (e.g.,
as in [6]), but for the most part these results have relied on a lattice-based frame-
work rather than one based on general graphs, as is our goal. Hence we provide
a self-contained development of an infinite-dimensional generalization of the Ising
model in our graph-based framework. Our primary purpose in this section is to
demonstrate examples of infinite graphical models by appealing to Theorem 2.8.
The proofs of the necessary results establishing the existence of the infinite Ising
model and other properties thereof are provided in the Supplemental section.

We begin by rigorously introducing the finite-dimensional Ising model.

Definition 7.6. The Ising model consists of a discrete process X1, . . . , Xn along
with an additional variable X0 = 1. The set of parameters is given by Θ =
(θij)(i,j)∈E , where E is the edge set of a graph G = (V,E) (with V = {0, 1, . . . , n})
such that every nonzero node has an edge to zero. The Xi are then distributed
according to the unnormalized density

(7.1) U(X = (x1, . . . , xn)) := exp

⎛⎝ ∑
(i,j)∈E

θijxixj

⎞⎠ .

Since U(X) is finite for any choice of X, this induces a (normalized) probability
distribution P ∝ U on {0, 1}n.
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It is straightforward to verify from line (7.1) above that for this distribution,

(7.2) P(Xj = 1|X−j = x−j) =
1

1 + exp(−θj0 −
∑

(j,k)∈E θjkxk)
,

where X−j represents the vector containing all of the Xi except Xj . From line
(7.2) it is clear that the (finite) Ising model satisfies the Markov property (L), and
therefore also (P), with respect to its graph G. In the finite case, Corollary 4.1
ensures that this model satisfies property (G) as well.

Example 7.7. For appropriate Θ it is possible to directly normalize the measure
obtained from line (7.1) even if the number of variables is infinite. In particular, if∑

x∈{0,1}∞ U(x) < ∞, then P can be obtained by normalization (for this to make

sense, we define exp(−∞) = 0). We remark that if this sum is finite, then at most
countably many terms can be nonzero, and so P will be a discrete measure.

Suppose that the graph G = (N ∪ {0}, E) is such that every node except the
zero node has finite degree. Let Θ be arbitrary such that θjk ≤ 0 for all j and k,
and so that θk0 ≤ −2 log k. Then the Xi obtained from the measure defined in line
(7.1) satisfy (IIP) and (DCP), and therefore (P5*) by Theorem 5.5. In addition, it
can be shown that these Xi satisfy (P*) with respect to the induced subgraph of G
excluding the zero node, and thus also satisfy (G*) with respect to this graph by
Theorem 2.3. For the technical details of this claim, which involve an application
of the result of Example 7.4, see Appendix A.

In the above example, we relied upon the convergence of the sum of the U(x).
We now consider a more general infinite-dimensional extension of the Ising model.

Definition 7.8. Let G = (V,E) be a graph with vertex set V = {0} ∪ N such
that every nonzero node has an edge to zero. Let Θ = (θij)(i,j)∈E . Let Gn be the
induced subgraph on {0, 1, . . . , n}.

Define the distribution Pn on {0, 1}n to be the Ising model distribution of
X1, . . . , Xn with graph Gn and the same parameter set Θ. Given 1 ≤ m ≤ n, define
P
m
n to be the marginal distribution of X1, . . . , Xm under Pn. If for all v ∈ {0, 1}m

the limit

(7.3) lim
n→∞

P
m
n ((X1, . . . , Xm) = v)

exists, we define the distribution P
m on {0, 1}m to be given by this limit. That is,

P
m((X1, . . . , Xm) = v) = lim

n→∞
P
m
n ((X1, . . . , Xm) = v).

Finally, we define the infinite Ising model with graph G and parameter set Θ to
be the distribution on {0, 1}∞ with the infinite product σ-algebra which has the
finite-dimensional distributions provided by the P

m and their marginalizations.

For ease of notation, we will assume that for (i, j) �∈ E we have θij = 0, so that
we need not specify that sums be taken only over edges (i, j) ∈ E.

Example 7.9. We now present another infinite extension of the Ising model. As-
sume that G is a graph with vertex set N ∪ {0} such that every node has finite
degree except 0, and Θ = (θij)(i,j)∈E satisfies∑

(i,j)∈E

|θi,j | < ∞.



GRAPHICAL MARKOV MODELS FOR INFINITELY MANY VARIABLES 7581

Under this assumption, there is a limiting joint distribution of the Xi which gen-
eralizes the finite-dimensional Ising model, and moreover this distribution is such
that

f(X) =

∞∑
i=1

2−iXi

has a density with respect to Lebesgue measure on [0, 1]. In addition, (IIP), (DCP),
and (P5*) are satisfied by these variables. These variables also satisfy (P*) with
respect to G, and so satisfy (G*) as well. Details are provided in Appendix A.

Remark 7.10. Many of the above ideas can also be extended to the case of the
generalized log-linear model, where for a given graph G,

logP(X) =
∑

A a clique of G
fA(XA).

In particular, similar arguments demonstrate that graphical models satisfying (IIP)
and (DCP) can be defined when either

∑
A a clique of G fA(XA) = −∞ for all but

countably many choices of X or when the sum
∑

A a clique of G |fA(XA)| is uniformly
bounded over all values of X.

Appendix A. Proofs of main results

A.1. Proofs from Section 6.

Details of Example 6.8. We verify the conditions of Theorem 6.2 in the case
where the dimension r = 2 and note that the proof for higher r is similar. For
the sake of consistency with the technical notation used elsewhere, we reindex the
variables {Xz : z ∈ Z

2} by N, so that we have a bijection f : N → Z
2, and we will

from now on denote Xf(n) by Xn. Note that f(n) still refers to the “location” of
the variable Xn for the sake of determining covariances.

The uniform upper bound on the eigenvalues of Σm for each m ∈ N is easily
verified by bounding the row sums, which is possible due to the Gaussian rate of
decay in the covariances and can be done uniformly over all rows due to the station-
arity of the covariance function. The uniform Gaussian rate of decay also allows
one to verify the required conditions on gr for r ∈ {0, 1, 2, 3, 4}. The arguments
are similar to the derivation of line (B.6) in Example 6.6 and we omit them here.
However, we must still verify the uniform positive lower bound on the eigenvalues
of the matrices Σm.

From the Cauchy interlacing theorem for principal submatrices (as in [24]), it
is enough to verify these lower bounds for a subsequence of the Σm, where we
may reorder the Xn to suit our purposes. Moreover, for the sake of verifying
the lower bound on the eigenvalues of the Σm, we may assume without loss of
generality (again by the Cauchy interlacing theorem) that the coordinate function
f : N → Z

2 is surjective. Let us order the Xn so that the random variables in the
set {X1, . . . , X(2m+1)2} correspond to the (2m+ 1)2 nodes in a square centered at
(0, 0) with side length 2m+ 1, as in Figure 1.

We now follow arguments similar to those in [9] in order to obtain lower bounds
on the eigenvalues of the matrices Σ(2m+1)2 in terms of a lower bound of a certain
Fourier series. Gray works specifically with Toeplitz matrices, but the arguments
generalize to this situation because the matrices Σ(2m+1)2 are block Toeplitz with
Toeplitz blocks (higher-dimensional analogues also exist).
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Figure 1. An arrangement of nodes appropriate for the argument
in Example 6.8.

Let f be the function on [0, 2π]2 defined by

f(x, y) =
∞∑

j,k=−∞
exp

(
−j2 + k2

V

)
ei(jx+ky).

This definition implies the relationship

exp

(
−j2 + k2

V

)
=

1

4π2

∫ 2π

0

∫ 2π

0

f(x, y)e−i(jx+ky)dxdy.

We have for a length (2m+ 1)2 vector x that

x∗Σmx =
m∑

j,k,r,s=−m

exp

(
− (j − r)2 + (k − s)2

V

)
x(j,k)x(r,s)

=

m∑
j,k,r,s=−m

1

4π2

∫ 2π

0

∫ 2π

0

f(x, y)e−i((j−r)x+(k−s)y)dxdy x(j,k)x(r,s)

=
1

4π2

∫ 2π

0

∫ 2π

0

f(x, y)

∣∣∣∣∣∣
m−1∑
j,r=0

x(j,r)e
ijx+iry

∣∣∣∣∣∣
2

dxdy.

