
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 11, November 2018, Pages 7679–7714
http://dx.doi.org/10.1090/tran/7199

Article electronically published on May 30, 2018

ALGORITHMIC ASPECTS OF BRANCHED COVERINGS IV/V.

EXPANDING MAPS

LAURENT BARTHOLDI AND DZMITRY DUDKO

Abstract. Thurston maps are branched self-coverings of the sphere whose
critical points have finite forward orbits. We give combinatorial and algebraic

characterizations of Thurston maps that are isotopic to expanding maps as
Levy-free maps (maps without Levy obstruction) and as maps with contracting
biset.

We prove that every Thurston map decomposes along a unique minimal
multicurve into homeomorphisms and Levy-free maps, and this decomposi-
tion is algorithmically computable. Each of these pieces admits a geometric
structure.

We apply these results to matings of postcritically finite polynomials, ex-
tending a criterion by Mary Rees and Tan Lei: they are expanding if and only
if they do not admit a cycle of periodic rays.

1. Introduction

Let f : (S2, A) ý be a branched covering of the sphere with finite, forward-
invariant set A containing f ’s critical values, from now on called a Thurston map.
A celebrated theorem by Thurston [8] gives a topological criterion for f to be
isotopic to a rational map, for an appropriate complex structure on (S2, A). One
of the virtues of rational maps, following from Schwartz’s lemma, is that they are
expanding for the hyperbolic metric of curvature −1 associated with the complex
structure.

In this article, following the announcement in [2], we give a criterion for f to be
isotopic to an expanding map, namely for there to exist a metric on (S2, A) that is
expanded by a map isotopic to f . It will turn out that the metric may, for free, be
required to be Riemannian of pinched negative curvature.

Some care is needed to define expanding maps with periodic critical points.
Consider a noninvertible map f : (S2, A) ý. Let A∞ ⊆ A denote the forward orbit
of the periodic critical points of f . The map f is metrically expanding if there exists
a subset A′ ⊆ A∞ and a metric on S2 \A′ that is expanded by f , and such that at
all a ∈ A′ the first return map of f is locally conjugate to z �→ zdega(f

n). In other
words, the points in A′ are cusps or, equivalently at infinite distance, in the metric.

We call f Böttcher expanding if A′ = A∞. This definition is designed to gen-
eralize the class of rational maps. Indeed, every postcritically finite rational map

f : (Ĉ, A) ý is Böttcher expanding by considering the hyperbolic (or Euclidean if

|A| = 2) metric of (Ĉ, ord) for an appropriate orbifold structure ord: A→ N∪{∞}.
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We call f topologically expanding if there exists a compact retract M⊂ S2 \A′

and a finite open covering M =
⋃
Ui such that connected components of f−n(Ui)

get arbitrarily small as n→∞ and such that S2 \M is in the immediate attracting
basin of A′; see [1]. If A∞ = ∅, Böttcher expanding maps are the everywhere-
expanding maps considered, e.g., in [6, 11].

An obstruction to topological expansion is the existence of a Levy cycle. This is
an essential simple closed curve on S2 \A that is isotopic to some iterated preimage
of itself. We shall see that it is the only obstruction.

We recall briefly the algebraic encoding of branched coverings: given f: (S2, A)ý,
set G := π1(S

2 \A, ∗) and define

B(f) := {γ : [0, 1]→M | γ(0) = f(γ(1)) = ∗} / homotopy.

This is a set with commuting left and right G-actions; see §3 to which we refer for
the definition of contracting bisets. Two branched self-coverings f0 : (S

2, A0) ý

and f1 : (S
2, A1) ý are combinatorially equivalent if there is a path (ft : (S

2, At)
ý)t∈[0,1] of branched self-coverings joining them; this happens precisely when the
bisets B(f0) and B(f1) are isomorphic in a suitably defined sense (see [14] and [4]).
The main result of this part is the following criterion; equivalence of (2) and (3)
was known in the case A∞ = ∅ from [12, Theorem 4].

Theorem A (= Theorem 4.4). Let f : (S2, A) ý be a Thurston map, not doubly
covered by a torus endomorphism. The following are equivalent:

(1) f is combinatorially equivalent to a Böttcher expanding map, for an appro-
priate metric on the sphere;

(2) f is combinatorially equivalent to a topologically expanding map;
(3) B(f) is an orbisphere contracting biset;
(4) f is noninvertible and admits no Levy cycle.

Furthermore, if these properties hold, the metric in (1) may be assumed to be
Riemannian of pinched negative curvature.

Häıssinsky and Pilgrim ask in [12] whether every everywhere-expanding map is
isotopic to a map that is smooth except at a finite set of points. By Theorem A, a
combinatorial equivalence class contains a smooth Böttcher expanding map if and
only if it is Levy free. We therefore answer positively their question in the case
A∞ = ∅, because then everywhere-expanding = Böttcher expanding ⇒ Levy-free
⇒ smooth Böttcher expanding = everywhere-expanding smooth except at A.

1.1. Geometric maps and decidability. Let us define a {GTor/2} map as a
non-invertible self-map of the sphere S2 that is a quotient of a torus endomorphism
Mz+v : R2 ý by the involution z �→ −z such that the eigenvalues ofM are different
from ±1. Let us call a Thurston map geometric if it is either Böttcher expanding
or {GTor/2}.

Recall from [4] that R(f,A,C ) denotes the small return maps of the decompo-
sition of a Thurston map f under an invariant multicurve C . The canonical Levy
obstruction CLevy of a Thurston map f : (S2, A) ý is a minimal f -invariant mul-
ticurve all of whose small Thurston maps are either homeomorphisms or admit no
Levy cycle. It is unique by Proposition 2.7. The Levy decomposition of f (and
equivalently of its biset) is its decomposition (as a graph of bisets) along the canon-
ical Levy obstruction. It was proven in [20, Main Theorem II] that every Levy-free



EXPANDING MAPS 7681

map that is doubly covered by a torus endomorphism is in {GTor/2}. Combined
with Theorem A, this implies the following corollary.

Corollary B. Let f : (S2, A) ý be a Thurston map. Then every map in
R(f,A,CLevy) is either geometric or a homeomorphism. �

The following consequences are essential for the decidability of combinatorial
equivalence of Thurston maps.

Corollary C (= Algorithms 5.4 and 5.5). There is an algorithm that, given a
Thurston map by its biset, decides whether it is geometric.

As a consequence we have the following.

Corollary D (= Algorithm 5.6). Let f be a Thurston map. Then its Levy decom-
position is symbolically computable.

There may exist expanding maps in the combinatorial equivalence class of a
Thurston map that are not Böttcher expanding. However, every expanding map is
a quotient of a Böttcher expanding map by Theorem A combined with the following.

Proposition 1.1 (= Proposition 4.18). Let f, g : (S2, A) ý be isotopic Thurston
maps, let F(f),F(g) be their respective Fatou sets (see §4.2), and assume A∩(F(g)\
F(f)) = ∅. Then there is a semiconjugacy from f to g, defined by collapsing to
points those components of F(f) that are attracted towards A∩ (F(f)\F(g)) under
f .

We will show in [5] that the semiconjugacy is unique.
We deduce the following extension of a classical result for rational maps (see,

e.g., [8, Corollary 3.4(b)]) to Böttcher expanding maps.

Corollary 1.2 (= Lemma 4.15). Let f, g be Böttcher expanding Thurston maps.
Then f and g are combinatorially equivalent if and only if they are conjugate.

We also characterize maps (such as rational maps with Julia set a Sierpiński car-
pet) that are isotopic to an everywhere-expanding map. A Levy arc for a Thurston
map f : (S2, A) ý is a nontrivial path with endpoints in A that is isotopic to an
iterated lift of itself.

Proposition 1.3 (= Corollary 4.17 with A = A′ ∩ F(f)). Consider a Thurston
map f that is not doubly covered by a torus endomorphism. Then f is isotopic to
an everywhere-expanding map if and only if f admits no Levy obstruction or Levy
arc.

1.2. Matings and amalgams. We finally apply Theorem A to the study of mat-
ings, and more generally to amalgams of expanding maps. We state the results for
matings in this introduction, while §6 will discuss the general case of amalgams.

Let p+(z) = zd + · · · and p−(z) = zd + · · · be two postcritically finite monic
polynomials of the same degree. Denote by C the compactification of C by a circle
at infinity {∞ exp(2πiθ)}, and consider the sphere

S := (C× {±1}) / {(∞ exp(2πiθ),+1) ∼ (∞ exp(−2πiθ),−1)}.
(Note the reversed orientation between the two copies of C.) The formal mating

(1) p+ � p− : S ý, (z, ε) �→ (pε(z), ε)
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is the branched covering of S acting as p+ on its northern hemisphere, as p− on its
southern hemisphere, and as zd on the common equator {∞ exp(2iπθ)}. The maps
p+, p− glue continuously by Lemma 4.7.

We recall the definition of external rays associated to the polynomials p±. For
a polynomial p, the filled-in Julia set K(p) of p is

K(p) = {z ∈ C | pn(z) �→ ∞ as n→∞}.

Assume that K(p) is connected. Then there exists a unique holomorphic isomor-

phism φp : Ĉ \ K(p) → Ĉ \ D satisfying φp(p(z)) = φp(z)
d and φp(∞) = ∞ and

φ′
p(∞) = 1. It is called a Böttcher coördinate and conjugates p to zd in a neigh-

bourhood of ∞. For θ ∈ R/Z, the associated external ray is

Rp(θ) = {φ−1
p (re2iπθ) | r > 1}.

Let Σ denote the quotient of S in which each (Rpε
(θ), ε) has been identified to

one point for each θ ∈ R/Z and each ε ∈ {±1}. Note that Σ is a quotient of
K(p+) � K(p−) and need not be a Hausdorff space. A classical criterion (due to
Moore) determines when Σ is homeomorphic to S2. If this occurs, p+ and p− are
said to be topologically mateable, and the map induced by p+ � p− on Σ is called
the topological mating of p+ and p− and is denoted p+ � p− : Σ ý.

Definition 1.4. Let p+, p− be two monic postcritically finite polynomials of the
same degree d. We say that p+, p− have a pinching cycle of periodic angles if there
are angles φ0, φ1, . . . , φ2n−1 ∈ Q/Z with denominators coprime to d such that for
all ε = ±1 and all i = 0, . . . , 2n − 1, with indices treated modulo 2n, the rays
Rpε

(εφ2i) and Rpε
(εφ2i+ε) land together. �

We give a computable criterion for two hyperbolic polynomials to be mateable,
which extends a well-known criterion “two quadratic polynomials are geometri-
cally mateable if and only if they do not belong to conjugate primary limbs in the
Mandelbrot set” due to Mary Rees and Tan Lei; see [22] and [7, Theorem 2.1].

Theorem E. Let p+, p− be two monic hyperbolic postcritically finite polynomials.
Then the following are equivalent:

(1) p+ � p− is combinatorially equivalent to an expanding map;
(2) p+ � p− is a sphere map (necessarily conjugate to any expanding map

in (1));
(3) p+, p− do not have a pinching cycle of periodic angles.

To be more precise, the criterion due to Mary Rees and Tan Lei relies on the
fact that, in degree 2, every Thurston obstruction is a Levy obstruction, so every
expanding map is automatically conjugate to a rational map. In degree ≥ 3 there
are topological matings that are not conjugate to rational maps: the example in [21]
is precisely such a mating with an obstruction but no Levy obstruction, and it is
isotopic to an expanding map.

Furthermore, in degree 2 every decomposition of a Thurston map along a Levy
cycle has a fixed sphere or cylinder which maps to itself by a homeomorphism
cyclically permuting the boundary components (namely, there exists a “good Levy
cycle”). This implies that obstructed maps have a pinching cycle of periodic angles
with n = 2. In Example 6.7, we show that this does not hold in higher degree.
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1.3. Notation. Let f : (S2, A) ý be a Thurston map with an invariant multicurve
C . Recall that by R(f,A,C ) we denote the return maps induced by f on S2 \ C ;
see [4, §4.6].

We introduce the following notation. By default, curves and multicurves are
considered up to isotopy rel the marked points; we use the terminology “equal” to
mean that. In particular, a cycle of curves is really a sequence of curves that are
mapped cyclically to each other, up to isotopy. If we want to insist that curves
are equal and not just isotopic, we add the adjective “solid”; thus a solid cycle of
curves is a sequence of curves mapped cyclically to each other, “on the nose”.

We reserve the letters ‘C ’ for invariant multicurves and ‘C’ for cycles of curves,
or more generally for subsets of invariant multicurves.

2. Multicurves and the Levy decomposition

Let A be a finite subset of the topological sphere S2 and consider simple closed
curves on S2 \A. Recall that such a curve is trivial if it bounds a disc in S2 \A and
is peripheral if it may be homotoped into arbitrarily small neighbourhoods of A;
otherwise, it is essential. A multicurve is a collection of mutually nonintersecting
nonhomotopic essential simple closed curves. Following Harvey [13], we denote by
C(S2 \ A) the flag complex whose vertices are isotopy classes of essential curves,
and a collection of curves belongs to a simplex if they have disjoint representatives;
so multicurves on S2 \A are naturally identified with simplices in C(S2 \A). (The
empty multicurve corresponds to the empty simplex.)