Similarly,

x∗x =
1

4π2

∫ 2π

0

∫ 2π

0

∣∣∣∣∣∣
m−1∑
j,r=0

x(j,r)e
ijx+iry

∣∣∣∣∣∣
2

dxdy.
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Let mf = ess inf f(x, y) over [0, 2π]2, and similarly Mf = ess sup f(x, y). Then
combining the above, we have that if λ is any eigenvalue of Σm,

mf ≤ min
x

x∗Σmx

x∗x
≤ λ ≤ max

x

x∗Σmx

x∗x
≤ Mf .

Recall that

f(x, y) =
∞∑

j,k=−∞
exp

(
−j2 + k2

V

)
ei(jx+ky)

=

⎛⎝ ∞∑
j=−∞

exp

(
−j2

V

)
eijx

⎞⎠( ∞∑
k=−∞

exp

(
−k2

V

)
eiky

)
,

and so if we define

g(x, V ) =

∞∑
j=−∞

exp(−j2/V )eijx,

then provided that minx g(x, V ) > 0 we have that

mf =
(
min
x

g(x, V )
)2

since g(x, V ) is a continuous function of x for any given V > 0.
Thus, in order to solve our problem, it is enough to show that for any given

V > 0, the value minx g(x, V ) is positive. This function g is a special case of the
well-understood Jacobi theta function, which is defined by

Θ(z|τ ) =
∞∑

n=−∞
eπin

2τe2πinz.

In particular, we have that

g(x, V ) = Θ
( x

2π

∣∣∣ i

πV

)
.

Thus a specific choice of (real) V corresponds to τ = i
πV , and any choice of real x

corresponds to z = x
2π , which is also real.

The zeros of the Jacobi theta function are known: Θ(z|τ ) = 0 if and only if
z = 1/2 + τ/2 + n + mτ for some n,m ∈ Z [21]. In particular, for τ purely
imaginary with positive imaginary part, Θ(z|τ ) is nonzero for all real z. Thus, we
may conclude that

g(x, V ) �= 0 for all x ∈ [0, 2π], V > 0.

But for any fixed x, the function g(x, V ) is real valued and continuous as a
function of real V > 0, and for all x we have limV→0 g(x, V ) = 1. Since for any
fixed real x we know that g(x, V ) �= 0 for any V > 0, by the intermediate value
theorem we may conclude that

g(x, V ) > 0 for all x ∈ [0, 2π], V > 0.

Since g(x, V ) is a continuous function in x for any fixed V , the image of the
compact interval [0, 2π] under g(·, V ) is also a compact interval, call it [a, b]. By
the above argument, the lower endpoint of this interval must be positive, so in
particular g(x, V ) ≥ a > 0 for all x ∈ [0, 2π].
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Thus we have shown that minx g(x, V ) ≥ a > 0 is positive, concluding the proof
that the eigenvalues of Σ(2m+1)2 are uniformly positive and thus allowing us to
conclude from Theorem 6.2 that (IIP) and (DCP), and hence (P5*), are satisfied
for this process. �

Remark A.1. The details of the above example were carried out over Zm for m = 2,
but the same argument works for arbitrary dimension m by considering an m-
dimensional Fourier series and again reducing the problem to a uniform positive
lower bound of g(x, V ).

Remark A.2. The Jacobi theta function argument demonstrating the positivity
of mf above leverages the form of the Gaussian covariance function. For other
covariance functions, it is often straightforward to verify numerically a lower bound
on mf and therefore on the eigenvalues of the Σm.

A.2. Proofs from Section 7.

Details of Example 7.4. We appeal to Theorem 2.8. Point (1) of the statement
of the example implies point (1) of Theorem 2.8, so we just need to verify point
(2).

Suppose that A ∈ σ(Xn, Xn+1, . . .) and that m is fixed. Recall that

P((X1, . . . , Xm) = (i1, . . . , im)|XB) > εm

for any finite B, and so by the Lévy zero-one law, we have P((X1, . . . , Xm) =
(i1, . . . , im)|XB) ≥ εm a.s. XB for any I = (i1, . . . , im) and any (potentially infinite)
B ⊆ {m+ 1,m+ 2, . . .}.

Let B ⊆ {m + 1,m + 2, . . .} be arbitrary. Note that since E[τ ] < ∞, we have
that #{b ∈ B|Xb(ω) = 1} < ∞ almost surely, so we may restrict our attention to
XB which are nonzero in only finitely many places.

Define the events

Cn := {Xi = 0 for all i ≥ n, i �∈ B} and

Dn := Cc
n = {Xi = 1 for some i ≥ n, i �∈ B}.

Note that by the definition of σ(Xn, Xn+1, . . .), either Cn ∩A = Cn or Cn ∩A = ∅.
We treat these two cases separately.

First, suppose Cn ∩ A = Cn. Then

P(Cn|X1, . . . , Xm) ≤ P(A|X1, . . . , Xm) ≤ 1,

and so

Var(P(A|(X1, . . . , Xm)) = (i1, . . . , im), XB = xB)

≤ 1− P(Cn|(X1, . . . , Xm) = (i1, . . . , im), XB = xB)

= P(Dn|(X1, . . . , Xm) = (i1, . . . , im), XB = xB)

=
P(Dn, (X1, . . . , Xm) = (i1, . . . , im)|XB = xB)

P((X1, . . . , Xm) = (i1, . . . , im)|XB = xB)

≤ P(Dn|XB = xB)

P((X1, . . . , Xm) = (i1, . . . , im)|XB = xB)

≤ 1

εm
P(Dn|XB = xB) =: gm,B,xB

(n).
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On the other hand, suppose that Cn ∩ A = ∅. Then A ⊆ Dn, so

0 ≤ P(A|(X1, . . . , Xm) = (i1, . . . , im)) ≤ P(Dn|(X1, . . . , Xm) = (i1, . . . , im)),

and so

Var(P(A|(X1, . . . , Xm)) = (i1, . . . , im), XB = xB)

≤ P (Dn|(X1, . . . , Xm) = (i1, . . . , im), XB = xB)

≤ 1

εm
P(Dn|XB = xB) = gm,B,xB

(n).

Thus, to verify (2) of Theorem 2.8, it is enough to check that P (Dn|XB = xB)
tends to zero as n tends to infinity. As noted above, we may assume that {b ∈
B | xb = 1} is finite, and let r = max{b ∈ B | xb = 1}. Let Br = B ∩ {1, . . . , r}.
Then for all n > r,

P(Dn|XB = xB) ≤ P(Dn|XBr
= xBr

) ≤ 1

εr
P(Dn).

So it is enough to show that limn→∞ P(Dn) = 0.
By assumption, τ := #{Xi(ω) = 1} < ∞ almost surely, and so max{i | Xi(ω)

= 1} < ∞ almost surely. Therefore,

P(Dn) ≤ P(max{i | Xi(ω) = 1} ≥ n)

→ 0 as n → ∞,

concluding the proof. �
Details of Example 7.7. For Θ satisfying these conditions,

∑∞
n=1 θkn0 = −∞ for

any choice of kn, and so the only x for which U(x) could possibly be nonzero are
those with only finitely many xi = 1.

We have that for some constant C,

∞∑
k=n

exp(θk0) =: Cn ≤
∞∑

k=n

1

k2
≤ C

n
.

Because of this, we have that

∑
x

U(x) ≤
∞∑

n=1

⎡⎣ ∑
k1<···<kn

exp

⎛⎝ n∑
j=1

θkj0

⎞⎠⎤⎦ ≤
∞∑

n=1

n∏
k=1

Ck ≤
∞∑

n=1

Cn

n!
≤ exp(C).

Thus we may normalize U to a probability distribution P on {0, 1}∞, and we
note that under P, the quantity #{Xi = 1} is almost surely finite.

Next, for any finite B disjoint from {1, . . . ,m}, we have

P((X1, . . . , Xm) = (i1, . . . , im)|XB = xB)

≥ min
x

P((X1, . . . , Xm) = (i1, . . . , im)|Xm+1 = xm+1, Xm+2 = xm+2, . . . ).

In the following lines, we will use the notation that for n > m we have in = xn

and Yn = xn. Then for a specific choice of x, we have

P((X1, . . . , Xm) = (i1, . . . , im)|Xm+1 = xm+1, Xm+2 = xm+2, . . .)

=
exp(
∑

(j,k)∈E,j or k∈[1,m] θjkijik)∑
Y ∈{0,1}m exp(

∑
(j,k)∈E,j or k∈[1,m] θjkYjYk)

,
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and since the graph under consideration has finite degree at each nonzero node and
θj,k > −∞ for each (j, k) ∈ E, the denominator in the above expression is bounded
above uniformly in the choice of x, and so we have

P((X1, . . . , Xm) = (i1, . . . , im)|XB = xB) > εm

uniformly in B for some positive εm.
Thus, by the result of Example 7.4, this collection of Xi satisfies (IIP) and

(DCP).
Note moreover that it is straightforward to directly verify that line (7.2) holds

for any (even infinite) collection of (Xn)n∈N satisfying the above hypotheses, and so
the Xn satisfy (P*) with respect to the induced subgraph of G obtained by removing
the zero node. �

The following result is used in verifying the details of Example 7.9.

Proposition A.3. Given a graph G = ({0}∪N, E) and parameter set Θ, the infinite
Ising model (as in Definition 7.8) with this graph and parameter set is well-defined
and satisfies P((X1, . . . , Xm) = v) > 0 for all m, v if and only if

lim
n→∞

fm(v, n)

exists and is finite and nonzero for all v ∈ {0, 1}m and m ∈ N, where

fm(v, n) :=

∑
X∈{0,1}n−m exp

(∑
i,j>m θijXiXj +

∑
i≤m,j>m θijviXj

)
∑

X∈{0,1}n−m exp
(∑

i,j>m θijXiXj +
∑

j>m θ0jXj

) .

Proof. The proof is included in the Supplemental section. �

Details of Example 7.9. We first appeal to Proposition A.3 to obtain the exis-
tence of the joint limiting distribution.

By definition,

fm(v, n) =

∑
X∈{0,1}n−m exp

(∑n
i,j>m θijXiXj +

∑n
i≤m,j>m θijviXj

)
∑

X∈{0,1}n−m exp
(∑n

i,j>m θijXiXj +
∑n

j>m θ0jXj

) ,

and so for sufficiently large n (such that n+ 1 is not adjacent to any nonzero node
with index less than or equal to m),

fm(v, n+ 1)

=

∑
X∈{0,1}n−m

exp

⎛
⎝ n∑

i,j>m

θijXiXj +

n∑
i≤m,j>m

θijviXj

⎞
⎠

⎛
⎝1 + exp

⎛
⎝∑

j≤n

θ(n+1)jXj

⎞
⎠
⎞
⎠

∑
X∈{0,1}n−m

exp

(
n∑

i,j>m

θijXiXj +

n∑
j>m

θ0jXj

)⎛
⎝1 + exp

⎛
⎝∑

j≤n

θ(n+1)jXj

⎞
⎠
⎞
⎠

.

Define

αn :=
fm(v, n+ 1)

fm(v, n)
, βn :=

∑
j≤n

|θnj |.

Note that
∑

n βn < ∞ by hypothesis.
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Thus, based on the above computations we have

|αn − 1| ≤ max
X,Y ∈{0,1}n−m

∣∣∣∣∣∣1−
1 + exp

(∑
j≤n θ(n+1)jXj

)
1 + exp

(∑
j≤n θ(n+1)jYj

)
∣∣∣∣∣∣

≤ max

(∣∣∣∣1− 1 + exp(βn)

1 + exp(−βn)

∣∣∣∣ , ∣∣∣∣1− 1 + exp(−βn)

1 + exp(βn)

∣∣∣∣)
=

exp(βn)− exp(−βn)

1 + exp(−βn)
.

Noting that βn → 0, we have from the previous line that for all sufficiently large
n, the quantity |αn−1| ≤ 2βn. Since

∑
βn < ∞, the above bound implies that the

product
∏∞

n=1 αn exists and is nonzero and finite. Since fm(v, 1) > 0 and

fm(v,N + 1) = fm(v, 1)

N∏
n=1

αn,

we may therefore conclude that the limit limn→∞ fm(v, n) exists and is nonzero
for all v and m. Thus, by Proposition A.3, we obtain the existence of a limiting
distribution which satisfies

P((Xa1
, . . . , Xan

) = (i1, . . . , in)|(Xb1 , . . . , Xbm) = (j1, . . . , jm))

≥ min
j∈{0,1}# ne(A)

P((Xa1
, . . . , Xan

) = (i1, . . . , in)|Xne(A) = j)

=: εn > 0

uniformly over all finite choices of B and j.
In addition, if B is arbitrary and A ∈ σ(XB, Xn, Xn+1, . . . , XN ), then

Var(P(A|X1, . . . , Xm, XB)|XB = xB)

≤ maxP(A|X1, . . . , Xm, XB)−minP(A|X1, . . . , Xm, XB)

≤ maxP(A|Xne(A))−minP(A|Xne(A))

≤ 1−
exp(−

∑
j,k>min({n}∪ne{n,...,N}) |θjk|)

exp(
∑

j,k>min({n}∪ne{n,...,N}) |θjk|)
,

and this bound goes to zero as n goes to infinity since each node in G is adjacent to
at most finitely many others (and so min ne(A) → ∞) and since

∑
(j,k)∈E |θjk| < ∞.

Thus, both requirements of Theorem 2.8 are satisfied, and so this example sat-
isfies (IIP) and (DCP), and also (P5*) by Theorem 5.5.

We now show that (P*) is satisfied. The same argument used in Example 7.7
allows us to compute the conditional distributions for each Pn and show that the
Xn satisfy (L*) with respect to the graph Gn = G ∩ {1, . . . , n} and the probability
distribution Pn for all sufficiently large n. That is, for any finite B ⊆ N disjoint
from A and the neighbor set of A, we have A ⊥⊥ B | ne(A) with respect to Pn

for all sufficiently large n, and therefore for the limiting P as well. Noting that
the conditional independence of two infinite-dimensional processes is equivalent
to the conditional independence of all of their finite-dimensional distributions, we
obtain that (L*) is satisfied for the infinite-dimensional limiting distribution P, and
therefore that (P*) is as well.
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Finally, we demonstrate the existence of the density for the quantity

f(X) =
∞∑
i=1

2−iXi.

For any m < n, we have

P
m
n ((X1, . . . , Xm) = (x1, . . . , xm)) =

∑
X:Xk=xk,k≤m exp(

∑n
(i,j)∈E θijXiXj)∑

X∈{0,1}n exp(
∑n

(i,j)∈E θijXiXj)
,

and we can provide bounds on this quantity of the form

P
�
n((X1, . . . , Xm) = (x1, . . . , xm)) ≤ 2n−m exp(

∑
|θij |)

2n exp(−
∑

|θij |)
=

exp(2
∑

|θij |)
2m

and also

P
m
n ((X1, . . . , Xm) = (x1, . . . , xm)) ≥ 2n−m exp(−

∑
|θij |)

2n exp(
∑

|θij |)
=

exp(−2
∑

|θij |)
2m

.

Thus, we have shown that for any n > m, we have a constant C = exp(2
∑

|θij |)
such that

1

C2m
≤ P

m
n ((X1, . . . , Xm) = (x1, . . . , xm)) ≤ C

2m
,

and so this holds for the finite-dimensional distribution of the limiting distribution,
P
m, as well. This implies that the limiting distribution P

m is such that

fm(X) :=
m∑
i=1

2−iXi

has a density with respect to Lebesgue measure for each m, and moreover that
the limiting function f and distribution P (obtained by letting m → ∞) do as
well by taking the pointwise limit and appealing to the dominated convergence
theorem. �

A.3. Auxiliary lemmas. We conclude the appendix with three auxiliary lemmas
that have been useful at various points in the paper.