Given two simple closed curves γ1 and γ2 on S2 \A, their geometric intersection
number is defined as

i(γ1, γ2) = min
γ′
1,γ

′
2

#(γ′
1 ∩ γ′

2),

with the minimum ranging over all curves γ′
1 isotopic to γ1 and γ′

2 isotopic to γ2.
The simple closed curves γ1 and γ2 are in minimal position if i(γ1, γ2) = #(γ1∩γ2).

We say that two simple closed curves γ1 and γ2 cross if i(γ1, γ2) > 0. Clearly,
if γ1 and γ2 are isotopic or one of them is inessential, then i(γ1, γ2) = 0. Two
multicurves C1 and C2 cross if there are γ1 ∈ C1 and γ2 ∈ C2 that cross.

Proposition 2.1 (The Bigon criterion, [9, Proposition 1.3]). Two transverse simple
closed curves on a surface S are in minimal position if and only if the two arcs
between any pair of intersection points never bound an embedded disc in S. �
2.1. Levy, anti-Levy, Cantor, and anti-Cantor multicurves. Consider a
Thurston map f : (S2, A) ý. We construct the following directed graph: its vertex
set is the set of essential simple closed curves on S2\A, namely the vertex set of the
curve complex C(S2 \A). For every simple closed curve γ and for every component
δ of f−1(γ), we put an edge from γ to δ labeled deg(f �δ). Note that the operation
f−1 induces a map on the simplices of C(S2 \A), but not a simplicial map.

A multicurve C ∈ C(S2 \ A) is invariant if f−1(C ) = C . Given a multicurve
C0 with C0 ⊆ f−1(C0), there is a unique invariant multicurve C generated by C0,
namely the intersection of all invariant multicurves containing C0. The invariant
multicurve C may readily be computed by considering C0, f

−1(C0), f
−2(C0), . . . ;

this is an ascending sequence of multicurves, and each multicurve contains at most
#A− 3 curves, so the sequence must stabilize.

Let C be an invariant multicurve and consider the corresponding directed sub-
graph of C(S2 \ A) spanned by C . A strongly connected component is a maximal
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S1
v1

S2
v2

S3
v3

S4

S1 S′
2 S′

3 S2 S′′
3 S′

4 S3 S′′
2 S′′′

3 S4

v1 v2 v3

Figure 1. A bicycle {v2, v3} generates a Cantor multicurve
{v1, v2, v3}. The action of the map f is indicated on the preimages
of {v1, v2, v3}. If annuli are mapped by degree 1, then it is also
a Levy cycle. Trivial spheres are omitted on the top sphere. The
graph below is the corresponding portion of the graph on C(S2\A).

subgraph spanned by a subset C ⊆ C such that, for every γ, δ ∈ C, there exists
a nontrivial path from γ to δ in C. Note that singletons with no loop are never
strongly connected components.

Strongly connected components are partially ordered: C ≺ D if there is a path
from a curve in C to a curve in D. Consider a strongly connected component C.
We call C primitive in C if it is minimal for ≺. We call C a bicycle if for every
γ, δ ∈ C there exists n ∈ N such that at least two paths of length n join γ to δ in
C, and a unicycle otherwise; see Figure 1 for an illustration.

We remark that bicycles contain at least two cycles, so the number of paths of
length n grows exponentially in n. On the other hand, every unicycle is an actual
periodic cycle, namely it can be written as C = (γ0, γ1, . . . , γn = γ0) in such a
manner that γi+1 has an f -preimage γ′

i isotopic to γi. If in a periodic cycle C the
γ′
i may be chosen so that f maps each γ′

i to γi+1 by degree 1, then C is called a
Levy cycle.

A periodic cycle C = (γ0, γ1, . . . , γn = γ0) is a solid periodic cycle if f maps γi
onto γi+1 for all i = 0, . . . , n − 1; if f maps every γi to γi+1 by degree 1, then C
is called a solid Levy cycle. Since the critical values of f are assumed to belong to
A, the restrictions f �γi

: γi → γi+1 are all homeomorphisms. Note that a periodic
cycle may be isotopic to more than one solid periodic cycle, possibly some solid
Levy and some solid non-Levy cycles.

bicycle

1 : 1 1 : 1

1 : 1

Levy cycle

C

Primitive s.c.c.
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We remark that every invariant multicurve is generated by its primitive unicycles
and bicycles, and that if C is a strongly connected component of an invariant
multicurve C and C has a curve in common with an invariant multicurve D , then
C is also a strongly connected component in D ; and it is a bicycle in C if and only
if it is a bicycle in D . However, C could be primitive in C but not in D .

We will sometimes speak of a strongly connected component without reference
to an invaraint multicurve containing it. We will also say that a strongly connected
component C is primitive if it is primitive in any invariant multicurve containing C.

Definition 2.2 (Types of invariant multicurves). Let C be an invariant multicurve.
Then C is

Cantor if it is generated by its bicycles;
anti-Cantor if C does not contain any bicycle;
Levy if it is generated by its Levy cycles;
anti-Levy if C does not contain any Levy cycle. �

Proposition 2.3. Suppose f : (S2, A) ý is a Thurston map with an invariant
multicurve C . Then:

(1) there is a unique maximal invariant Cantor submulticurve CCantor ⊆ C
such that the restrictions of C to pieces in S2 \ CCantor are anti-Cantor
invariant multicurves of return maps in R(f,A,CCantor);

(2) there is a unique maximal invariant Levy submulticurve CLevy ⊆ C such
that the restrictions of C to pieces in S2 \ CLevy are anti-Levy invariant
multicurves of return maps in R(f,A,CLevy).

Proof. The multicurve CCantor is generated by all the bicycles in C , while the
multicurve CLevy is generated by all the Levy cycles in C . �

2.2. Crossings of Levy cycles. We now show that Levy cycles cross invari-
ant multicurves in a quite restricted way. We will need the following technical
properties. See [21, §3] for related results; in particular statement (2) is essen-
tially [21, Corollary 3.10].

Proposition 2.4. Let f : (S2, A) ý be a Thurston map. Then:

(1) if C is a periodic cycle, then there is a homeomorphism h : (S2, A) ý iso-
topic to the identity rel A such that C is a solid periodic cycle of the map
h ◦ f , and is Levy for h ◦ f if it was Levy for f ;

(2) if a periodic cycle C crosses a Levy cycle, then C is a periodic primitive
unicycle. A strictly preperiodic curve does not cross a Levy cycle;

(3) if L is a Levy cycle and C is a periodic cycle crossing L such that C and
L are in minimal position, then there is a homeomorphism h : (S2, A) ý

isotopic to the identity rel A such that C and L are solid curve cycles of
the map h ◦ f .

We remark that the last statement cannot be improved much. Indeed, there is an
example, due to Wittner [23], of the mating of the airplane and rabbit polynomials,
which may be decomposed in two manners as a mating; in other words, the map
admits two “equators” (invariant curves mapped d : 1 to themselves). It is impossi-
ble to make both equators simultaneously solidly periodic and in minimal position;
worse, if they are both made solidly periodic, then they must have infinitely many
crossings. We recall the following.
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Lemma 2.5 (The Alexander method, [9, Proposition 2.8]). A collection of pairwise
nonisotopic essential curves {γi}i can be simultaneously isotopically moved into
{γ′

i}i if (1) all curves in {γi}i are pairwise in minimal position, (2) all curves in
{γ′

i}i are pairwise in minimal position, (3) every γi is isotopic to the corresponding
γ′
i, and (4) for pairwise different i, j, k at least one of i(γi, γj), i(γi, γk), and i(γj , γk)

is 0. �

Proof of Proposition 2.4. We begin with (1). Write C = (γ0, γ1, . . . , γn = γ0). For
every i choose a component γ′

i of f
−1(γi+1) that is isotopic to γi, mapping by degree

1 if C is a Levy cycle. Note that the γ′
i are disjoint. Any isotopy moving all γi to

γ′
i satisfies the claim.
Let us move to the second claim. Assume that C = (γ0, γ1, . . . , γn = γ0) crosses

a Levy cycle L. By part (1) we may assume that L is a solid Levy cycle.
Put γ0 in minimal position with respect to L and denote by #(γ0 ∩L) the total

number of crossings of γ0 with L. Since L is a solid Levy cycle we have

#(f−m(γ0) ∩ L) = #(γ0 ∩ L)

for every m ≥ 0. If m is a multiple of n, then f−m(γ0) contains at least one
component γ′

0 isotopic to γ0. By minimality,

#(γ′
0 ∩ L) ≥ #(γ0 ∩ L).

We conclude that for every m ≥ 0 there is exactly one component in f−m(γ0) that
crosses L. This component is necessarily isotopic to γ−m, with subscripts computed
modulo n. Claim (2) follows from the observation that if γ crosses a Levy cycle L,
is periodic and is a preimage of some γ′, then γ′ crosses L.

Let us prove claim (3). Write L = (λ0, . . . , λp = λ0) and C = (γ0, . . . , γq = γ0).
By part (1) we may assume that L is a solid Levy cycle. By part (2), there is a
unique component γ′

i of f
−1(γi+1) that is isotopic to γi. It follows from the above

discussion that

C ′ = (γ′
0, γ

′
1, . . . , γ

′
q)

is also in minimal position with respect to C. It follows from the Alexander method,
Lemma 2.5, that there is an isotopy moving every γ′

i into γi while fixing every λi. �

Let f : (S2, A) ý be a Thurston map, and let C be an invariant multicurve.
The components of S2 \ C can be compactified to small spheres by shrinking each
boundary component to a point, and f induces small maps between the small
spheres, well defined up to isotopy. A periodic small sphere S0 gives rise to a small
Thurston cycle of maps S0 → S1 → · · · → S0 (see [4, Definition 4.9]), which is a
small homeomorphism cycle if all the small maps are homeomorphisms.

The next result states that two Levy cycles can be joined so as to give a finer de-
composition, with additional small homeomorphism maps. Its content is nontrivial
only if the Levy cycles intersect.

Corollary 2.6. Let C1 and C2 be two Levy cycles. Then a small neighbourhood of
their union is a small homeomorphism cycle.

More precisely, assume that C1 and C2 are in minimal position. Denote by C the
invariant multicurve generated by the boundary of a small neighbourhood of C1∪C2

in S2. Then the small spheres of (S2, A) \ C that intersect C1 ∪ C2 form a small
homeomorphism cycle.
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Proof. By Proposition 2.4(3) we may assume that C1 and C2 are solid Levy cycles
in minimal position.

Let C0 be the boundary of a small neighbourhood N of C1 ∪ C2 in S2. By the
Bigon criterion, Proposition 2.1, all curves in C0 are nontrivial. For every γ ∈ C0,
its image f(γ) belongs to C0 and the restriction f �γ : γ → f(γ) has degree 1. Since
f is a covering away from A, it extends to a homeomorphism on N . Up to isotopy,
we may suppose that N is invariant.

Since C does not contain the peripheral or trivial curves in C0, we should extend
f : N → N to all connected components of S2 \N that contain at most one marked
point.

By passing to an iterate of f to lighten notation, we may assume that f preserves
each component of ∂N . Let D be a disc in S2 \N , and assume that f : D → f(D)
has degree at least 2. Since f preserves ∂D and is a homeomorphism on N , the
image f(D) contains D. Likewise, f−1(D)∩D contains a component, say E, whose
boundary contains ∂D. We get a map f : E → D of degree at least 2; so D contains
at least two critical values, and then it is essential.

It follows that f extends to a homeomorphism on the union of N and the inessen-
tial discs touching it. �

2.3. The Levy decomposition. A Thurston map f : (S2, A) ý is called Levy-
free if f does not admit a Levy cycle and the degree of f is at least 2. Here we
characterize the multicurves along which f decomposes into Levy-free maps.

We say that an invariant Levy multicurve C is complete if every small Thurston
map in R(f,A,C ) is either Levy-free or a homeomorphism.

Proposition 2.7. Let C1 and C2 be complete invariant Levy multicurves of a
Thurston map f : (S2, A) ý. Then:

(1) if a periodic curve γ1 ∈ C1 crosses a curve γ2 ∈ C2, then γ1 and γ2 belong
to primitive Levy unicycles;

(2) the Levy-free maps in R(f,A,C1) and in R(f,A,C2) are the same;
(3) the multicurve C1 ∩ C2 is a complete invariant Levy multicurve.

It follows that there is a unique minimal complete invariant Levy multicurve,
which is called the canonical Levy obstruction of f and written Cf,Levy. Any other
invariant complete Levy multicurve C contains Cf,Levy as a submulticurve.

Proof of Proposition 2.7.
(1) By the definition of a Levy multicurve, for every γ2 ∈ C2 there is a Levy

cycle C2 such that γ2 is an iterated preimage of a curve in C2. Consider γ1 ∈ C1.
Then γ1 crosses C2 because γ1 is periodic. It follows from Proposition 2.4(2) that
γ1 belongs to a primitive Levy unicycle and by symmetry the same is true for γ2.