Lemma A.4. Suppose that F ⊆ G are σ-algebras on a probability space (P,H,Ω)
such that for any A ∈ G there is some AF ∈ F such that P(AΔAF ) = 0. Then for
any bounded measurable function f we have E[f |F ] = E[f |G] almost surely.

Proof. Since F ⊆ G, we have that E[f |F ] is G-measurable. Now, let S ∈ G be
arbitrary, and let SF ∈ F such that P(SΔSF ) = 0. Then

(A.1) E[1SE[f |F ]] = E[1SF
E[f |F ]] = E[1SF

f ] = E[1Sf ],

where in line (A.1) we have used the definition of conditional expectation to obtain
the second equality and for the other two the fact that P(SΔSF ) = 0, which ensures
that these steps cause the expression to change by an integral over a set of measure
zero and therefore preserve equality. �

Proposition A.5. Let Z1, Z2, . . . be a collection of standard normal random vari-
ables (not necessarily i.i.d.). Then for any δ > 0, we have

P(Zn < nδ for all sufficiently large n) = 1.
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Proof. We have

P(Zn < nδ for all sufficiently large n) = P(

∞⋃
m=1

∞⋂
n=m

Zn < nδ)(A.2)

= lim
m→∞

P(
∞⋂

n=m

Zn < nδ)

= lim
m→∞

1− P(
∞⋃

n=m

Zn ≥ nδ)

≥ 1− lim
m→∞

∞∑
n=m

P(Zn ≥ nδ).

Thus, to show the claim it is enough to show that

(A.3)

∞∑
n=1

P(Zn ≥ nδ) < ∞,

since then the final limit from line (A.2) will be zero.
By the standard tail bounds for the normal distribution, we have

(A.4)

∞∑
n=1

P(Zn ≥ nδ) ≤
∞∑

n=1

1

nδ
√
2π

exp(−n2δ/2) ≤
∞∑

n=1

exp(−n2δ/2).

Now, a comparison with 1/n2 = exp(−2 log(n)) shows that the terms from line
(A.4) are eventually bounded above by the terms of this convergent series, and so
we have verified line (A.3) and hence the claim. �
Proposition A.6. Let (Ω,F ,P) be a probability space, and let A ⊆ F be an algebra
generating F . Then for all B ∈ F and ε > 0, we can find A ∈ A such that

P(AΔB) < ε.

Proof. This is part of a hint to Exercise 1.12.102 in [1]. �

Appendix B. Supplemental section

B.1. Proofs and examples.

Proposition B.1. Suppose V is finite and {Xv | v ∈ V } is a collection of random
variables. Then the following are equivalent:

• (P5) For X,Y, Z,W any finite collections of the Xv, if X ⊥⊥ Y | (W ∪ Z)
and X ⊥⊥ W | (Y ∪ Z), then X ⊥⊥ (Y ∪W ) | Z.

• (P5*) For X,Z,A1, . . . , An any finite collections of the Xv, if X ⊥⊥ Ai |
Z ∪
(⋃

j �=i Aj

)
for all i ≤ n, then X ⊥⊥

⋃
i∈I Ai | Z.

Proof. First, note that by Lemma 5.1, (P1) – (P4) hold for the given collection of
random variables.
(P5*) ⇒ (P5): This follows from the case n = 2.
(P5) ⇒ (P5*): We shall proceed by induction on n. (P5) gives the base case n = 2.
Suppose now that (P5*) holds for any collection of subsets Ai ⊆ V, i ≤ n.

Let Ai, i ≤ n+ 1, be arbitrary finite collections of the Xv. Then by (P5),

X ⊥⊥ (Ai ∪ An+1) | Z ∪
⋃

j �=i,n+1

Aj for all 1 ≤ j ≤ n.
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Let Bi = Ai ∪ An+1. Then X ⊥⊥ Bi | Z ∪
⋃

i≤n Bi, and so by the induction

hypothesis, X ⊥⊥ (B1, . . . , Bn) | Z. By property (P2), X ⊥⊥ (A1, . . . , An+1) | Z.
This completes the induction step. �
Example B.2. Let Y0, Y1, Y2 be i.i.d. {0, 1}-valued Bernoulli random variables with
p = 1/4, and let Y3 = Y1+Y2. Let (Xn)n>3 be a collection of independent Bernoulli
random variables which are also independent of the Yi, such that

∑∞
n=4 Xn < ∞

with probability one. Finally, let

X1 = Y1 +

∞∑
k=1

X3k+1 mod 2,

X2 = Y2 +

∞∑
k=1

X3k+2 mod 2,

X3 = Y3 +

∞∑
k=1

X3k+3 mod 2.

Also, let X0 = X1 + Y0. Then the (Xk)
∞
k=0 form a discrete stochastic process.

Conditioning on the σ-algebra generated by {X4, X5, . . .} gives

X1 = Y1 + c1(X4, X5, . . .) mod 2,

X2 = Y2 + c2(X4, X5, . . .) mod 2,

X3 = Y3 + c3(X4, X5, . . .) mod 2,

for c1, c2, c3 some 0, 1-valued functions of (Xi)
∞
i=4 so that

X3 = X1 +X2 + c3(X4, . . .)− c2(X4, . . .)− c1(X4, . . .) mod 2.

Because of the above relation, we have that

(B.1) X0 ⊥⊥ X1 | X{i | i≥2}

and

(B.2) X0 ⊥⊥ X2 | X{i | i=1 or i≥3}

since X1 and X2 are constant given the remaining variables. However, it is not the
case that

X0 ⊥⊥ X{1,2} | X{i | i≥3},

since the conditional distribution of (X1, X2) is such that X1 takes both values 0
and 1 with nonzero probability, and Y0 is 1 with probability 1/4, so that X0 is
equal to X1 with probability 3/4 and different with probability 1/4. The lack of
this conditional independence despite lines (B.1) and (B.2) demonstrates that both
(IIP) and (P5*) fail for this example. Moreover, in the above example (P*) ⇒
(G*) does not hold, since if we let G be the graph defined by (P*), then the set
of nodes {i | i ≥ 3} separates {0} and {1, 2}, but if (G*) held this would imply
X0 ⊥⊥ X{1,2} | X{i | i≥3}, which we just disproved.

Note also that (P5) holds for every finite subcollection of these variables by
Proposition 3.3 since every finite collection of n of these variables has an everywhere-
positive density with respect to the counting measure on {0, 1}n.

Finally, we demonstrate that any collection of {0, 1}-valued random variables
Xn for which #{Xn �= 0} < ∞ with probability one (including the collection just
described) necessarily satisfies (DCP). Suppose that {Xi | i ∈ N} is such a col-
lection. Suppose also that D ⊆ N is arbitrary, and E ∈

⋂
n σ(XD, Xn, Xn+1, . . .).
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With probability one, the infinite-dimensional vector of random variables �X =
(X1, X2, . . .) takes on one of only at most countably infinitely many values �x

(namely, those with only finitely many ones), and so the event Ẽ = {�x | �x ∈
E and P( �X = �x) > 0} satisfies P(EΔẼ) = 0. Let n �∈ D be fixed, and use the no-
tation that if �x = (x1, x2, . . . , xn, . . .), then �x′ = (x1, x2, . . . , xn−1, 1−xn, xn+1, . . .).
Define the σ-algebra F := {B ∈ σ(XD, Xn+1, . . .) | �x ∈ B ⇒ �x′ ∈ B}. Then for
any m ∈ D or m > n, we have σ(Xm) ⊆ F . Thus σ(XD, Xn+1, Xn+2, . . .) ⊆ F .

So, we have for any n �∈ D that �x ∈ Ẽ implies �x′ ∈ Ẽ. Thus, if we define

π(Ẽ) := {�xD | �x ∈ Ẽ} so that π is the projection onto the coordinates correspond-

ing to variables in D, then Ẽ = X−1
D (π(Ẽ)) ∈ σ(XD), and so we have directly

verified that (DCP) holds.

Example B.3. Let θ be a {0, 1}-valued Bernoulli random variable with probability
0.5. Let (Xi)i∈N be a collection of i.i.d. N (0, 1) random variables, and let Yi =
Xi + θ.

Then the Yi satisfy (P*) with respect to the edgeless graph on N, but do not
satisfy (G*) with respect to this graph. This is evident from the fact that for any
i, j, with probability one, limn→∞

1
n

∑n
k=1,k �=i,j Yk = θ, so that conditioning on any

set of all but two of the Yk determines the value of θ with probability one, and Yi

is independent of Yj given θ. However, the statement that (G*) holds with respect
to the edgeless graph on N is equivalent to the statement that all of the random
variables in question are marginally independent. However, it is clear that Yi and
Yj are not marginally independent since

Cov(Yi, Yj) = E[YiYj ]− E[Yi]E[Yj ]

= 0.5 (E[XiXj ] + E[(Xi + 1)(Xj + 1)])− (0.5(E[Xi] + E[Xi + 1]))2

= 0.5− 0.25 = 0.25 �= 0.

Note that (DCP) is not satisfied in this example since the event θ = 1 is contained
in the σ-algebra generated by any infinite collection of the random variables, but is
not contained (even up to a measure zero modification) in the σ-algebra generated
by any finite collection of the variables. Thus, letting D = ∅ in the definition of
(DCP) shows that (DCP) fails to hold. On the other hand, it is easy to see that (IIP)
is satisfied: any finite collection of the random variables has an everywhere-positive
joint density, so the required implications of (IIP) involving a finite conditioning
set will all hold. If the conditioning set is infinite, then the arguments from the
second paragraph of this example show that all of the nonconditioned variables are
conditionally independent, so that any implication required by (IIP) which involves
an infinite conditioning set will also hold.

More generally, for any graph G which contains a node v with finite degree
and another node w not adjacent to v, we may let (Xi)i∈N be a Gaussian process
independent of θ which satisfies (G*) with respect to G. If we again let Yi = Xi+θ,
then the Yi satisfy (P*) with respect to G, but do not satisfy (G*) with respect to
G, as seen by considering the separating set to be the neighbor set of v and noting
that v and w are not independent given any finite subset of variables (since then θ
is not determined with probability one).

Example B.4. Let (An)
∞
n=1 be a collection of infinitely many random variables

such that for all i, j ∈ N, it is not the case that

Ai ⊥⊥ Aj | {Ak | k �= i, j}.
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Let θ be a {0, 1}-valued Bernoulli random variable, independent of all other vari-
ables mentioned so far, with p = 0.5. Finally, let Xn = An + θ. We will show that
the collection of random variables {X1, X2, . . .} satisfies (P5*) but not (DCP).

Suppose that G is a graph for which (P*) is satisfied. Note that the events {θ = 0}
and {θ = 1} are contained in the sigma algebra generated by any infinite collection
of the Xi (by the law of large numbers). Thus, Cov(Xi, Xj | {Xk | k �= i, j}) =
Cov(Ai, Aj | {Ak | k �= i, j}) �= 0, and so there must be an edge between i and j in
G. Then G is the complete graph on N, and so (G*) is trivially satisfied. Therefore
(P*) implies (G*), and so by Proposition 4.2, (P5*) holds for this collection of
random variables.

If (DCP) were to hold, then it would be the case that
⋂

n σ(Xn, Xn+1, . . .) = σ(∅),
the trivial σ-algebra. However,

⋂
n σ(Xn, Xn+1, . . .) contains the nontrivial events

{θ = 1} and {θ = 0}, and so (DCP) does not hold.
All that remains is to demonstrate that there exist collections of random variables

(An)
∞
n=1 such that there are no pairwise conditional independences, i.e., such that

there is no relation of the form Ai ⊥⊥ Aj | {Ak | k �= i, j}.
Let 0 < α < 1, and define the Ai as follows: let (Bi)

∞
i=1 be a collection of i.i.d.

N (0, 1) random variables, let A1 = B1, and for n > 1, let An = Bn + αBn−1.
Suppose that i < j, and note that

Cov(Ai, Aj | {Ak | k �= i, j}) = lim
k→∞

Cov(Ai, Aj | A1, . . . , Âi, . . . , Âj , . . . , Ak)

= Cov(Ai, Aj | A1, . . . , Âi, . . . , Âj , Aj+1),

where the final line was obtained by using (A1, . . . , Aj) ⊥⊥ (Aj+2, . . .) | Aj+1. Next,
recall that

Cov(Ai, Aj | A1, . . . , Âi, . . . , Âj , Aj+1) = 0

if and only if (Σj+1)
−1
ij = 0, where Σj+1 is the covariance matrix of (A1, . . . , Aj+1).

This covariance matrix is given by

(Σj+1)ik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, i = k = 1,

1 + α2, i = k �= 1,

α, |i− k| = 1,

0, |i− k| > 1.

From this formula, it is readily verified that

(Σj+1)
−1
ik =

{
(−α)i−k

∑j+1−i
r=0 (−α)2r, i ≥ k,

(−α)k−i
∑j+1−k

r=0 (−α)2r, i < k.

Thus, for i < j,

(Σj+1)
−1
ij = (−α)j−i + (−α)j−i+2 �= 0.

Thus, it is not the case that Ai ⊥⊥ Aj | {Ak | k �= i, j}, completing the proof.

Proof of Proposition 4.2. Suppose that (P*) implies (G*) and that for some I ⊆ V
and all i ∈ I, we have

Xi ⊥ Y | Z ∪
⋃

j∈I\{i}
Xj .

Then let G be the graph on V with one node corresponding to each of the Xi, and
also nodes for Y and Z, and let the edge set be chosen so that there is an edge
between two nodes precisely if the (P*) condition for those two nodes holds. That
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is, if a and b are two nodes, then (a, b) ∈ E if and only if a ⊥ b | V \ {a, b}. Then
for this choice of E, (P*) trivially holds, and since we are assuming (P*) implies
(G*), we also have that (G*) holds. By hypothesis, there are no edges from any
Xi to Y , and so Z separates XI and Y . Therefore by (G*) we may conclude that
XI ⊥ Y | Z. �

Proof of Lemma 6.3. Let A,B,C ⊆ N be finite, and let D ⊆ N be an arbitrary
subset. Suppose that XA ⊥⊥ XB|XC∪D and XA ⊥⊥ XC | XB∪D. If D is finite,
the verification of (IIP) is a consequence of Proposition 3.3, so assume D ⊆ N is
infinite.

By Theorem 6.2, we have that for any E ∈ σ(XA, XB, XC , XD),

P(E) =

∫
E

f(xA, xB, xC , xD)dxA dxB dxC dμ(xD)

for some probability measure μ, where f(xA, xB, xC , xD) is the multivariate normal
density with the mean μA,B,C|D(xD) and covariance matrix ΣA,B,C|D.

Similarly, we have the existence of f1(xB, xC , xD), f2(xA, xC , xD), and
f3(xA, xB, xD), the corresponding densities for events in σ(XB, XC , XD),
σ(XA, XC , XD), and σ(XA, XB, XD) respectively. Note that these are densities
with respect to Lebesgue measure in the corresponding A, B, and C coordinates,
and μ for xD, and moreover since they are normal densities, they are positive with
probability one.

Let EA ∈ σ(XA) and EB ∈ σ(XB). By the conditional independence XA ⊥⊥
XB|XC , XD, we have

P(EA|XC , XD)P(EB|XC , XD) = P(EA, EB|XC , XD).

Let E = {(xa, xb, xc, xd) : f1(xb, xc, xd)f2(xa, xc, xd) �= f(xa, xb, xc, xd)}. Sup-
pose that P(E) > 0. Then E = E+ ∪E−, where

E+ = {(xa, xb, xc, xd) : f1(xb, xc, xd)f2(xa, xc, xd) > f(xa, xb, xc, xd)} and

E− = {(xa, xb, xc, xd) : f1(xb, xc, xd)f2(xa, xc, xd) < f(xa, xb, xc, xd)}.