(2) Consider a Levy-free cycle fp : S0 → S1 → · · · → Sp = S0 in R(f,A,C1). We
show that C2 intersects none of the S1, S2, . . . , Sp; this implies that

⊔
i Si is con-

tained in a Levy-free cycle S′
0 → · · · → S′

p′ = S′
0 of small spheres of R(f,A,C2), and

symmetrically
⊔

j S
′
j is contained in a Levy-free cycle of small spheres of R(f,A,C1),

so
⊔

i Si and
⊔

j S
′
j are isotopic in (S2, A)

Assume therefore for contradiction that C2 intersects some small sphere Si. If
this intersection is entirely contained in Si, it will generate a Levy cycle in

⊔
i Si,

contradicting the assumption that
⊔

i Si is Levy-free; therefore C2 crosses
⊔

i ∂Si.
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There is then a periodic curve in
⊔

i ∂Si crossing C2. Choose a curve cycle
C1 ⊆

⊔
i ∂Si and a curve cycle C2 ⊆ C2 such that C1 crosses C2. By part (1) of the

proposition, C1 and C2 are anti-Cantor Levy cycles. By Corollary 2.6, there is a
small homeomorphism cycle {S′

i}i containing C1 ∪C2. All curves in
⊔

i ∂S
′
i belong

to Levy cycles.
If

⊔
i S

′
i contains (up to isotopy) the union

⊔
i Si, then we have a contradiction

because the degree of f on
⊔

i Si is at least 2, while it is 1 on
⊔

i S
′
i.

We now show that we can always reduce to this case. If
⊔

i S
′
i does not contain⊔

i Si, then there is a curve cycle in
⊔

i ∂S
′
i crossing at least one curve in

⊔
i ∂Si.

This implies that there is a Levy cycle in
⊔

i ∂S
′
i crossing a Levy cycle in

⊔
i ∂Si.

Again invoking Corollary 2.6, we can enlarge
⊔

i S
′
i. Repeating, we may enlarge⊔

i S
′
i so that it contains

⊔
i Si.

Finally, (3) follows formally from (2). �

Definition 2.8 (Levy decomposition). The Levy decomposition of a Thurston
map f : (S2, A) ý is the decomposition of f along the canonical Levy obstruction
Cf,Levy. �

We may understand the Levy decomposition of a Thurston map f : (S2, A) ý

as follows, if we consider more general subsets of S2 on which f acts as a homeo-
morphism. Let us call a “Levy kernel” a subset L ⊆ S2 together with a partition
L =

⊔
i∈I Si and a map f : I ý such that each Si is either an essential simple closed

curve or an essential small sphere, and it is considered up to isotopy; we require
that every Si be isotopic to a degree-1 preimage of Sf(i) and that if Si is a curve,
then it is not homotopic to any (boundary) curve in

⊔
j �=i ∂Sj . (The last condition

replaces the “nonhomotopic” condition in the definition of a multicurve.) There is
a natural order on Levy kernels, given by inclusion up to isotopy.

We may think about a Levy kernel as a subset of a sphere on which f has degree
one. Corollary 2.6 states that if two Levy kernels L1, L2 intersect, then we can

construct a bigger Levy kernel L̃ that contains both L1 and L2. Therefore, there
exists a maximal Levy kernel, and its boundary generates the Levy decomposition.

3. Self-similar groups and automata

We recall basic notions about self-similar groups; for a reference see [16].

3.1. Contracting bisets. Let G be a group. Recall that a G-G-biset is a set B
endowed with commuting left and right G-actions. Such a biset B is called left-free
if the left G-action is free, i.e., has trivial stabilizers. A basis is a choice of one
element per left G-orbit: a subset X ⊆ B such that B =

⊔
x∈X Gx. We therefore

have a bijection G × X ↔ B, and using it we may write the right G-action as a
map Φ: X ×G→ G×X, determining the structure of B.

Important examples of bisets come from dynamics: let f : M′ → M be a par-
tial self-covering of a topological space M, defined on a subset M′ ⊆ M. Fix a
basepoint ∗ ∈ M, and set G := π1(M, ∗). Set
(2) B(f) := {γ : [0, 1]→M | γ(0) = f(γ(1)) = ∗} / homotopy,

with left G-action given by preconcatenation and right G-action given by postcon-
catenation of the unique f -lift making the resulting path continuous. A basis of B
consists of, for every z ∈ f−1(∗), a choice of path in M from ∗ to z.
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Of particular interest, for us, is when f : (S2, A) ý is a Thurston map, with
M := S2 \ A and M′ := S2 \ f−1(A). Recall that two Thurston maps
f0 : (S

2, A0) ý and f1 : (S
2, A1) ý are called combinatorially equivalent if there

is a path (ft : (S
2, At) ý)t∈[0,1] of Thurston maps joining them. Kameyama proved

in [14], in another language, that f0, f1 are combinatorially equivalent if and only
B(f0) and B(f1) are conjugate: setting Gi = π1(S

2\Ai, ∗i) for i = 0, 1, there exists
a homeomorphism φ : S2 \ A0 → S2 \ A1 and a bijection β : B(f0) → B(f1) with
g · b · h = φ∗(g) · β(b) · φ∗(h) for all g, h ∈ G0, b ∈ B(f0). See [4] for details.

Bisets may be composed: the product of two G-G-bisets B,C is B ⊗G C :=
(B×C)/{(bg, c) = (b, gc)}, and it is related to the composition of partial coverings:
we have a natural isomorphism B(g ◦ f) ∼= B(f)⊗ B(g). If B,C are left-free with
respective bases S, T , then B ⊗ C is left-free with basis S × T .

Definition 3.1 ([16, Definition 2.11.8]). Let B be a G-G-biset. It is called con-
tracting if for some basis X ⊆ B there exists a finite subset N ⊆ G with the
following property: for every g ∈ G and every n large enough we have the inclusion
Xng ⊆ NXn in B⊗n. �

Recall from [16, Proposition 2.11.6] that if B is contracting for some basis X,
then it is contracting for every basis, possibly with a different N . The set N in
Definition 3.1 is certainly not unique; but for every basis X there exists a minimal
such N , written N(B,X) and called the nucleus of (B,X).

Recall also from [16, Proposition 2.11.3] that if G is finitely generated, X is
a basis of B, and B is right transitive, then G is generated by N(B,X). These
hypotheses are satisfied by bisets of Thurston maps; see [4, Definition 2.6]. It is
then convenient to express the structure of B by a Mealy automaton: it is a finite
directed labeled graph with vertex set N(B,X), with labels in X × X on edges,
and with an edge labeled “x→ y” from g ∈ N(B,X) to h ∈ N(B,X) whenever the
equality xg = hy holds in B. In fact, one may consider the graph G with vertex set
G and an edge from g ∈ G to h ∈ G labeled “x→ y” whenever xg = hy holds in B,
and then N(B,X) is precisely the forward attractor of G: an equivalent formulation
of Definition 3.1 is that every infinite path in G eventually reaches N(B,X), where
it stays. Here is an example of an automaton, to which we shall return:

(3)

a

b

1

0→ 1

1→ 0

0→ 0

1→ 1

0→ 0

1→ 1

In this automaton, we have X = {0, 1} and G = 〈a, b〉. The biset structure is
determined by the equations

0 · a = 1, 1 · a = b · 0, 0 · b = 0, 1 · b = a · 1.
The reader may check that this is the biset B(f) as defined in (2) for the partial

self-covering f(z) = z2 − 1 of Ĉ \ {0,−1,∞}.

Proposition 3.2. Let G be a finitely generated group with solvable word problem,
and let B be a computable left-free biset (namely, for a basis X the structure map
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X×G→ G×X is computable). Then it is semidecidable whether B is contracting:
there is an algorithm that either runs forever (if G is not contracting) or returns
N(B,X) (if G is contracting).

Proof. Assume that B is contracting, with nucleus N(B,X). Denote by Pf (G)
the set of finite subsets of G, and define the self-map φ : Pf (G) ý by

φ(A) = {h ∈ G | there exist x, y ∈ X with hy ∈ xA}.
Clearly φ is computable and φ(N(B,X)) = N(B,X). For A ⊆ G finite, set ψ(A) :=⋃

k≥0 φ
k(A). The sequence (

⋃n
k=0 φ

k(A))n is ascending and eventually all φk(A) are

contained in N(B,X), so ψ : Pf (G) ý is computable. Again for A ⊆ G finite, set
ω(A) :=

⋂
n≥0 φ

n(ψ(A)). The sequence (φn(ψ(A)))n is a decreasing subsequence of

the finite set ψ(A), so ω is also computable.
Let S be a finite generating set for G, and assume 1 ∈ S = S−1. Set N0 := {1},

and for n ≥ 1 set Nn := ω(Nn−1S). Then (Nn)n is an increasing subsequence of
N(B,X), so it stabilizes, and its limit

⋃
n≥0 Nn is computable and equals N(B,X).

�
3.2. Limit spaces. Let B be a contracting G-G-biset, and let X be a basis of B.
Define a relation on X∞, called asymptotic equivalence, by

(x1x2 . . . ) ∼ (y1y2 . . . )

⇐⇒ ∃(g0, g1, g2, . . . ) ∈ G∞ with #{gn} <∞ and xngn = gn−1yn for all n ≥ 1.

More precisely, one says in this case that x1x2 · · · and y1y2 · · · are g0-equivalent.
The limit space of B is the quotient

J (B) := X∞/∼.
More precisely, it is a topological orbispace, with at class [x1x2 . . . ] ∈ J (B) the
isotropy group {g0 ∈ G | x1x2 . . . is g0-equivalent to itself}.

By [16, Theorem 3.6.3], we have x1x2 · · · ∼ y1y2 . . . if and only if there exists a
left-infinite path in the Mealy automaton of B, with labels . . . , x2 → y2, x1 → y1
on its arrows. These sequences are g0-equivalent for g0 the terminal vertex of the
path. In particular, ∼-equivalence classes have cardinality at most #N(B,X).
The topological (orbi)space J (B) is compact, metrizable, and of finite topologi-
cal dimension. For example, (3) gives x1 · · ·xn0(11)

∞ ∼ x1 · · ·xn1(10)
∞ for all

x1, . . . , xn ∈ X = {0, 1}.
Denote by s : X∞ ý the shift map x1x2x3 · · · �→ x2x3 · · · . Clearly the as-

ymptotic equivalence is invariant under s, so s induces a self-map s : J (B) ý.
By [16, Corollary 3.6.7], the dynamical system (J (B), s) is independent, up to
topological conjugacy, of the choice of X. Note that s induces a partial self-covering
of J (B) if the orbispace structure of J (B) is taken into account.

Let f : M′ →M be a partial self-covering as above, and assume that M has a
complete length metric that is expanded by f . The Julia set of f is defined as the
accumulation set of backward iterates of a generic point: fix z ∈M, and define

(4) J (f) :=
⋂
n≥0

⋃
m≥n

f−m(z),

a definition that does not depend on the choice of z.
By [16, Theorem 5.5.3] the biset B(f) defined in (2) is contracting and the

dynamical systems (J (f), f) and (J (B(f)), s) are conjugate.
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The following image shows the Julia set of f(z) = z2− 1, the loops a, b ∈ π1(Ĉ \
{0,−1,∞}, ∗), and the basis {x0

, x1
} that were used to compute the automaton (3)

(x1
is so short that it is not visible):

0−1 ∗x1 x0a

b

f−1(a)

f−1(a)

f−1(b)

f−1(b)

x0

3.3. Orbisphere contracting bisets. We slightly modify the definition of
“contracting” for sphere bisets because of the orbisphere structures. Let GBG

be a sphere biset with G = π1(S
2 \A, ∗). Recall from [4, Equation (35)] that there

is a minimal orbisphere structure ordB given by B. We call an orbisphere
structure ord: A → {2, 3, . . . ,∞} bounded if ord(a) = ∞ ⇔ ordB(a) = ∞ and
ord(a) dega(B) | ord(B∗(a)) for all a ∈ A. Let G denote the quotient orbisphere

group G/〈γord(a)
a : a ∈ A〉G, with γa representing a small loop around puncture a.

Then we call B an orbisphere contracting biset if G ⊗G B ⊗G G is contracting for
some bounded orbisphere structure on (S2, A).

4. Expanding nontorus maps

Our purpose is, in this section, to endow the sphere (S2, A) with a smooth metric
that is expanded by a self-map f : (S2, A) ý. We recall that by A∞ ⊂ A we denote
the forward orbit of periodic critical points of f . A nontorus map is a map that is
not doubly covered by a torus endomorphism.

Definition 4.1 (Metrically expanding maps). Let us consider a Thurston map
f : (S2, A) ý and let A′ be a forward-invariant subset of A∞. We say that f is
metrically expanding if there exists a length metric μ on S2 \A∞ such that

(1) for every nontrivial rectifiable curve γ : [0, 1] → S2 \ A′ the length of any
lift of γ under f is strictly less than the length of γ

and (2) at all a ∈ A′ the first return map of f is locally conjugate to z �→ zdega(f
n).

If A′ = A∞, then f : (S2, A) ý is called a Böttcher expanding map. �

If μ = ds is a Riemannian orbifold metric on (S2, A) (i.e., μ is a smooth metric
on S2 \ A′ with possible cone singularities in A \ A′), then condition (1) may be
replaced by f∗ds < ds.