At least one of these two sets has positive probability, so without loss of generality
we will assume P(E+) > 0.

Then

(B.3)

∫
E+

f1(xb, xc, xd)f2(xa, xc, xd)− f(xa, xb, xc, xd)dxadxbdxcdμ(xd) > 0.

By Proposition A.6, there is a sequence of sets Fn which are finite unions of finite
intersections of sets in σ(XA), σ(XB), σ(XC), or σ(XD) such that P(E+ΔFn) <
1/n. Thus, since all of the densities under consideration are bounded (this can be
seen from the eigenvalue bounds in the statement of Theorem 6.2), we have from
the dominated convergence theorem that∫

Fn

f1(xb, xc, xd)f2(xa, xc, xd)− f(xa, xb, xc, xd)dxadxbdxcdμ(xd)

tends to the expression on the left side of line (B.3), and so is positive for sufficiently
large n.

Since Fn is a finite union of finite intersections, there is some G = GA ∩ GB ∩
GC ∩GD with GA ∈ σ(XA), etc., which is one of the terms in the union comprising
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Fn and for which∫
G

f1(xb, xc, xd)f2(xa, xc, xd)− f(xa, xb, xc, xd)dxadxbdxcdμ(xd) > 0.

The above integral can be written

0 <

∫
GD∩GC

∫
GB

∫
GA

f1(xb, xc, xd)f2(xa, xc, xd)

−f(xa, xb, xc, xd)dxadxbdxcdμ(xd)

=

∫
GD∩GC

∫
GB

f1(xb, xc, xd)dxb

∫
GA

f2(xa, xc, xd)dxadxcdμ(xd)

−
∫
GD∩GC

∫
GB

∫
GA

f(xa, xb, xc, xd)dxadxbdxcdμ(xd)

=

∫
GD∩GC

[P(GB|XC = xc, XD = xd)P(GA|XC = xc, XD = xd)

− P(GA ∩GB|XC = xc, XD = xd)] dxcdμ(xd).

This contradicts the independence assumption XA ⊥⊥ XB | XC , XD, and therefore
we have that P(E) = 1. That is, with probability one

f1(xb, xc, xd)f2(xa, xc, xd) = f(xa, xb, xc, xd).

A similar factorization holds for f1 and f3.
Because of this, with probability one it is the case that

f2(xa, xc, xd) =
f(xa, xb, xc, xd)

f1(xb, xc, xd)

=
f3(xa, xb, xd)f1(xb, xc, xd)

f1(xb, xc, xd)

= f3(xa, xb, xd).

Thus almost surely f2 and f3 only depend on xa and xd, so we may write
f2(xa, xc, xd) = f2(xa, xd), and similarly for f3. Using this we obtain

f(xa, xb, xc, xd) = f1(xb, xc, xd)f2(xa, xc, xd)

= f1(xb, xc, xd)f2(xa, xd)

with probability one. Thus XA ⊥⊥ (XB, XC) | XD, completing the verification of
(IIP). �

Details of Example 6.6. Under these assumptions on the Xi, we claim that

Var(Xn) ≤
n−1∑
k=0

(1− δ)2k.
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The base case n = 1 is trivial, since Var(X1) = 1. For the induction step, we have

Var(Xn+1) = 1 + Var(
N∑
j=1

βnjXn−j)

≤ 1 + (
N∑
j=1

|βnj |)2 max
1≤j≤N

Var(Xn−j)

≤ 1 + (1− δ)2 max
1≤j≤N

Var(Xn−j)

≤ 1 + (1− δ)2

(
n−1∑
k=0

(1− δ)2k

)
(B.4)

=
n∑

k=0

(1− δ)2k,

where we have used the induction hypothesis to obtain line (B.4). From this, we
may conclude that for all n,

Var(Xn) ≤
( ∞∑

k=0

(1− δ)2k

)
=

1

1− (1− δ)2
≤ 1

δ
.

For n > m we have

Cov(Xn, Xm) = Cov(
N∑
j=1

βnjXn−j , Xm)

=
N∑
j=1

βnj Cov(Xn−j , Xm)

≤ (1− δ) max
1≤j≤N

Cov(Xn−j , Xm).

By iteratively applying the above inequality, we may keep decreasing the sub-
script on the first X variable in the previous line until the subscript reaches m, and
we gain a factor of (1 − δ) each time. Since decreasing n in this iterative manner
until it is at most m requires at least (n−m)/N iterations, we obtain

Cov(Xn, Xm) ≤ (1− δ)
n−m
N max

1≤j≤N
Cov(Xm+j , Xm)

≤ (1− δ)
n−m
N Var(Xm)

≤ (1− δ)
n−m
N

1

ε
.(B.5)

Thus, we may set g0(n,m) = (1− ε)
|n−m|

N
1
ε and note that

g1(n,m) =
(1− δ)

|n−m|
N

δ
+

∞∑
k=1

(1− δ)
|n−k|+|k−m|

N

δ

= O

(
(|n−m|+ 2)

(1− δ)
|n−m|

N

δ
+

∞∑
k=1

(1− δ)
|n−m|+k

N

δ

)

= O

(
|n−m| (1− δ)

|n−m|
N

δ

)
,



7596 DAVID MONTAGUE AND BALA RAJARATNAM

and more generally the same argument gives

(B.6) gr(n,m) = Or

(
|n−m|r (1− δ)

|n−m|
N

δ

)
.

For these gr, the requirements of Theorem 6.2 are clearly satisfied, so all that
remains is to demonstrate the required eigenvalue bounds.

The maximum eigenvalue of the matrix Σn = (σij)1≤i,j≤n is bounded by its
maximum row sum, which is bounded by

max
1≤i≤n

n∑
j=1

(1− δ)
|i−j|
N

δ
≤ 2

∞∑
k=0

(1− δ)k/N

δ
≤ 2

δ(1− δ)1/N
< ∞.

Finally, we verify an upper bound on the eigenvalues of the inverses of the
covariance matrices. Let σij = Cov(Xi, Xj), let Σn = (σij)i,j≤n, and define
Σ−1

n = (σij)i,j≤n.
As discussed in Section 5.1.3 of [14], for any i, j ≤ n we have

σii = Var(Xi|X−i)
−1

and

σij

√
σiiσjj

=
Cov(Xi, Xj |X−{i,j})√

Var(Xi|X−{i,j}) Var(Xj |X−{i,j})
,

which is a partial correlation and so is bounded in magnitude by 1. (Recall the
notation

X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn),

and similarly for X−{i,j}.) Thus

|σij | ≤
√
σiiσjj

≤
√
Var(Xi|X−i)−1Var(Xj |X−j)−1.

We now claim that for any i and n with i ≤ n, the quantity Var(Xi|X−i)
−1 is

bounded above by a uniform constant C(δ,N). To see this, note that Var(Xi|X−i)
depends only on βkj for i ≤ k ≤ i+N and 0 ≤ j ≤ N and is nonzero for any choice

of the βkj with
∑N

j=1 |βkj | ≤ 1−δ. Moreover, Var(Xi|X−i) is a continuous function

of β, and the condition
∑N

j=1 |βkj | ≤ 1−δ defines a compact domain for β. Thus the

continuous function Var(Xi|X−i) of β has a compact image which does not include
zero, and so for any choice of the βij , the quantity Var(Xi|X−i)

−1 is bounded above
by some constant C(δ,N). Therefore we may conclude that |σij | ≤ C(δ,N).
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Next, suppose j − i > N . We have Xi ∈ σ(Y1, . . . , Yi), and the Yn are i.i.d., so
Xi ⊥⊥ Yj . Also, X−{i,j} contains Xj−1, Xj−2, . . . , Xj−N , so

P(Xj < a,Xi < b|X−{i,j})

= P

(
N∑

k=1

βjkXj−k + εj < a,Xi < b

∣∣∣∣∣ X−{i,j}

)

= P

(
εj < a−

N∑
k=1

βjkXj−k, Xi < b

∣∣∣∣∣ X−{i,j}

)

= P

(
εj < a−

N∑
k=1

βjkXj−k

∣∣∣∣∣ X−{i,j}

)
P(Xi < b|X−{i,j})(B.7)

= P(Xj < a|X−{i,j})P(Xi < b|X−{i,j}),

where we obtain line (B.7) from the fact that εj is independent of εk for all k < j,
and Xk ∈ σ(ε1, . . . , εj−1) for all k < j.