Let us now define a more general notion of topological expansion. Consider first a
covering map f : M′ →M between compact topological orbispaces, withM′ ⊆M.
We call f topologically expanding if there exists a finite covering by connected open
sets M′ =

⋃
Ui such that connected components of f−n(Ui) get arbitrarily small

as n → ∞, in the sense that for every finite open covering M =
⋃
Vj there exists

n ∈ N such that every connected component of every f−n(Ui) is contained in some
Vj . Equivalently, the diameter of connected components of f−n(Ui) tends to 0 with
respect to any metric on M′.
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Definition 4.2 (Topological expanding maps). Let us consider a Thurston map
f : (S2, A) ý and let A′ be a forward-invariant subset of A∞. We call f topologically
expanding if there exist M′ ⊆ M ⊆ S2 compact with a topologically expanding
orbifold covering map f : (M′, A)→ (M, A) such that every connected component
U of S2 \M is a disk containing a unique point a ∈ A′, and U is attracted to a,
and the first return of f is locally conjugate to z �→ zdega(f

n) at a.
If A′ = A∞, then f : (S2, A) ý is called a Böttcher topologically expanding

map. �

Proposition 4.3. A metrically expanding map is topologically expanding.

Proof. Let f : (S2, A) ý be metrically expanding. For each point a ∈ A′ choose an
open neighbourhood Ua � a such that f(Ua) is compactly contained in Uf(a). Set

M = S2 \
⋃
Ua and M′ = f−1(M).

Note that points in A∞ are at infinite distance from each other, so (S2 \A∞, μ)
is a complete, locally compact metric space. Then Condition 1 of Definition 4.1
and the Hopf-Rinow Theorem imply that points away from A′ are repelled by f :
given two points at small distance δ from each other, their images may be joined
by a geodesic, which must have length > δ. �

The goal of this section is to prove the following criterion.

Theorem 4.4 (Expansion criterion). The following are equivalent, for a combina-
torial equivalence class F of Thurston maps:

(1) F contains a metrically Böttcher expanding map;
(2) F contains a topologically expanding map;
(3) B(f) is an orbisphere contracting biset for every f ∈ F ;
(4) F does not admit a Levy cycle, and if F is doubly covered by a torus

endomorphism Mz + v : R/Z ý, then both eigenvalues of M have absolute
value greater than 1.

Furthermore, if any of these properties hold, then the expanded metric may be
assumed to be Riemannian of pinched negative curvature.

We will prove Theorem 4.4 for maps not doubly covered by torus endomor-
phisms. The remaining case follows from [12, Theorem 4] or from [20]. The hardest
implication in the proof is (4)⇒(1).

Proof of Theorem 4.4, (1)⇒(2)⇒(3)⇒(4). The implication (1)⇒(2) follows from
Proposition 4.3. By [1, Proposition 6.4], the biset of a topologically expanding map
is contracting; this is (2)⇒(3) with slight adjustments to sphere maps.

Next consider a combinatorial equivalence class F = [f ] admitting a Levy cycle
(γ0, γ1, . . . , γn = γ0). Write G = π1(S

2 \ A, ∗), consider the G-G-biset B(f), and
choose a basis X for it. The assumption that (γi)i is a Levy cycle means that
there exist basis elements x0, x1, . . . , xn = x0 ∈ X with xiγi+1 = γ′

ixi and γ′
i

conjugate to γi for all i ∈ Z/n. In particular, for every j ∈ Z there is a conjugate

of γj
0 in the nucleus of (B(f), X). Now γ0 has infinite order in G, because it is

not peripheral. It follows that the nucleus of (B(f), X) is infinite, so B(f) is not
orbisphere contracting. �

Let us outline the proof of Theorem 4.4(4)⇒(1); the details of the proof are
given in §4.4, after some preparation in §§4.1–4.3.
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We wish to prove that a Levy-free nontorus Thurston map f admits an expanding
metric. We do so by explicitly constructing the metric adapted to f .

We consider the decomposition of S2 into small spheres along the canonical
obstruction Cf . The map f restricts to maps between the small spheres, well-
defined up to isotopy, and the small Thurston maps—the return maps to small
spheres—are combinatorially equivalent to rational maps.

We first isotope the periodic small spheres into complex spheres in such a manner
that the small Thurston maps are rational. We put the hyperbolic metric on these
periodic small spheres and pull it back to preperiodic small spheres.

It remains to attach the small spheres together. They are spheres with cusps;
some of the cusps correspond to the marked set A, and some to Cf . Cut the cusps
corresponding to Cf along a very small horocycle and connect the small spheres by
very long and thin cylinders along the combinatorics of the original decomposition.
We have constructed a space X with a piecewise-smooth non-positively curved
metric.

Define a self-map F : X ý as follows: away from the truncated cusps, apply the
original map f . Subdivide the long cylinders into long “annuli” and short “annular
spheres”. Map the annular spheres to the small spheres they originally mapped to,
and map the annuli affinely to each other.

The map F is expanding: on periodic small spheres, because it is modelled on ra-
tional maps; on preperiodic small spheres, too; on annular and trivial small spheres,
because they are contained in thin cylinders; and on annuli, because of properties
of the canonical obstruction—it contains neither Levy cycles nor primitive unicy-
cles. �

4.1. Conformal metrics. Recall first that every Riemannian metric s on a surface
(for example a sphere) admits local isothermal coördinates, i.e., there is a local
chart U where ds takes form ρ(z)|dz| on the tangent space of U ; the function
ρ : U → R+ should be smooth. A metric in this form is called conformal. The
Gaussian curvature κ : U → R is given by

κ(z) =
−Δ(log ρ(z))

ρ(z)2
,

by an easy calculation (see, e.g., [10, page 77]). We note for future reference the
following simple calculation: if ρ(z) = σ(|z|) is rotationally invariant around 0 ∈ U
in the chart z, then the Gaussian curvature may be computed as

(5) κ(z) = − log(σ)′′ + log(σ)′/|z|
σ(|z|)2 .

We shall consider a conformal metric s on an orbisphere (S2, A). This means
that in suitable coördinates we have 2ds = ρ(z)|dz| with ρ : S2 \A→ R+ that has
a continuous extension ρ : S2 → R+ ∪ {+∞} such that if for a ∈ A

• ρ(a) < +∞, then ρ is smooth at a (i.e., a is a usual point);
• ρ(a) = +∞ but a is at finite distance from points in S2, then (S2, s) around
a is a quotient of a chart U endowed with a conformal metric under a finite
group of isometries; the point a is called a cone singularity.

If ρ(a) = +∞ and a is at infinite distance from points in S2, then a is called a cusp.
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4.2. Fatou and Julia sets. We adapt the definition of Julia sets from (4) to
expanding Thurston maps. We recall some well-known facts and include their
proofs for convenience.

Definition 4.5. Let f : (S2, A) ý be an expanding Thurston map. Its Julia set
J (f) is the closure of the set of repelling periodic points, namely the closure of the
set of points z ∈ S2 with fn(z) = z for some n > 0 but admitting no neighbourhood
U � z with fn(U) compactly contained in U .

The Fatou set F(f) is the locus of continuity of forward orbits, namely the set of
z ∈ S2 at which the orbit map S2 → (S2)∞, z �→ (z, f(z), f2(z), . . . ) is continuous
in supremum norm (of any metric on S2 realizing its topology). �

Lemma 4.6. S2 = J (f) � F(f). Moreover, in the notation of Definition 4.2 the
Julia set J (f) is the set of points in M′ that do not escape M′ under iteration of
f .

Proof. By definition, every point z escaping M′ is in the attracting basin of A′, so
z has a stable orbit and z ∈ F(f). Conversely, suppose that z does not escapeM′.
Fix a metric on S2 realizing its topology and consider ε > 0 such that for every
V ⊂M with diameter less than ε the components of f−n(V) get arbitrarily small as
n→∞. Choose a large n ∈ N and consider the ε-neighbourhood V ⊂M of fn(z).
The pullback of V along the orbit of z is a small (since n is large) neighbourhood
V ′ of z; so there are points close to z that have orbits at least ε-away from the orbit
of z. This shows that z �∈ F(f).

Now choose a small closed topological disc V containing z. There is an n ≥ 1
such that fn(V) ⊃ V . Therefore, there is a periodic point in V . This shows that
z ∈ J (f). �

The Fatou set of f is open. Every periodic component of F(f) contains an
attracting periodic point called its center ; this point belongs to A′. By Lemma 4.6
every nonperiodic component of F(f) is preperiodic because it consists of points
escaping to S2 \M. We may now deduce that every component of F(f) is an open
topological disc.

First consider a periodic connected component O of F(f) and let a ∈ A′ ∩O be
its center. There is a conjugacy from O to the open disk D ⊂ C such that the first
return map fn : O → O is conjugate to the map zdega(f

n). We write degO(f) :=
dega(f) and call the conjugacy φO : O → D a Böttcher coördinate. We may then
determine coördinates on every Fatou component on the forward and backward
orbit of O in such a manner that, for every Fatou component U , the restriction
f �U : U → f(U) is conjugate to a monomial map by φf(U) ◦ f �U= zdegU (f) ◦ φU .

We use Böttcher coördinates to define, in every Fatou component O, internal
rays RO,θ ⊂ O by

RO,θ = φ−1
O {re2iπθ | r < 1}.

These rays are mapped to each other by f(RO,θ) = Rf(O),degO(f)θ. The following
statement follows immediately from the existence of Böttcher coördinates.

Lemma 4.7. Let f : (S2, A) ý be a Böttcher expanding map, and let a ∈ A be a
degree-d attracting point. Let F denote its immediate basin of attraction; then F
is a connected component of the Fatou set of f . Let D denote the compactification
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of S2 \ {a} by adding a circle of directions in replacement of a; then f extends
continuously to a self-map of D such that the boundary circle is mapped to itself by
z �→ zd. �

4.3. Canonical obstructions and decompositions. We shall make essential
use of Pilgrim’s canonical decomposition. Let f : (S2, A) ý be a Thurston map.
Then there is an induced pullback map f∗ on the Teichmüller space TA of complex
structures on (S2, A); see [4, §8]. For a given complex structure η, the pullback f∗η
is defined by requiring that the map f : (S2, A, f∗η) → (S2, A, η) be holomorphic.
The map f is combinatorially equivalent to a rational map if and only if f∗ has a
fixed point.

Let γ be an essential simple closed curve and let η ∈ TA be a complex structure.
The length 〈γ, η〉 of γ with respect to η is defined as the length of the unique
geodesic in (S2, A, η) that is homotopic to γ. This defines an analytic function
〈γ,−〉 : TA → R.

Definition 4.8 (Canonical obstruction [18, Theorem 1.2]). Let f : (S2, A) ý be a
Thurston map and consider η ∈ TA.

The canonical obstruction Cf is the set of homotopy classes of essential simple
closed curves γ such that 〈γ, fn∗η〉 tends to 0 as n tends to infinity. �

It follows from the following theorem that the definition of Cf does not depend
on η. It was proved by Kevin Pilgrim that Cf is a multicurve.

Theorem 4.9 (Pilgrim, [17]). If Cf is empty, the degree of f is at least 2, and the
minimal orbisphere structure of f is hyperbolic, then f is combinatorially equivalent
to a rational map. �

For f a Thurston map, its canonical decomposition is the collection of spheres
and annuli obtained by cutting f along the canonical obstruction Cf . Recall that
the small Thurston maps are the return maps of f to the small spheres in a de-
composition.

Theorem 4.10 (Pilgrim, Selinger [19]). Every small Thurston map in the canonical
decomposition of f is either

• combinatorially equivalent to a rational non-Lattes postcritically finite map;
• double covered by a torus endomorphism;

or • a homeomorphism.

Theorem 4.10 was conjectured by Kevin Pilgrim (who also proved a slightly
weaker version of this theorem; see [18, page 13]) and was eventually proved by
Nikita Selinger.

4.4. Construction of the model. Here we give the proof of the implication
(4)⇒(1) by constructing a negatively curved Riemannian metric on X � S2 and
an expanding map F : X ý isotopic to f ; see Figure 2 for an illustration of the
construction.

4.4.1. Setup. The space X is constructed by plumbing between cusped spheres: we
enlarge the cusps to make them almost cylindrical, and then truncate them and
glue them on their common boundary. Three variables dictate the construction.
In specifying what their range can be, we introduce the notation “x Ï y” to mean
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S1

T
S2

S′
1 S′

2

S′′′
1

S′′
1

2 : 1 2 : 1

Figure 2. Illustration to the Proof of Theorem 4.4. The map f is
indicated by the arrows and sends S′

1, S
′′
1 , S

′′′
1 to S1 and S′

2 to S2.
We first define a metric on the periodic small spheres (S1), then
on the preperiodic small spheres (S2), and finally on the annuli
between them. This map could be Pilgrim’s “blow-up an arc”
map; see [2, §8.2.2].

that if one of x, y has already been specified, then the other one may be chosen
arbitrarily as long as the ratio x/y is large enough.

First a parameter w Î 1 is chosen; the perimeters of the “cylindrical parts” will
lie between πw and 2πw. Then a parameter  Ï 1/w is chosen; the cylindrical
parts will all have length between  and 2. Finally, a parameter ε Î 1/ is chosen;
it will be a final adjustment to the construction that makes the curvature bounded
by −ε2 from above.

The map F is very close to a rational map on each small sphere and is very close
to an affine map on each cylinder connecting small spheres. After the main part
of the construction is carried out we obtain a metric μ that is weakly expanded
by F (namely, F does not contract μ) and a certain iteration of F expands μ. In
Lemma 4.14 we perturb μ infinitesimally to make F expanding.

4.4.2. The canonical decomposition. Throughout this section, we let C = Cf denote
the canonical obstruction of the Thurston map f : (S2, A) ý and we denote by S
the collection of small spheres (components of S2\C ) of the canonical decomposition
so that

S2 =
⊔
γ∈C

γ ∪
⊔

S∈S

S.

As in [4], for S ∈ S we denote by Ŝ the corresponding topological sphere marked
by the image of A ∩ S2 and the boundary curves. The map f induces a map

f : S ý, and for each S ∈ S a map f : Ŝ → f̂(S), well defined up to isotopy;
see [4, Lemma 4.9].

Recall that we assumed that f is a nontorus map: a map that is not finitely
covered by a torus endomorphism.

Lemma 4.11. If f : (S2, A) ý is a Levy-free nontorus Thurston map and Cf is
nonempty, then Cf is an anti-Levy Cantor multicurve, and all small Thurston maps
in the canonical decomposition of f are equivalent to nontorus rational maps.
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Figure 3. The curvature on the widened cusps

Proof. Let us show that Cf does not contain a primitive unicycle. Since a non-Levy
unicycle has spectral radius strictly less than 1, such a (primitive) cycle may not
belong to Cf .

Further, all small Thurston maps in R(f,A,C ) are nontorus and nonhomeo-
morphisms, because torus and homeomorphism cycles can only be attached via
Levy cycles, because homeomorphisms and torus maps have no attracting periodic
points. Theorem 4.10 concludes the proof. �
4.4.3. Metrics on small spheres. Consider a cycle of periodic spheres S → f(S)→
· · · → fp(S) = S. Let us denote by Ŝi = f̂ i(S) the topological sphere associated
with f i(S) and denote by Ai the marked set of Si. By Lemma 4.11 the first

return map fp : Ŝi ý is isotopic rel Ai to a rational map. Therefore, let us now

assume that each Ŝi is a marked complex sphere and each fi : Ŝi → Ŝi+1 is a
rational map. Choose next an orbifold structure ordi : Ai → {1, 2, . . . ,∞} such

that fp : (Ŝ1, ord1) ý is a partial self-covering but is not a partial covering. We
also choose ordi in such a way that ordi(x) = ∞ if and only if x is in a periodic
critical cycle or x is the image of a boundary curve.

We endow each (Ŝi, ordi) with its natural hyperbolic metric. Then every f : Ŝi →
Ŝi+1 is either expanding (if it is not a covering) or an isometry (if it is a covering),

and fp : Ŝ1 ý is expanding.

Similarly, we endow each preperiodic sphere Ŝ′, say marked by A′, with a hyper-

bolic metric such that f : Ŝ′ → f̂(S′) is either an isometry or an expanding map.
The orbisphere structure ord′ : A′ → {1, 2, 3, . . . ,∞} is chosen so that ordi(x) =∞
if and only if x is the image of a boundary curve.

4.4.4. Plumbing. Let Ŝ1 and Ŝ2 be two hyperbolic small spheres with respective

cusps at x1 ∈ Ŝ1 and x2 ∈ Ŝ2. We now describe an operation, plumbing, that joins

these small spheres near their cusps. On each of Ŝ1, Ŝ2, a small neighbourhood of
x is foliated by horocycles—curves perpendicular to geodesics starting at x. The
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plumbing truncates Ŝ1 and Ŝ2 at x1 and x2 along their horocycles of perimeter

≈ 2πw and joins Ŝ1, Ŝ2 along an almost flat cylinder with length ≈  such that the

resulting sphere still has a negatively curved metric. Since Ŝ1 and Ŝ2 are covered
by punctured discs, it is sufficient to describe the operation between two copies
D∗

1,D
∗
2 of the unit disc punctured at 0.

The hyperbolic metric on the unit disc punctured at 0 is written as σ(|z|)|dz| with
σ(r) = −1/(r log r). Replace it with the annulus parameterized by {exp(−w/2) ≤
|z| < 1}, and give it a metric σ(|z|)|dz| with

σ(r) ≈ max
{ 1

wr cos(ε(log(r)− w/2))
,
−1

r log r

}
;

see Figure 3. In that figure, the blue part 1/(wr cos(ε(log(r)− w))) describes the
metric of the one-sheeted hyperboloid of curvature −ε2, as can be readily checked
using (5), with its unique minimal closed curve of length 2πw appearing at radius
r = exp(−w/2) and with length ≈ /2. The red part −1/(r log r) is the original
metric on the cusp. At ≈ −w/2 we replace σ by a smooth function that is slightly
bigger than σ(−w/2); we can do it such that log(σ)′′ Ï 1 at ≈ −w/2. Thus we
guarantee that the new function still has a negative curvature by (5).

After the metrics on both cusps have been modified in the above manner, they
can be attached along their common boundary curve {|z| = exp(−w/2)}, which
is geodesic (it corresponds to the core curve of the hyperboloid). The result is a
space consisting of two truncated discs with curvature −1 attached by a cylinder
of curvature −ε2, perimeter ≈ 2πw, and length ≈ .

4.4.5. Global metric. We now perform the plumbing between the metrized small
spheres in S . The following proposition will allow us to endow the annuli of the
canonical decomposition with an expanding map.

Proposition 4.12. There is an assignment

C → (1, 2)× (1, 2), γ �→ (wγ , γ)

(where wγ is the “width” of the annulus corresponding to γ and γ is its “length”)
such that

• if for a nonperipheral curve δ ∈ f−1(C ) the map f : δ → f(δ) is one-to-one,
then wf(δ) > wδ;

• if for a curve γ ∈ C there is a unique nonperipheral curve δ ∈ f−1(C )
isotopic to γ, then f(δ) > γ .

Proof. We first note that only an ordering of the (wγ) and (γ) is required; once
such an ordering is found, they can easily be embedded in the interval (1, 2).

If an assignment γ → wγ is forbidden, then there is a sequence γ0, γ1, . . . , γn = γ0
of curves in C such that wγi+1

> wγi
holds. This means that

⋃
i ∂γi contains a

Levy cycle. This contradicts the assumption that Cf is an anti-Levy multicurve,
by Lemma 4.11.

If an assignment γ → γ is forbidden, then there is a sequence γ0, γ1, . . . , γn = γ0
of curves in C such that γi+1

> γi
holds. This means that

⋃
i ∂γi is a primitive

unicycle, and this contradicts the assumption that Cf is a Cantor multicurve, again
by Lemma 4.11. �

We scale the solutions (γ), (wγ) given by Proposition 4.12 so that  ≤ γ ≤ 2
and w/2 ≤ wγ ≤ w, for the parameters  Ï 1/w Ï 1 of the construction in §4.4.1.
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We consider in turn every small sphere S ∈ S containing a curve γ ∈ C on
its boundary. There is then another small sphere S′ ∈ S also containing γ on

its boundary. For Ŝ and Ŝ′, these boundary points appear as cusps in the scaled
hyperbolic metrics that were assigned to them in §4.4.6. We truncate the cusps

on Ŝ, Ŝ′ along horocycles and attach Ŝ, Ŝ′ through an almost flat hyperboloid as
described in §4.4.4. The hyperboloid has curvature ≈ −ε2, perimeter ≈ 2πwγ and
length ≈ γ .

We have, in this manner, constructed a metric sphere X � (S2, A) by plumbing
together truncated small spheres in S . For every S ∈ S we denote by S◦ the

image of Ŝ in X. We also denote by A the set of almost flat annuli. We stress that
A is in bijection with C .

Suppose B ∈ A is an annulus connecting small spheres S◦
1 and S◦

2 . Let B1 be
the subannulus of B consisting of points in B that are closer to S◦

1 than S◦
2 . Since

B1 is constructed by enlarging the metric in Ŝ1 \ S◦
1 we can view B ↪→ Ŝ1 \ S◦

1 ; we
will refer to this map as natural. By construction, we have the following.

Lemma 4.13. The natural map B → Ŝ1 \ S◦
1 is contracting. �

4.4.6. Dynamics at plumbings. For a periodic cycle f : Ŝi → Ŝi+1 as in §4.4.3 con-

sider a point x ∈ Ŝi that is a cusp with respect to the hyperbolic metric. We perform
the plumbing described in §4.4.4 and §4.4.5, and explain how the dynamics are to
be adjusted.

Suppose that x ∈ Ŝ1 is periodic of period q. Let D∗ := D \ {0} be the unit disc

punctured at 0. Since x is a cusp, the universal cover D → (Ŝ1, ord1) factors as

D → D∗ πx−→ (Ŝ1, ord1) with πx extended to 0 by πx(0) = x. Denote by H∗
r ⊂ D∗

the circle, i.e., horocycle, centered at 0 with Euclidean radius r. For sufficiently

small r the image Hr := πx(H
∗
r ) is a small simple closed curve around x ∈ Ŝ1.

Let d > 1 be the local degree of fq at x, and let U ⊂ Ŝ1 be the Fatou component
containing x. Choose a Böttcher coördinate φ : U → D conjugating fq : U ý to
z → zd : D ý. Denote by E′

r ⊂ D the circle centered at 0 with Euclidean radius r.
Then Er := φ−1(E′

r) is an equipotential of U . By construction, fq(Er) = Erd . We
propagate these equipotentials along the orbit of x in such a manner that we have
f(Er) = Erdegx(f) , where the latter is an equipotential around f(x).

Since φ ◦ πx is conformal at 0 there is a τ = |π′
x(0)| > 0 such that Hr is

approximately Eτr: for small r the horocycle Hr lies in the O(r2)-neighbourhood
of Eτr and, moreover, the hyperbolic length of Eτr is −1/ log(r) + O(−r/ log r).
(We recall that −1/ log(r) is the hyperbolic length of Hr.)

We now set up some notation. The Fatou component around f(x) is denoted by
U ′. The hyperboloids used in the plumbing at x, f(x) are, respectively, denoted by

B and B′. The neighbourhood of x in the original Ŝ1 is foliated by horocycles, and

so are B,B′ and the neighbourhood of f(x) in the original Ŝ2. The plumbings at
x, f(x) are done, respectively, on horocycles of radii R0, R

′
0. We now use d for the

local degree of f at x.
We modify the map f : U → U ′ into a map from the truncation of U at HR0

into
U ′ ∪B′ as follows. Choose R+ ∈ (0, 1) such that Rd

+ ∈ (Rd
0, R

′
0); this is possible by

Proposition 4.12. Let (Ir)r∈[R0,R+] be a family of disjoint curves in U interpolating
horocycles to equipotentials: IR0

= HR0
and IR+

= EτR+
such that

⋃
r∈[R0,R+] Ir

is a cylinder and such that every Ir is very close to Hr and to Eτr. Similarly,
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let (I ′r)r∈[Rd
0 ,R

d
+] be a family of disjoint curves in U ′ interpolating horocycles to

equipotentials: I ′
Rd

0
= HRd

0
and I ′

Rd
+
= EτRd

+
. For r > R+, we map Eτr ⊂ U to

Eτrd in U ′, and in the case rd < R′
0 we project it naturally to B′; the latter map

is expanding by Lemma 4.13. For r ∈ [R0, R+) we map Ir ⊂ U to I ′rd in U ′ and
project it naturally to B′; the obtained map is expanding by Lemma 4.13. Observe
that the new map sends the horocycle HR0

in U to a horocycle in B′. For r < R0

we shall specify the map on B in §4.4.8.
We now propagate the adjusted dynamics to all preperiodic preimages of x that

are cusps with respect to the hyperbolic metric. We perform the same operation
at all cusps.

4.4.7. Dynamics at small spheres. Recall thatX consists of truncated small spheres
and of almost flat cylinders connecting truncated spheres.

Consider first a small sphere S ∈ S and its f -image S′. We have a rational map

fS := f : Ŝ → Ŝ′. For all points in S◦ with its fS-image in S′◦ we set F to be fS .
The remaining points are bounded by f−1

S (∂S′◦). We now extend F to S◦.

Consider a curve γ ∈ f−1
S (∂S′◦). Then either γ is nonessential rel A or γ ∈ C

rel A. In the first case γ bounds a peripheral disc U containing at most one
point in A. By construction (see §4.4.5) there is a very long almost flat annulus
B ∈ A attached to F (γ). Since fS �U is expanding, we may extend F to U (see
Lemma 4.13) in such a manner that F �U is expanding. If there is an a ∈ A∩U , then
we require that F (a) = f(a) and that F maps a neighbourhood of a analytically
(i.e., locally conformal except at a, where the map need not be an isomorphism) to
a neighbourhood of f(a). In the second case, γ ∈ C rel A, and we are then in the
situation of a plumbing; the modification of the dynamics was described in §4.4.6.

4.4.8. Dynamics at annuli. So far F is defined on small spheres; let us assume that
F �S= f �S for every S ∈ S . We now extend F to X � (S2, A) in an expanding
manner so that F � f .

Consider an annulus B ∈ A . Suppose that f maps B to a sequence of annuli
and spheres B1, S1, B2, S2, . . . , Bt with Bi ∈ A and Si ∈ S . Consider two cases.