Thus Xj and Xi are conditionally independent given the other variables, and
σij = 0 when |i− j| > N . Therefore for any n, the matrix Σ−1

n has at most 2N +1
nonzero entries in any row. Within each row, each entry is bounded by C(δ,N),
so (2N + 1)C(δ,N) is an upper bound on the largest eigenvalue of Σ−1

n . This
provides a positive lower bound on the smallest eigenvalue of Σn and concludes the
verification of the conditions for Theorem 6.2, allowing us to conclude that these
Xi satisfy (P5*).

The argument used to show that Xj is independent of Xi given the other vari-
ables when |i− j| > N works even when there are infinitely many other variables.
Therefore it verifies (P*) with respect to the graph on N which has an edge between
i and j if and only if |i− j| ≤ N . Thus, by Theorem 2.3, we may conclude that the
collection of variables Xi satisfies (G*) with respect to this graph as well. �

Details of Example 6.7. We demonstrate that the desired conditions are satisfied
for these covariance functions, beginning by verifying that the σij are diagonally
dominant for all sufficiently small V (depending on α). For any fixed p = c(i) ∈ Z

m

and any choice of α and V ,∑
q∈Zm

exp(−d(p, q)α/V ) ≤ 1 +
∑
n∈N

(2n+ 1)m exp(−nα/V ) < ∞,

and moreover for all q �= p, the quantity exp(−d(p, q)/V ) tends to zero as V tends
to zero. Thus, by the dominated convergence theorem,

(B.8)
∑
j �=i

|σij(V )| ≤
∑
q �=p

exp(−d(p, q)/V ) → 0 < 1 = σii(V ).

Because the sum above (as a function of V ) is independent of p, we may conclude
that for V sufficiently small (again, depending on the fixed choice of α), the resulting
covariance matrix is diagonally dominant.

We omit the verification of the bounds on the gr for these covariances, but note
that the verification is similar to that used to obtain line (B.6).

Thus, for sufficiently small positive V , the Gaussian processes with covariance
functions given by

σij = exp(−d(c(i), c(j))α/V )
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satisfy the requirements of Theorem 6.2, and so satisfy (IIP) and (DCP) and hence
(P5*). �

Proof of Example 7.3. For this proof, we will apply Theorem 2.8. For any finite
length m sequence (i1, . . . , im) disjoint from b1, . . . , br, we have

P((Xi1 , . . . , Xim) = (a1, . . . , am) | Xj1 = b1, . . . , Xjr = br)

≥
m∏
j=1

min
y,z∈{0,1}

(P(Xij = aj |Xij−1 = y,Xij+1 = z))

=: cI > 0.

Next, suppose that n ∈ N and B ⊆ N is arbitrary and that A is an event in
σ(XB, Xn, Xn+1, . . .). First, suppose that B is infinite. Then, for any m, there is
some b ∈ B with b > m, so for all sufficiently large n we have m < b < n. Thus

P(A|X1, . . . , Xm, XB = xB) = P(A|XB = xB)

is constant, and so

Var(P(A|X1, . . . , Xm, XB)|XB = xB) = 0

for all sufficiently large n. On the other hand, if B is finite, we have that there is
some maximal b ∈ B. If b ≥ m, the above argument implies that

Var(P(A|X1, . . . , Xm, XB)|XB = xB) = 0

for all sufficiently large n, and so we may assume m > b. Since the Xi form a
Markov chain, and since Xm can only take values in {0, 1}, we have that if n > m,
then

Var(P(A|X1, . . . , Xm, XB)|XB = xB)

= Var(P(A|Xm, XB)|XB = xB)

≤ |P(A|Xm = 1, XB = xB)− P(A|Xm = 0, XB = xB)|.(B.9)

For any arbitrary m ≤ r < n, we have the bound

|P(A|Xr = 1, XB = xB)− P(A|Xr = 0, XB = xB)|
= |P(A|Xr+1 = 1, XB = xB)P(Xr+1 = 1|Xr = 1)

+ P(A|Xr+1 = 0, XB = xB)P(Xr+1 = 0|Xr = 1)

− P(A|Xr+1 = 1, XB = xB)P(Xr+1 = 1|Xr = 0)

− P(A|Xr+1 = 0, XB = xB)P(Xr+1 = 0|Xr = 0)|
= |P(A|Xr+1 = 1, XB = xB)(P(Xr+1 = 1|Xr = 1)− P(Xr+1 = 1|Xr = 0))

+ P(A|Xr+1 = 0, XB = xB)(P(Xr+1 = 0|Xr = 1)− P(Xr+1 = 0|Xr = 0))|
= |P(A|Xr+1 = 1, XB = xB)(pr − tr) + P(A|Xr+1 = 0, XB = xB)(tr − pr)|
= |(P(A|Xr+1 = 1, XB = xB)− P(A|Xr+1 = 0, XB = xB))(pr − tr)|
= |P(A|Xr+1 = 1, XB = xB)− P(A|Xr+1 = 0, XB = xB)||pr − tr|.
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Thus, by induction, we have that

|P(A|Xm = 1, XB = xB)− P(A|Xm = 0, XB = xB)|

≤ |P(A|Xn−1 = 1, XB = xB)− P(A|Xn−1 = 0, XB = xB)|
n−2∏
r=m

|pr − tr|

≤
n−2∏
r=m

|pr − tr|,

and so by line (B.9), we have that

Var(P(A|X1, . . . , Xm, XB)|XB = xB) ≤
n−2∏
r=m

|pr − tr| =: gm,B(n).

Since
∑

n(1− (pn − tn)) = ∞, we have that
∏n−2

r=m |pr − tr| → 0 as n → ∞, by the
usual arguments involving the logarithm. We may now finish the proof by invoking
Theorem 2.8. �

The next two results are used to prove Proposition A.3.

Lemma B.5. Suppose given a graph G = (V,E) with V = {0} ∪ N and parameter
set Θ. If the limit

lim
n→∞

P
m
n ((X1, . . . , Xm) = v)

exists for all v ∈ {0, 1}m and all m ∈ N, the infinite Ising model distribution from
Definition 7.8 exists and is unique.

Proof. Note that for all finite n we have∑
v∈{0,1}m

P
m
n ((X1, . . . , Xm) = v) = 1,

and so ∑
v∈{0,1}m

P
m((X1, . . . , Xm) = v)

=
∑

v∈{0,1}m

lim
n→∞

P
m
n ((X1, . . . , Xm) = v)

= lim
n→∞

∑
v∈{0,1}m

P
m
n ((X1, . . . , Xm) = v)

= lim
n→∞

1 = 1.

Thus the distributions Pm are actually probability distributions on {0, 1}m. More-
over, by the properties of marginalization, for m1 < m2, we have for all sufficiently
large n and any v ∈ {0, 1}m1 that

P
m2
n ((X1, . . . , Xm1

) = v) = P
m1
n ((X1, . . . , Xm1

) = v),

and so
P
m2((X1, . . . , Xm1

) = v) = P
m1((X1, . . . , Xm1

) = v),

and so the marginalizations of the P
m are consistent. Thus by the Kolmogorov

consistency theorem, there exists a unique joint distribution P on {0, 1}∞ with
finite-dimensional distributions given by the distributions P

m and their marginal-
izations. �
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We now state a more explicit condition which can be used to verify whether the
limit in line (7.3) exists.