Suppose first t = 1. Then B − B1
Ï 1 because the values B > B1

from
Proposition 4.12 are rescaled so that B, B1

Ï 1. Also, either wB > wB1
or wB >

wB1
/2 in case f �B has degree greater than 1. Therefore, we can map B to B1 minus

a small (i.e., of scale Î ) neighbourhood of ∂B1 (which is already in the image of
small spheres) in an expanding manner so that the obtained map F is isotopic to f
rel ∂B. Indeed, identify B and B1 \ (small neighbourhood of ∂B1) with S1 × [0, 1],
recalling that B,B1 are almost flat. Then set F to be (x, y)→ (dx+my, y), where
d ≥ 1 is the degree of f �B and m ≥ 0 is the twisting parameter. Since m, d are
independent of  Ï 1 Ï w, the map F �B is expanding.

Suppose next t > 1. Subdivide B into B′
1, S

′
1, B

′
2, . . . , S

′
t−1, B

′
t so that each Si is

an annulus of length ≈ w and each B′
j is an annulus of length ≈ /t. Again, since

 Ï 1 Ï w we can define F �B� f �B in such a manner that F expands S′
i and B′

j

into Si and Bj , respectively.

4.4.9. Perturbation of the metric. We have constructed a metric space (X,μ) and
a map F : X ý which weakly (≥) expands the metric and such that an iterate of
F is expanding.

Lemma 4.14. There is a small perturbation μ′ of μ such that F : X ý expands μ′.



EXPANDING MAPS 7701

Proof. Let F p : X ý be an expanding iteration of F . By construction, μ is a smooth
Riemannian metric such that F is conformal (rel μ) in a small neighbourhood of A.

Denote by A∞ the set of periodic critical cycles of F �Aý. Recall that A∞ is
the set of points at infinite distance from X \ A∞ for μ. We also recall that cone
points of μ belong to A \A∞.

For i ≤ p − 1 consider the pulled-back metric μi := (F−i)∗μ. Then μi is a Rie-
mannian metric with cones in f−i(A\A∞) and singularities in f−i(A∞). Moreover,
F weakly expands μi.

Write μi(z) as a conformal metric σi(z)|dz| for z ∈ X written in complex charts.
For a sufficiently large K > 1 the inequality σi(z) > K holds only in a small
neighbourhood of f−i(A). Let Ap ⊃ A∞ be the set of periodic points in A. For
sufficiently large K and for z close to f−i(A)\Ap, we define σ̄i(z) ≈ min{σi(z),K}
so that F still weakly expands the truncated metric μ̄i(z) = σ̄i(z)|dz|. We leave σi

unchanged away from the neighbourhood of Ap.
We claim that for a sufficiently small ε > 0 the quadratic form

μ′ := μ+ (μ̄1 + · · ·+ μ̄p−1)ε

is positive definite (i.e., μ′ is a metric) and that F expands μ′. Indeed, away
from Ap all μ̄i are finite metrics. Therefore, if ε is sufficiently small, then μ′ is
positive definite away from Ap; so μ′ is a metric. Since F is conformal in a small
neighbourhood of Ap, all μ̄i and μ are conformal metrics in a common charts. Hence
μ′ is positive-definite as a sum of conformal metrics.

Since F p is expanding, F expands at least one of μ, μ̄1, . . . , μ̄p−1. Therefore, F
expands μ′. �

4.5. Isotopy of expanding maps. Let f, g : (S2, A) ý be two expanding maps.
Denote by F(f) and F(g) the Fatou sets of f and g, respectively. We may partially
order the maps f, g by declaring that g is “smaller than” f if A∩F(g) ⊂ A∩F(f).
In this partial order, maximal elements are Böttcher expanding maps, and we will
show that every map is obtained from a Böttcher expanding map by collapsing
Fatou components.

Lemma 4.15. Let f, g : (S2, A) ý be two expanding maps with A∩F(f) = A∩F(g).
Then f and g are conjugate by h � � if and only if f � g.

Moreover, if #A ≥ 3, then h is unique; see [5, §C].

Proof. We show that if f, g are isotopic, then they are conjugate by h � �. This is
an application of the pullback argument.

Choose h0, h1 � � such that h1f = gh0. We adjust h0 so that it respects
Böttcher coordinates around periodic points in A ∩ F(f). Thus h0 is equal to h1

in a small neighbourhood of A ∩ F(f).
Inductively, let hn be the lift of hn−1, i.e., hnf = ghn−1. By construction, all

hn coincide in a small neighbourhood of A ∩ F(f).
Since f is expanding away from A∩F(f), the sequence hn tends to a continuous

map h∞ : (S2, A) ý satisfying h∞f = gh∞.
Observe now that we also have h−1

n g = fh−1
n−1. Since g is expanding away from

A ∩ F(g), the sequence h−1
n tends to a continuous map h′

∞ : (S2, A) ý satisfying
h′
∞g = fh′

∞. Clearly, h′
∞h∞ = �; i.e., h∞ is a homeomorphism. �
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For a Thurston map f : (S2, A) ý, a Levy arc is a nontrivial path, with (possibly
equal) starting and ending points in A, that is isotopic rel A to one of its iterated
lifts. Let A′ be a forward-invariant subset of A. We say that A′ is homotopically
isolated if there is no Levy arc connecting two points in A′.

Lemma 4.16. Suppose that f : (S2, A) ý is a Böttcher expanding map, that A′ ⊂
A∩F(f) is forward invariant, and that F ′ is the set of points in F(f) attracted by
A′. Then A′ is homotopically isolated if and only if the following properties hold:

(1) if O is a connected component of F ′, then O is a closed topological disc
and, moreover, A ∩ ∂O = ∅;

(2) if O1, O2 are different connected components of F ′, then O1 ∩O2 = ∅.

Proof. Suppose first that A′ is not homotopically isolated. Let  be a Levy arc
connecting points a, b ∈ A′. Then  can be realized as an inner ray R1 followed by
an inner ray R2. If a �= b, then the closures of the Fatou components centered at
a and b intersect. If a = b but R1 �= R2, then the closure of the Fatou component
centered at a is not a closed disc, since it is pinched at a = b. If R1 = R2, then the
landing point of R1 belongs to A.

Conversely, let us assume that A′ is homotopically isolated. We first verify that
A ∩ ∂O = ∅. Indeed, if a ∈ A ∩ ∂O, then the internal ray R of O landing at
a is preperiodic. For n large enough, the ray fn(R) is a periodic ray of fn(O)
connecting its center, which is a point in A′, to fn(a) ∈ A. Therefore, a loop
starting at the center of fn(O), then following fn(R), then circling fn(a), and then
following fn(R) back to the center of fn(O) is a Levy arc.

If the conclusion of the lemma does not hold, then either there is a periodic
component O of F ′ which is not a disk, and then there are two different inner rays
R1, R2 of O that land together; or there are two periodic connected components
O1, O2 of F ′ and respective inner rays R1 ⊂ O1 and R2 ⊂ O2 that land together.

If R1, R2 are inner rays of O that land together, then we have fn(R1) �= fn(R2)
for all n ≥ 0. Indeed, otherwise the common landing point of R1, R2 would be
precritical, contradicting A ∩ ∂O = ∅. Furthermore, for all n sufficiently large
fn(R1) ∪ fn(R2) is a closed curve, nonnull-homotopic rel A. Indeed, if fn(R1) ∪
fn(R2) were trivial for some n, then fm(R1) ∪ fm(R2) would be trivial for all
m ∈ {0, 1, . . . , n}. Then let Dm be the open disc bounded by fm(R1)∪fm(R2) and
not intersecting A. We see that fm : D0 → Dm has degree one. Denote by φm the
angle in Dm between fm(R1) and fm(R2) measured at the center fm(a) of fm(O).
Then φm = dega(f

m)φ0. Since φ0 > 0 because R1 �= R2, and dega(f
m) → ∞ as

m → ∞ because O is a Fatou component, we see that fn : D0 → Dn has degree
greater than one for all sufficiently large n.

In all cases, we obtain for some n > m ≥ 0 an arc fn(R1) ∪ fn(R2) that is
isotopic to fm(R1) ∪ fm(R2) A, so fn(R1) ∪ fn(R2) is a Levy arc. �

Suppose that ∼ is a closed equivalence relation on S2 whose equivalence classes
are connected and filled-in (namely, with connected complement) compact subsets
of S2 and suppose that not all points of S2 are equivalent. In this case Moore’s
theorem [15] states that the quotient space S2/∼ is homeomorphic to S2.

Corollary 4.17. Suppose that f : (S2, A) ý is a Böttcher expanding map and
suppose that A′ ⊂ A ∩ F(f) is a forward invariant homotopically isolated subset
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of A. Let F ′ be the set of points in F(f) attracted by A′. Then the equivalence
relation ∼ on S2 specified by

x ∼ y ⇐⇒
{
x = y or

x, y are in the closure of the same connected component of F ′

is an f -invariant equivalence relation satisfying Moore’s theorem. View ((S2, A)/∼)
� (S2, A). The induced map f/∼ : ((S2, A)/∼) ý is topologically expanding and is
isotopic rel A to f .

Proof. It is clear that f/∼ is topologically expanding. If we view ((S2, A)/∼) �
(S2, A), then f and f/∼ have isomorphic bisets; therefore f � f/∼. �

Proposition 4.18. Let f, g : (S2, A) ý be two expanding maps such that f � g
and A ∩ F(g) ⊆ A ∩ F(f). Write A′ := A ∩ (F(f) \ F(g)) and let F ′ be the set of
points attracted towards A′ under iteration of f .

Then there is a semiconjugacy π : (S2, A)→ (S2, A) from f to g defined by

π(x)=π(y)⇐⇒
{
x = y or

x, y are in the closure of the same connected component of F ′.

As in Lemma 4.15, the semiconjugacy π is unique.

Proof. It is sufficient to prove this proposition for the case in which f is a Böttcher
expanding map. By Lemma 4.16 applied to g we see that Ag is homotopically iso-
lated. Therefore, again by Lemma 4.16 we can collapse F ′ to obtain a topologically
expanding map f/F ′. Since f/F ′ ≈ g, the claim now follows from Lemma 4.15. �

5. Computability of the Levy decomposition

In this section, we give algorithms that prove Corollaries C and D.
Recall that a branched covering f : (S2, Pf , ordf ) ý is doubly covered by a torus

endomorphism if and only if Pf contains exactly four points and ordf (Pf ) = {2}.
Moreover, in this case f : (S2, Pf , ordf ) ý is itself an orbifold self-covering and
its biset B(f) is right principal. It is easy to see that G := π1(S

2, Pf , ordf ) is
isomorphic to Z2�−�Z/2 and that B(f) is of the following form: for a 2×2 integer
matrix M with det(M) > 1 and a vector v ∈ Z2, denote by Mv : Z2�−�Z/2 ý the
endomorphism given by a “cross product structure” (see [2, Proposition III.11]):

(6) Mv(n, 0) = (Mn, 0) and Mv(n, 1) = (Mn+ v, 1).

Then B(f) is isomorphic to G as a set, with left and right actions given by g · b ·
h = Mv(g)bh for all g, b, h ∈ G. Moreover, f : (S2, Pf , ordf ) ý is combinatorially
equivalent to the quotient of z �→ Mz + v : R2/Z2 ý by the involution z �→ −z.
Indeed, every endomorphism of G is of the form (6).
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Algorithm 5.1. Given a sphere biset GBG,
Decide whether B is the biset of a map double covered by a torus endomorphism
as follows:

(1) Compute the action of B on peripheral conjugacy classes in G.
(2) Determine the minimal orbisphere structure (S2, ordB) from the action on

peripheral conjugacy classes; see §3.3.
(3) Return yes if the Euler characteristic of (S2, ordB) is = 0 and ordB has

four marked points, and no otherwise.

Algorithm 5.2. Given a sphere biset GBG of a map double covered by a torus
endomorphism,
Compute parameters M, v for the torus endomorphism z �→Mz+ v as follows:

(1) As in Algorithm 5.1, compute the action of B on peripheral conjugacy
classes in G, and determine the quotient map π : G → G to the minimal
orbisphere structure (see §3.3) and the quotient biset GBG.

(2) Note that G is of the form Z2 � Z/2, where Z2 is generated by all even
products of peripheral generators and Z/2 is generated by any chosen gen-
erator.

(3) Since the map corresponding to B is a covering, the biset B is left-free and
right-principal. Choose an arbitrary element x ∈ B, thus identifying B
with G via xg ↔ g.

(4) Let {g0, g1} be a basis of Z2 ⊂ G, and choose a peripheral generator h of
G. Write g0x = xga0g

b
1 and g1x = xgc0g

d
1 for some a, b, c, d ∈ Z which form

the matrix M = ( a c
b d ), and write hx = xge0g

f
1h for some e, f ∈ Z forming

the vector v = ( e
f ).

The following algorithm determines whether a biset is {GTor/2}. We shall give,
in [5], a much more efficient encoding of nonpostcritical marked periodic points and
improve the speed of Algorithm 5.4. The present algorithm relies on the following
theorem.

Theorem 5.3 ([20, Main Theorem II]). Let f be a Thurston map that is doubly
covered by a torus endomorphism. If f is Levy-free, then it is {GTor/2}.
Algorithm 5.4. Given a sphere biset GBG of a map double covered by a torus
endomorphism,
Decide whether B is the biset of a {GTor/2} map as follows:

(1) Use Algorithm 5.2 to obtain a 2× 2 matrix M expressing the linear part of
the endomorphism covering B, and return no if M has ±1 as eigenvalue.