Proposition B.6. Suppose we are given a graph G = ({0} ∪ N, E) and parameter
set Θ. For v ∈ {0, 1}m and n ≥ m, define the function

(B.10) fm(v, n) :=

∑
X∈{0,1}n−m exp

(∑
i,j>m θijXiXj +

∑
i≤m,j>m θijviXj

)
∑

X∈{0,1}n−m exp
(∑

i,j>m θijXiXj +
∑

j>m θ0jXj

) ,

where for X ∈ {0, 1}n−m we have labeled the first coordinate as Xm+1 and the final
coordinate Xn, and for ease of notation we have used v0 = 1.

Then the limit in line (7.3) exists and is nonzero for all m and v if and only if
the limit limn→∞ fm(v, n) exists and is nonzero for all m and v.

Proof. We have

(B.11) fm(v, n) =
P
m
n ((X1, . . . , Xm) = (v1, . . . , vm))

Pm
n ((X1, . . . , Xm) = (0, . . . , 0))

.

From this, it is easy to see that if the limit from line (7.3) exists and is finite and
positive for all m and v, then the same holds of limn→∞ fm(v, n).

For the other direction, note by line (B.11) that for any n we have

P
m
n ((X1, . . . , Xm) = (v1, . . . , vm)) = fm(v, n)Pm

n ((X1, . . . , Xm) = (0, . . . , 0)).

Let Fm(n) =
∑

v∈{0,1}m fm(v, n). Then P
m
n ((X1, . . . , Xm) = (0, . . . , 0)) = 1/Fm(n).

Assuming that fm(v, n) has a finite, nonzero limit as n → ∞ for all v and m, we
obtain that Fm(n) does as well, and so

lim
n→∞

1/Fm(n) = lim
n→∞

P
m
n ((X1, . . . , Xm) = (0, . . . , 0)) =: Pm((X1, . . . , Xm)

= (0, . . . , 0))

exists and is nonzero as well. Finally, note that

P
m((X1, . . . , Xm) = v) := lim

n→∞
P
m
n ((X1, . . . , Xm) = v) = lim

n→∞
fm(n, v)/Fm(n)

exists and is nonzero since fm(n, v) and Fm(n) have limits as n tends to ∞. �

Proof of Proposition A.3. If the infinite Ising model is well-defined with
P((X1, . . . , Xm) = v) > 0 for all m, v, then by the definition of the infinite Ising
model the quantity

fm(v, n) =
P
m
n ((X1, . . . , Xm) = (v1, . . . , vm))

Pm
n ((X1, . . . , Xm) = (0, . . . , 0))

has a nonzero limit for all m and v, and so the equivalent expression from line
(B.10) does as well. For the other direction, combine Lemma B.5 with Proposition
B.6. �

B.2. Analysis of properties (IIP), (DCP), and (P5*). There are a few natu-
ral questions regarding the technical conditions (IIP) and (DCP) required to obtain
the equivalence of the Markov properties. In this subsection, we consider the fol-
lowing three:

• Is a more straightforward extension of the intersection property (as given by
(P5) in the finite setting) sufficient to obtain the equivalence of the various
Markov properties in the infinite setting?
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• Does the infinite intersection property (IIP) imply the decorrelation prop-
erty (DCP) or vice versa?

• Is the infinite intersection property (IIP) or the decorrelation property
(DCP) in any sense a necessary condition for (P5*)?

We begin by addressing the first question. One may consider the following
näıve extension of (P5) to the infinite case: assume that (P5) holds for all finite
subcollections of the infinite set of variables. This assumption is perhaps the most
natural way of extending (P5) and is strictly weaker than the infinite intersection
property (IIP) (which itself can be viewed as an extension of (P5)). However, this
assumption is not sufficient to obtain the equivalence of the Markov properties,
as shown in Example B.2 above. In fact, we show in Example B.2 that even
adding the decorrelation property (DCP) to this näıve extension of (P5) is not
sufficient to obtain the equivalence of the Markov properties. This demonstrates
the ineffectiveness of the näıve extension of (P5). The infinite intersection property
(IIP) augments this extension of (P5) only by allowing the conditioning set to be
infinite, and in light of Theorem 5.5 can be viewed as the correct extension of
property (P5).

We now consider the question of whether (DCP) implies (IIP) or vice versa.
First note that, as mentioned in Remark 5.3 above, in the finite setting the decor-
relation property (DCP) holds trivially, and the infinite intersection property (IIP)
is equivalent to the usual intersection property (P5). Since (P5) does not hold in
general even in the finite case, this shows that the decorrelation property (DCP)
alone is not a sufficient condition for (P5*) and also that (DCP) does not imply
(IIP). The previously mentioned Example B.2 also provides a less trivial example
where the decorrelation condition (DCP) is satisfied and where (P5*) is not. This
shows that the decorrelation property (DCP) by itself does not imply the infinite
intersection property (IIP) nor the general intersection property (P5*).

Next, we address whether (IIP) implies (DCP). In fact, (IIP) does not imply
(DCP), and moreover (IIP) is not a sufficient condition for (P5*) by itself. We
demonstrate this in Example B.3 in the Supplemental section, in which we provide
a collection of random variables which satisfies (IIP), but which does not satisfy
(DCP), and for which the equivalence of the Markov properties does not hold. This
shows that (IIP) by itself is not enough to imply (P5*), and thus demonstrates the
importance of also verifying (DCP) when one wishes to appeal to the equivalence
of the Markov properties for an infinite collection of random variables.

The question that remains is whether the properties (IIP) and/or (DCP) are
necessary for (P5*). It is easy to see that (IIP) is directly implied by (P5*), so that
(IIP) is indeed a necessary condition for the equivalence of the Markov properties.
However, the theoretical relationship between (P5*) and (DCP) is less clear.

As demonstrated by Theorem 5.5, (DCP) is a convenient criterion which can be
used with (IIP) to verify the equivalence of the Markov properties. In addition,
for many applications of interest, (DCP) is satisfied due to the “decorrelation” of
the random variables (see Remark 5.4). However, we demonstrate in Example B.4
of the Supplemental section that (DCP) is not a necessary condition for (P5*).
Despite this, the following proposition gives a partial converse to Theorem 5.5. In
particular, this proposition provides some settings under which some of the impli-
cations required by the definition of (DCP) are implied by (P5*), thus providing
more justification that (DCP) is a reasonable condition to impose.
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Proposition B.7. Suppose that (Xn)
∞
n=1 is a collection of random variables for

which (P5*) holds and that D ⊆ N and H = {h1, h2, . . .} ⊆ N are such that in the
graph on N induced by (P*), there are no paths between distinct elements of H that
do not pass through D. Then for any event E ∈

⋂
n σ(XD, Xhn

, Xhn+1
, . . .), there

exists E′ ∈ σ(XD) such that P(EΔE′) = 0.

Proof. Since (P5*) holds, (P*) is equivalent to (G*), and so the condition on the
elements of H relative to the (P*)-induced graph implies that for any hi, hj ∈ H
we have Xhi

⊥⊥ Xhj
| XD.

Now, suppose that E∈
⋂

nσ(XD, Xhn
, Xhn+1

, . . .). ThenE∈σ(XD, Xh1
, Xh2

, . . .),
so it is the case that 1E = limm→∞ P(E | XD, Xh1

, . . . , Xhm
). But, by the con-

ditional independences Xhi
⊥⊥ Xhj

| XD, it is the case that (Xh1
, . . . , Xhn

) ⊥⊥
(Xhn+1

, Xhn+2
, . . .) | XD, and so since E ∈ σ(Xhn+1

, . . .), we have for all n the
equality P(E | XD, Xh1

, Xh2
, . . . , Xhn

) = P(E | XD) with probability one. Thus,
with probability one, we have 1E = P(E | XD). Thus, if E′ = {P(E | XD) = 1},
then E′ ∈ σ(XD) and P(EΔE′) = 0, concluding the proof. �

Remark B.8. The infinite star graph is an example of the kind of graph to which
Proposition B.7 could be applied. For this example, we could take D to be the hub
node and H to contain all of the remaining nodes.
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