(2) Choose a basis X of B. Using the action of B on peripheral conjugacy
classes, determine those (call them A′) that correspond to nonpostcritical
points.

(3) Make the finite list of all choices Â′ of periodic points or preperiodic points
on the torus that map to each other as the peripheral conjugacy classes
map to each other under B∗.

(4) Run the following two steps in parallel. By Theorem 5.3, precisely one of
them will terminate.
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(5) For an enumeration of all multicurves C , check whether C is a Levy cycle,
and if so return no.

(6) For each choice Â′ of periodic points, compute the biset B̂(A′) of the map

(z �→ Mz + v)/{±1} with ( 12Z
2/Z2 ∪ Â′)/{±1} marked, and go through

the countably many maps X → B̂(A′). If one of these maps extends to an
isomorphism of bisets, return yes.

Algorithm 5.5. Given a sphere biset GBG,
Decide whether B is the biset of an expanding map as follows:

(1) Check, using Algorithm 5.1, whether B is double covered by a torus endo-
morphism. If not, run the next two steps in parallel. If B is double covered
by a torus endomorphism, then run Algorithm 5.2 to obtain a 2× 2 matrix
M expressing the linear part of the endomorphism, and run Algorithm 5.4
to decide whether GBG is a geometric biset. If GBG is not a geometric biset
or at least one eigenvalue of M has absolute value less than 1, then return
no. Otherwise return yes.

(2) As in §3.3 pass to a bounded quotient of B. Enumerate all finite subsets of
G, and check whether one is the nucleus of (B,X). If so, return yes.

(3) Simultaneously, enumerate all multicurves C on (S2, A), and check whether
any is a Levy obstruction for B. If so, return no.

By Theorem A, either step (2) or step (3) will succeed.

The following algorithm computes the Levy decomposition and proves in this
manner Corollary D.

Algorithm 5.6. Given a Thurston map f : (S2, A) ý by its biset,
Compute the Levy decomposition of f as follows:

(0) We are given a G-G-biset B = B(f). Recall that multicurves on (S2, A) are
treated as collections of conjugacy classes in G. Their B-lift is computable
by [3, §2.6].

(1) For an enumeration of all multicurves C on (S2, A) that never reaches
a multicurve before reaching its proper submulticurves, do the following
steps.

(2) If the multicurve C is not invariant or is not Levy, continue in (1) with the
next multicurve.

(3) Compute the decomposition of B using the algorithm in [4, Theorem 3.9].
(4) If all return bisets of the decomposition are either of degree 1 or expand-

ing (recognized using Algorithm 5.5) or {GTor/2} (recognized using Algo-
rithm 5.4), then return C .

(5) Proceed with the next multicurve.

6. Amalgams

In the previous sections, we considered a single Thurston map—or, equivalently,
a sphere biset—and characterized when it is combinatorially equivalent to an ex-
panding map.

In this section, we rather consider a Thurston map that is defined as an “amal-
gam” of small maps, glued together along a multicurve; we derive a criterion for the
amalgam to be expanding. A typical example is a formal mating, which is a sphere
map admitting an “equator”—a simple closed curve γ isotopic to its lift, which
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maps back to γ by maximal degree. We first give an algebraic characterization in
terms of bisets, and then its geometric translation in terms of internal rays.

6.1. Sphere trees of bisets. We briefly recall from [4, Definition 3.7] the notion
of sphere tree of biset : firstly, we are given a tree X of groups, namely a tree
with a group attached to every vertex and edge, and inclusions Ge → Ge− and
isomorphisms Ge ↔ Ge from an edge e, respectively, to its source e− and its reverse
e. Secondly, we are given analogously a tree B of bisets and two graph morphisms
λ, ρ : B → X such that ρ is a graph covering and λ is monotonous (preimages of
connected sets are connected).

The graph of groups X has a fundamental group π1(X, ∗) at each vertex
∗ ∈ X; this is the group of expressions of the form (g0, e0, g1, . . . , en−1, gn) with
(e0, . . . , en−1) a closed path in X based at ∗ and gi ∈ Ge−i

, subject to natural rela-

tions coming from the edge group inclusions. Likewise, the graph of bisets B has
a fundamental biset, which is an ordinary biset for the fundamental group. Just as
sphere bisets (up to isomorphism) capture Thurston maps (up to isotopy), sphere
trees of bisets capture Thurston maps with an invariant multicurve.

Consider a sphere group G and a sphere G-G-biset B. A Levy cycle in B is a
periodic sequence of conjugacy classes gG0 , . . . , g

G
m−1, g

G
m = gG0 such that each gGi

is a B-lift of gGi+1; namely, there are biset elements b0, . . . , bm−1 ∈ B such that
gibi = bigi+1 holds for all i = 0, . . . ,m − 1. More succinctly, in the product biset
B⊗m we have a commutation relation g0b = bg0.

Lemma 6.1. Let f : (S2, A) ý be a Thurston map not doubly covered by a torus
endomorphism map. Then f admits a Levy cycle if and only if B(f) admits one.

Proof. If (gG0 , . . . , g
G
m−1) is a Levy cycle in B(f), then B(f) is not contracting, so f

is not expanding by Theorem A and thus contains a Levy cycle again by Theorem A.
Conversely, let (γ0, . . . , γm−1) be a Levy cycle for f , and write each γi as a

conjugacy class gGi . Since each γi+1 has an f -lift isotopic to γi, there are biset

elements b0, . . . , bm−1 such that g±G
i bi � bigi+1. Up to replacing some gi by their

inverses, we may assume gGi bi � bigi+1 except possibly gGm−1bm−1 � bm−1g
−1
0 . In

that case, increase m to 2m and set gm+i = g−1
i for i = 0, . . . ,m− 1 so as to have

gGi bi � bigi+1 for all i, namely ghi
i bi = bigi+1 for some elements hi ∈ G. Finally,

set ci := hibi to obtain gici = cigi+1 for all i. Thus (gG0 , . . . , g
G
m−1) is a Levy cycle

in B. �

The following definition captures the notion of algebraic Levy cycles for graphs
of bisets.

Definition 6.2. Let B be a sphere tree of bisets. A periodic pinching cycle for B
is

(1) a sequence of m closed paths γj := (v0,j , e1,j , v1,j , . . . , en,j , vn,j = v0,j) in
the tree B, for j = 0, . . . ,m − 1, such that ρ(γj+1) = λ(γj), indices read
modulo m;

(2) a sequence of m × n biset elements bi,j ∈ Bei,j and group elements gi,j ∈
Gρ(vi,j), for i = 0, . . . , n− 1 and j = 0, . . . ,m− 1, satisfying

gi,j+1b
−
i+1,j = b+i,jgi,j for all i, j,

indices being read cyclically. �
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Consider a periodic pinching cycle. Note that elements g0,jρ(ei,j)g1,j · · · ρ(en,j),
for j = 0, . . . ,m−1, define elements of the fundamental group of X based at ρ(v0,j),
and that their conjugacy classes again produce a Levy cycle for the fundamental
biset of B.

We shall always assume that periodic pinching cycles are nontrivial: m,n > 0
and the elements g0,jρ(ei,j)g1,j · · · ρ(en,j) are reduced in the fundamental group
of X.

Recall also that, in a tree of bisets B, vertices of B are classified as essential and
inessential ; every vertex v ∈ X has a unique λ-preimage ι(v) ∈ B that is essential.
Consider a vertex v ∈ X, and assume that (ρ ◦ ι)m(v) = v for some m > 0. The
corresponding return biset is Bι(v)⊗· · ·⊗Bι(ρ◦ι)m−1(v), and it is a Gv-Gv-biset. We
denote by R(B) the set of all return bisets of B.

Let X be a tree of sphere groups with fundamental group G = π1(X, ∗). Recall
that the edge groups Ge in X embed as cyclic subgroups of G. Choose a generator
te ∈ Ge for every edge e ∈ X, and consider the collection of their conjugacy classes
C = {tGe | e ∈ E(X)}. We call C the edge multicurve of X.

Given a sphere biset B, recall that its portrait is the induced map B∗ : A ý on
the set of peripheral conjugacy classes. A portrait is hyperbolic if every periodic
cycle of B∗ contains a critical peripheral class; i.e., if B is the biset of a rational
map f , then all critical points of f are in the Fatou set.

Theorem 6.3. Let B be a sphere tree of bisets, and let B := π1(B) denote its
fundamental biset. Assume that the portrait of B is hyperbolic. Then B is sphere
contracting if and only if the following all hold:

(1) all return bisets in R(B) are contracting;
(2) the edge multicurve of B contains no Levy cycle;
(3) there is no nontrivial periodic pinching cycle for B.

Proof. Each of the conditions is clearly necessary: if a return biset of B is not
contracting, then its image in B is still not contracting; if an edge multicurve is a
Levy cycle, then it is a Levy cycle for B; and, by definition, a periodic pinching
cycle has an iterated lift that is isotopic to itself, so every periodic pinching cycle
generates a Levy obstruction.

Conversely, assume that every return biset in B is contracting, that the edge
multicurve C of B is Levy-free, and that B is not contracting. Then by Theo-
rem A there is a Levy cycle in B. Write G = π1(X, ∗), and let {G0 , . . . , Gm−1}
denote this Levy cycle. The conjugacy classes Gj are not reduced to conjugacy
classes in vertex or edge groups, because return bisets are contracting and the
edge multicurve is Levy-free, so every Gj admits a representative j of the form
g0,jf1,jg1,j · · · fn(j),j ∈ π1(X, wj); here f1,j · · · fn(j),j is a loop in X based at wj ,
and gi,j ∈ Gf+

i,j
. Furthermore, if we require each n(j) to be minimal, then this

expression of a representative is unique up to cyclic permutation.
Since {G0 , . . . , Gm−1} is a Levy cycle, there are b0, . . . , bm−1 ∈ B with jbj =

bjj+1 for all j. Furthermore, since the tree of bisets B is left fibrant, every bj ∈ B
may be written as bj = hjcj for some cj ∈ Bv0,j+1

the vertex biset of a vertex
v0,j ∈ B with ρ(v0,j) = wj , and some element hj ∈ π1(X, wj , wj+1) in the path
groupoid of X. We get


hj

j cj = cjj+1 for all j = 0, . . . ,m− 1.
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Now, again becauseB is left fibrant, each path j lifts by ρ to a unique path γj :=
(v0,j , e1,j , v1,j , . . . , en(j),j , vn(j),j = v0,j), and the above equation gives λ(γj+1) =


hj

j . In particular, the length of 
hj

j is at most the length of j+1; it follows that all


hj

j are cyclically reduced and all have the same length n.
We may now redefine j as the appropriate cyclic permutation of itself so that

jcj = cjj+1 holds for all j = 0, . . . ,m − 2, and we have 
hm−1

m−1 cm−1 = cm−10,

where 
hm−1

m−1 is a cyclic permutation of m−1. At worst replacing m by mn and
letting km+j be the appropriate cyclic permutation of j for all j = 0, . . . ,m − 1
and all k = 0, . . . , n − 1, we may ensure that jcj = cjj+1 holds for all j. Set
c0,j := cj and choose ci,j ∈ Bfi,j so that gi,j+1c

−
i+1,j = c+i,jgi,j holds. We have

constructed a periodic pinching cycle. �

Furthermore, it is decidable whether B admits a periodic pinching cycle: for
example, Algorithm 5.5 tells us whether the fundamental biset B is expanding; in
that case, there is no periodic pinching cycle, while if not, then a periodic pinching
cycle may be found by enumerating all mn-tuples of biset and group elements as
in Definition 6.2.

6.2. Trees of correspondences. The algebraic construction above is closely re-
lated to the topological construction of an “amalgam” F of maps. We shall not
stress too precisely the conditions that must be satisfied by F, but rather give an
intuitive connection to the previous subsection: on the one hand, such a formalism
is well developed in [18]; on the other hand, the algebraic picture is the one that
we use in practice.

We may start with the following data: first, one is given a finite tree T expressing
a decomposition of a marked sphere (S2, A). Let there be a topological sphere Sv

for every vertex v ∈ T, and a cylinder (written Se) for every edge e ∈ T. There is
a finite set Av ⊂ Sv of marked points assigned to each vertex v ∈ T. If whenever
e touches v one removes a small disk around a certain marked point from Sv and
attaches its boundary to a boundary of the cylinder Se, after gluing one obtains a
marked sphere (S2, A) so that A is

⋃
v Av \ {removed points}.

Second, one is given a tree of correspondences: a tree F also expressing a de-
composition of a marked sphere and two graph morphisms λ, ρ : F → T. To every
vertex and edge z ∈ F one is given a “topological correspondence” between the
spaces λ(z) and ρ(z). More precisely, for each vertex v ∈ F one is given a marked
sphere (Sv, Av), a covering map Sv\Av → Sρ(v)\Aρ(v), and an inclusion Sv → Sλ(v)

(note that λ(v) need not be a vertex). Similarly, for every edge e ∈ F one is given a
cylinder Se together with a covering map Se → Sρ(e) and an inclusion Se → Sλ(e).
The marked set A is assumed to be forward invariant and contains all critical values
of all correspondences Fz.

Typical examples to consider are matings (as we saw in the introduction), for
which the trees T and F have a single edge. The correspondence at each vertex v±
is the polynomial p±, and the correspondence at the edge is z �→ zd if the cylinder
is modelled on C∗.

We denote by R(F) the small maps of F, namely the return maps to vertex
spheres obtained by composing the correspondences along cycles. Again in the
example of matings, the small maps are p±.
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By the “van Kampen theorem” for bisets (see [3] and [4, Theorem C]) we may
freely move between the languages of trees of correspondences F, sphere trees of
bisets B, sphere bisets with invariant algebraic multicurve (B,C ) represented as
conjugacy classes in the fundamental group, and Thurston maps with invariant
multicurve f : (S2, A,C ) ý. We call f the limit of F.

Let F be a tree of correspondences with Böttcher expanding return maps. Let C
denote the invariant multicurve associated with the edges of F, namely C is the set
of core curves of cylinders represented by edges of T. We assume that C is Levy-free.
Let C0 denote the union of primitive unicycles in C . Consider γ ∈ C0 and denote
by Se the cylinder with core curve γ, for e ∈ T. Since γ is contained in a primitive
unicycle, there is a unique f ∈ F with λ(f) = e. We call the core curve of Sρ(f) the
image of γ. In this manner, there is a well-defined (up to isotopy) first return map
fγ : γ → γ; up to isotopy we assume that fγ is conjugate to z → zd : S1 ý, with
d > 1 because C is Levy-free.

The curve γ is on the boundary of two small periodic spheres, call them S1 and
S2. By assumption, the first return maps on S1 and S2 are Böttcher expanding.
There are periodic Fatou components F1 ⊂ S1 and F2 ⊂ S2 such that γ is viewed
as the circle at infinity of F1 and F2. Then points in γ parameterize internal rays
of F1 and F2, and periodic internal rays are parameterized by periodic points of
fγ : γ ý, namely by rationals of the form m/(dn − 1) for some m,n ∈ N.

Definition 6.4. Let F be a tree of correspondences with expanding return maps.
Let C denote the invariant multicurve associated with the edges of T. Let C0 denote
the union of the primitive unicycles in C .

A periodic pinching cycle for F is a sequence z1, . . . , zn of periodic points on C0

and a sequence of internal rays I±1 , . . . , I±n in the Fatou components of small maps
in F touching C0 such that, indices read modulo n,

• I+i and I−i+1 are both parameterized by zi, and lie in neighbouring spheres;

• I+i and I−i both land at the same point and in the same sphere. �

As mentioned above, topological periodic pinching cycles are the form that Levy
cycles take in trees of correspondences with expanding return maps: given a Levy
cycle, we may put it in minimal position with respect to the multicurve C associated
with the edges of the tree, and thus decompose the Levy cycle into periodic arcs,
with each arc contained in a small sphere and connecting two boundary circles.

If we choose basepoints on the small spheres and boundary circles, and paths
from the boundary circle basepoint to the neighbouring sphere basepoints, we may
translate these arcs into loops in fundamental groups of small spheres.

Even though it is not necessary for our argument, let us explain more precisely
how to construct an algebraic periodic pinching cycle out of a topological one. For
simplicity assume that all small spheres and cylinders are fixed. Choose basepoints
∗t on all small spheres and curves St in T, identifying the group Gt with π1(St, ∗t)
and the biset Bt with homotopy classes of paths from ∗t to an f -preimage of ∗t.
Choose for each edge e ∈ T a path e from ∗e to ∗e− .

Consider a periodic pinching cycle for F, and assume again for simplicity that
all rays I±i are fixed. To every fixed point zi, say zi ∈ St(i), there corresponds
a biset element bi ∈ Bt(i): choose a path γi in St(i) from ∗t(i) to zi, and set

bi := γi#f−1(γ−1
i ). Since f is expanding, the infinite concatenation of lifts b∞i is

a path from ∗t(i) to zi. Note that here we are using the identification of the circle
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I+1

I−1

I−3

I+3

z1 z2

z3z4

I−4

I+2

I+4

I−2

Figure 4. A periodic pinching cycle. There is a central fixed
sphere mapping under z3 2z−1

2−z , and two spheres attached on the

Fatou components of 0 and 1 mapping under 3z2 − 2z2. The peri-
odic pinching cycle is in green, and the edges of the tree of spheres
are in red.

St(i) with the Julia set of zd for some d > 1 and with the Julia set J (Bt(i)) of
the biset Bt(i); recall from §3.2 that it consists of equivalence classes of bounded

(here constant b∞i ) infinite sequences in Bt(i). Let the rays I±i belong to sphere

Sv(i), and set gi := −1
t(i−1)#b∞i−1#I−i #(I+i )−1#(b∞i )−1#t(i) ∈ Gv(i). Then these

data bi, gi, v(i), t(i) determine an algebraic periodic pinching cycle with m = 1. In
general, the periodic pinching cycle for F will be periodic but not fixed, and m will
be > 1.

Given a Thurston map f : (S2, A) ý, recall that its portrait is the induced map
f : A ý with its local degree. A portrait is hyperbolic if all its cycles contain a
point of degree > 1.

Theorem 6.5. Let F be a tree of maps with hyperbolic portraits. Then its limit
f : (S2, A) ý is isotopic to an expanding map if and only if all of the following
hold:

(1) all small maps of F are isotopic to expanding maps;
(2) the invariant multicurve associated with the edges of T is Levy-free;
(3) there is no nontrivial periodic pinching cycle for F.

Proof. This is a direct translation of Theorem 6.3. It it instructive to give a geo-
metric proof of the only nontrivial implication, namely that if f admits a Levy
cycle L, then it admits a periodic pinching cycle.

Put L in minimal position with respect to C . By Proposition 2.4(2), a Levy cycle
may only intersect a primitive unicycle. Choose a curve  ∈ L, and let z1, . . . , zn
denote, in cyclic order along , the intersections of  with C . Assuming that all
small maps are expanding, the pieces of  between points zi and zi+1 belong to
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Fatou components and their boundaries, and may be assumed to be internal rays.
In this manner we have obtained a periodic pinching cycle. �
6.3. Higher-degree matings. We are ready to prove Theorem E. Note that, in
the case of matings, periodic pinching cycles of periodic angles are precisely the
periodic pinching cycles defined above for amalgams.

6.3.1. Polynomials. Let f be a complex polynomial of degree d ≥ 2. The filled-in
Julia set K(f) of f is

K(f) = {z ∈ C | fn(z) �→ ∞ as n→∞}.
Assume that K(f) is connected, and let φ be the inverse of the Böttcher coördinate

associated with the Fatou component of ∞, so we have φ : Ĉ \ K(f) → Ĉ \ D
satisfying φ(f(z)) = φ(z)d and φ(∞) = ∞ and φ′(∞) = 1. For θ ∈ R/Z, the
associated external ray Rf (θ) is defined as {φ−1(re2iπθ) | r > 1}.

We have J (f) = ∂K(f). Assume now that f is postcritically finite; in particular,
J (f) is locally connected. Then the landing point π(θ) := limr→1+ φ−1

f (re2iπθ) of

the ray Rf (θ) exists for all θ and defines a continuous map π : R/Z→ J (f).
On the other hand, consider a basepoint ∗ ∈ C \ A very close to ∞ so that its

preimages ∗0, . . . , ∗d−1 are all also very close to ∞. Let t ∈ π1(C, ∗) denote a short
counterclockwise loop around∞, and choose for all i = 0, . . . , d−1 a path i from ∗
to ∗i that remains in the neighbourhood of∞, and in such a manner that the paths
i#f−1(t) and i+1 are homotopic for all i = 0, . . . , d− 2 and that d−1#f−1(t) is
homotopic to t#0. Here by “s#f−1(t)” we denote the concatenation of a path s
with the unique f -lift of t that starts where s ends.

The following proposition illustrates the link between Julia sets (see also §4.2)
and bisets in the concrete case of polynomials.

Proposition 6.6. The set X := {0, . . . , d−1} is a basis of B(f). Let ρ : {0, . . . , d−
1}∞ → R/Z be the base-d encoding map x1x2 · · · �→

∑
xid

−i. Then the following
diagram commutes:

X∞ {0, . . . , d− 1}∞

R/Z

J (B(f)) J (f)

/∼

ρ

π

where ∼ is the asymptotic equivalence relation defined in §3.2.
Proof. Consider x1x2 · · · ∈ X∞ with each xi = mi

for some mi ∈ {0, . . . , d −
1}. Then the path x1#f−1(x2)#f−2(x3) · · · is a well-defined path in C \ K(f),
which has a limit because f is expanding and has the same limit as Rf (θ) for
θ = ρ(m1m2 · · · ) because with respect to the hyperbolic metric of C\K(f) there is
a δ > 0 such that x1#f−1(x2)#f−2(x3) · · · is in the δ-neighbourhood of Rf (θ). �
Proof of Theorem E. (1) ⇒ (2): assume that p+ � p− : S ý is combinatorially
equivalent to an expanding map h : S2 ý. Denote by Σ the quotient of S in which
all external rays are shrunk to points.

Let J± denote the Julia set of p±, respectively, and denote their common image
in Σ by J . We have a well-defined map p+ � p− : J ý, and we shall see that it is
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conjugate to h : J (h) ý. Let π±(θ) denote the landing point of the external ray
with angle θ on J±.

Fix a basepoint of ∗ at infinity, and choose a set X of paths from ∗ to all its
(p+ � p−)-preimages on the circle at infinity; the cardinality of X is the common
degree of p+ and p−. The bisets B(p+) and B(p−) may be chosen to have the
same basis X consisting of these paths. Note that the basis X is the standard
one for p+ but is reversed for p−. Let their respective nuclei be N±. Denoting by
∼± the corresponding asymptotic equivalence relations we have, according to §3.2,
conjugacies

X∞/∼+
∼= J+ and X∞/∼− ∼= J−.

The bisets B(h) and B(p+ � p−) are isomorphic, and since h is expanding the
nucleus of B(h) is contained in (N+ ∪ N−)

� for some  ∈ N. It follows that the
equivalence relation ∼h associated with the nucleus of N(h) is generated, as an
equivalence relation, by ∼+ ∪ ∼−. By Proposition 6.6 we therefore have

J (h) ∼= X∞/∼h
∼=

(X∞/∼+) � (X∞/∼−)

[w]∼+
= [w]∼− for all w ∈ X∞

∼=
J+ � J−

π+(θ) = π−(−θ) for all θ ∈ S1
∼= J ⊆ Σ,

conjugacies between the dynamics of h, p+ � p−, and p+ � p−.
We then extend this conjugacy between the Julia sets of h and p+� p− to Fatou

components, which are all discs. The critical portraits of p+ � p− and of p+ � p−
coincide, so their periodic Fatou components are in natural bijection. Since every
Fatou component is ultimately periodic, we extend the bijection by pulling back by
p+ � p− and p+� p−, respectively. The bijection between the Julia sets restricts to
bijections between boundaries of Fatou components, which are ultimately periodic
embedded circles in the Julia sets; this uniquely extends the bijection between Julia
sets to a conjugacy (S2, h)→ (Σ, p+ � p−).

(2)⇒ (3) is clear, because a pinching cycle is made of external rays, so it shrinks
to a node in X, and therefore X is not a topological sphere.

(3)⇒ (1) is Theorem 6.5. �

We remark that the criterion due to Mary Rees and Tan Lei gives strong con-
straints on pinching cycles of periodic angles in degree 2. First, the associated
external rays must land at dividing fixed points. Second, in Definition 6.4 it may
be assumed that n = 2, namely each curve in a pinching cycle intersects the equator
in exactly two points. This is not true anymore in higher degree; here is an example
in degree 3.

Example 6.7. Consider the polynomials q± = 1
2z

3 ± 3
2z. The polynomial q+ has

two fixed critical points at ±i, and q− exchanges its two critical points at ±1.
Let p+ be the tuning of q+ in which the local map z2 is replaced by the Basilica

map z2− 1 on the immediate basins of ±i, and let p− be the tuning of q− in which
the return map z2 ◦ z2 on the immediate basin of 1 is replaced by (1− z)2 +1 ◦ z2.
Then p± are polynomials of degree 3, with 4 finite postcritical points forming 2
periodic 2-cycles. The supporting rays for p+ are {{1/8, 11/24}, {5/8, 23/24}}, and
those for p− are {{1/8, 19/24}, {5/8, 7/24}}; the maps are ≈ z3 ± 2.12132z.

The only periodic external rays landing together for q+ are at angles 0 and 1/2,
while the only periodic external rays landing together for q− are at angles 1/4 and
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3/4. It follows that the only pairs of external rays landing together for p+ and p−
are

Rp+
(1/8),Rp+

(3/8) Rp−(1/8),Rp−(7/8)

Rp+
(0),Rp+

(1/2) Rp−(1/4),Rp−(3/4)

Rp+
(5/8),Rp+

(7/8) Rp−(3/8),Rp−(5/8).

It then follows that the sequence of rays Rp+
(1/8), Rp+

(3/8), Rp−(3/8),
Rp−(5/8), Rp+

(5/8), Rp+
(7/8), Rp−(7/8), and Rp−(1/8) is a periodic pinching

cycle, so p+ � p− is not equivalent to an expanding map. On the other hand, there
does not exist any periodic pinching cycle with n = 2.
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[11] Peter Häıssinsky and Kevin M. Pilgrim, Coarse expanding conformal dynamics (English, with
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